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Abstract

We continue our study of open string perturbation theory on the lightcone worldsheet
lattice, which is an M ×N rectangular grid. Here M is the number of P+ units and N
is the number of ix+ units. We extend our previous analysis to the bosonic open string
one planar loop self-energy. We find that, when all open string coordinates satisfy
Neumann conditions, the ultraviolet worldsheet divergences associated with the closed
string tachyon and boundary effects can be cancelled by renormalization of bulk (AM1)
and boundary (BM0) worldsheet “cosmological constants”. The bulk divergence for
the open string matches that for the closed string. The open string tachyon mass shift
displays the dilaton logarithmic divergence with the correct coefficient for its consistent
absorption by renormalization of the string tension. The ultraviolet contribution to
the open string gluon mass shift vanishes, in accord with its interpretation as a gauge
particle. We also find that when the bosonic string ends on a D-brane additional nega-
tive powers of lnM multiply the bulk and boundary divergences. These can no longer
be cancelled by the “cosmological constants”, perhaps pointing to the need, in the
presence of D-branes, for the cancellations of divergences provided by supersymmetry.
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1 Introduction

The lightcone parameterization of the string worldsheet [1, 2] provides a framework for
the description of multiloop interacting string diagrams [3]. The definition of the lightcone
worldsheet path integrals on a worldsheet lattice [4] then provides a concrete nonperturbative
method to study this multiloop expansion numerically. Monte Carlo methods should be
particularly apt when the diagrams are restricted to planar open string multiloop diagrams,
for which string interactions decorate the worldsheet lattice in a local manner. This restricted
sum of diagrams defines the ’t Hooft large N limit [5] of the interacting string theory, where
N is the size of the Chan-Paton matrices associated with constraining the ends of each open
string to move on a stack of N D-branes. In the case these D-branes are coincident D3-
branes, the open string spectrum contains a massless U(N) gauge particle in four spacetime
dimensions. This then indicates that the zero slope limit α′ → 0 [6] of this sum of diagrams
could describe large N QCD [7]. In this article we restrict our worldsheet lattice studies
to the bosonic string. We should keep in mind that the bosonic open string tachyon could
make applications to QCD problematic, either through a failure to stabilize the vacuum or
through a stabilization that breaks the U(N) gauge invariance. If so, these problems might
be cured by replacing the bosonic open string with the even G-parity bosonic sector of the
Ramond-Neveu-Schwarz model [8, 9, 10].

Given that we will focus on the bosonic string, which has open string tachyons and hasn’t
been shown to stabilize, it is necessary, for our studies, to impose an infrared cutoff that
temporarily stabilizes the theory. As we will describe shortly, there is a nice way to do this
in the context of the worldsheet lattice. In effect we can naturally impose an energy cost
to the existence of each open string end such that virtual open strings can only exist for
relatively short times. Note that closed string tachyons are not affected by this infrared cutoff.
But closed strings do not propagate within the planar open string diagrams: in fact their
existence is only felt in their disappearance into the vacuum as described by the holes in the
multiloop worldsheet. Indeed, if we interpret the holes as closed string emission/absorption
by the vacuum, each planar multiloop diagram can be interpreted as a closed string tree
in a closed string condensate. Thus the ’t Hooft limit just provides us with the subset of
diagrams which might stabilize the vacuum via closed string condensation. The divergences,
which one would normally think of as infrared properties of the closed string amplitudes, are
actually ultraviolet divergences on the open string worldsheet, which are regulated by the
worldsheet lattice itself.

Over the last two years, we have been critically analyzing the continuum limit of the
lattice path integrals for the simplest one open string loop worldsheets [11, 12], and this article
is a continuation of these studies. Our motivation is to clearly understand the UV divergence
structure emerging from the continuum limit of the lattice and to determine whether all UV
divergences can be consistently dealt with, either through cancellation against naturally
defined worldsheet counterterms or through renormalization of the physical parameters of
the theory, the string tension T0 or the ’t Hooft coupling Ng

2. Our previous articles [11, 12]
discussed these issues in the context of the one open string loop corrections to the closed
string propagator. Because the only boundary was that of the slit describing the open
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string loop, the UV divergences, in this case, arise only from the limit that the slit length
vanishes. For the open string propagator analyzed in the present article, there are additional
UV divergences arising from the collision of the slit with the boundaries of the open string
worldsheet. The method of reference [11], which took a string field theory approach to
the construction of the one loop propagator proved insufficiently precise to deal with these
boundary divergences. But here we successfully apply the worldsheet methods introduced
in [12] to this problem. The key is to represent the lattice worldsheet propagator in terms
of normal modes in discrete time rather than normal modes in discrete space as was done in
[12] . This makes the discrete space dependence explicit so that the boundary contributions
to the UV divergence structure can be efficiently analyzed.

The Giles-Thorn (GT) discretization of the worldsheet [4] begins with a representation
of the free closed or open string propagator as a lightcone worldsheet path integral defined
on a lattice. The lattice replaces the transverse coordinates of the string x(σ, τ), living on
a rectangular P+ × T domain, with discretely labeled coordinates xj

k = x(kaT0, ja), living
on an M × N grid with spacing a, where P+ = MaT0 and T = a(N + 1). The free string
propagator is then simply a Gaussian integral

D0 =

∫

∏

kj

dxj
ke

−S,

S =
T0
2

∑

kj

[

(x j+1
k − x

j
k )

2 + (x j
k+1 − x

j
k )

2
]

≡ T0
2
xT ·∆−1x , (1)

where the MN ×MN matrix ∆ is the lattice worldsheet propagator. Then up to an overall
normalization factor D0 = det−(D−2)∆−1, where D is the spacetime dimension (D = 26 for
the bosonic string).

At zero loops, the UV divergences arising in the continuum limit of the GT lattice repre-
sentation of the open and closed string propagators reside in bulk and boundary contributions
to the ground state energies. The light cone energy is P− = (P 0−P 1)/

√
2, and one finds in

the continuum limit [4]

aP−
closed,G ∼ (D − 2)

[

α0M − π

6M
+O(M−2)

]

(2)

aP−
open,G ∼ (D − 2)

[

α0M − β0 −
π

24M
+O(M−2)

]

(3)

For the GT lattice one has specifically α0 = 2C/π and β0 = ln(1+
√
2) where C is Catalan’s

constant. Remembering that P+ = aMT0, we see that the 1/M terms precisely account for
the tachyonic masses of the free closed and open strings. As explained in [4] the α0M term
enters time evolution as an exponential of the combination TP− = (N + 1)Mα0 which is
simply proportional to the discretized area (N + 1)M of the lattice: α0 is just a contribu-
tion to the worldsheet bulk “cosmological constant” expected in any quantum field theory.
Because the interactions preserve this discrete area, one can harmlessly introduce a bare
bulk cosmological constant A which is ultimately chosen to cancel all bulk contributions to
the string energies. Similarly the β0 can be associated with the free ends of the open string
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because it enters the evolution as an exponential of the combination −β0(N+1) proportional
to the length of the worldsheet boundary. Then we can consistently introduce a bare world-
sheet boundary cosmological constant B chosen to cancel all these boundary contributions
to the string energies. Unlike the bulk cosmological constant, this boundary term alters the
dynamics. It is this parameter that provides the infrared cutoff we alluded to earlier. It is
naturally nonzero: even at zero loops it is necessary to absorb boundary divergences. For
the purposes of our lattice studies we are free to choose it large enough to suppress the open
string tachyonic instability.

On the GT lattice the sum of all open string multiloop planar diagrams can be obtained by
summing over all patterns of missing spatial bonds. Formally, this is achieved by introducing
Ising-like variables Sj

k = 0, 1 and taking the worldsheet action to be

SPlanar =
T0
2

∑

ij

[

(x j+1
i − x

j
i )

2 + S j
i (x j

i+1 − x
j
i )

2
]

+(D − 2)B
∑

kj

(1− Sj
k)−

∑

ij

[

S j
i (1− S j+1

i ) + S j+1
i (1− S j

i )
]

ln g (4)

≡ T0
2
xT ·

[

∆−1 + V (S)
]

x+ A({S}) . (5)

The terms in A({S}) insert the coupling constant g in the appropriate way and allow for an
open string self-energy counterterm B. Then we have

D = D0

∑

{S}

det−12(I + V∆)e−A({S}) . (6)

When V is a sparse matrix, i.e. when there are a relatively small number of missing bonds
(e.g.

∑

kj(1−Skj) ≪M), which can be arranged by taking B ≫ 1), this will be a particularly
efficient way to evaluate the terms of perturbation theory. Holding B sufficiently large serves
as a physical and convenient infrared regulator in our studies of the properties of the planar
diagrams.

The planar open string loop expansion organizes the sum over spins in (6) as a power
series in g2, with the number of loops equal to the number of “holes” in the lattice. Orient
the worldsheet so that the time axis (τ) is horizontal and the space axis (σ) vertical. Then
each hole is a horizontal row of contiguous missing links. The number of missing links is the
number of time steps the broken string lasts. In this article we study exclusively one loop
corrections to the open string self-energy, or, in this language, a single row of contiguous
missing links, as we can see in figure 1. Since we are concerned here with energy shifts to the
free string spectrum, the initial and final states are energy eigenstates with the same energy,
so we can (and do) take the total number of time steps N → ∞ keeping the slit’s size finite
and its location in the vicinity of N/2. Then a given diagram is characterized by the total
number steps in space (i.e. the number of string bits) M , the length of the slit in lattice
units (or number of missing links) (K − 1) and the number of spatial steps M1 between the
slit and one of the open string boundaries. The worldsheet path integral will depend on
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M1

1

M

J K L

Figure 1: One loop open string self-energy diagram on the lattice worldsheet. A
single open string splits at time J and rejoins at time J + K, with total time
N + 1 = J +K + L → ∞ and J,L ∼ N/2. Thus the diagram is characterized by
the number of missing links K − 1, their position M1, and total string length M .

M,K,M1, and in principle K should be summed from 1 to ∞ and M1 should be summed
from 1 to M − 1. Of course M is just proportional to the fixed P+ of the string state whose
energy shift is being calculated. The presence of the open string tachyon renders the K sum
exponentially divergent.

The nature of this tachyonic divergence is easy to see. In the one loop correction to
the open string propagator, the slit represents the propagation of two open strings as an
intermediate state. The initial and final state is a single open string, say with (mass)2 =
2π(n − 1)T0 with n = 0, 1, 2, . . . the mode number of the state. The intermediate state is
two open strings with (mass)2 = 2π(n1 − 1)T0, 2π(n2 − 1)T0. If the two open strings last for
a time (K − 1)a, then the amplitude acquires a factor exp{−a(K − 1)∆P−}, where

a∆P− =
π(n1 − 1)

M1
+
π(n2 − 1)

M −M1
− π(n− 1)

M
. (7)

If n1 = 0 (or n2 = 0) ∆P− becomes negative for small enough M1 (or M −M1). If M1,
M −M1, and M are all of order M in the continuum limit, the coefficient of (K − 1) is of
orderM−1 so as long as K ≪M , which is the ultraviolet region we study here, the exponent
stays small. On the other hand either M1 or M −M1 can be as small as 1, in which case
the coefficient of (K− 1) in the exponential growth is of order 1, even when K ≪M . These
large exponential factors cause practical difficulties with numerical studies, but we will show
that they are absent from the order M and order M−1 contributions to the self-energy.

Because the K sum is divergent, we suspend the sum over K keeping it fixed while we
study the large M behavior. The ultraviolet structure that we wish to analyze is defined by
slits much shorter than P+, or in lattice units K ≪ M . The continuum limit is M → ∞
so we focus on obtaining the limit of our calculations in the regime 1 ≪ K ≪ M . As we
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contemplate numerical studies of multiloop diagrams, it is natural to restrict the hole size
summations by simply taking B sufficiently large, rather than by literally suspending them.
With B large enough the tachyonic instability is stabilized, at the expense of losing Lorentz
invariance. Thus our conclusions strictly apply to this Lorentz violating cutoff model.

We close this introduction with a brief summary of the results of our previous work and
an outline of the rest of this paper. In [11, 12] we analyzed the one loop correction to the
closed string energy. In this case the sum over M1 is trivial: it just supplies a factor of M .
Then the self-energy correction has the form of a single sum over the slit length K

∆P− =
∞
∑

K=2

δP−
K (8)

and we found for M large at fixed K

aδP−
K ∼ α(K)M +

c(K)

M
+
d(K)

M3
+ · · · (9)

We determined the large K dependence of the coefficients numerically to be α(K) ∼ K−3,
and c(K) ∼ K−1. Thus the coefficient of M summed over K is finite. This term in the
energy is a quadratic divergence, corresponding to the closed string tachyon. Here we see
that it is in fact harmless3. The K−1 behavior of the 1/M term signals the UV logarithmic
divergence due to the closed string dilaton. This divergence is, of course, real but can be
absorbed in the slope parameter α′ = 1/(2πT0). To prove this it is important that the
divergence is universal for all states. Our work on the closed string self-energy showed that
c(K) = 0 for the graviton, and had the appropriate value for selected massive closed string
states to be absorbable into T0.

In this article we deal with the extra complications of the open string boundaries. In this
case the large M expansion at fixed K has many more terms:

aδP−
K ∼ α′(K)M + b(K) +

c′(K)

M
+
d′(K)

M2
+ · · · (10)

Here we will show that α′(K) = α(K), necessary to show the harmlessness of the bulk
divergences. We also show that c′(K) = c(K)/4 as required for the consistent absorption
of the logarithmic divergences into the Regge slope parameter. Moreover, we are able to
obtain the large K behavior of the coefficients analytically using the Fisher-Hartwig formula
for the asymptotic behavior of Toeplitz determinants [14]. In obtaining these results it is
crucial to show that the exponential divergences, due to an intermediate open string tachyon
with P+/(aT0) = O(1), do not contribute to either the M term or the 1/M term. This
happens because, before the M1 sum the expansion has the form a + b/M2 and the order
M term only arises by summing M1 over a range of order M , and similarly for the 1/M
term which comes from summing the 1/M2 term over a similar range. We show that the

3The harmlessness of the tachyon divergence in the continuum amplitudes is usually argued by analytic
continuation [13].
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dangerous exponential divergences contribute only to the O(M0) and higher orders in 1/M ,
starting at O(M−4). The constant term can be absorbed in a renormalization of B, but
the exponential factors multiplying the O(M−4) and higher powers of 1/M raise practical
obstacles to purely numerical efforts to extract the physically relevant coefficient of M−1.
Since these obstacles are directly associated with the open string tachyon instability, there is
at least some hope that if a stabilizing mechanism can be identified, the numerical difficulties
would be surmounted.

In Section 2 we review and generalize the representations for the worldsheet propagator
given in [12]. We then use these results to analyze the open string self-energy for the tachyon
(Section 3) and the gluon and selected excited states (Section 4). Then in Section 5 we obtain
the large K behavior of the coefficients in the 1/M expansion of the self energies. Section
6 is devoted to numerical analysis of our results. Our final Section 7 gives a preliminary
discussion of the problems arising when we try to describe open strings ending on D-branes,
and the possibility that the superstring alleviates them, as indicated by the discretization of
the continuum self-energy expressions for the latter.

2 Worldsheet Propagators

We gather in this section the expressions for the propagator on the closed open and Dirichlet
worldsheets found in [12] (see also [15]). In that reference the worldsheet propagator was
represented as a spatial normal mode expansion. But representations based on temporal
normal modes are also useful, so we include them in our presentation.

Of central interest are the worldsheet correlators of the coordinates on the M ×N lattice
corresponding to the free closed or open string.

∆ij,kl = 〈xjixlk〉 =
∫

Dx xjixlk e−S

∫

Dx e−S
(11)

where the worldsheet action S is appropriate to the type of string coordinates (closed, open,
or Dirichlet) being described. Because the expectations are taken with Gaussian weight,
the two point correlator in a single dimension captures all of the relevant information. A
straightforward evaluation is to use closure to write the numerator as the product of three
string propagators (see Appendix D): one from time 0 to j, one from times j to l, and the last
from time l to +(N + 1). We choose Dirichlet boundary conditions in time: x0i = xN+1

i = 0.
We can resolve xji , x

l
k into spatial normal modes qjm, q

l
n respectively. Then because each

normal mode integral is independent, 〈qjmqln〉 = δmn〈qjmqlm〉 one ends up with a simple two
variable Gaussian to do
∫

dqjm dqlmq
j
mq

l
m exp

{

−1

2
[A1q

j2
m + A2q

l2
m) + 2Bqjmq

l
m]

}

= − B

A1A2 − B2
det−1/2

(

A1 B
B A2

)

〈qjmqln〉 = − B

A1A2 − B2
δmn (12)
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Here A1, A2 and B are read off from the formulas of Appendix D. We set the q’s at the
initial and final times to zero.

Then for non-zero modes they are:

A1 = T0 sinhλ [coth jλ+ coth(l − j)λ] (13)

A2 = T0 sinhλ [coth(N + 1− l)λ+ coth(l − j)λ] , B =
−T0 sinhλ
sinh(l − j)λ

(14)

A1A2 − B2 = T 2
0 sinh

2 λ [1 + coth jλ coth(N + 1− l)λ

+(coth jλ+ coth(N + 1− l)λ) coth(l − j)λ]

= T 2
0 sinh

2 λ

[

sinh(N + 1)λ

sinh jλ sinh(N + 1− l)λ sinh(l − j)λ

]

−B
A1A2 − B2

=
1

T0 sinhλ

sinh jλ sinh(N + 1− l)λ

sinh(N + 1)λ
(15)

where λ is λom or λcm for the open or closed string respectively. For the zero modes

A10 = T0
l

j(l − j)
, A20 = T0

(N + 1− j)

(N + 1− l)(l − j)
, B0 = − T0

l − j

−B0

A10A20 −B2
0

=
j(N + 1− l)

T0(N + 1)
(16)

Then the worldsheet propagator for the open string worldsheet is given by

∆o
ij,kl =

j(N + 1− l)

(N + 1)M
+

2

M

M−1
∑

m=1

1

sinh λom

×sinh jλom sinh(N + 1− l)λom
sinh(N + 1)λom

cos
m(i− 1/2)π

M
cos

m(k − 1/2)π

M
, l > j (17)

We must keep in mind that this formula applies when l > j. In the opposite case we switch
the roles of j and l. In this formula we have chosen to expand in the normal modes of the
spatial coordinates i, k. But we could equally well have chosen to expand in normal modes
in the time coordinates j, l. In that case the propagator takes the form

∆o
ij,kl =

2

N + 1

N
∑

n=1

1

sinhλon

×cosh(i− 1/2)λon cosh(M − k + 1/2)λon
sinhMλon

sin
njπ

N + 1
sin

nlπ

N + 1
, k > i (18)

In this case the formula applies when k > i. In the opposite case we switch the roles of k
and i.

For string self-energy calculations we want to take N → ∞, but with j, l well away
(O(N)) from 0, N + 1. So to study this limit we put j = (N + 1)/2 + ĵ, l = (N + 1)/2 + l̂,
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and take the limit with ĵ, l̂ fixed. Then the two representations take qualitatively different
forms. In the first case we find

∆o
ij,kl ∼ N + 1

4M
− |l − j|

2M
+

1

M

M−1
∑

m=1

e−|l−j|λo
m

sinh λom
cos

m(i− 1/2)π

M
cos

m(k − 1/2)π

M
(19)

and we see the zero mode divergence in the first term linear in N . In the second case the
sum over n turns into an integral and we find

∆o
ij,kl =

∫ 1

0

dx
cosh(i− 1/2)λo(x) cosh(M − k + 1/2)λo(x)

sinhλo(x) sinhMλo(x)
cosx(l − j)π (20)

In this case the zero mode divergence shows up as a divergence in the integral at the lower
limit. In obtaining this formula we used

sin
njπ

N + 1
sin

nlπ

N + 1
= sin2 nπ

2
cos

nĵπ

N + 1
cos

nl̂π

N + 1
+ cos2

nπ

2
sin

nĵπ

N + 1
sin

nl̂π

N + 1
(21)

The first term contributes only for odd n and the second term only for even n. But in the
limit N → ∞ where the sum over n becomes an integral the right side can be replaced by

sin
njπ

N + 1
sin

nlπ

N + 1
→ 1

2
cosxĵπ cos xl̂π +

1

2
sin xĵπ sin xl̂π =

1

2
cos x(l̂ − ĵ)π

=
1

2
cosx(l − j)π (22)

If the open string coordinate satisfies Dirichlet boundary conditions, the analogs of (17) and
(18) are

∆D
ij,kl =

2

M

M−1
∑

m=1

1

sinh λom

sinh jλom sinh(N + 1− l)λom
sinh(N + 1)λom

sin
miπ

M
sin

mkπ

M
, l > j (23)

and

∆D
ij,kl =

2

N + 1

N
∑

n=1

1

sinhλon

sinh iλon sinh(M − k)λon
sinhMλon

sin
njπ

N + 1
sin

nlπ

N + 1
, k > i (24)

Correspondingly the analogs of the N → ∞ formulas (19) and (20) are

∆D
ij,kl =

1

M

M−1
∑

m=1

e−|l−j|λo
m

sinhλom
sin

miπ

M
sin

mkπ

M
(25)

and

∆D
ij,kl =

∫ 1

0

dx
sinh iλo(x) sinh(M − k)λo(x)

sinhλo(x) sinhMλo(x)
cosx(l − j)π (26)
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In this case the lower end of the integral shows no divergence, because zero modes are absent.
For completeness we also mention the two alternative forms for the worldsheet propagator

on the closed string worldsheet. Expansion in spatial normal modes gives

∆c
ij,kl =

j(N + 1− l)

(N + 1)M
+

1

M

M−1
∑

m=1

1

sinh λcm

×sinh jλcm sinh(N + 1− l)λcm
sinh(N + 1)λcm

exp
2m(i− k)iπ

M
, l > j (27)

whereas the expansion in temporal normal modes gives

∆c
ij,kl =

1

N + 1

N
∑

n=1

1

sinhλon

cosh(M/2− |i− k|)λon
sinh(M/2)λon

sin
njπ

N + 1
sin

nlπ

N + 1
(28)

In the first formula we have used Roman i =
√
−1 to distinguish it from the index i. Then

taking the N → ∞ limit as before leads to, respectively

∆c
ij,kl ∼ N + 1

4M
− |l − j|

2M
+

1

2M

M−1
∑

m=1

e−|l−j|λc
m

sinhλcm
exp

2m(i− k)iπ

M
. (29)

∆c
ij,kl =

1

2

∫ 1

0

dx
1

sinh λon

cosh(M/2− |i− k|)λo(x)
sinh(M/2)λo(x)

cosx(l − j)π . (30)

3 Open String Tachyon Self-energy

The one loop self-energy of the ground string state (the tachyon) can be extracted from
the string field propagator (6) by limiting the Ising spin configurations to those of a single
hole of length K (i.e. K − 1 missing contiguous missing links), and evaluating the N → ∞
limit at fixed spin configuration, with the missing links in the vicinity of time N/2. Excited
initial and final string states are suppressed exponentially, so one is left with an amplitude
proportional to the ground string expectation of the interaction, i.e. the tachyon self-energy
times N . The proportionality constant is removed by simply deleting the factor D0 from the
expression. The overall factor of N is removed by fixing the initial time step of the hole at
say N/2, so the Ising spin sum is just the sum over the number of missing links and over the
spatial location of the hole. For the closed string that second sum just provides a factor of
M by spatial translation invariance. But it is nontrivial for the open string. After all these
steps we arrive at the formula

−∆P− = g2
∞
∑

K=2

M−1
∑

M1=1

det−12(I + V (M1, K)∆)e−24B(K−1) . (31)

The formula for the closed string tachyon self-energy simplified because the summand is then
independent of M1 so the M1 sum was trivial, leaving only the single sum over K. If B is
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set equal to its free string value, the sum over K is badly divergent because the two string
intermediate states include tachyon contributions which are lower in energy than the single
string tachyon. Thus in our studies we are forced to choose B large enough to regularize this
sum. If one could get the answer as an explicit function of B, one could in principle try to
continue back to the free string value. But the perturbation expansion really doesn’t make
sense unless the tachyon instability is resolved. What one can do is study the sum over Ising
spins nonperturbatively, holding B sufficiently large so that the sums over S are convergent,
and then scan the results as a function of B in search of a meaningful (i.e. Lorentz invariant)
result.

3.1 Self-energy formulas on the continuous worldsheet.

Before doing the worldsheet lattice analysis, we recall the formal continuum expressions for
the open string tachyon and gluon self-energy in cylinder coordinates, following the notations
of [7],

∆P−
Tach =

Co

2P+

∫ 1

0

dq

q3
1

∏

n(1− q2n)24

∫ 2π

0

dθ
1

4 sin2(θ/2)
∞
∏

n=1

(

(1− q2neiθ)(1− q2ne−iθ)

(1− q2n)2

)−2

(32)

=
Co

2P+

∫ 1

0

dq

q3

∫ 2π

0

dθ

[

1 + 24q2

4 sin2(θ/2)
− 2q2 +O(q4)

]

∆P−
Gluon =

Co

2P+

∫ 1

0

dq

q3
1

∏

n(1− q2n)24

∫ 2π

0

dθ

[

1

4 sin2(θ/2)
−

∞
∑

n=1

2nq2n

1− q2n
cos nθ

]

(33)

=
Co

2P+

∫ 1

0

dq

q3

∫ 2π

0

dθ

[

1 + 24q2

4 sin2(θ/2)
− 2q2 cos θ +O(q4)

]

,

where in each case we displayed the UV behavior q ∼ 0 of the integrand. The conformal
mapping to the lightcone diagram, found in [16], determines the relation of q, θ to the length
T and height σ1 of the slit. Interestingly, θ is simply proportional to σ1, θ = 2πσ1/P

+

exactly. The relation of q to T is an implicit one involving elliptic functions, which we give
only in the UV limit q ∼ 0:

q =
πTT0

8P+ sin πσ1/P+
− 5 + cos 2πσ1/P

+

3

(

πTT0
8P+ sin πσ1/P+

)3

+O(T 5) (34)

→ πK

8M sin πM1/M
− 5 + cos 2πM1/M

3

(

πK

8M sin πM1/M

)3

+O(K5) (35)

where the second line shows q in the discretized variables of the lattice, T = Ka, σ1 =M1T0a.
It is now easy to discretize the self-energy shift in the UV regime using

Co

2P+

∫

dθ

∫

dq

q3
→ Co

aπT0M2

∑

M1,K

(1 +O(K4))
64M2

K3
sin2 πM1

M
(36)

10



Then for the gluon mass shift we have

a∆P−
Gluon → 16πCo

T0

∑

M1,K

(

1

π2K3
+

3

8KM2 sin2 πM1/M
− 1

8KM2
cos

2πM1

M
+O(K4)

)

As discussed above, we deal with the severe IR divergences by suspending the K sum as we
study the large M limit:

aδP−
Gluon,K → 16πCo

T0

(

M − 1

π2K3

+
1

4K

(M−1)/2
∑

M1=1

[

3

M2 sin2 πM1/M
− 1

M2
cos

2πM1

M

]

+O(K4)

)

(37)

The first term is just the familiar bulk term, which we also encountered for the closed string,
and it can be absorbed in the worldsheet cosmological constant. The first term in square
brackets formally can contribute a physically significant 1/M term, but also an order M0

term4. This can be seen as follows:

(M−1)/2
∑

M1=1

1

M2 sin2 πM1/M
=

(M−1)/2
∑

M1=1

[

1

M2 sin2 πM1/M
− 1

π2M2
1

]

+

(M−1)/2
∑

M1=1

1

π2M2
1

∼ 1

6
−

∞
∑

m1=(M+1)/2

1

π2M2
1

+
1

M

∫ 1/2

0

dx

[

1

sin2 πx
− 1

π2x2

]

∼ 1

6
− 2

π2(M + 1)
+

2

π2M
∼ 1

6
+O(M−2) (39)

In this case the coefficient of the 1/M term is zero! The contribution of the second term in
square brackets involves

(M−1)/2
∑

M1=1

1

M2
cos

2πM1

M
∼ 1

M

∫ 1/2

0

dx cos 2πx+O(M−2) = O(M−2) (40)

So in fact there is no 1/M contribution to the gluon self-energy,

aδP−
Gluon,K → 16πCo

T0

(

M − 1

π2K3
+

1

8K
+O(M−2)

)

(41)

4Contributions to this constant order M0 term also come from higher terms in the q expansion of the
integrand. In general one encounters M1 sums of the form

(M−1)/2
∑

M1=1

1

M2n sin2n πM1/M
∼ 1

M2n−1

∫ 1/2

0

dx

[

1

sin2n πx
−

n
∑

k=1

ck
x2k

]

+

n
∑

k=1

(M−1)/2
∑

M1=1

ck

M2(n−k)M2k
1

∼
n
∑

k=1

ckζ(2k)

M2(n−k)
+O(M−2n+1) =

ζ(2n)

π2n
+O(M−2) , n > 1 (38)

where the ck are chosen to make the integral over x finite.
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consistent with zero mass shift for the gluon.
For the tachyon self-energy the first term in square brackets is the same as in the gluon

self-energy and so gives no contribution to a 1/M term. The second term in square brackets,
however, when discretized becomes

−Coa

P+

∫

dq

q

∫

dθ → − Co

MT0

∑

K

M−1
∑

M1=1

2π

MK
∼ −2πCo

MT0

∑

K

1

K
(42)

giving the expected logarithmically divergent tachyon mass shift. As we shall see in the
remainder of this article, the analysis of the lattice worldsheet is in qualitative accord with
these results.

3.2 Lattice self-energy, single missing link, K = 2

In coordinate space, the matrix V for a single missing link at time j and between spatial
positions k and k + 1 in the open string worldsheet is

Vml;m′l′ = −δljδl′j(δm,k+1δm′,k+1 + δm,kδm′,k − δm,k+1δm′k − δm′,k+1δmk) , (43)

exactly as in the closed string worldsheet. Keeping the propagator ∆ in coordinate space
the necessary determinant of the contributing 2×2 matrix can be taken over from the closed
string case:

det(I + V∆) = det

(

1 + ∆(k+1)j,kj −∆kj,kj ∆(k+1)j,(k+1)j −∆kj,(k+1)j

−∆(k+1)j,kj +∆kj,kj 1−∆(k+1)j,(k+1)j +∆kj,(k+1)j

)

= 1−∆(k+1)j,(k+1)j +∆kj,(k+1)j +∆(k+1)j,kj −∆kj,kj . (44)

We now substitute for ∆ the representation (20) for the open string worldsheet propagator,
which for l = j reduces to

∆o
ij,kj =

∫ 1

0

dx
cosh(i− 1/2)λo(x) cosh(M − k + 1/2)λo(x)

sinhλo(x) sinhMλo(x)
, k > i (45)

and we remind the reader that for k < i we switch the roles of i and k. it is helpful to rewrite
the numerator in the integrand as

cosh(i− 1/2)λo cosh(M − k + 1/2)λo

=
1

2
[cosh λo(M + i− k) + cosh λo(M − k − i+ 1)] (46)

=
1

2
[cosh λoM + coshλo(M − 2i+ 1)], k = i (47)

=
1

2
[cosh λo(M − 1) + cosh λo(M − 2i)], k = i+ 1 (48)

12



Inserting these results into (44), and relabeling k → M1 to more suitably describe the
position of the missing link, leads to

det(I + V∆o) =

∫ 1

0

dx
sinh λo(x)(M −M1) sinhλ

o(x)M1

sinh(λo(x)M/2) cosh(λo(x)M/2)
tanh

λo(x)

2
(49)

Now λo(x) = 2 sinh−1 sin(πx/2), and changing integration variables to λ = λo requires

dλ

dx
=

π
√

1− sinh2(λ/2)

cosh(λ/2)
. (50)

Then we can write

DM1
≡ det(I + V∆o) =

1

π

∫ λ0

0

dλ
sinh λ(M −M1) sinhλM1

sinh(λM/2) cosh(λM/2)

sinh(λ/2)
√

1− sinh2(λ/2)
(51)

where λ0 = 2 sinh−1 1. It is the value of λ where the argument of the square root in the
denominator of the integrand vanishes.

We are interested in the limit M → ∞ of the quantity

−δP−
2 =

M−1
∑

M1=1

D
−(D−2)
M1

→
M−1
∑

M1=1

D−12
M1

= 2
∑

M1<M/2

D−12
M1

+DM/2δM,even. (52)

We begin with a study of the large M behavior of DM1
itself. The explicit M dependence of

the integrand is buried in the ratio of sinh and cosh factors, which for fixed λ > 0 has the
behavior

sinhλ(M −M1) sinhλM1

sinh(λM/2) cosh(λM/2)
∼







1− e−2λM1 +O(e−λM) for M1 ≤ M
2

1− e−2λ(M−M1) +O(e−λM) for M1 ≥ M
2

(53)

Here the exponential terms are included to accurately account for the cases M1 = O(1),
M −M1 = O(1). These terms are as small as the neglected terms when M1 and M −M1 are
of order M . Next we use DM−M1

= DM1
to write the sum over M1 in terms of a sum over

M1 ≤ M/2. (If M is odd, it is precisely twice the sum over M1 < M/2.) Then we break up

sinhλ(M −M1) sinhλM1

sinh(λM/2) cosh(λM/2)
= 1− e−2λM1 +

[

−2e−Mλ sinh2M1λ

sinhMλ

]

(54)

and evaluate the integral separately for the first two terms and the term in square brackets:

1

π

∫ λ0

0

dλ(1− e−2λM1)
sinh(λ/2)

√

1− sinh2(λ/2)
=

1

2
− IM1

(55)

IM1
=

1

π

∫ λ0

0

dλe−2λM1
sinh(λ/2)

√

1− sinh2(λ/2)
(56)
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We leave the integral defining IM1
unevaluated, but we will need its explicit behavior at large

M1, which can be obtained by expanding the coefficient of e−2λM1 in a power series.

IM1
=

1

π

∫ ∞

0

dλe−2λM1

[

λ

2
+
λ3

12
+ · · ·

]

+O(e−2M1λ0)

=
1

8πM1
2 +

1

32πM1
4 +O(M1

−6) +O(e−2M1λ0) (57)

The exponentially small corrections to this asymptotic expansion come from the extension
of the upper limit from λ0 to ∞ used to evaluate the power corrections.

Finally we turn to the contribution of the terms enclosed in square brackets to DM1
. By

construction it is exponentially small asM → ∞ at fixed λ. Thus in a manner similar to our
asymptotic analysis of IM1

we can find its power behaved large M behavior by expanding
its coefficient in a power series in λ and extending the upper limit of integration to ∞. The
errors in these steps are exponentially small:

1

π

∫ λ0

0

dλ
[ ] sinh(λ/2)
√

1− sinh2(λ/2)
∼ 1

π

∫ ∞

0

dλ

(

λ

2M2
+

λ3

12M4
+ · · ·

)

×
[

−2e−λ sinh2(xλ)

sinhλ

]

(58)

≡ f2(x)

2πM2
+

f4(x)

12πM4
+ · · · (59)

where x ≡M1/M . Putting everything together we have

DM1
=

1

2
− IM1

+
f2(x)

2πM2
+

f4(x)

12πM4
+ · · · (60)

We are interested in the large M behavior of −δP− ∼ aM + b + c/M + · · · through order
1/M . The sum over M1 ranges over M − 1 values and can thus add up to a power of M to
the explicit 1/M dependence of the summand. Thus it is sufficient to keep only up to order
1/M2 in the summand

Inserting these results into (52) and expanding to the desired order gives for M odd5

−δP−
2 = 2

(M−1)/2
∑

M1=1

[

(

1

2
− IM1

)−12

− 12f2(M1/M)

M2

(

1

2
− IM1

)−13
]

(61)

Now IM1
is only small at large M1 so it is not safe to expand in powers of IM1

. However we
can write

(

1

2
− IM1

)−p

= 2p + 2p
[

(1− 2IM1
)−p − 1

]

, p = 12, 13 (62)

5When M is even the upper limit is (M − 2)/2 and there is an additional term for M1 = M/2.
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where the second term behaves as 1/M1
2 at large M1. Because of that extra convergence

the sum over M1 does not add a factor of M to the explicit 1/M dependence. So for the
first term in square brackets, the first term is of order M and the second of order 1:

2

(M−1)/2
∑

M1=1

(

1

2
− IM1

)−12

= (M − 1)212 + 213
∞
∑

M1=1

[

(1− 2IM1
)−12 − 1

]

−213
∞
∑

M1=(M+1)/2

[

(1− 2IM1
)−12 − 1

]

(63)

∼ 212

[

(M − 1) + 2
∞
∑

M1=1

[

(1− 2IM1
)−12 − 1

]

− 12

πM

]

(64)

Similarly for the 1/M2 term in square brackets, the first term contributes order 1/M but
the second term stays of order 1/M2:

−213
12

πM2

(M−1)/2
∑

M1=1

f2(M1/M) (1− 2IM1
)−13 ∼ −213

12

πM

∫ 1/2

0

dxf2(x) (65)

So we evaluate

∫ 1/2

0

dxf2(x) =

∫ ∞

0

dλλ

∫ 1/2

0

dx

[

−2e−λ sinh2(xλ)

sinh λ

]

=
π2

24
− 1

2
(66)

So we finally arrive at the large M behavior

−δP−
2 ∼ 212

[

M − 1 + 2

∞
∑

M1=1

[

(1− 2IM1
)−12 − 1

]

− π

M

]

+O(M−2) (67)

Although for simplicity we assumed that M was odd, it is not difficult to see that the same
result holds for M even.

3.3 Single slit with K − 1 missing links

As we showed in [12], in the case of a single slit with K − 1 missing links between spatial
position k and k + 1, the path integral (6) involves a determinant of the form

det(I + V∆) = det(hlp) , l, p = 1, 2, . . .K − 1 , (68)

where
hlp = δlp +∆(k+1)l,kp −∆kl,kp +∆kl,(k+1)p −∆(k+1)l,(k+1)p . (69)

Focusing on the open string, we insert the two equivalent representations (19) and (20) for
the propagators, and again switch to a more distinct notation for the slit position k → M1,
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obtaining respectively

hlp = δlp −
2

M

M−1
∑

m=1

sin mπ
2M

sin2 mπM1

M
√

1 + sin2 mπ
2M

(

sin
mπ

2M
+

√

1 + sin2 mπ

2M

)−2|l−p|

(70)

=

∫ λ0

0

dλ
sinh λ

2
cos
[

2(l − p) sin−1(sinh λ
2
)
]

π
√

1− sinh2 λ
2

sinhλ(M −M1) sinh λM1

sinh(λM/2) cosh(λM/2)
. (71)

In what follows we will use the integral form (71). Clearly the only difference from (51) is
the additional cosine factor, which carries the dependence on |l − p|. The small λ behavior
of the first fraction in the integrand of (71) is given by

sinh λ
2
cos
[

2(l − p) sin−1(sinh λ
2
)
]

π
√

1− sinh2 λ
2

=
λ

2π
+

[1− 3(l − p)2]λ3

12π
+O(λ5) . (72)

Hence we see that contributions to the asymptotic expansion of hlp coming from the O(λ)
term will be the same for one or many missing links.

Separating the second fraction in the integrand of (71) according to (54), we similarly
obtain

hlp = c̃lp + ǫlp = (clp − Ilp) + ǫlp , (73)

where

clp =

∫ λ0

0

dλ
sinh λ

2
cos
[

2(l − p) sin−1(sinh λ
2
)
]

π
√

1− sinh2 λ
2

=

∫ 1

0

dx
sin πx

2
cos [(l − p)πx]

√

1 + sin2 πx
2

, (74)

Ilp =

∫ λ0

0

dλ
sinh λ

2
cos
[

2(l − p) sin−1(sinh λ
2
)
]

π
√

1− sinh2 λ
2

e−2M1λ , (75)

ǫlp =

∫ λ0

0

dλ
sinh λ

2
cos
[

2(l − p) sin−1(sinh λ
2
)
]

π
√

1− sinh2 λ
2

2− e−2M1λ − e2M1λ

−1 + e2Mλ
. (76)

The first part of the matrix element (74) can be shown to coincide with the M-independent
part of hlp for the closed string. The c̃ij combination, for M1 ≤ (M − 1)/2, encodes the
leading behavior of the integrand for M large.

Expanding as in (72), we may formally do the Ilp integral term by term using

∫ λ0

0

λs−1e−2M1λ =
1

(2M1)s

∫ 2M1λ0

0

λs−1e−λ = γ(s, 2M1λ) (77)

where γ(s, x) is the lower incomplete gamma function, which for s a positive integer is

γ(s, x) = (s− 1)!− (s− 1)!e−x
s−1
∑

k=0

xk

k!
. (78)
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This expression is particularly useful for extracting the large M1 behavior of the integral,
since up to exponentially suppressed terms we can write

Ilp =
1

8πM2
1

+
1− 3(l − p)2

32πM4
1

+O(M−6
1 ) +O(e−2M1λ) . (79)

In a similar fashion, we obtain a large M expansion for the third integral, with x = M1/M
arbitrary,

ǫlp =
1

2πM2
f2(x) +

1− 3(l − p)2

12πM4
f4(x) +O(M−6) +O(e−2Mλ) , (80)

where fi(x) are the same functions that appeared in the single link case6. Keeping terms of
O(M−2) for the matrix elements will of course yield the determinant to the same accuracy,
and in particular

det(hlp) = det
(

c̃lp +
f2(x)
2πM2 +O(M−4)

)

= det(c̃lp)

(

1 + f2(x)
2πM2

K−1
∑

l,p=1

(c̃−1)lp

)

+O(M−4) . (81)

This will be sufficient for obtaining the tachyon self-energy (31) for fixed K andM1 summed
up to the physically relevant O(M−1) term, as the latter sum can contribute an extra factor
of M at most7.

Finally, another procedure to evaluate the large M expansion of the sum in question is
to add and subtract the value of the summand for large M1, as we did for the single missing
link. In particular, the analogues of (75) for the quantities appearing in (81) are

det(c̃lp) = det(clp)

(

1− 1
8πM2

1

K−1
∑

l,p=1

(c−1)lp

)

+O(M−4
1 ) +O(e−2M1λ) , (82)

K−1
∑

l,p=1

(c̃−1)lp =

K−1
∑

l,p=1

(c−1)lp

(

1 + 1
8πM2

1

K−1
∑

l,p=1

(c−1)lp

)

+O(M−4
1 ) +O(e−2M1λ) . (83)

Thus focusing on M odd, we can calculate the self-energy of a tachyon due to a single slit
of K − 1 time steps as follows (in all steps we keep terms up to O(M−2) in the summand or
equivalently O(M−1) for the full sum),

−δP−
K =

M−1
∑

M1=1

det(hlp)
−12 = 2

(M−1)/2
∑

M1=1

det(c̃lp + ǫlp)
−12

≃ 2

(M−1)/2
∑

M1=1

det(c̃lp)
−12

(

1 + f2(x)
2πM2

K−1
∑

l,p=1

(c̃−1)lp

)−12

6Neglecting exponentially suppressed factors, it is not difficult to calculate these functions explicitly. For

example f2(x) =
π2

12M2 + 1
4M2x2 − π2 csc[πx]2

4M2 .
7This can be seen, for example, with the help of the Euler-Maclaurin formula.
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≃ 2

(M−1)/2
∑

M1=1

{

det(clp)
−12 +

(

det(c̃lp)
−12 − det(clp)

−12
)

− 12 f2(x)
2πM2 det(c̃lp)

−12
K−1
∑

l,p=1

(c̃−1)lp

}

≃ (M − 1) det(clp)
−12 + 2

∞
∑

M1=1

(

det(c̃lp)
−12 − det(clp)

−12
)

−2

∞
∑

M1=
M+1

2

(

det(c̃lp)
−12 − det(clp)

−12
)

− 24

(M−1)/2
∑

M1=1

f2(x)
2πM2 det(c̃lp)

−12

K−1
∑

l,p=1

(c̃−1)lp

≃ M det(clp)
−12 +

[

2

∞
∑

M1=1

(

det(c̃lp)
−12 − det(clp)

−12
)

− det(clp)
−12

]

−24 det(clp)
−12

K−1
∑

l,p=1

(c−1)lp





∞
∑

M1=
M+1

2

1

8πM2
1

+

(M−1)/2
∑

M1=1

f2(x)
2πM2



 .

For clarity, we mention that in the last step we dropped the term containing the difference
between det(c̃lp)

−12
∑

(c̃−1)lp and its asymptotic value in M1, as it will only contribute at
order O(M−2) in the final answer. Employing the asymptotics

∞
∑

M1=
M+1

2

1

8πM2
1

=
1

4πM
+O

(

M−2
)

,

(M−1)/2
∑

M1=1

f2(x)

2πM2
= − 1

4Mπ
+

π

48M
+O

(

M−3
)

, (84)

we finally obtain

−δP−
K = M det(clp)

−12 +

[

2

∞
∑

M1=1

(

det(c̃lp)
−12 − det(clp)

−12
)

− det(clp)
−12

]

− π

2M
det(clp)

−12

K−1
∑

l,p=1

(c−1)lp +O
(

M−2
)

. (85)

Comparing with the respective summand for the closed string, see equations (38) and (59)
in [12], we note that the leading term in the two expressions is the same, and the O(M−1) is
four times larger in the closed string. The same proportionality holds between the tachyon
masses of the free closed and open strings.

4 Open String Gluon Self-energy

To extract energy shifts for excited states we examine the propagator on a lattice worldsheet
with some pattern of missing links described by V :

∆V = (∆−1 + V )−1 = ∆(I + V∆)−1 = ∆−∆(I + V∆)−1V∆ ≡ ∆−∆V∆ . (86)
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Inserting the normal mode expansion (19) for ∆ in the rightmost side of this equation we
can write ∆V :

∆V
ij,kl =

∑

m,m′

ejλ
o
m−lλo

m′

∆̃V
mm′

M
√

sinhλom sinh λom′

cos
m(i− 1/2)π

M
cos

m′(k − 1/2)π

M
(87)

∆̃V
mm′ = δmm′ − Ṽmm′

M
√

sinh λom sinhλom′

(88)

Ṽmm′ =
∑

pq,rs

Vpq,rse
−qλo

m+sλo
m′ cos

m(p− 1/2)π

M
cos

m′(r − 1/2)π

M
(89)

then the contribution of this diagram to the one loop gluon self-energy is

−∆̃V
11det

−12(I + V∆) (90)

where V corresponds to the missing link patterns of a single hole in the worldsheet.

4.1 Single missing link, K = 2

Working in the 2×2 subspace selected by V for a single missing link between positions k, k+1
at time j, we have, putting A = ∆(k+1)j,kj −∆kj,kj and A

′ = ∆(k+1)j,kj −∆(k+1)j,(k+1)j ,

V =

(

−1 1
1 −1

)

, I + V∆ =

(

1 + A −A
−A′ 1 + A′

)

,

V = (I + V∆)−1V =
1

1 + A+ A′

(

1 + A′ A
A′ 1 + A

)(

−1 1
1 −1

)

=
V

1 + A + A′

= V det−1(1 + V∆) . (91)

Then

Ṽmm′ =
[

cos
m(k − 1/2)π

M
cos

m′(k + 1/2)π

M
+ cos

m(k + 1/2)π

M
cos

m′(k − 1/2)π

M

− cos
m(k − 1/2)π

M
cos

m′(k − 1/2)π

M
− cos

m(k + 1/2)π

M
cos

m′(k + 1/2)π

M

] e−j(λo
m−λo

m′
)

det(1 + V∆)

= −4 sin
mπ

2M
sin

m′π

2M
sin

mkπ

M
sin

m′kπ

M

e−j(λo
m−λo

m′
)

det(1 + V∆)
(92)

∆̃V
mm′ = δmm′ + 4

sin mπ
2M

sin m′π
2M

sin mkπ
M

sin m′kπ
M

M
√

sinh λom sinhλom′

e−j(λo
m−λo

m′
)

det(1 + V∆)
(93)

Then the contribution to the self-energy of the excited string state a−m|0〉 from this diagram
(setting m′ = m) is

−δP−
2 (m) =

M−1
∑

k=1

(

1 + 4
sin2(mπ

2M
) sin2(mkπ

M
)

M sinhλom

1

det(1 + V∆)

)

det−12(1 + V∆) (94)
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≈
M−1
∑

k=1

(

1 +
mπ

M2

sin2(mkπ
M

)

det(1 + V∆)
+O(M−4)

)

det−12(1 + V∆)

∼ 212

[

M − 1 + 2

∞
∑

k=1

[

(1− 2Ik)
−12 − 1

]

+ (m− 1)
π

M

]

+O(M−2) (95)

It is of course significant that the coefficient 1/M vanishes for m = 1, reflecting the fact that
perturbative corrections to the gluon mass should be 0.

4.2 Single slit with K − 1 missing links

As we’ve shown in [12], and can directly verify from the definition

V ≡ (I + V∆)−1V ⇒ (I + V∆)V = V , (96)

the elements of V are given by

Vkl,ks = V(k+1)l,(k+1)s = −V(k+1)l,ks = −Vkl,(k+1)s = −h−1
ls , (97)

where k denotes the spatial position of the slit, and the matrix h was defined in (70)-(71).
In what follows, we will again redefine k → M1 so as to label the slit position in a more
distinctive manner. In this notation, and with the help of (97), the Fourier transform of V
with the open string wavefunctions (89) becomes

Ṽmm′ = −4 sin
mπ

2M
sin

m′π

2M
sin

mM1π

M
sin

m′M1π

M

K−1
∑

q,s=1

e−sλo
m+qλo

m′h−1
qs . (98)

Then the analogue of (95) for many missing links will be

−δP−
K (m) =

M−1
∑

M1=1

∆̃V
mmdet

−12(I + V∆) =

M−1
∑

M1=1

(

1− Ṽmm

M sinh λom

)

det−12(hlp) (99)

≈
M−1
∑

M1=1

(

1 +
mπ

M2
sin2(mπM1/M)

∑

q,s

e(q−s)λo
mh−1

qs +O(M−4)

)

det−12(hlp) ,

The additional contribution for the gluon as compared to the tachyon comes from the second
term in the parenthesis in (99). We are interested in the asymptotic expansion of the latter
equation only up to O(M−1), and hence we only need the leading term of the additional
contribution. As we discussed in the case of the tachyon, this may be obtained by replacing
all quantities in the sum in M1 with their asymptotic form for large M1, which for the case
at hand implies

(

∑

q,s

e(s−q)λo
mh−1

qs

)

det−12(hlp) →
(

∑

q,s

c−1
qs

)

det−12(clp) (100)
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Then, the sum inM1 can be done exactly in terms of geometric series, and together with the
contribution which is identical to the tachyon self-energy (85), we obtain the final formula

−δP−
K (m) = M det(clp)

−12 +

[

2

∞
∑

M1=1

(

det(c̃lp)
−12 − det(clp)

−12
)

− det(clp)
−12

]

+(m− 1)
π

2M
det(clp)

−12

K−1
∑

l,p=1

(c−1)lp +O
(

M−2
)

. (101)

5 Dependence of String Self-energy on Slit Size

5.1 Leading term in the M expansion via Fisher-Hartwig formula

We would like to know the dependence of the coefficients of (101) on the slit size K − 1, for
M ≫ K ≫ 1. At first this seems quite challenging, as the dependence on n = K − 1 enters
primarily via the size of the det(clp) determinant.

Fortunately, this can be achieved by exploiting the fact that the latter is the determinant
of a Toeplitz matrix, meaning that clp = c(l − p), or in other words that all elements in a
left-to-right descending diagonal are the same. In this case, there exists a formula for the
asymptotic behavior of the determinant due to Fisher and Hartwig [14], see also [17] for a
more recent treatment. We will rely on the notations of the latter paper, and in particular
we will rewrite the matrix elements as Fourier transforms of the same function f(z),

clp =

∫ 1

0

dx
sin(πx/2) cos [(l − p)πx]
√

1 + sin2(πx/2)
=

1

2π

∫ 2π

0

dθf(eiθ)e−i(l−p)θ , l, p = 1, . . . , n (102)

where

f(eiθ) =
sin(θ/2)

√

1 + sin2(θ/2)
(103)

or equivalently, for z = eiθ

f(z) =
|z − 1|

2
√

1 + (z − 1)(1/z − 1)/4
. (104)

This implies that f(z) is a special case of the function considered in [17], with the following
values for the parameters according to their conventions,

z0 = 1 , α0 =
1

2
, β0 = 0 , V (eiθ) = − log

(

2
√

1 + sin2 θ
2

)

. (105)

Consequently, the asymptotic behavior of the n-dimensional determinant will be given by

det(clp) = n
1

4 exp

(

nV0 +

∞
∑

k=1

kVkV−k −
1

2

∞
∑

k=1

Vk −
1

2

−1
∑

k=−∞

Vk

)

G(3
2
)2

G(2)

(

1 +O(n−1)
)

,

(106)
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where G(x) is the Barnes G-function and Vk are the Fourier modes of V (eiθ),

Vk =
1

2π

∫ 2π

0

dθV (eiθ)e−ikθ , V (z) =

∞
∑

k=−∞

Vkz
k . (107)

Our function V (eiθ) is simple enough that V−k = Vk, and in particular we can calculate them
exactly,

V0 = − log(1 +
√
2) , Vk =

1

2k
(1−

√
2)2k (108)

from which we can in turn obtain

∞
∑

k=1

kVkV−k = −1

4
log
[

4(−4 + 3
√
2)
]

,

∞
∑

k=1

Vk =

∞
∑

k=1

V−k = −1

2
log
[

2(
√
2− 1)

]

. (109)

Substituting back into (106), we obtain the final formula

det(clp) = n
1

4 exp

(

− log(1 +
√
2)n− 1

8
log 2

)

G(3
2
)2

G(2)

(

1 +O(n−1)
)

,

≃ exp (0.25 logn− 0.881n+ 0.0472)
(

1 +O(n−1)
)

, (110)

≃ 1.048n
1

4 exp (−0.881n)
(

1 +O(n−1)
)

.

As a consistency check, we can compare the asymptotic formula above with fits for the value
of the determinant over a range of different n. For this purpose, it turns more efficient to fit
the logarithm of the determinant, and we choose the range n ∈ [100, 200] in steps on 1. We
find that

log det(clp) ≃ 0.2499 logn− 0.88137n+ 0.0472 +
0.17

n
(111)

where the errors in the coefficients are at the order of the last digit, and we also included a
term log(1 + c/n) ≃ c/n to account for the subleading asymptotic term in (110). Evidently
the coefficients of the fit are in excellent agreement with the Fisher-Hartwig formula.

In order to obtain the dependence of the leading term in theM-expansion of the tachyon
and gluon self-energy summand8 on the duration of the self-interaction n = K−1, we simply
have to raise (110) to the (−12) power. In this manner we obtain a power dependence of
n−3, which is a rigorous confirmation of the rough estimate we had obtained in [11].

5.2 O(M−1) term

In order to find the dependence on slit size for the O(M−1) term in (101), we will have to
additionally analyze

∑

c−1
lp . To this end, we will be using asymptotic expansions for the

inverses of Toeplitz matrices in the same category with clp, which have relatively recently
appeared in the literature [18, 19].

8In fact, this term is universal for all states of the open and closed string.
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In more detail, these papers focus on Toeplitz matrices of the form (102), where

f(z) = |z − 1|2αf1(z) , (112)

so that our matrix of interest, clp, is a special case with α = 1/2 and

f1(z) =
1

2
√

1 + (z − 1)(1/z − 1)/4
. (113)

In order to stay as close as possible to the notations of [18, 19], let us call the dimensionality
of the matrix n ≡ N + 1. Then, for 0 < x < 1, 0 < y < 1, x 6= y, the asymptotic forms of
the inverse matrix element will be

c−1
[Nx]+1,1 =

1

g1(1)
√
πN

√
1− x√
x

+ o(N−1/2) , f1 = g1ḡ1 , (114)

c−1
[Nx]+1,[Nx]+1 =

1

f1(1)π
logN + o(logN) , (115)

c−1
[Nx]+1,[Ny]+1 =

1

f1(1)π
G 1

2

(x, y) + o(1) , (116)

where [a] denotes the integer part of a,

G 1

2

(x, y) =
√
x
√
y

∫ 1

max(x,y)

dt

t
√
t− x

√
t− y

= 2arctanh

√
y√

1− y

√
1− x√
x

, (117)

and the last equality in the above equation holds if x > y, otherwise we simply exchange
x↔ y.

According to the Euler-Maclaurin formula, the leading contribution to the sum over the
[Nx] or [Ny] indices in each of the formulas above will be N times the integral over x or y.
This implies a contribution of order O(N1/2), O(N logN) and O(N2) to the sum over all
indices from (114), (115 and (116) respectively. So up to leading order we may write

N+1
∑

l,p=1

(c−1)lp ≃
N+1
∑

l 6=p=1

(c−1)lp = 2

N+1
∑

l>p=1

(c−1)lp

≃ 2N2

f1(1)π

∫ 1

0

dx

∫ x

0

dyG 1

2

(x, y) (118)

≃ 4N2

π

∫ 1

0

dx

[

2
√

x(1− x) arcsin
√
y + 2(y − x)arctanh

√
1− x

√
y√

x
√
1− y

]x

y=0

≃ 8N2

π

∫ 1

0

dx
√

x(1− x) arcsin
√
x ,

and given that the x-integral above yields π2/32, we finally obtain, after we restore n = N+1,

n
∑

l,p=1

(c−1)lp ≃
π

4
n2 ≃ 0.78539816 n2 . (119)
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Figure 2: Polynomial fit of degree two for the quantity
∑n

l,p(c
−1)lp, appearing

in the O(M−1) term in the asymptotic expansion for one loop tachyon self-
energy (85). The coefficient of the leading O(n2) term agrees excellently with
the analytically derived value π/4.

Another way to arrive at this result, is to notice that only the value of f1(z) at z = 1 matters
for the leading term in the expansions (114)-(116). In order to extract the term in question,
we can thus examine the determinant where we have replaced f1(z) with its constant value
f1(1), namely

dlp =
1

2π

∫ 2π

0

dθ sin
θ

2
e−i(l−p)θ =

2

π

1

1− 4(l − p)2
. (120)

Evidently, the virtue of this replacement is that it allows us to compute the integral explicitly.
Then, by analytically inverting the matrix and summing its elements for n ∈ [1, 10], we
experimentally find that the sum of all elements of the inverse matrix is given by the following
simple formula,

n
∑

l,p=1

(d−1)lp =
π

4
n(n+ 1) . (121)

As a final test of our result (119), we may compare it to fits of the quantity for varying
n. In particular, we choose n ∈ [100, 200] in steps of 5, and determine the coefficients of a
polynomial fit of degree two, as potentially existing logarithms at orders lower than O(n2)
can be well approximated by constants within this range. The results are depicted in Figure
2, and leave no doubt that the leading dependence of the sum of all elements of matrix c−1

on its size is given by (119).
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K −δP−
Tachyon fit −δP−

Tachyon asymptotic formula

2 4096M+19804−12867.90/M 4096M+19803−12867.96/M

3 4.2569937517×107M+1.48720×109−3.68032×108/M 4.2569937516×107M+1.48717×109−3.68037×108/M

4 6.602641227×1011M+1.63308×1014−1.09497×1013/M 6.602641228×1011M+1.63307×1014−1.09501×1013/M

5 1.2725545528×1016M+2.743318×1019−3.4330×1017/M 1.2725545522×1016M+2.743315×1019−3.4332×1017/M

Table 1: Tachyon self-energy for an interaction lasting K − 1 time steps,
K = 2, . . . , 5. Coefficients of asymptotic expansion in M up to O(M−1), as
obtained by numerically evaluating and fitting the quantity in question for
M ∈ [1005, 1995] in steps of 10, and compared to formula (85).
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Figure 3: Plots of tachyon self-energy for an interaction lasting K − 1 time
steps, for K = 5 in (a) and K = 12 in (b). Whereas for (a) the O(M)
term dominates and the data, fit and asymptotic formula up to O(M−1) are
indistinguishable, the same does not hold for the lower end ofM values in (b).

6 Numerical Analysis

In this section, we numerically evaluate the tachyon and gluon self-energy δP−
K due to an

interaction lasting K − 1 time steps, investigate its behavior for different values of M and
K, and obtain fits that we compare to the analytic asymptotic formulas (85), (101). We are
interested in the ultraviolet M ≫ K behavior of the self-energy, so we choose K ∈ [2, 30]
and M ∈ [495, 1995] in steps of 10. We perform the evaluation using the sum expression for
the matrix elements of the determinant (70), as it turns out to be numerically more stable
than the integral expression (71).

Starting with the tachyon, we observe that for the first few values of fixed K the leading
behavior of δP−

K is indeed linear in M within the range we have chosen, and performing fits
of the form δP−

K =
∑

ciM
i with three free parameters c±1, c0, we find excellent agreement of

the values predicted by (85). The results of the fits and the comparison with the asymptotic
prediction are depicted in Table 1, see also Figure 3a.

As it is evident in Figure 3b however, starting at K = 12 and higher −δP−
K becomes
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Figure 4: Plots of tachyon self-energy for an interaction lasting K − 1 time
steps, for K = 14 in (a) and K = 30 in (b). We have shifted the vertical
axis by a constant so as to depict the much smaller variation of δP−

K more
clearly. The fits suggest that it is the O(M−4) term which is responsible for
the deviation from the O(M) behavior.

convex, and subleading terms in the M expansion begin to dominate over the linearly in-
creasing term in the lower end of our range. In particular, this behavior at lower M cannot
be due to the O(M−1) term, which could only cause a deviation below the straight line be-
cause of its negative sign. Therefore it must come from higher terms in the expansion, and
experimentation with different fitting functions suggests that it is in fact due the O(M−4)
term.

This can be seen in more detail in Figure 4, where we compare δP−
K against a fit with

a constant and an O(M−4) term for K = 14, 30, finding very good agreement. The fit
suggests that its two parameters always have comparable sizes and grow very fast with K.
We already know from the analysis of Section 5 that the O(M) and O(M−1) coefficients
also have comparable sizes (due to the same exponential factor), and to give a measure of
comparison, they range between order 1056 − 1058 for K = 14 and 10128 − 10131 for K = 30.
This in turn implies that for the range of M we are examining, already at K = 14 the
O(M−4) is one order of magnitude larger than the O(M) term, and their ratio grows to 24
orders of magnitude for K = 30.

Given that the O(M−1) term is a few orders of magnitude smaller than the O(M) term,
the considerations of the previous paragraph justify why we don’t need to include them in
order to obtain good fits for the δP−

K depicted in Figure 4. More importantly, they imply
that as K increases, it becomes very challenging to extract the O(M−1) dependence by
purely numerical analysis. Taking the first difference in M does not improve the resolution
substantially, as it removes the large O(1), but not the O(M−4) term. Hence the only
remaining possibilities are to either choose a range of much higher values of M so that the
two sets of terms become comparable in size, or drastically increase the precision of the
numerics, so as to be able to resolve their difference in size. However since the two sets of
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Figure 5: Logarithm of the constant term b in the asymptotic expansion in M
for the tachyon δP−

K as a function of the interaction time K − 1. The leading
behavior is clearly linear, from which we can infer that b ∝ e13K .

K δP−
K,gluon − δP−

K,tachyon fit

2 −12868.96/M − 2.0× 105/M3

3 −3.68037× 108/M − 1.7× 1010/M3

4 −1.09501× 1013/M − 1.1× 1015/M3

5 −3.4332× 1017/M − 7× 1019/M3

Table 2: Fit of difference of tachyon and gluon self-energy for an interaction
lasting K − 1 time steps (error estimates at the order of the last digit). Com-
paring with the last row of Table 1, we see that theO(M−1) terms are identical,
thereby supporting that the corresponding term is zero for δP−

K,gluon.

terms have different exponential behaviors in K, employing any of the two aforementioned
options is also expected to increase computation time exponentially.

In more detail, we can verify that the O(1) term has an exponential behavior in K of
roughly e13K by plotting the logarithm of its fitted value against K ∈ [2, 30], see Figure 5.
As we discuss in the Introduction, the exponential increase in K of the O(1) and O(M−4)
terms is due to the tachyonic divergence, which appears when one of the two intermediate
strings becomes very short, namely it is a boundary effect. On the contrary, in the regime
1 ≪ K ≪ M we are examining, the tachyonic divergence does not affect the O(M) and
O(M−1) terms, whose exponential dependence e12β0K ≃ e10.6K is precisely cancelled by the
tree-level boundary counterterm.

Moving on to a numerical evaluation of the gluon self-energy, we shall aim to compare
our fits with the corresponding asymptotic formula, eq. (101) with m = 1. In particular we
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Figure 6: Plots of the self-energy difference between the gluon and the tachyon
for K = 3 in (a) and K = 14 in (b). We have rescaled the self-energy by M
so as to have only one independent variable. As with the tachyon, subleading
terms in the M expansion become dominant with increasing K.

will investigate whether our numerical analysis agrees with the O(M−1) term vanishing, and
for that reason it will be more advantageous to examine the quantity

δP−
K,gluon − δP−

K,tachyon = −4 sin2 π

2M

M−1
∑

M1=1

sin2 πM1

M

K−1
∑

q,s=1

e(q−s)λo
1h−1

qs , (122)

which has the large O(M) and O(1) dependence removed, thereby providing more accurate
fits. As for the tachyon, we choose K ∈ [2, 30] and M ∈ [495, 1995], and for the first few
values of K, the fits we obtain are depicted in Table 2, see also Figure 6a.

For small K, the numerics suggest that the O(M−1) term is identical here and for the
tachyon, implying it should be zero for the gluon. Furthermore, the numerics suggest that the
subleading term in the asymptotic expansion of (122) is O(M−3). Similarly to the tachyon
case however, as K increases the O(M−4) term dominates the expansion to an extent that
does not allow the extraction of the O(M−1) dependence by numerical means (see Figure
6b). Finally, the O(M−4) term in (122) appears to be different from the corresponding term
for the tachyon alone, in particular about an order of magnitude larger.

7 Open Strings Ending on D-branes

So far we have assumed that all open string transverse coordinates obey Neumann conditions.
But it is also interesting to impose Dirichlet conditions on a subset of the coordinates [20],
denoted by y(σ, τ) to distinguish them from the coordinates x which continue to satisfy
Neumann boundary conditions9. If x has p−1 components one says that there is a Dp-brane

9We do not consider here the mixed case of Neumann and Dirichlet conditions on opposite ends of an
open string.
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at the location specified by the (fixed) value of y at the end of each open string. Here we
restrict attention to a single Dp-brane location at y = 0. In the continuum, the expressions
for the one loop self-energy of an open string with 25− p Dirichlet coordinates differs from
the expressions (32) and (33) simply by an insertion of the factors (−2π/ ln q)(25−p)/2 in
the integrands. While these factors marginally soften the leading UV divergence from the
integration range near q ∼ 0, they do so in a way that introduces a logarithmic branch point
at q = 010. After discretization, the presence of these factors leads to an expected leading
large M behavior

δP−
K ∼ αM

K3(ln(M/K))(25−p)/2
(123)

which can no longer be cancelled by the bulk worldsheet cosmological constant. In particular
the leading singularity must be accepted as a real divergence, at least in the perturbative
loop expansion of bosonic string theory11. The worldsheet lattice provides a physical cutoff,
but there is no consistent way to define a finite continuum limit in perturbation theory.

7.1 D-branes and the GT lattice

We turn to a detailed analysis of the self-energy on the GT lattice which will confirm these
expectations. The Dirichlet worldsheet propagator on the free string worldsheet takes either
of the forms (23) or (24). The main new feature of these formulas is the absence of zero modes
in the open string spectrum because the Dirichlet conditions break translation invariance.
Of course on the lattice loop corrections will involve a different choice for the matrix V
describing the breaking and joining of strings, which we shall denote as Ṽ for clarity. A
broken Dirichlet string coordinate y involves the replacement [24]:

(yjk+1 − yjk)
2 + (yjk − yjk−1)

2 → (yjk+1)
2 + (yjk−1)

2 + 2κ(yjk)
2. (124)

where the parameter κ gives us some flexibility in specifying the Dirichlet condition on the
lattice. The matrix Ṽ that describes this replacement is then

Ṽml,m′l′ = δljδl′j(δm,k+1δm′,k + δm,kδm′,k+1 + δm,k−1δm′,k + δm,kδm′,k−1

+2(κ− 1)δm,kδm′,k) (125)

10In the open string nonplanar one-loop diagram, which contains singularities in the pomeron channel
invariant t due to closed string states, this branch point in q causes the “unitarity violating” branch point
(instead of a pole) in t that led Lovelace to anticipate the need for the critical dimension D = 26 [21]. Here
we see that in addition to D = 26 we also need Neumann boundary conditions on all string coordinates to
cancel the cut. As clarified in [22], the branch point is not really “unitarity violating”, but rather simply a
reflection of a continuous closed string mass spectrum, or the holographic emergence of extra dimensions for
the propagation of closed strings. In any case the branch point in t also spells difficulty for the Goddard-
Neveu-Scherk analytic continuation method [13] of regulating these divergences.

11Supersymmetry can potentially mitigate these difficulties through cancellation of the divergences due
to tachyonic closed string states. In such models the UV divergence due to the dilaton is rendered finite
provided that more than 2 coordinates are Dirichlet:

∫

dqq−1(− ln q)−3/2 is convergent at q ∼ 0 [23].
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In contrast to a broken Neumann coordinate, which involves two lattice sites, the broken
Dirichlet coordinate involves 3 lattice sites: k − 1, k, and k + 1. In matrix form it is

Ṽ =





0 1 0
1 2(κ− 1) 1
0 1 0



 (126)

Writing the corresponding 3× 3 block of the propagator as

∆ =





e a f
a c b
f b d



 (127)

we find after a simple calculation

det(1 + Ṽ∆) = (1 + a+ b)2 − c(e+ d+ 2f − 2(κ− 1)) (128)

The matrix elements are related to the worldsheet propagator as follows:

a = ∆kj,(k−1)j = ∆(k−1)j,kj, b = ∆kj,(k+1)j = ∆(k+1)j,kj (129)

c = ∆kj,kj, d = ∆(k+1)j,(k+1)j , e = ∆(k−1)j,(k−1)j (130)

f = ∆(k+1)j,(k−1)j = ∆(k−1)j,(k+1)j (131)

We will now proceed to evaluate the contribution of Dirichlet coordinates to the one loop
self-energy calculation with K = 2. As we did in the previous sections, we will again relabel
k → M1 to better convey that it is referring to the position of the slit. We start by using
the representation (26) for the Dirichlet worldsheet propagator in order to obtain

c =

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ sinh λ
(132)

a =

∫ 1

0

dx
sinh(M1 − 1)λ sinh(M −M1)λ

sinhMλ sinh λ

=

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ
cothλ−

∫ 1

0

dx
coshM1λ sinh(M −M1)λ

sinhMλ
(133)

b =

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ
cothλ−

∫ 1

0

dx
sinhM1λ cosh(M −M1)λ

sinhMλ
(134)

1 + a+ b = 2

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ
cothλ

= 2

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ

(

1

sinhλ
+ tanh

λ

2

)

(135)

= 2c+ 2

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ
tanh

λ

2

d+ e+ 2f = 4

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ

(

1

sinhλ
+ sinh λ

)

− 2

∫ 1

0

dx coshλ

= 4c+ 4

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ
sinh λ− 2

∫ 1

0

dx coshλ (136)
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Inserting these into the formula for the determinant leads to

det(I + Ṽ∆) = c

∫ 1

0

dx

(

4 sinh2(λ/2)− 8
sinhM1λ sinh(M −M1)λ

sinhMλ

[

sinh3(λ/2)

cosh(λ/2)

]

+ 2κ

)

+4

(
∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ
tanh

λ

2

)2

(137)

We will require the large M limit of this determinant. We notice that the quantity squared
in the last term is just the determinant we encountered for Neumann coordinates (51)

2

∫ 1

0

dx
sinhM1λ sinh(M −M1)λ

sinhMλ
tanh

λ

2
= DM1

=
1

2
− IM1

+
f2(x)

2πM2
+

f4(x)

12πM4
+ · · · (138)

where we recall (60) and our definition x =M1/M .
We also have some new integrals to analyze:

∫ 1

0

dx sinh2 λ

2
=

1

π

∫ λ0

0

dλ
cosh(λ/2) sinh2(λ/2)
√

1− sinh2(λ/2)
=

1

2
(139)

and for M1 ≤M/2 we use

sinhM1λ sinh(M −M1)λ

sinhMλ
=

1

2
(1− e−2M1λ)− e−Mλ sinh2M1λ

sinhMλ
, M1 ≤

M

2
(140)

to decompose the second integral into two terms

∫ 1

0

dx
1

2
(1− e−2M1λ)

sinh3(λ/2)

cosh(λ/2)
=

1

2π

∫ λ0

0

dλ(1− e−2M1λ)
sinh3(λ/2)

√

1− sinh2(λ/2)
(141)

=
1

2π
− JM1

JM1
=

1

2π

∫ λ0

0

dλe−2M1λ
sinh3(λ/2)

√

1− sinh2(λ/2)
(142)

∫ 1

0

dx
−e−Mλ sinh2M1λ

sinhMλ

sinh3(λ/2)

cosh(λ/2)
=

1

π

∫ λ0

0

dλ
−e−Mλ sinh2M1λ

sinhMλ

sinh3(λ/2)
√

1− sinh2(λ/2)

=
h4(x)

M4
+O(M−6, e−Mλ0) (143)

h4(x) = − 1

8π

∫ ∞

0

λ3dλ
e−λ sinh2 xλ

sinh λ
(144)

In contrast to the above integrals which are finite as M → ∞, the integral defining c
increases logarithmically withM . This feature is a direct consequence of Dirichlet boundary
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conditions. Remembering that the determinant enters the self-energy with a negative power,
this means that Dirichlet conditions soften the leading UV divergence by powers of (lnM)−1.
To investigate this phenomenon we look at

c =

∫ λ0

0

dλ
coth(λ/2)

π
√

1− sinh2(λ/2)

sinhM1λ sinh(M −M1)λ

sinhMλ
≡ GM1

+ ĉ (145)

GM1
=

1

2π

∫ λ0

0

dλ
(1− e−2M1λ) coth(λ/2)
√

1− sinh2(λ/2)
(146)

ĉ =
1

π

∫ λ0

0

dλ
coth(λ/2)

√

1− sinh2(λ/2)

[

e−Mλ sinh2M1λ

sinhMλ

]

(147)

The large M behavior of ĉ can be obtained by expanding

coth(λ/2)
√

1− sinh2(λ/2)
=

2

λ
+

5λ

12
+O(λ3) (148)

Then term by term we can extend the upper limit to ∞, with errors smaller than order
e−Mλ0 to get an asymptotic expansion

ĉ = g0(x) +
g2(x)

M2
+O(M−4, e−Mλ0) (149)

g0(x) =
2

π

∫ ∞

0

dλ

λ

[

e−λ sinh2(xλ)

sinh λ

]

, g2(x) =
5

12π

∫ ∞

0

λdλ

[

e−λ sinh2(xλ)

sinh λ

]

(150)

In this expansion the coefficients depend on the ratio x =M1/M which is smaller than 1/2:
if this ratio is of order 1/M , all of the terms are down by a further factor of 1/M2.

Next we study the difference GM1
= c − ĉ which depends only on M1. Since M1 has to

be summed over the range 0 < M1 < M/2, we will need the large M1 behavior of this term,
which we will find behaves like lnM1.

GM1
=

1

2π

∫ λ0

0

dλ
(1− e−2M1λ) coth(λ/2)
√

1− sinh2(λ/2)

=
1

2π

∫ λ0

0

dλ(1− e−2M1λ)





coth(λ/2)
√

1− sinh2(λ/2)
− 2

λ



+
1

π

∫ λ0

0

dλ
1− e−2M1λ

λ
(151)

The quantity in square brackets has good small λ dependence so the terms in the first integral
can be evaluated separately:

1

2π

∫ λ0

0

dλ





coth(λ/2)
√

1− sinh2(λ/2)
− 2

λ



 =
1

π
ln

2

λ0
+

Γ′(1)

2π
− Γ′(1/2)

2π
√
π

(152)
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1

2π

∫ λ0

0

dλe−2M1λ





coth(λ/2)
√

1− sinh2(λ/2)
− 2

λ



 ∼ 5

24π(2M1)2
+O(M1

−4, e−2M1λ0) (153)

Finally the large M1 behavior of the last integral

1

π

∫ λ0

0

dλ
1− e−2M1λ

λ
= −1

π

∫ λ0

0

dλ(2M1e
−2M1λ) ln

λ

λ0
= −1

π

∫ ∞

0

dλe−λ ln
λ

2M1λ0
+O(e−2M1λ0)

=
1

π
ln(2M1λ0)−

Γ′(1)

π
+O(e−2M1λ0) (154)

All together then we have for the large M1 behavior of c− ĉ

GM1
=

1

π
ln(4M1)−

Γ′(1) + Γ′(1/2)/
√
π

2π
− 5

96πM1
2 +O(M1

−4, e−2M1λ0)

=
1

π
ln(4M1)−

ψ(1) + ψ(1/2)

2π
− 5

96πM1
2 +O(M1

−4, e−2M1λ0) (155)

where ψ(z) ≡ Γ′(z)/Γ(z) is the digamma function.
Finally we quote the determinant for K = 2 due to a Dirichlet coordinate keeping terms

up to order M−2:

det(I + Ṽ∆) =

(

GM1
+ g0(x) +

g2(x)

M2

)(

2(κ+ 1)− 4

π
+ 8JM1

)

+

(

1

2
− IM1

)2

+
(1− 2IM1

)f2(x)

2πM2
+O(M−4) . (156)

Then the self-energy shift of the tachyon in the presence of a Dp-brane is given by

δP−
K = 2g2

(M−1)/2
∑

M1=1

det−(p−1)/2(I + V∆)det−(25−p)/2(I + Ṽ∆)e−24B(K−1) (157)

The leading behavior for large M occurs from the region 1 ≪ M1 = O(M). For K = 2 this
gives

δP−
K=2 ∼ 2g2

(M−1)/2
∑

M1≫1

2(p−1)/2

(

2(κ+ 1)− 4/π)

π
lnM1

)−(25−p)/2

e−24B

∼ g22p−13 M

(lnM)(25−p)/2

(

π2

(κ+ 1)π − 2

)(25−p)/2

e−24B (158)

Subleading divergences of the form M/(lnM)n+(25−p)/2 and 1/(lnM)n+(25−p)/2 will also ap-
pear. In fact, each power ofM can be expected to be multiplied by a power series in (lnM)−1.
We leave the interpretation of these non-analytic divergences to future work.

33



7.2 Discretization of the continuum expressions for the self-energy

of superstring.

Although we do not yet have a completely satisfactory GT lattice for the superstring, we can
get a glimpse of the benefits of supersymmetry by simply discretizing the known continuum
formulas for the gluon self-energy diagrams for the superstring with supersymmetry broken
by compactification of an extra dimension12. The critical dimension is D = 10 so there will
be 8 transverse coordinates x,P and 8 worldsheet fermions denoted Γ in the Ramond (R)
sector and H in the Neveu-Schwarz (NS) sector. We shall need the correlators:

〈PP〉 =
1

4 sin2(θ/2)
−

∞
∑

n=1

2nq2n

1− q2n
cos nθ (159)

=
1

4 sin2(θ/2)
− 2q2 cos θ +O(q4) (160)

〈HH〉+ =
1

2 sin(θ/2)
− 2

∞
∑

r=1/2

q2r

1 + q2r
sin rθ (161)

=
1

2 sin(θ/2)
− 2q

(

1− q + 4q2 cos2
θ

2

)

sin
θ

2
+O(q4) (162)

〈HH〉− =
1

2 tan(θ/2)
− 2

∞
∑

n=1

q2n

1 + q2n
sinnθ (163)

=
1

2 tan(θ/2)
− 2q2 sin θ +O(q4) (164)

〈ΓΓ〉 =
1

2 sin(θ/2)
+ 2

∞
∑

r=1/2

q2r

1− q2r
sin rθ (165)

=
1

2 sin(θ/2)
+ 2q

(

1 + q + 4q2 cos2
θ

2

)

sin
θ

2
+O(q4) (166)

where we use the notation and conventions of [7]. We have expressed the correlators in
terms of the moduli q, θ of the cylinder. To break supersymmetry, we compactify one of
the transverse target space dimensions imposing periodic boundary conditions on bosonic
states and antiperiodic conditions on fermionic states. In the expressions of the one loop
self-energies, this simply means an insertion of the factor

∞
∑

m=−∞

qm
2R2T0/4π2

, bosonic loop,

∞
∑

m=−∞

(−)mqm
2R2T0/4π2

, fermionic loop. (167)

Both these factors approach unity in the decompactification limit R → ∞. The absence of
tachyonic divergences in the loop integrals requires R2T0 ≥ 4π2. When the gluon polarization

12With unbroken supersymmetry the diagram is identically zero!
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is in the direction of a compactified coordinate, the 〈PP〉 correlator quoted above acquires
an extra term:

〈PP〉 = −
〈

m2R2T0
4π2

〉

+
1

4 sin2(θ/2)
−

∞
∑

n=1

2nq2n

1− q2n
cos nθ (168)

where

〈f(m)〉 ≡
∑

m f(m)qm
2R2T0/4π2

∑

m q
m2R2T0/4π2

, bosonic loop (169)

〈f(m)〉 ≡
∑

m(−)mf(m)qm
2R2T0/4π2

∑

m(−)mqm2R2T0/4π2
, fermionic loop (170)

By taking the R → 0 limit we get the extra term in this correlator when gluon polarizations
are transverse to a D-brane: it is just 1/(2 ln q). It is noteworthy that the extra term
from either compactification or from the presence of D-branes is negative. Since generally
Cs < 0,13 this term therefore contributes positively to the self energy. Thus while the mass
shift of the gluon (polarizations in uncompactified directions) is zero, the mass squared shift
of the massless scalar (polarization in compactified directions) is positive.

The self-energy of the gluon state is given as a sum of three terms

∆P− =
Cs

2P+
(Σ+ + Σ− + ΣF ) (171)

Σ+ =
1

2

∫ 1

0

dq

q2

∫ 2π

0

dθ

∞
∑

m=−∞

qm
2R2T0/4π2

∏

r(1 + q2r)8
∏

n(1− q2n)8
〈PP〉 (172)

Σ− = −8

∫ 1

0

dq

q2

∫ 2π

0

dθ
∞
∑

m=−∞

qm
2R2T0/4π2

∏

n(1 + q2n)8
∏

n(1− q2n)8
q〈PP〉 (173)

ΣF = −1

2

∫ 1

0

dq

q2

∫ 2π

0

dθ
∞
∑

m=−∞

(−)mqm
2R2T0/4π2

∏

r(1− q2r)8
∏

n(1− q2n)8
〈PP〉 (174)

Terms involving the fermionic correlators 〈HH〉2± and 〈ΓΓ〉2 do not contribute to the onshell
two gluon function because they are multiplied by kinematic factors like ki · kjǫk · ǫl or
ki · ǫjkk · ǫl. But for the two point function k2 = −k1, k2i = 0, and ki · ǫi = 0, so all these
factors vanish. The combination Σ+ + Σ− projects out the odd G-parity states of the NS
sector circulating the loop, while ΣF represents the R sector states circulating the loop.
Because of Jacobi’s abstruse identity

∏

r

(1 + q2r)8 −
∏

r

(1− q2r)8 − 16q
∏

n

(1 + q2n)8 = 0 (175)

13From the lightcone viewpoint the self-energy shift is a result from second order perturbation theory
which is necessarily negative by unitarity. Since the divergence in the integral has a positive coefficient, this
implies that Cs must be negative. The negative divergent contribution to the shift is, of course, cancelled
against the boundary cosmological constant counterterm B.
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We have, for gluon polarization in uncompactified directions, the simplification

∆P− =
Cs

2P+

∫ 1

0

dq

q2

∫ 2π

0

dθ
∑

m=odd

qm
2R2T0/4π2

∏

r(1− q2r)8
∏

n(1− q2n)8
〈PP〉 (176)

=
Cs

2P+

∫

dq

q

∫ 2π

0

dθ
∑

m=odd

qm
2R2T0/4π2

(

1− 8q + 36q2

4q sin2(θ/2)
− 2q + 4q sin2 θ

2
+O(q2)

)

(177)

where in the second line we have explicitly displayed the first few terms in the q expansion.
It is worth emphasizing that the right side vanishes in the decompactification limit R → ∞,
which restores supersymmetry. Also notice that, although the q integral is convergent at
the lower end q ∼ 0 when R2T0 > 4π2, the θ integral is still divergent at its end points. It
is this divergence that discretization will show can be absorbed in the constant boundary
counterterm B.

Incidentally, for gluon polarization in the compactified direction, the open string state
corresponds to a massless scalar particle which gains a mass by virtue of the extra term
shown in (168):

∆M2
Scalar = 2P+∆P− = −CsR

2T0
2π

∫ 1

0

dq

q2

∏

r(1− q2r)8
∏

n(1− q2n)8

∑

m=odd

m2qm
2R2T0/4π2

(178)

which is positive since Cs < 0. The integral on the right is convergent at q ∼ 0 provided
R2T0 > 4π2, and becomes arbitrarily large as R2T0 → 4π2. The convergence of the inte-
gral at q ∼ 1 becomes transparent after the change of variables by the Jacobi imaginary
transformation q = e2π

2/ lnw, which maps q = 1 to w = 0.
Now let’s discretize the gluon self-energy (176) in the variables of the lightcone lattice

and examine how the continuum limit is regained. Recalling (34), (35), and (36), we have

∆P− → 64Cs

aπT0

∑

K

2 +O(K4)

K3

(M−1)/2
∑

M1=1

∞
∑

k=−∞

q1+(2k−1)2R2T0/4π2

[

1− 8q + 36q2 + 4q2 sin4 πM1

M
− 2q2 sin2 πM1

M
+O(q3)

]

(179)

where, to avoid ungainly expressions, we have deferred replacing q with its discretized version
given by (35). Instead we work out the large M limit of the contribution of each power of q
in what follows.

As we did in subsection 3.1, we next study the large M limit of the terms at fixed K.
The summand involves terms of the form qp sin2n(πM1/M) with p ≥ 1 + R2T0/(4π

2) ≥ 2
and n = 0, 1, 2. For simplicity of discussion, let’s choose R2T0 = 4π2, so the lowest power is
q2, and begin by examining the large M limit of

(M−1)/2
∑

M1=1

q2 ∼
(

1 +
π2K2

48M2

) (M−1)/2
∑

M1=1

(

πK

8M sin πM1/M

)2

− 4

(M−1)/2
∑

M1=1

(

πK

8M sin πM1/M

)4
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=

(

1 +
π2K2

48M2

)(

π2K2

384
+O(M−2)

)

− 4ζ(4)
K4

84
+O(M−2)

=
ζ(2)K2

64
− ζ(4)K4

1024
+O(M−2) (180)

where the last 2 lines follow from the argument in footnote 4. A similar analysis applies to
the higher powers of q as well. As this q2 example shows the presence of additional factors
of sin(πM1/M) have the effect of suppressing the contribution by additional powers of M−1.
This means that in collecting the contributions to the constant boundary counterterm, one
only needs to keep the first three terms in the square brackets:

(M−1)/2
∑

M1=1

q3 ∼
(M−1)/2
∑

M1=1

(

πK

8M sin πM1/M

)3

∼ π3K3

83M2

∫ 1/2

0

dx

(

1

sin3 πx
− 1

π3x3
− 1

2πx

)

+
K3

83

(M−1)/2
∑

M1=1

1

M3
1

+
π2K3

83M2

(M−1)/2
∑

M1=1

1

2M1

=
ζ(3)K3

83
+O(M−2 lnM) (181)

(M−1)/2
∑

M1=1

q4 ∼
(M−1)/2
∑

M1=1

(

πK

8M sin πM1/M

)4

=
ζ(4)K4

84
+O(M−2) (182)

Thus the total contribution from these terms to the divergence is

∆P−
div =

Cs

aπT0

∑

K

1

K

[

2ζ(2)− 2ζ(3)K + ζ(4)K2 +O(K4)
]

(183)

7.3 D-branes and the superstring

We now return to the effect of imposing Dirichlet conditions on some of the coordinates. As
before, the self-energy integrands now acquire extra factors (− ln q)−(9−p), which become

(

− ln
πK

8M sin πM1/M
+

6− 2 sin2 πM1/M

3

(

πK

8M sin πM1/M

)2

+O(K4)

)−(9−p)

(184)

After expanding in powers of K, we see that in general we will encounter, in addition to
more terms in higher powers of K, a series of terms with more negative powers of lnK of
the form

(

− ln
πK

8M sin πM1/M

)−(9−p+n)

(185)
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These extra factors modify the extraction of the divergent parts of the discretized self-energy
expressions. It will suffice to illustrate this with the lowest contributing power of K:

(M−1)/2
∑

M1=1

q2(− ln q)−n →
(M−1)/2
∑

M1=1

(

πK

8M sin πM1/M

)2(

− ln
πK

8M sin πM1/M

)−n

∼ π2K2

64M

∫ 1/2

0

dx

(

1

sin2 πx

(

− ln
πK

8M sin πx

)−n

− 1

π2x2

(

− ln
K

8Mx

)−n
)

+
∞
∑

M1=1

K2

64M2
1

(

− ln
K

8M1

)−n

−
∞
∑

M1=(M+1)/2

K2

64M2
1

(

− ln
K

8M1

)−n

=

∞
∑

M1=1

K2

64M2
1

(

− ln
K

8M1

)−n

+O(M−1(lnM)−n−1) (186)

So we see that the presence of D-branes for the superstring does not spoil the ability to
aborb divergences in the boundary counterterm. Also notice that the negative powers of
lnM suppress the M−1 correction term which, if nonzero, would signal a nonzero shift to
the gluon mass.
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A Closed Strings in the Presence of D-branes

In this appendix, we will briefly examine how the scattering of a closed string tachyon off
a D-brane can be described within the worldsheet-based approach, and compare with the
string field theory analysis of the same process, which was carried out in Section 3 of [11].

To this end, we will first have to generalize the introductory remarks of Section 7, and
derive a determinant formula for the path integral where instead of one site obeying Dirichlet
boundary conditions, we now have K − 1 consecutive sites in the temporal direction, and in
the same spatial position k. This requires taking the direct product of matrix (126) with a
diagonal matrix with entries 1 for the sites in question, and zero otherwise. Then det(I+Ṽ∆)
may be written in the block form

det(I + Ṽ∆) =

∣

∣

∣

∣

∣

∣

I +∆−10 ∆00 ∆01

∆−1,−1+2(κ−1)∆−10+∆−11 I+∆−10+2(κ−1)∆00+∆01 ∆−11+2(κ−1)∆01+∆11

∆−10 ∆00 I +∆01

∣

∣

∣

∣

∣

∣

,

where each of the blocks corresponds again to spatial positions k−1, k and k+1, and ∆lm is
the (K − 1)-dimensional matrix with elements ∆i(k+l),j(k+m), namely with only the temporal
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indices i, j varying. By elementary row and column operations, we can reduce the size of
the matrix and bring it to the form

det(I + Ṽ∆) =

∣

∣

∣

∣

I +∆−10 +∆01 −2(κ− 1)I +∆−1,−1 +∆11 + 2∆−11

∆00 I +∆−10 +∆01

∣

∣

∣

∣

(187)

=

∣

∣

∣

∣

I+∆−10−2∆00+∆01 −2(κ+1)I+∆−1,−1−4∆−10+2∆−11+4∆00−4∆01+∆11

∆00 I+∆−10−2∆00+∆01

∣

∣

∣

∣

.

The latter equation may be used for the study of the open or closed string case, by substi-
tuting the corresponding expression for the propagator. In what follows we will focus on the
closed string, where the propagator is a function of |l − m| alone, and more concretely is
given by (29). Clearly the zero mode piece of the propagator will dominate as N → ∞, and
following the same logic as in the string field theory approach [11], the quantity of interest
will be precisely the coefficient of the zero mode in det(I + Ṽ∆),

MK = lim
N→∞

4M det(I + Ṽ∆)

N + 1
. (188)

The expression of the second line of (187) is advantageous for obtaining MK , as the O(N)
term is contained only in the lower left block. In fact, since this term will be the same for
all elements in the block, we can perform further row and columns operations in order to
remove it from all but one element. This implies that MK will simply equal the minor of the
latter element, or in other words is will be given by a determinant of dimension 2(K−1)−1.

For specific K, here it is also possible to obtain and asymptotic expansion in M for MK

with the help of the Euler-Maclaurin formula. For example, setting κ = 1 for simplicity, we
find

M2 = 4(1− 1

π
) +

π3

15

1

M4
+O(M−6) ≃ 2.727 +

0.517

M2
, (189)

M3 =
(5π − 8+) (3π2 + 16)

2π3
+

5π
2
− 4

M2
+O(M−4) ≃ 5.669 +

3.854

M2
, (190)

M4 = −32(1024−296π−75π2+12π3)
9π4 − 16(2048−720π−129π2+36π3)

27π2M2 +O(M−4) (191)

≃ 10.003 +
22.270

M2
.

It’s worth noting that particularly for K = 2, the coefficient of the O(M−2) term is zero. We
may compare our results of our current approach to D-branes with the string field theory
based approach of [11], by noting that the quantity we defined in equation (87) of the latter
paper, equals in our current notations to

rK =

√

η−K+1
1− η2K

1− η2
det(hlp)

MK
(192)

where η = 1+κ−
√

κ(2 + κ) and det(hlp) is given by equation (33) of [12]. Indeed, we have
verified that the two approaches yield the same values for rK for a wide range of M and K,
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and that the fits we obtained in [11] for fixed K and varying M ≫ K are in good agreement
with the asymptotic expressions we can now obtain analytically. As an illustration, with the
current methods we find for κ = 1

r2 =

√
π

√

2(π − 1)

(

1 +
1

6πM2

)

+O(M−4) ≃ 0.856429 +
0.448425

M2
+O(M−4) (193)

which compares very well with the fit on the left hand side of Figure 14 in the latter reference.

B Open String Self-energy: String Field Viewpoint

In this appendix, we give the alternative expression for the self-energy as a concatenation of
open string propagators, along the lines of [11]. For the open string self-energy, depicted in
Fig. 1, we have a total of N +K − 1 missing links, N for the open string ends and K − 1
for the extra two ends of the two intermediate strings. Let the external string have M sites
and the two intermediate strings have M1, M2 = M −M1 sites respectively. At each time
j there will be M coordinates xji , i = 1, . . . ,M . If at time j there are two open strings, we
shall identify xji , i = 1, . . . ,M1, with string 1 and xji , i = M1 + 1, . . . ,M with the second
one. The summand of the self-energy diagram will then depend on M1, J,K, so we write

〈N + 1, {xf}|0, {xi}〉openM1,K,J =

∫

dxKi dx
L
i 〈L, {xf}|0, {xL}〉openM 〈K, {xL<}|0, {xK<}〉openM1

〈K, {xL>}|0, {xK>}〉openM2
〈J, {xK}|0, {xi}〉openM e−T0[(xL

M1+1
−xL

M1
)2+(xK

M1+1
−xK

M1
)2]/4 (194)

= Dopen
M (J)Dopen

M1
(K)Dopen

M2
(K)Dopen

M (L)
∫

dxKi dx
L
i e

iW+(N+K−1)B0−T0[(xL
M1+1

−xL
M1

)2+(xK
M1+1

−xK
M1

)2]/4

where we have introduced the notation x< for xi, i = 1, . . . ,M1 and x> for xi, i =
M1 + 1, . . . ,M .

We will again want to change integration variables to normal modes of either the single
external string or the two intermediate strings as follows:

xi =
1√
M
q0 +

√

2

M

M−1
∑

m=1

qm cos
mπ

M

(

i− 1

2

)

(195)

=























1√
M1

q
(1)
0 +

√

2

M1

M1−1
∑

m=1

q(1)m cos
mπ

M1

(

i− 1

2

)

i = 1, . . . ,M1

1√
M2

q
(2)
0 +

√

2

M2

M2−1
∑

m=1

q(2)m cos
mπ

M2

(

i−M1 −
1

2

)

i =M1 + 1, . . . ,M

(196)

The missing link terms in the exponent involve

xM1+1 − xM1
= −2

√

2

M

M−1
∑

m=1

qm sin
mM1π

M
sin

mπ

2M
(197)
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(xM1+1 − xM1
)2 =

8

M

M−1
∑

m′,m′′=1

qm′qm′′ sin
m′M1π

M
sin

m′′M1π

M
sin

m′π

2M
sin

m′′π

2M
(198)

It is straightforward to relate the q
(1)
m , q

(2)
m to the qm:

q
(1)
0 =

√

M1

M
q0 +

√

2

MM1

M−1
∑

m′=1

qm′U
(1)
m′0, q(1)m =

2√
MM1

M−1
∑

m′=1

qm′U
(1)
m′m (199)

q
(2)
0 =

√

M2

M
q0 +

√

2

MM2

M−1
∑

m′=1

qm′U
(2)
m′0, q(2)m =

2√
MM2

M−1
∑

m′=1

qm′U
(2)
m′m (200)

and we note the identity q
(1)
0

√
M1 + q

(2)
0

√
M2 = q0

√
M , as expected from the fact that

q0/
√
M is the center of momentum of the open string. The matrices U (1), U (2) are listed in

Appendix E.

B.1 Correction to the open string ground energy

For the ground state it suffices to set xi = xf = 0, so that the expression for iW simplifies
somewhat:

iW → −T0
2

[

(qL0 )
2

L
+

(qK0 )2

J
+

M−1
∑

m=1

sinhλom
(

(qLm)
2 cothLλom + (qKm)2 coth Jλom

)

+
(qL,10 − qK,1

0 )2

K
+

M1−1
∑

m=1

sinhλo,1m

(

[(qL,1m )2 + (qK,1
m )2] cothKλo,1m − 2

qK,1
m qL,1m

sinhKλo,1m

)

+
(qL,20 − qK,2

0 )2

K
+

M2−1
∑

m=1

sinhλo,2m

(

[(qL,2m )2 + (qK,2
m )2] cothKλo,2m − 2

qK,2
m qL,2m

sinhKλo,2m

)]

(201)

where λo,1m , λo,2m are obtained from λom through the substitutions M →M1,M2 respectively.

Finally we eliminate the q
(1,2)
m in favor of the qm. Because U

(2)
m′0 = −U (1)

m′0, we find that
the zero modes combine nicely

(qL,10 − qK,1
0 )2 + (qL,20 − qK,2

0 )2 =

(qK0 − qL0 )
2 +

2

M1M2

M−1
∑

m′,m′′=1

(qKm′ − qLm′)(qKm′′ − qLm′′)U
(1)
m′0U

(1)
m′′0 (202)

From this we see that the zero modes enter the exponent in the combination

iW0 = −T0
2

[

(qL0 )
2

L
+

(qK0 )2

J
+

(qK0 − qL0 )
2

K

]

(203)
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So integrating them out simply implements closure on the zero modes.

∫

dqK0 dq
L
0 e

iW0 =
2π

T0

√

JKL

J +K + L
=

2π

T0

√

JKL

N + 1
. (204)

The contribution of the nonzero modes to the exponent can be expressed using the following
matrix definitions:

A
(1)
m′m′′ ≡ 4

MM1

M1−1
∑

m=1

U
(1)
m′mU

(1)
m′′m sinhλo,1m cothKλo,1m (205)

B
(1)
m′m′′ ≡ − 4

MM1

M1−1
∑

m=1

U
(1)
m′mU

(1)
m′′m

sinhλo,1m

sinhKλo,1m

(206)

A
(2)
m′m′′ ≡ 4

MM2

M2−1
∑

m=1

U
(2)
m′mU

(2)
m′′m sinhλo,2m cothKλo,2m (207)

B
(2)
m′m′′ ≡ − 4

MM2

M2−1
∑

m=1

U
(2)
m′mU

(2)
m′′m

sinhλo,2m

sinhKλo,2m

(208)

Taking the limit L, J → ∞, we define the nonzero mode contribution to iW plus the missing
link terms as

iW ′ = −T0
2

[M−1
∑

m=1

sinh λom
(

(qLm)
2 + (qKm)2

)

+
2

KM1M2

M−1
∑

m′,m′′=1

(qKm′ − qLm′)(qKm′′ − qLm′′)U
(1)
m′0U

(1)
m′′0

+

M−1
∑

m′,m′′=1

(qKm′qKm′′ + qLm′qLm′′)(A(1) + A(2))m′m′′ + 2

M−1
∑

m′,m′′=1

qKm′qLm′′(B(1) +B(2))m′m′′

+
4

M

M−1
∑

m′,m′′=1

(qKm′qKm′′ + qLm′qLm′′) sin
m′M1π

M
sin

m′′M1π

M
sin

m′π

2M
sin

m′′π

2M

]

(209)

≡ −T0
2

[

M−1
∑

m′,m′′=1

(qKm′qKm′′ + qLm′qLm′′)Am′m′′ + 2qKm′qLm′′Bm′m′′

]

(210)

where we have defined

Am′m′′ ≡ δm′m′′ sinh λom′ + (A(1) + A(2))m′m′′ +
2

KM1M2

U
(1)
m′0U

(1)
m′′0

+
4

M
sin

m′M1π

M
sin

m′′M1π

M
sin

m′π

2M
sin

m′′π

2M
(211)

Bm′m′′ ≡ (B(1) +B(2))m′m′′ − 2

KM1M2

U
(1)
m′0U

(1)
m′′0 (212)
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The Gaussian integral in the two open string function then becomes

∫

dxKi dx
L
i e

iW ′ →
(

2π

T0

)M
√

JKL

N + 1
det−1/2

(

A B
B A

)

(213)

and the prefactors in the expression for the two open string function become in the limit
J, L→ ∞,

Dopen
M (J)Dopen

M1
(K)Dopen

M2
(K)Dopen

M (L) → e−(J+L)
∑

m λo
m/2

K
√
JL

(

T0
2π

)3M/2 M−1
∏

m=1

[2 sinhλom]

M1−1
∏

m=1

[

sinhKλo,1m

sinh λo,1m

]−1/2 M2−1
∏

m=1

[

sinhKλo,2m

sinh λo,2m

]−1/2

(214)

Combining these results, dividing by Dopen(N + 1)eNB0 and summing over M1, K leads to
our expression for the ground state energy shift

−a∆P− =
∞
∑

K=1

M−1
∑

M1=1

[

eK
∑

m λo
m/2+(K−1)B0

√
K

M−1
∏

m=1

[2 sinhλom]
1/2

]D−2

[

M1−1
∏

m=1

[

sinhKλo,1m

sinh λo,1m

]M2−1
∏

m=1

[

sinhKλo,2m

sinh λo,2m

]

det

(

A B
B A

)

]−(D−2)/2

(215)

Doing the three products
∏M−1

m=1 [2 sinhλ
o
m] explicitly yields

−a∆P− =
∞
∑

K=1

M−1
∑

M1=1

[

eK
∑

m λo
m/2+(K−1)B0

√
K

]D−2 M−1
∏

m=1

[2 sinhλom]
D−2

[

M

M1M2

sinh 2 sinh−1 1 sinh 2M sinh−1 1

sinh 2M1 sinh
−1 1 sinh 2M2 sinh

−1 1

]−(D−2)/4

[

M1−1
∏

m=1

[

2 sinhKλo,1m

]

M2−1
∏

m=1

[

2 sinhKλo,2m

]

det

(

A B
B A

)

]−(D−2)/2

(216)

B.2 Correction to the open string gluon energy

Examination of the open string propagator shows that the gluon state, the lightest spin
one state with energy λo1 above the ground state, contributes via the first order term in the
expansion of

exp

[

T0
qo
1,f · qo

1,fι sinh λ
o
1

sinh(N + 1)λo1

]

∼ 1 + T0q
o
1,f · qo

1,i2 sinhλ
o
1e

−(N+1)λo
1 (217)

So to extract the one loop correction we isolate this term from the two external line prop-
agators in the expression for the one loop correction to the two point function. It is then
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safe to take the J, L → ∞ limit of what multiplies these factors. Then in parallel with our
extraction of the correction to the graviton self-energy, we find

−a∆P−
gluonδkl = 2T0 sinh λ

o
1

∞
∑

K=1

M−1
∑

M1=1

eKλo
1〈qok1,Lqol1,K〉

[

eK
∑

m λo
m/2+(K−1)B0

√
K

M−1
∏

m=1

[2 sinhλom]
1/2

]D−2

[

M1−1
∏

m=1

[

sinhKλo,1m

sinhλo,1m

]−1/2 M2−1
∏

m=1

[

sinhKλo,2m

sinh λo,2m

]−1/2

det−1/2

(

A B
B A

)

]D−2

(218)

where the correlator is given by

〈qokL,1qolK,1〉 =

∫

dqoL,mdq
o
K,mq

ok
L,1q

ol
K,1e

iW ′

∫

dqoL,mdq
o
K,me

iW ′
(219)

Again with the notation

(

A B
B A

)−1

=

(

A′ B′

B′ A′

)

(220)

it follows that

〈qokL,1qolK,1〉 = δkl
B′

11

T0
(221)

C Normal Modes

A string with P+ =MaT0 is described at a fixed time byM coordinates xi or yi, i = 1, . . .M .
In this article we require several normal mode decompositions depending on the boundary
conditions.

Neumann Open String

xi =
1√
M
q0 +

√

2

M

M−1
∑

m=1

qom cos
mπ(i− 1/2)

M
(222)

q0 =

√

1

M

M
∑

i=1

xi, qom =

√

2

M

∑

i

xi cos
mπ(i− 1/2)

M
(223)

Closed String (Neumann)

M odd :
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xi =
1√
M
q0 +

√

2

M

(M−1)/2
∑

m=1

[

qcm cos
2mπ(i− 1/2)

M
+ qsm sin

2mπ(i− 1/2)

M

]

(224)

M even :

xi =
1√
M

(q0 + qsM/2(−)i)

+

√

2

M

M/2−1
∑

m=1

[

qcm cos
2mπ(i− 1/2)

M
+ qsm sin

2mπ(i− 1/2)

M

]

(225)

qcm =

√

2

M

∑

i

xi cos
2mπ(i− 1/2)

M
, qsm =

√

2

M

∑

i

xi sin
2mπ(i− 1/2)

M
(226)

qsM/2 =

√

1

M

M
∑

i=1

(−)ixi, for M even, q0 =

√

1

M

M
∑

i=1

xi (227)

Dirichlet Open String

yk =

√

2

M

M−1
∑

m=1

qDm sin
mπk

M
for k = 1, . . . ,M − 1, yM = qDM (228)

qDm =

√

2

M

M−1
∑

k=1

yk sin
mπk

M
, 0 < m < M, qDM = yM (229)

Closed String (Dirichlet)

M odd :

yi =
1√
M
q0 +

√

2

M

(M−1)/2
∑

m=1

[

qcm cos
2mπi

M
+ qsm sin

2mπi

M

]

(230)

M even :

yi =
1√
M

(q0 + qcM/2(−)i) +

√

2

M

M/2−1
∑

m=1

[

qcm cos
2mπi

M
+ qsm sin

2mπi

M

]

(231)

qcm =

√

2

M

∑

i

yi cos
2mπi

M
, qsm =

√

2

M

∑

i

yi sin
2mπi

M
(232)

q0 =

√

1

M

M
∑

i=1

yi, qcM/2 =

√

1

M

M
∑

i=1

(−)iyi, (for M even) (233)
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D Propagators

D.1 Neumann open string propagator

〈N + 1, xf |0, xi〉open = Dopen(N + 1)eiWopen (234)

where

Dopen(N + 1) =
1√
N + 1

(

T0
2π

)M/2 M−1
∏

m=1

[

sinh(N + 1)λom
sinhλom

]−1/2

(235)

iWopen = −T0
2

[(q0,f − q0,i)
2

N + 1
+

M−1
∑

m=1

sinh λom

(

(q2m,i + q2m,f ) coth(N + 1)λom

−2
qm,iqm,f

sinh(N + 1)λom

)]

(236)

λo0 = 0, λom = 2 sinh−1 sin
mπ

2M
, m = 1, . . . ,M − 1 (237)

Where the qm’s are the normal mode coordinates for the x’s. The right side is the result of
doing the integrations over all the xji with i = 1, . . . ,M and j = 1, . . .N . The propagator
spans N + 1 time steps and this result corresponds to assigning half the potential energy
T0
∑M−1

i=1 (xji+1 − xji )
2/2 to time j = 0 and half to j = N + 1.

D.2 Dirichlet open string propagator

The Dirichlet open string propagator over a time of K = N + 1 steps is evaluated to be

〈qf , N + 1|qi, 0〉D = DD(N + 1)eiW
D

(238)

where

DD(N + 1) =

(

T0
2π

)M/2 M
∏

m=1

[

sinh(N + 1)λDm
sinh λDm

]−1/2

(239)

iWD = −T0
2

M
∑

m=1

(

(qf2Dm + qi2Dm) sinhλ
D
m cothKλDm − 2qfDmq

i
Dm

sinhλDm
sinhKλDm

)

(240)

λDm = λom, m = 1, . . . ,M − 1, λDM = 2 sinh−1

√

κ

2
(241)

We recall that the above expressions give the result of integrating over all the variables yji ,
for j = 1, . . . , N , with half the potential energy assigned to j = 0, N +1, which is consistent
with the closure requirement.
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E Overlap Formulas

Open-2 Open, Neumann

q
(1)
0 =

√

M1

M
q0 +

√

2

MM1

M−1
∑

m′=1

qm′U
(1)
m′0, q(1)m =

2√
MM1

M−1
∑

m′=1

qm′U
(1)
m′m (242)

q
(2)
0 =

√

M2

M
q0 +

√

2

MM2

M−1
∑

m′=1

qm′U
(2)
m′0, q(2)m =

2√
MM2

M−1
∑

m′=1

qm′U
(2)
m′m (243)

U
(1)
m′m =

M1
∑

i=1

cos
m′π

M

(

i− 1

2

)

cos
mπ

M1

(

i− 1

2

)

=
(−)m

2

sin(m′πM1/M) sin(m′π/2M) cos(mπ/2M1)

sin2(m′π/2M)− sin2(mπ/2M1)
(244)

U
(2)
m′m =

M
∑

i=1+M1

cos
m′π

M

(

i− 1

2

)

cos
mπ

M2

(

i−M1 −
1

2

)

= −1

2

sin(m′πM1/M) sin(m′π/2M) cos(mπ/2M2)

sin2(m′π/2M)− sin2(mπ/2M2)
(245)

and we note the identity q
(1)
0

√
M1+q

(2)
0

√
M2 = q0

√
M , as expected from the fact that q0/

√
M

is the center of momentum of the open string.
We can also express the q’s in terms of the q(1), q(2)’s:

q0 = q
(1)
0

√

M1

M
+ q

(2)
0

√

M2

M
(246)

qm′ =

√

2

MM1

(

q
(1)
0 U

(1)
m′0 +

√
2

M1−1
∑

m=1

q(1)m U
(1)
m′m

)

+

√

2

MM2

(

q
(2)
0 U

(2)
m′0 +

√
2

M2−1
∑

m=1

q(2)m U
(2)
m′m

)

(247)

Open-2 Open, Dirichlet

q
(1)
DM1

=

√

2

M

M−1
∑

m′=1

qDm′ sin
m′πM1

M
, q

(1)
Dm =

2√
MM1

M−1
∑

m′=1

qDm′U
D(1)
m′m (248)

q
(2)
DM2

= yM = qDM , q
(2)
Dm =

2√
MM2

M−1
∑

m′=1

qDm′U
D(2)
m′m (249)

U
D(1)
m′m =

M1−1
∑

k=1

sin
m′πk

M
sin

mπk

M1

=
(−)m

4

sin(mπ/M1) sin(m
′πM1/M)

sin2(m′π/2M)− sin2(mπ/2M1)
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U
D(2)
m′m =

M−1
∑

i=1+M1

sin
m′πk

M
sin

mπ(k −M1)

M1

=
(−)m

′

4

sin(mπ/(M −M1)) sin(m
′π(M −M1)/M)

sin2(m′π/2M)− sin2(mπ/2(M −M1))
(250)

3 Zero-momentum Tachyon Vertex

V3 =
1

√

|P+
1 P

+
2 P

+
3 |

∣

∣

∣

∣

P+
1

P+
3

∣

∣

∣

∣

(P+2
1

+P+2
2

+P+
1
P+
2
)/P+

2
P+
3
∣

∣

∣

∣

P+
2

P+
3

∣

∣

∣

∣

(P+2
1

+P+2
2

+P+
1
P+
2
)/P+

1
P+
3

(251)

P+
3 = −P+

1 − P+
2 (252)
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