

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Improved limits on long-range parity-odd interactions of the neutron

E. G. Adelberger and T. A. Wagner Phys. Rev. D **88**, 031101 — Published 5 August 2013 DOI: 10.1103/PhysRevD.88.031101

Improved Limits on Long-Range Parity-Odd Interactions of the Neutron

E. G. Adelberger and T. A. Wagner

Center for Experimental Nuclear Physics and Astrophysics,

Box 354290, University of Washington, Seattle, WA 98195-4290

(Dated: July 17, 2013)

We show that a previous polarized ³He experiment at Princeton, plus Eöt-Wash equivalenceprinciple tests, constrain exotic, long-ranged ($\lambda > 0.15$ m) parity-violating interactions of neutrons at levels well below those inferred from a recent study of the parity-violating spin-precession of neutrons transmitted through liquid ⁴He. For $\lambda > 10^8$ m the bounds on $g_A g_V$ are improved by a 11 orders of magnitude.

PACS numbers: 13.88.+e,13.75.Cs,14.20.Dh,14.70.Pw

Yan and Snow[1] recently inferred bounds on the coupling strength, $g_A^n g_V^{^{4}\text{He}}$ of exotic, long-range, parityviolating interactions of neutrons from an experiment that studied the parity-violating spin-rotation of polarized neutrons transmitted through liquid ⁴He. Substantially tighter limits on several closely related quantities can be found by combining bounds on $|g_A^n|^2$ and on $|g_V|^2$ set by previous experiments to obtain

$$|g_A^n g_V| = \sqrt{|g_A^n|^2 |g_V|^2} \ . \tag{1}$$

It is convenient to define

$$g_V^{\pm} = (g_V^{\rm p} + g_V^{\rm e} \pm g_V^{\rm n})/\sqrt{2} ,$$
 (2)

so that $g_V^{^4\text{He}} = 2\sqrt{2}g_V^+$. We take our bounds on $|g_A^n|$ from a Princeton opticalpumping experiment with polarized ³He detector and sources [2, 3] that probed the neutron spin-spin interaction

$$V_{12}^{\sigma\cdot\sigma} = \frac{(g_A^n)^2}{4\pi r} (\hat{\boldsymbol{\sigma}}_1 \cdot \hat{\boldsymbol{\sigma}}_2) e^{-r/\lambda} , \qquad (3)$$

because the neutron in ³He carries most of the nuclear spin.

Our bounds on $|q_V|^2$ come from results of equivalenceprinciple tests[4, 5] that tightly constrain Yukawa interactions of the form

$$V_{12} = \frac{(g_V)^2}{4\pi r} e^{-r/\lambda} = V_G(r) \,\tilde{\alpha} \left[\frac{\tilde{q}}{\mu}\right]_1 \left[\frac{\tilde{q}}{\mu}\right]_2 e^{-r/\lambda} \,; \quad (4)$$

where, in the second relation (conventionally used to analyze equivalence-principle results [5], V_G is the Newtonian potential, $\tilde{\alpha}$ is a dimensionless strength to be determined by experiment and a general vector 'charge' of an atom with proton and neutron numbers Z and N can be parameterized as

$$\tilde{q} = \cos \tilde{\psi}[Z] + \sin \tilde{\psi}[N] , \qquad (5)$$

where $\tilde{\psi}$ characterizes the vector charge with

$$\tan \tilde{\psi} = \frac{g_V^n}{g_V^p + g_V^e} \,. \tag{6}$$

FIG. 1: [Color online] Comparison of Yan and Snow's 1σ constraints on $|g_A^n g_V^+|$ [1] with those inferred from Princeton neutron spin-spin studies^[2] and Eöt-Wash equivalence-principle tests with bodies falling toward a massive ²³⁸U laboratory source [4] or in the field of the entire earth[5]. Our analysis of the Eöt-Wash data assumes that $\tilde{q}^- = 0$. Yan and Snow's upper bounds are divided by 6 orders of magnitude so that they can be displayed on the same scale. The dashed line shows our constraint with no assumptions about the 'charge' parameter ψ .

Note that \tilde{q}^{\pm} correspond to 'charge' parameters $\tilde{\psi}$ = $\pm \pi/4$. The results of this analysis are shown in Figs. 1 and 2. The $|g_V|^2$ constraint obtained from the Hoskins et al. inverse-square test[6] would be imperceptible in Figs. 1 and 2 because of the rapid weakening of the $|g_{A}^{n}|^{2}$ constraint [2, 3] for $\lambda < 0.2$ m.

The experimental results of Refs. [2–5] place especially tight bounds on $g_A^n g_V^n$, the strength of a parity-violating neutron-neutron interaction. For this purpose we use Eqs. 4 and 5 with $\psi = \pi/2$ (i.e. $\tilde{q} = N$). The differing sensitivities of the results in Figs. 1, 2 and 3 follow from the varying properties of the assumed charges. In Fig. 1, \tilde{q}^+ is proportional to the atomic mass number so that the \tilde{q}/μ ratio difference of the various equivalence-principle

FIG. 2: [Color online] 1σ constraints on $|g_A^n g_V^-|$ assuming that $g_V^+ = 0$. The Ref. [5] constraint is weaker and has more structure than in Fig. 1 because the earth consists largely of materials with $N \approx Z$. The undulations in the conservative bound (dashed line) occur where contributions to the source model (e.g., crust, mantle, or core) with different compositions and densities change the value of $\tilde{\psi}'$ that determines the greatest lower bound.

test-body pairs arises principally from the relatively small variation in BE/Mc^2 where BE is the nuclear binding energy and M the atomic mass. In Fig. 2 cancellation occurs between neutrons and protons because $N \approx Z$. The tightest limits occur in Fig. 3 because \tilde{q} has no cancellations and $\tilde{q}/\mu \approx N/(Z+N)$ varies substantially for different test body materials.

We can do a completely general analysis by relaxing the assumptions made above about particular values of the 'charge' parameter $\tilde{\psi}$. For example, to establish the most conservative bound on g_V^n ($\tilde{\psi} = \pi/2$) at a given value of λ we fit the equivalence-principle constraints[4, 5] at that λ for the entire range of $\tilde{\psi}'$ values to obtain $\tilde{\alpha}(\lambda, \tilde{\psi}')$, the functional dependence of $\tilde{\alpha}$ on $\tilde{\psi}$, and compute the conservative bound on $[g_V^n(\lambda)]^2$ from the greatest lower bound on

$$4\pi G u^2 \tilde{\alpha}(\lambda, \tilde{\psi}') \cos^2(\tilde{\psi} - \tilde{\psi}') , \qquad (7)$$

where G is the Newtonian constant and u is the atomic mass unit. This strategy requires equivalence-principle data with at least 2 different composition dipoles and 2 different attractors to avoid situations where either the charge of the attractor, or the charge-dipole of the pendulum, vanishes at a particular value of $\tilde{\psi}$. The results are shown as dashed lines in Figs. 1-3.

The strategy employed above can also be used to find constraints on $|g_A^n g_V^{\pm}|$ for $\lambda < 1.5 \times 10^{-2}$ m by taking $|g_V|^2$

from the inverse-square law tests of Hoskins et al.[6] and Kapner et al.[7] and $|g_A^n|^2$ from the cold-neutron experiment of Piegsa and Pignol[8], but the sensitivity of the cold-neutron work is not sufficient to give a result that is competitive with Yan and Snow's.

FIG. 3: [Color online] Solid lines show 1σ constraints on $|g_A^n g_V^n|$ assuming that $g_V^p + g_V^e = 0$. The dashed line is a conservative constraint that makes no assumptions about $\tilde{\psi}$.

We are indebted to Georg Raffelt for showing that tight bounds on exotic interactions can be obtained by combining the results of gravitational experiments and other data[9]. This work was supported by NSF grant PHY969199.

- H. Yan and W.M. Snow, Phys. Rev. Lett. **110**, 082003 (2013).
- [2] G. Vasilakis, J. M. Brown, T. W. Kornack and M. V. Romalis, Phys. Rev. Lett. **103**, 261801 (2009).
- [3] G. Valilakis, PhD Thesis, Princeton University, 2007.
- [4] G. L. Smith, C. D. Hoyle, J. H. Gundlach, E. G. Adelberger, B. R. Heckel, and H. E. Swanson, Phys. Rev. D 61, 022001-1 (1999).
- [5] T.A. Wagner, S. Schlamminger, J. H. Gundlach and E. G. Adelberger, Class. Quant. Grav. 29, 184002 (2012).
- [6] J. K. Hoskins, R. D. Newman, R. Spero, and J. Schultz, Phys. Rev. D 32, 3084 (1985).
- [7] D. J. Kapner, T. E. Cook, E. G. Adelberger, J. H. Gundlach, B. R. Heckel, C. D. Hoyle and H. E. Swanson, Phys. ReV. Lett. 98, 021101 (2007).
- [8] F. M Piegsa and G. Pignol, Phys. Rev. Lett. 108, 181801 (2012).
- [9] G. Raffelt, Phys. Rev. D 86 015001 (2012).