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In this paper, we investigate the conservation laws of different type of particles in theories with
a universal gravity/matter coupling. The result brings new insights about previous studies on
universal gravity/matter theories. Especially, the paper demonstrates that for perfect fluids, there
is an equivalence between the assumption Lm = −ǫ, where ǫ is the total energy density; and the
assumption that the matter fluid current is conserved (∇σ(ρu

σ) = 0, where ρ is the rest mass
density). However, the main result is given in the general case where one does not make any
assumption on the conservation of the matter fluid current.

PACS numbers: 04.50.Kd, 04.40.Nr, 04.20.Fy, 95.36.+x

I. INTRODUCTION

Recently, many phenomenological theories of gravita-
tion have been proposed with a universal gravity/matter
coupling. The coupling appears either as a universal
non-minimal coupling between the Ricci scalar curvature
and the non-gravitational fields [1–4]; or as a universal
non-minimal coupling between a scalar-field and the non-
gravitational fields [5–8]. In order to study both types
of theories, we define universal gravity/matter coupling
theories by the following action:

S =
1

c

∫

[

f
(

R, φ, (∇φ)2
)

+ h
(

R, φ, (∇φ)2
)

Lm

]√−gd4x,

(1)
where g is the determinant of the metric tensor gµν ,

f(R, φ, (∇φ)
2
) and h(R, φ, (∇φ)

2
) are arbitrary analyt-

ical functions of the Ricci scalar R, a scalar field φ, and
the gradients constructed from the scalar field and Lm is
the Lagrangian of the non-gravitational sector – that we
assume here to be the usual standard model of particle
Lagrangian1. We dub the coupling universal because the
coupling is the same for the whole material sector; while
a more general set of theories would require different cou-
pling for each material field [9–11]. It is worth stressing
that such an action encompasses Brans-Dicke-like scalar-
tensor theories (with [5–8] and without [12–15] universal
scalar/matter coupling), f(R) theories (with [1–3] and
without [16] universal R/matter coupling), some low en-
ergy (tree level) string inspired 4-dimensional models in
the string frame [17–19], several Kaluza-Klein theories
reduced to 4 dimensions [20–22] and most of the mod-

els present in f
(

R,Lm, φ, (∇φ)
2
)

theories [23]. How-

ever, we consider only theories where φ is a gravitational
field – which requires some sort of coupling between φ

1 This assumption can be relaxed to include potential dark matter
fields (see discussion in the conclusion).

and R, as in Brans-Dicke-like scalar-tensor theories for
instance [24, 25]. Moreover, the main feature of the ac-
tion we are interested in is due to the non-constant term
h(R, φ, (∇φ)2). This last fact explains the chosen name
for this kind of non-minimal coupling: gravity/matter
coupling.

This type of universal gravity/matter coupling has
been proposed in order to explain the phenomena usually
associated to dark matter (without modifications of the
standard model of particles) [1, 26–30], to mimic the cos-
mological constant [31], to give a reheating scenario in the
context of Starobinsky inflation [32], to explain the accel-
eration of the expansion of the Universe [4, 5, 19, 33–35],
to predict (essentially) stable WIMPs [18], or to explain
the smallness of the gravitational constantG compared to
the proton mass scale [36]. Moreover, it has been shown
that under specific assumptions such theories can be com-
patible with current tight constraints on the equivalence
principle(s) (see for instance [10, 37–39]). In the end, the
goal of such a phenomenological action is to tend to an
explanation of the whole observed phenomena, without
the need of separate theories for inflation, dark matter or
dark energy.

As first noticed in [1–3] in the case of f(R) with uni-
versal gravity/matter coupling theories, the field equa-
tions of theories with a gravity/matter coupling depend
explicitly on the on-shell Lagrangian Lm. In particular,
whether one chooses Lm = ǫ – where ǫ is the total energy
density [40] – or Lm = P – where P is the pressure of
the perfect fluid – (or any normalized linear combination
of the two) explicitly modifies the field equation; while
the difference between the different on-shell Lagrangians
should reduce to surface integrals that do not contribute
to the field equations – just as in the case of general
relativity where one can freely choose between Lm = ǫ
and Lm = P without modifying the field equations [41].
Therefore it was first thought that there was a degener-
acy of supposedly equivalent actions that lead to different
field equations [2] – which is not satisfactory with respect
to the monist view of modern Physics, which requires a
unique mathematical description of the natural phenom-
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ena. However, [40] showed that some assumptions on the
nature of the matter fluid can kill the degeneracy, hence
showing that different Lagrangians actually correspond
to matter fluids with different fundamental characteris-
tics. To be specific, [40] showed that when the matter
fluid current is conserved, the Lagrangian of a barotropic
perfect fluid is Lm = −ǫ – and not anything else. In the
following we discuss this issue in more details and gen-
eralize the result found in [40] to general perfect fluids
where the matter fluid current is not conserved.
In section II, we give the field equations correspond-

ing to the action (1). After, in section III we study the
equation of motion of interacting particles forming an ar-
bitrary perfect fluid. Then, in section IV we derive the
equation of motion of non-interacting point-particles. Fi-
nally, in section V we derive the equation of motion of
light rays in the geometric optic approximation before
concluding in section VI.

II. FIELD EQUATIONS OF THE UNIVERSAL
GRAVITY/MATTER COUPLING MODEL

We use the usual definition of the stress-energy tensor:

Tµν = − 2√−g

δ (
√−gLm)

δgµν
. (2)

By assuming that the matter Lagrangian Lm depends
only on the metric tensor components gµν , and not on
its derivatives, we obtain the stress-energy tensor as

Tµν = gµνLm − 2
δLm

δgµν
. (3)

The extremization of the action (1) then reduces to the
following field equations [23]:

[fR + hRLm]Rµν +
(

gµν∇λ∇λ −∇µ∇ν

)

[fR + hRLm]

−1

2
fgµν =

1

2
h Tµν −

(

f(∇φ)2 + h(∇φ)2Lm

)

∇µφ∇νφ,

(4)

where the subscript of f or h denotes a partial deriva-
tive with respect to the arguments, i.e., fR = ∂f/∂R,

f(∇φ)2 = ∂f/∂ (∇φ)2.

�(∇φ)2φ =
1

2
(fφ + hφLm) , (5)

where fφ = ∂f/∂φ and

�(∇φ)2 =
1√−g

∂

∂xµ

[

(

f(∇φ)2 + h(∇φ)2Lm

)√
−ggµν

∂

∂xν

]

.

(6)
The (non-)conservation of the stress-energy tensor there-
fore reduces to:

∇σT
µσ = (Lmgµσ − T µσ) ∂σ lnh. (7)

III. PERFECT FLUID PARTICLES

The general Lagrangian that leads to the stress-energy
tensor of a perfect fluid is

Lm = [−(1− α)ǫ + βP ]γ−1, (8)

where α, β are constants, and γ is a normalization con-
stant such that γ = 1−α+β, and where P and ǫ are the
pressure and the so-called total energy density of the fluid
[42]. Indeed, following the development made in [2, 41],
one can show that Lm = [−(1 − α)ǫ + βP ]γ−1, in addi-
tion with (3) induces Tαβ = (ǫ + P )UαUβ + Pgαβ – see
appendix of [40] for an example. The normalization pro-
cedure is necessary in order to conserve energy through
change of parametrization. Indeed, adding surface inte-
gral terms, one can transform the on-shell Lagrangian
from −ǫ to P (vice versa). Therefore, the most general
Lagrangian has to be a normalized sum of the two pos-
sible on-shell Lagrangians. For instance, for P = 0, the
normalization induces that Lm = −c2ρ for any α; while
Lm could be any times the rest mass density if not nor-
malized. On the other side, one should note that the
normalization procedure discards Lm = T as a possible
on-shell Lagrangian for fluids with P 6= 0. The cor-
responding normalized on-shell Lagrangian would write
Lm = T/4 instead. However, from the trace of equation
(3), one gets that Lm = T/4 implies that δLm/δgµν has
to be trace-free. Therefore, Lm = T/4 is not suitable any
kind of effective particles.
Also, as shown in appendix of [40], the matter current

is generally not conserved when considering Lm = P .
Therefore we deduce that the matter current is gener-
ally not conserved when considering the Lagrangian (8).
Thus, let us write ∇σ(ρU

σ) = D, where D is any scalar
to be determined. One deduces

∇σ(ǫU
σ) =

(

ǫ+ P

ρ

)

D − P∇σU
σ, (9)

where [40]

ǫ = ρ

(

c2 − P

ρ
+

∫

dP

ρ

)

. (10)

Therefore, taking the divergence of Tαβ = (ǫ+P )UαUβ+
Pgαβ, one gets:

∇σT
µσ = (ǫ+ P )Uσ∇σU

µ + (gµσ + UµUσ)∇σP

+Uµ

(

ǫ+ P

ρ

)

D. (11)

On the oter side, equation (7) implies:

∇σT
µσ = − (ǫ+ P ) [gµσ + UµUσ] ∂σ lnh

+

[(

1− 1− α

γ
ǫ

)

+
β

γ
P

]

gµσ∂σ lnh.(12)
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Multiplying equations (11) and (12) by Uµ and equating
them, one gets:

∇σ(ρU
σ) = − ρ

ǫ+ P

[(

1− 1− α

γ

)

ǫ+
β

γ
P

]

Uσ∂σ lnh.

(13)
One note that α = β = 0 induces ∇σ(ρu

σ) = 0 –

independently of the value of ∂α lnh. Thus, it proves that
Lm = −ǫ ⇒ ∇σ(ρu

σ) = 0 for all perfect fluids. Since [40]
proves ∇σ(ρu

σ) = 0 ⇒ Lm = −ǫ for barotropic perfect
fluids, one has Lm = −ǫ ⇔ ∇σ(ρu

σ) = 0 (at least) for
barotropic perfect fluids. Now, injecting (13) in (7) gives:

[ǫ+ P ]Uσ∇σU
α = (gασ + UαUσ)

[

∂σP +

(

−1− α

γ
ǫ+

β

γ
P

)

∂σ lnh

]

. (14)

This equation generalizes the result found in [43] for non-
interacting monopoles to interacting particles in a perfect
fluid.

IV. MONOPOLE TEST PARTICLES

In this section, we derive the equation of motion of
point particles directly from the material sector of the
action – while [43] starts from the (non-)conservation
equation of the stress-energy tensor. Eventually, we shall
show the equivalence of the two approaches. The mate-
rial part of the action writes:

Sm =
1

c

∫

h(R, φ, (∇φ)
2
) Lm

√
−gd4x. (15)

For a non-interacting point particle one has Lm = −c2ρ,
with ρ = µδ(~x) (µ being a mass), such that

Sm = −c

∫

W

√−gµ h cdt = −c

∫

W

√−gµu0 h ds, (16)

where the integral is taken on the world line W of the
particle, and where uα = dxα/ds, s being an affine pa-
rameter of the world line. According the to the last sec-
tion, since non-interacting point-particles are the sim-
plest form of perfect fluids (P = 0), the Lagrangian
Lm = −c2ρ induces the conservation of the matter
fluid current ∇σ (ρu

σ) = 0. Therefore, one shows that
Lm = −c2ρ induces the Newtonian conservation of the
so-called conserved density ρ∗ =

√−gρu0 [44]:

∂0 (ρ
∗) + ∂i(ρ

∗vi) = 0, (17)

where vi = ui/u0. Hence, one deduces the conservation
of the mass m (dm/dx0 = (u0)−1dm/ds = 0) defined as
m =

√−gµu0. One has

∇σ (ρu
σ) = 0 ⇔ dm

ds
= 0. (18)

Therefore, one can take m out of the integral in (16) and
one gets the modified point particle action:

Sm = −mc

∫

W

h ds. (19)

Parametrizing by the proper time τ , one gets Sm =
−mc2

∫

W Ldτ , with L = h
√

gαβUαUβ, with Uα =

c−1dxα/dτ ; such that one can use the Euler-Lagrange
equation:

∂L

∂xγ
− d

cdτ

∂L

∂Uγ
= 0. (20)

Computing the following terms,

∂L

∂xγ
=

ds

cdτ
∂γh+

1

2

cdτ

ds
h∂γgαβU

αUβ, (21)

and

d

cdτ

∂L

∂Uγ
=

cdτ

ds
× (22)

(

gαγ∂βh UαUβ + h∂βgαγ UαUβ + hgαγ
dUα

cdτ

)

,

one gets the modified equation of motion of a point par-
ticle:

DUα

cdτ
= − (gασ + UαUσ) ∂σ lnh, (23)

where D/dτ stands for the usual covariant derivative
(D/dτ ≡ cUσ∇σ). One can check that this equation
is in accordance with the result found in [43], and that
for P = 0, equation (14) reduces to (23). It shows that,
as expected, deriving the particle equation of motion di-
rectly from the Lagrangian is equivalent to deriving them
from the (non-)conservation equation of the stress-energy
tensor.
One should note that thanks to the conservation of

the matter fluid current, one can unambiguously define
an invariant mass m on the particle’s worldline. Then,
one can define an apparent inertial mass M as:

M
(

R, φ, (∇φ)
2
)

= m h
(

R, φ, (∇φ)
2
)

, (24)

such that the material action takes the usual form:

Sm = −c

∫

W

M ds. (25)
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This is of course in disagreement with the Einstein equiv-
alence principle. However, one can note that the mass
defined in (25) is constant in non-gravitational regimes
(ie. the mass M of particles is constant at small enough
scales where gravitation can be neglected – and when the
experiments are made in a small enough period of time
such that the cosmologically driven possible variations of
the background value of the gravitational fields gµν and
Φ are negligible [17]). In particular, one should note that
specific cases can satisfy the present tight constraints on
the equivalence principle(s) (see for instance [10, 37–39]).

V. ELECTROMAGNETIC WAVES IN THE
GEOMETRIC OPTIC REGIME

In the following, the electromagnetic field is not con-
sidered as a significant source of curvature (ie. photons
are considered as test particles). Then, from (1) the elec-
tromagnetic equation writes:

∇σ

(

h(R, φ, (∇φ)
2
) Fµσ

)

= 0. (26)

Using the Lorenz Gauge (∇σA
σ = 0), it reduces to:

−�Aµ + gµǫRγǫA
γ + (∇µAσ −∇σAµ) ∂σ lnh = 0. (27)

Following the analysis made in [45], we expand the 4-
vector potential as follows:

Aµ = ℜ
{

(

aµ + ǫbµ +O(ǫ2)
)

expiθ/ǫ
}

, (28)

The two first leading orders of equation (27) respectively
give:

kσk
σ = 0, (29)

where kσ ≡ ∂σθ, and

aµ∇σk
σ + 2kσ∇σa

µ = (kµaσ − kσaµ) ∂σ lnh. (30)

Remembering that the Lorenz Gauge condition gives
kσa

σ = 0 at the leading order, one gets:

kσ∇σk
µ = 0. (31)

This equation is the usual null-geodesic equation, show-
ing that the presence of non-minimal gravity/matter cou-
pling won’t affect light ray trajectories at the geometric
optic approximation. However, defining aµ = afµ, the
propagation equation for the scalar amplitude (a) as well
as the propagation equation for the polarization vector
(fµ) are modified:

kσ∇σa = −a

2
∇σk

σ +
1

2
akσ∂σ lnh, (32)

kσ∇σf
µ =

1

2
kµfσ∂σ lnh. (33)

From there follows that the conservation law of te ”pho-
ton number” (ie. intensity) is modified:

∇σ(k
σa2) = −a2kσ∂σ lnh. (34)

One notes that the last three equations may give alter-
native ways to put constraints on those theories.
For instance, at the classical level, equation (34) leads

to a modification of the distance luminosity dL because
of the energy transfer between the gravitational fields
and the electromagnetic field. As an example, for a flat
FRLW metric, the new equation reads 2:

dL,k=0 = (1 + z)

√

h|z=0

h|z

∫ z

0

dz

H(z)
, (35)

where H(z) is the Hubble parameter as it would be mea-
sured by an observer at redshift z. This has an impli-
cations in observational cosmology since the accelerated
expansion of the Universe is historically deduced from
the observation of high redshift supernovae while assum-
ing the usual equation for the distance luminosity [46]:

dL,k=0−usual = (1 + z)

∫ z

0

dz

H(z)
. (36)

Therefore in models represented by the action (1), one
not only has to check whether or not the Universe can be
accelerated (such as in [4, 5, 33, 34]); but one also has to
pay attention on how the distance luminosity equation is
affected by the evolution of the Universe when consider-
ing (35). As far as we know, no study took that point
into account so far.
At the quantum level, equation (34) suggests that an

excess/shortage of photons with momentum parallel to
the gradient of the gravitational potential should be ex-
pected at some level. However, this question requires a
dedicated QED study in each specific theory that is in-
cluded in the general action (1), in order to see whether
or not this effect could be significant in some current ex-
periments or observations.

VI. CONCLUSION

In the present paper we studied the motion of non-
interacting point-particles, interacting particles compos-
ing a general perfect fluid and the motion of light rays
in theories that exhibit a universal gravity/matter cou-
pling. We saw that the transfer of energy between the
gravity fields and the material fields – that is due the
universal gravity/matter coupling – depends on the na-
ture of the material fields. Indeed such a transfer can
take two possible forms: either it modifies the matter

2 This equation has been obtained in a parallel work, in collabo-
ration with Aurelien Hees (unpublished at the present time).
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fluid current conservation, or it modifies the equation
of motion (or both at the same time). As an example,
it seems that for massive non-interacting point-particles,
the energy transfer is totally incorporated into the mod-
ification of the equation of motion; while for light rays,
the energy transfer is totally incorporated into the mod-
ification of the conservation of the intensity. Otherwise,
we saw that for a very general set of perfect fluids, the en-
ergy transfer modifies both the matter current fluid con-
servation and the equation of motion. However, all the
perfect fluid Lagrangians that give a non-conservation of
the rest mass seem to be in physical disagreement with
the non-interacting point-particle case. Indeed, using the
relation Lm = −ǫ ⇒ ∇σ(ρU

σ) = 0 demonstrated for
perfect fluids in section III, the non-interacting point-
particle case necessarily induces the conservation of the
rest mass (see section IV). This seems to be in accor-
dance with the assumption that Lm is the usual mate-
rial Lagrangian. Therefore, we argue that perfect fluid
cases where Lm = [−(1 − α)ǫ + βP ]γ−1, with α 6= 0
and β 6= 0, might not have any physical significance –
unless one modifies the material sector in such a spe-

cific way that the non-conservation of matter precisely
reduces to (13), with α 6= 0 and β 6= 0. Hence, since
the last case seems very unlikely (unless maybe for some
exotic material fields), we believe that theorists should
be careful when using Lagrangians that are such that
Lm = [−(1 − α)ǫ + βP ]γ−1, with α 6= 0 and β 6= 0.
This point is very important if one considers the numer-
ous publications using various values for the parameters
α and β without justifications (see in appendix A a sam-
ple of cases found in the literature). However, this is-
sue would get a definitive answer if, instead of using
a phenomenological perfect fluid description of matter,
one works with the actual fundamental fields of the ma-
terial sector (for instance, with Lm describing the stan-
dard model of particle fields). Work in that direction is
in progress.
Also, although (1) generally leads to a violation of the

equivalence principle(s), specific cases can still be in ac-
cordance with the present tight experimental constraints
(see for instance [10, 37–39]). However a dedicated study
of the equivalence principle issue in each specific case is
mandatory.
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Appendix A: Perfect fluid models in the literature

Sample of cases considered in the literature

Bertolami et al. [29] α = 0, β = 0, γ = 1 dm/ds = 0

Minazzoli and Harko [40] α = 0, β = 0, γ = 1 dm/ds = 0

Harko et al. [23] α = 0, β = 0, γ = 1 dm/ds = 0

Sotiriou and Faraoni [3] α = 1, β = 1, γ = 1 dm/ds 6= 0

Bisabr [4, 34] α = 1, β = 1, γ = 1 dm/ds 6= 0

Farajollahi and Salehi [47] α = 0, β = 3, γ = 4 dm/ds 6= 0

Jamil et al. [48] α = 0, β = 3, γ = 4 dm/ds 6= 0

Sheykhi and Jamil [49] α = 0, β = 3, γ = 4 dm/ds 6= 0

Saaidi et al. [50] α = 0, β = 3, γ = 4 dm/ds 6= 0

Sharif and Waheed [51] α = 0, β = 3, γ = 4 dm/ds 6= 0
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