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We calculate the electron self-energy in a magnetized QED plasma to the leading perturbative
order in the coupling constant and to the linear order in an external magnetic field. We find that
the chiral asymmetry of the normal ground state of the system is characterized by two new Dirac
structures. One of them is the familiar chiral shift previously discussed in the Nambu–Jona-Lasinio
model. The other structure is new. It formally looks like that of the chiral chemical potential, but
is an odd function of the longitudinal component of the momentum, directed along the magnetic
field. The origin of this new parity-even chiral structure is directly connected with the long-range
character of the QED interaction. The form of the Fermi surface in the weak magnetic field is
determined.

PACS numbers: 12.39.Ki, 12.38.Mh, 21.65.Qr

I. INTRODUCTION

The study of chiral asymmetry in the normal state of relativistic matter in a magnetic field is at present a very
active research area in particle physics, with important developments also in condensed matter physics. Although a
chirally asymmetric response of relativistic matter to an external magnetic field was discovered long ago [1, 2], the
recent interest in this subject is connected with the theoretical prediction of the chiral magnetic effect (CME) in
Refs. [3–6] and the subsequent experimental observation of the STAR collaboration of charge separation in heavy ion
collisions [7–11].
The physical and mathematical reasons for the chiral asymmetry in relativistic matter in a magnetic field are quite

transparent (for a recent elegant exposition, see Ref. [12]). In a free theory, the magnetic field B projects the spins
of fermions on the lowest Landau level (LLL) along the direction of the magnetic field. Since fermions can freely
propagate in a magnetic field only along or opposite to the direction of B and the helicity of massless fermions is
the same as their chirality, magnetized relativistic matter responds chirally asymmetrically to magnetic field. This
leads to the appearance of a non-dissipative axial current j5 = eBµ/(2π2) [1, 2]. This effect is known as the chiral
separation effect in the literature (see, e.g., Sec. 2 in Ref. [13]).
It was suggested in Refs. [3, 5] that topological charge changing transitions in QCD during heavy ion collisions may

result in the appearance of metastable domains with P and CP breaking with chirality induced in quark-gluon plasma
by the axial anomaly. Phenomenologically, to mimic the effect of topological charge changing transitions, it was
proposed in [6] to introduce a chiral chemical potential µ5. This chemical potential couples to the difference between
the number of left- and right-handed fermions and enters the Lagrangian density through the term µ5ψ̄γ

0γ5ψ. This
produces a chiral asymmetry and leads to a non-dissipative electric current j = e2Bµ5/(2π

2) in the presence of an
external magnetic field.
First studies of interaction effects on the chiral asymmetry of relativistic matter in a magnetic field were done in

Refs. [14–16] by using Nambu–Jona-Lasinio (NJL) like models with local interaction. In particular, by using the
Schwinger–Dyson (gap) equation, it was found that the interaction unavoidably generates a chiral shift parameter
∆ [14, 15] when the fermion density is nonzero. This parameter enters the low-energy effective Lagrangian density
through the term ∆ψ̄γ3γ5ψ and determines a relative shift of the momenta in the dispersion relations for opposite
chirality fermions k3 → k3±∆, where k3 is the longitudinal component of the momentum, directed along the magnetic
field. Furthermore, as shown in Refs. [14, 15, 17], the chiral shift ∆ is responsible for an additional contribution to
the axial current. (Note, however, that the dynamical generation of the chiral shift cannot and does not modify the
form of the chiral anomaly relation [17].)
The chiral asymmetry for noninteracting fermions exists only in the LLL. On the other hand, the chiral shift

parameter found in Refs. [14, 15] in the NJL model is the same for all Landau levels. This means that the whole
Fermi surfaces of the left- and right-handed fermions are shifted relative to each other by 2∆ in the longitudinal
direction in momentum space. Such an unusual ground state closely resembles that in Weyl semimetals in condensed
matter physics [18, 19], in which quasiparticles are described by the Weyl equation.
We should also mention that the absence of the chiral shift is not protected by any symmetry. The chiral shift

breaks time reversal T and the rotational symmetry SO(3) to the SO(2) symmetry of rotations about the axis set
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by the magnetic field. Since these symmetries are explicitly broken in magnetized relativistic matter, it is natural to
expect that the generation of chiral shift and chiral asymmetry in all Landau levels is not a special property of the
NJL model, but a model-independent phenomenon.
In this connection, it is instructive to discuss the equation for ∆ in the perturbation theory in the NJL model [15].

In the first order in the coupling constant Gint, the value of ∆ is proportional to the axial current in the free theory
[15], ∆ = − 1

2Gint〈j35〉0, which is completely defined by the topological contribution 〈j35〉0 from the LLL [2]. Therefore,
the interaction causes the chiral asymmetry of the LLL to propagate to higher Landau levels including those around
the whole Fermi surface.
It was found in Refs. [14, 15, 17] that the interactions in the NJL model not only induce chiral asymmetry in the

higher Landau levels, but also lead to the dynamical contribution of the higher levels to the axial current. In the
recent paper [20], the leading radiative corrections to the axial current were calculated in dense QED in a magnetic
field. It was found that like in the NJL model, the axial current is not fixed by the chiral anomaly relation and thus
does not coincide with the expression in the free theory, solely provided by the LLL. Instead, it receives nontrivial
radiative corrections produced at all Landau levels. Because of that, it is natural to expect that like in the NJL
model, the chiral asymmetry in QED will be induced by interactions in higher Landau levels too.
This point was the main motivation for the present paper, in which we analyze the chiral asymmetry in the first

order of perturbation theory in the QED coupling α = e2/(4π). The paper is organized as follows. In Sec. II, we
introduce the model and set up the notation. The calculation of the self-energy is presented in Sec. III. Its projection
onto Landau levels is considered in Sec. IV. The self-energy in the weak magnetic field limit is studied in Sec. V. The
modified dispersion relations for the left- and right-handed fermions with the inclusion of the chiral asymmetry are
calculated in Sec. VI. Finally, our discussion of the main results is given in Sec. VII. We use the units with ~ = c = 1.

II. MODEL

The Lagrangian density of QED in an external magnetic field is given by

L = −1

4
FµνFµν + ψ̄

(

iγνDν + µγ0 −m
)

ψ, (1)

where the covariant derivative is Dν = ∂ν − ieAext
ν − ieAν and m is the bare fermion mass. In order to describe a

nonzero density plasma, we introduced the fermion chemical potential µ. Without the loss of generality, we assume
that the external magnetic field B points in the z-direction. The components of the conventional vectors, including
those of the vector potential Aext, are identified with the contravariant components. (Note that the components of
the spatial gradient ∇ are given by ∂k ≡ −∂k.) In the rest of this paper, we use the vector potential in the Landau
gauge, Aext = (0, x1B, 0).
Before proceeding to the main part of the analysis, we should recall that the fermion propagator in the presence of

an external magnetic field is not a translation invariant function. From the physics viewpoint, this reflects the fact
that charged fermions cannot have well defined momenta in the spatial directions perpendicular to the direction of the
magnetic field. In the case of a uniform magnetic field, however, the propagator can be represented as a product of the
Schwinger phase [21], which is the only part that spoils the translational invariance, and a translationally invariant
function, i.e.,

S(x, y) = eiΦ(x,y)S̄(x− y). (2)

In the Landau gauge used here, the Schwinger phase is given by Φ(x, y) = −eB(x1 + y1)(x2 − y2)/2. The Fourier
transform of the translation invariant part of the fermion propagator S̄(x − y) reads [22]

S̄(k) = 2ie−k2
⊥
ℓ2

∞
∑

n=0

(−1)nDn(k)

[k0 + µ+ iǫ sign(k0)]2 − 2n|eB| − (k3)2 −m2
, (3)

where ℓ ≡ 1/
√

|eB| is the magnetic length and

Dn(k) =
[

γ0(k0 + µ)− γ3k3 +m
] [

Ln

(

2k2⊥ℓ
2
)

P+ − Ln−1

(

2k2⊥ℓ
2
)

P−

]

+ 2(γ⊥ · k⊥)L
1
n−1

(

2k2⊥ℓ
2
)

, (4)

where P± = [1 ± i sign(eB)γ1γ2]/2 are spin projectors and L
(α)
n (x) are generalized Laguerre polynomials [23]. (For

the proper-time Schwinger representation of the propagator generalized to the case of finite density, see Appendix A
in Ref. [20].) Note that, despite the appearance, this is not a conventional momentum-space representation of the
fermion propagator. Strictly speaking, after the Schwinger phase is removed, the Fourier transform of S̄(x−y) cannot
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even be interpreted as an actual propagator. The reason is that from the physics viewpoint the transverse components
k⊥ of four-vector k are not good quantum numbers for classifying fermionic states in a magnetic field. To avoid a
potential confusion, therefore, we call k a pseudo-momentum in what follows. It is instructive to mention though
that, in the limit of large pseudo-momentum or weak magnetic field (i.e., k2

⊥ ≫ |eB|), the effects of the Schwinger
phase can be neglected and pseudo-momentum can be interpreted as an approximate (or “quasiclassical”) fermion’s
momentum. We will utilize this fact in our weak field analysis in Sec. VI.
In the analysis below, we will be using the photon propagator in the Feynman gauge. In momentum space, its

explicit form reads

Dµν(q) = −i gµν
q2Λ

≡ −i
(

gµν
q20 − q2 −m2

γ + iǫ
− gµν
q20 − q2 − Λ2 + iǫ

)

, (5)

where, following the same methodology as in Ref. [20], we introduced a nonzero photon mass mγ (since unlike the
radiative corrections calculated in [20] the fermion self-energy is regular in the infrared region, we will set mγ = 0 in
the final results) and an ultraviolet cutoff Λ that will serve as an infrared and ultraviolet regulators, respectively, at
the intermediate stages of calculations.

III. FERMION SELF-ENERGY IN A MAGNETIC FIELD

To leading order in coupling constant α = e2/(4π), the fermion self-energy in QED is given by

Σ(x, y) = −4iπαγµS(x, y)γνDµν(x− y). (6)

Notice that the self-energy Σ(x, y) is not a translation invariant function when the external magnetic field is present.
By making use of the propagator S(x, y) in the Schwinger representation (2), it is convenient to factor out the
Schwinger phase in the self-energy, i.e., Σ(x, y) = exp [iΦ(x, y)] Σ̄(x − y). The Fourier transform (or, equivalently,
pseudo-momentum representation) of the translation invariant function Σ̄(x− y) is given by the following expression:

Σ̄(p) = −4iπα

∫

d4k

(2π)4
γµ S̄(k)γνDµν(k − p) = −4πα

∫

d4k

(2π)4
γµ S̄(k)γµ

1

(k − p)2Λ
, (7)

where S̄(k) is the Fourier transform of the translation invariant part of the fermion propagator, given in Eq. (3),
and Dµν(q) is the photon propagator in momentum space, given in Eq. (5). By taking into account the Dirac
structure of S̄(k) and the identity γµγνγµ = −2γν, it is straightforward to show that the resulting pseudo-momentum
representation of the self-energy (7) has the following Dirac structures:

Σ̄(p) = −γ0δµ(p) + p3γ3 δv3(p) + (γ⊥ · p⊥)δv⊥(p) +M(p)− iγ1γ2µ̃(p)− γ3γ5∆(p)− γ0γ5µ5(p). (8)

The first four Dirac structures in Eq. (8) are standard and are present in the fermion self-energy also when the
magnetic field is absent. The functions δµ(p), δv3(p), and δv⊥(p) define the wave-function renormalization and the
modification of the (longitudinal and transverse) fermion velocities. Note that in the absence of a magnetic field
δv3 = δv⊥. The contribution with the unit matrix M(p) gives a correction to the fermion mass function. As for the
last three terms in the self-energy (8), they are obtained from Eq. (4) by taking the terms with the iγ1γ2 matrix in
the spin projectors P±. Obviously, these Dirac structures are present only if there is a magnetic field. The terms with
µ̃(p) and ∆(p) are the anomalous magnetic moment and chiral shift, respectively. They are generated [14, 15] in the
NJL model too, where they are constants. Here, due to the long-range character of the QED interaction, however,
these functions generally depend on the pseudo-momentum.
The last term in the self-energy (8) presents a qualitatively new type of contribution in QED. As we show below, it

has the form µ5(p) ≡ p3f(p), where f(p) is a dimensionless function. This new contribution comes as a result of the
long-range QED interaction and, thus, has no analog in the NJL model. If µ5(p) were a constant and did not depend
on pseudo-momentum, it would be identical with the chiral chemical potential µ5 [6, 24], and would, therefore, break
parity. Considering that neither the external magnetic field, nor the electromagnetic interaction breaks parity, the
genuine chiral chemical potential cannot be generated in perturbation theory. Instead, we find that the function µ5(p)
in the self-energy (8) is an odd function of p3-component of momentum and, therefore, is even under parity.
Combining Eqs. (7) and (8), one can determine the coefficient functions δµ(p), δv3(p), etc. of the translation

invariant part of the fermion self-energy in pseudo-momentum space. However, as we mentioned above, the transverse
components k⊥ of four-vector k are not good quantum numbers for fermions in a magnetic field. Therefore, although
the pseudo-momentum representation in Eq. (8) will be extremely useful in the limit of weak magnetic field and we
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will use it to analyze the chiral asymmetry of QED matter in Sec. VI, it is still highly desirable to obtain the self-
energy in the much more natural Landau level representation, in which all dynamical functions of the self-energy are
projected onto specific Landau levels. Clearly, the dynamical functions projected onto specific Landau levels provide a
direct physical interpretation and are essential for determining the interaction induced modifications of the dispersion
relations of quasiparticles in each individual Landau level n. In the next Section, we show how such a projection
is realized and provide explicit formulas expressing the dynamical functions δµn, δv3,n, etc. projected onto specific
Landau levels through the self-energy (7).

IV. PROJECTION ONTO LANDAU LEVELS

One of the standard approaches to treat quantum field theory of charged particles in an external magnetic field
makes use of the Ritus eigenfunctions [25, 26]. In this study, however, we advocate a different approach that was
recently developed in Ref. [27] in a study of graphene in a magnetic field. From the technical viewpoint, the key
difference between the two methods lies in the use of the complete sets of eigenfunctions of different operators. In
the Ritus method, one uses the eigenfunctions of the operator (π · γ) with a non-trivial Dirac structure and, thus,
treats both the orbital and spinor parts of the fermion kinematics in a uniform fashion. In the method of Ref. [27],
on the other hand, the eigenfunctions of the scalar operator π2 are used. This operator includes only the orbital part
of the kinematics and, thus, requires to treat the spin part separately. The seeming inconvenience of dealing with
the spinor part separately in the second method, in fact, appears to offer many advantages, ranging from a much
more transparent interpretation of various Dirac structures in the propagator/self-energy to significant technical
simplifications in calculations.
In the rest of this section, we give a detailed derivation of the expansion of the fermion self-energy over Landau

levels. We will start by writing down the self-energy with all the Dirac structures in Eq. (8) in the coordinate space
(Clearly, the Fourier transform of the self-energy in the pseudo-momentum representation and its multiplication by
the Schwinger phase does not change the Dirac structure of the self-energy.) Thus, we have

Σ(x, y) =
[

−γ0δµ+ π3γ3δv3 + (π⊥ · γ⊥)δv⊥ +M− iγ1γ2µ̃− γ3γ5∆− γ0γ5µ5

]

δ4(x− y), (9)

where π⊥ is the canonical transverse momentum operator, which includes the vector potential. Here, δµ, δv3, δv⊥,
M, µ̃, ∆, and µ5, are functions of the operators −i∂0 and π3, as well as the operator (π⊥ · γ⊥)

2ℓ2.
The eigenvalues of the operator π2

⊥ℓ
2 are positive odd integers, 2N+1, where N = 0, 1, 2, . . . is the orbital quantum

number [28]. The corresponding eigenfunctions ψNp(r⊥) are well known and have the following explicit form:

ψNp(r⊥) =
1√
2πℓ

1
√

2NN !
√
π
HN

(x

ℓ
+ pℓ

)

e−
1

2ℓ2
(x+pℓ2)2eipy sign(eB), (10)

where Hn(x) are Hermite polynomials [23]. By making use of the completeness of these eigenfunctions

δ2(r⊥ − r′⊥) =
∞
∑

N=0

∫ +∞

−∞

dp ψNp(r⊥)ψ
∗
Np(r

′
⊥), (11)

one can rewrite the self-energy (9) in the form

Σ(x, y) =

∞
∑

N=0

∑

s=±

∫

dp0dp
3dp

(2π)2
e−ip0(x0−y0)+ip3(x3−y3)

×
[

−γ0δµ+ p3γ3δv3 + (π⊥ · γ⊥)δv⊥ +M− iγ1γ2µ̃− γ3γ5∆− γ0γ5µ5

]

Ps ψNp(r⊥)ψ
∗
Np(r

′
⊥), (12)

where δµ, δv3, . . ., µ5 are now functions of p0, p
3, and the operator (π⊥ ·γ⊥)

2ℓ2. In Eq. (12), we also inserted the unit
matrix in the form of the sum of spin projectors, i.e., 1 =

∑

s=± Ps. It is easy to see that any function of (π⊥ ·γ⊥)
2ℓ2

acting on Ps ψNp reduces to a constant in the n-th Landau level. This is a consequence of the following identity:

(π⊥ · γ⊥)
2ℓ2Ps ψNp = −(π2

⊥ + ieBγ1γ2)ℓ2 Ps ψNp = −2nPsψNp, (13)

where n ≡ N +(1+ s)/2 is the standard Landau level quantum number. This allows us to rewrite Eq. (12) as follows:

Σ(x, y) =

∞
∑

N=0

∑

s=±

∫

dp0dp
3dp

(2π)2
e−ip0(x0−y0)+ip3(x3−y3)

[

− γ0δµn + p3γ3δv3,n + (π⊥ · γ⊥)δv⊥,n +Mn

−iγ1γ2µ̃n − γ3γ5∆n − γ0γ5µ5,n

]

Ps ψNp(r⊥)ψ
∗
Np(r

′
⊥), (14)
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where the coefficient functions δµn, δv3,n, etc. depend on energy p0 and longitudinal momentum p3. Now, by taking
into account the relation,

(π⊥ · γ⊥)ℓ ψNp(r⊥) = iγ1
[

√

2(N + 1)P+ψN+1,p(r⊥)−
√
2NP−ψN−1,p(r⊥)

]

, (15)

and using formula 7.377 from Ref. [23],

∞
∫

−∞

e−x2

Hm(x+ y)Hn(x+ z)dx = 2nπ1/2m!zn−mLn−m
m (−2yz), (16)

we can perform the integration over p in Eq. (14). As expected, the result takes the form of a product of the Schwinger
phase and a translationally invariant function, i.e.,

Σ(x, y) = eiΦ(x,y)Σ̄(x− y), (17)

where the latter is given by

Σ̄(x) =
e−ξ/2

2πℓ2

∞
∑

n=0

∫

dp0dp
3

(2π)2
e−ip0x0+ip3x3

{

(

−γ0δµn + p3γ3δv3,n − iγ1γ2µ̃n − γ3γ5∆n − γ0γ5µ5,n +Mn

)

× [Ln(ξ)P− + Ln−1(ξ)P+]−
i

ℓ2
(r⊥ · γ⊥)δv⊥,nL

1
n−1(ξ)

}

, (18)

and ξ = r2⊥/(2ℓ
2). Here L−1(ξ) = 0 by definition. Performing the Fourier transform, we finally find the sought

expansion of the fermion self-energy over the Landau levels,

Σ̄(p) = 2e−p2
⊥
ℓ2

∞
∑

n=0

(−1)n
{

(

−γ0δµn + p3γ3δv3,n − iγ1γ2µ̃n − γ3γ5∆n − γ0γ5µ5,n +Mn

)

×
[

Ln(2p
2
⊥ℓ

2)P− − Ln−1(2p
2
⊥ℓ

2)P+

]

− 2(γ⊥ · p⊥)δv⊥,nL
1
n−1(2p

2
⊥ℓ

2)
}

. (19)

In what follows, we will drop the δv⊥-type corrections to the self-energy. For the purposes of this study, this
is justified because such terms neither break the chiral symmetry, nor modify the chiral asymmetry of the ground
state. On the other hand, it is necessary to keep the terms with δµ(p) and δv3(p). The reason for this becomes
obvious after noticing that, when restricted to the subspaces of fixed spin projections, δµ(p) and δv3(p) mix up
with ∆(p) and µ5(p), respectively. The argument can be made explicit by making use of the following identities:
γ0P± = ±sign(eB)γ3γ5P± and γ3P± = ±sign(eB)γ0γ5P±. Note that a similar argument also necessitates the
inclusion of the anomalous magnetic moment function µ̃(p) whenever the mass function M(p) is present.

Eq. (19) defines the expansion of the fermion self-energy over Landau levels. On the other hand, in the leading order
of perturbation theory, the self-energy is given by Eq. (7). Combining these equations, it is not difficult to express the
dynamical functions δµn, δv3,n, etc., projected onto specific Landau levels, through the self-energy (7). Multiplying

these two equivalent expressions for the fermion self-energy by ℓ2π−1(−1)n
′

e−p2
⊥
ℓ2Ln′(2p2⊥ℓ

2)P± and integrating over
the perpendicular momentum p⊥, we arrive at the following set of equations:

[

−γ0δµn + p3γ3δv3,n +Mn + sign(eB)
(

µ̃n + γ0∆n + γ3µ5,n

)]

P− = InP− , (20)
[

−γ0δµn + p3γ3δv3,n +Mn − sign(eB)
(

µ̃n + γ0∆n + γ3µ5,n

)]

P+ = In−1P+ , (21)

where

In = −4i(−1)nαℓ2
∫

d2k‖d
2k⊥d

2p⊥

(2π)4
e−p2

⊥
ℓ2 Ln(2p

2
⊥ℓ

2) γµ S̄(k)γνDµν(p− k). (22)

When the free fermion propagator in Eq. (22) is replaced by the full propagator, which itself is a function of δµn,
δv3,n, etc., the above set of equations will become an infinite set of the Schwinger-Dyson equations for the dynamical
functions.



6

From Eqs. (20) and (21), we obtain the following relations which express the dynamical functions projected onto
specific Landau levels through the self-energy (7):

δµn = −1

4
Tr
[

γ0 (InP− + In−1P+)
]

, (23)

∆n =
sign(eB)

4
Tr
[

γ0 (InP− − In−1P+)
]

, (24)

Mn =
1

4
Tr (InP− + In−1P+) , (25)

µ̃n =
sign(eB)

4
Tr (InP− − In−1P+) , (26)

p3δv3,n = −1

4
Tr
[

γ3 (InP− + In−1P+)
]

, (27)

µ5,n = − sign(eB)

4
Tr
[

γ3 (InP− − In−1P+)
]

. (28)

The special role of LLL (n = 0) should be noted here. By taking into account that I−1 = 0, we find the following
relations between the pairs of parameters: ∆0 = −sign(eB)δµ0, µ̃0 = sign(eB)M0, and µ5,0 = sign(eB)p3δv3,0, i.e.,
only half of them remain independent in LLL. From the physics viewpoint, this reflects the spin-polarized nature of
the lowest energy level.

The dynamical functions ∆n and µ5,n for n ≥ 1 define chiral asymmetry in higher Landau levels. Therefore, these
functions are of the most interest for us in the present paper. In terms of the self-energy (7), we can represent In in
Eq. (22) as follows:

In = (−1)n
ℓ2

π

∫

d2p⊥e
−p2

⊥
ℓ2 Ln(2p

2
⊥ℓ

2) Σ̄(p). (29)

Using it, we may rewrite Eqs. (24) and (28) in the following perhaps more transparent form:

∆n =
(−1)n

8

ℓ2

π
sign(eB)

∫

d2p⊥e
−p2

⊥
ℓ2
[

Ln(2p
2
⊥ℓ

2) + Ln−1(2p
2
⊥ℓ

2)
]

Tr
[

γ0Σ̄(p)
]

− (−1)n

8

ℓ2

π

∫

d2p⊥e
−p2

⊥
ℓ2
[

Ln(2p
2
⊥ℓ

2)− Ln−1(2p
2
⊥ℓ

2)
]

Tr
[

γ3γ5Σ̄(p)
]

, (30)

µ5,n = − (−1)n

8

ℓ2

π
sign(eB)

∫

d2p⊥e
−p2

⊥
ℓ2
[

Ln(2p
2
⊥ℓ

2) + Ln−1(2p
2
⊥ℓ

2)
]

Tr
[

γ3Σ̄(p)
]

+
(−1)n

8

ℓ2

π

∫

d2p⊥e
−p2

⊥
ℓ2
[

Ln(2p
2
⊥ℓ

2)− Ln−1(2p
2
⊥ℓ

2)
]

Tr
[

γ0γ5Σ̄(p)
]

, (31)

where Σ̄(p) is given by Eq. (7). These expressions will in principle allow us to determine the chiral asymmetry for
fermions in higher Landau levels. In the general case, however, the calculation of these parameters can only be done
with the help of numerical methods. In fact, we should mention that our initial attempts at such calculations suggest
that, despite several technical complications (e.g., highly oscillatory integrand, as well as the need to numerically
regularize the integral and then perform the renormalization), the problem can possibly be solved with moderate
computational resources. That, however, is beyond the scope of the present paper.

In the rest of this study, we will concentrate on the weak magnetic field limit. In addition to providing some sim-
plifications in the analysis, the corresponding approximation is in fact sufficient for practically all stellar applications.
Indeed, taking into account that

|eB|
µ2

≃ 6× 10−4

(

B

1015 G

)(

100 MeV

µ

)2

, (32)

we conclude that the magnetic fields can be treated as weak even in the case of magnetars.
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V. WEAK MAGNETIC FIELD LIMIT

Since the photon propagator (5) does not depend on the magnetic field, to find the self-energy (7) in a weak magnetic
field we should determine the translation invariant part of the free fermion propagator S̄(k) in a weak magnetic field.
To leading order in B, it reads [20]

S̄(k) = S̄(0)(k) + S̄(1)(k) + · · · , (33)

where S̄(0) is the free electron propagator in the absence of magnetic field and S̄(1) is the linear in magnetic field part.
They are

S̄(0)(k) = i
(k0 + µ)γ0 − k · γ +m

(k0 + µ)2 − k2 −m2
, (34)

S̄(1)(k) = −eB (k0 + µ)γ0 − k3γ3 +m

[(k0 + µ)2 − k2 −m2]
2 γ

1γ2. (35)

We find more convenient in this section instead S̄(1)(k) given by Eq. (35) use the following equivalent representation
[20]:

S̄(1)(k) = eB

{

∫ ∞

0

sds eis[(k0+µ)2−m2−k2+iǫ] + 2iπθ(|µ| − |k0|)θ(−k0µ)δ′
[

(k0 + µ)2 −m2 − k2
]

}

×
[

(k0 + µ)γ0 − k3γ3 +m
]

γ1γ2, (36)

where S̄(1)(k) splits naturally into the “vacuum” and “matter” parts, with the latter containing the δ-function. [Note
that the vacuum part is not precisely reflecting the nature of the first contribution, because it depends on the chemical
potential.] It is convenient to treat the two pieces separately in the calculation of the self energy.
To linear order in magnetic field, the vacuum part of the self-energy is given by

Σ̄(1)
vac(p) = 8iπαeB

∫ ∞

0

dτ

∫ ∞

0

sds

∫

d4k

(2π)4
eis[(k0+µ)2−m2−k2]+iτ [(p0−k0)

2−(p−k)2] [(k0 + µ)γ0 − k3γ3
]

γ1γ2

= −αeB
2π

[

(p0 + µ)γ0 − p3γ3
]

γ1γ2
∫ ∞

0

∫ ∞

0

sτdsdτ

(s+ τ)3
e−ism2+i sτ

s+τ [(p0+µ)2−p2]

= −αeB
2π

iγ1γ2
(p0 + µ)γ0 − p3γ3

(p0 + µ)2 − p2

[

1 +
m2

(p0 + µ)2 − p2

(

ln
|m2 + p2 − (p0 + µ)2|

m2
− iπθ[...]

)]

, (37)

where the imaginary part is nonzero when (p0+µ)2−p2 > m2. Note that this expression simplifies a lot in the chiral
limit.
To the same linear order in magnetic field, the matter part of the self-energy is given by

Σ̄
(1)
mat(p) = −αeB

π2
iγ1γ2

∫

d4k
(k0 + µ)γ0 − k3γ3

(p0 − k0)2 − (p− k)2
θ(|µ| − |k0|)θ(−k0µ)δ′

[

(k0 + µ)2 −m2 − k2
]

. (38)

We would like to emphasize that Eqs. (37) and (38) imply that only the chiral asymmetric structures ∆ and µ5 are
generated in the fermion self-energy in the linear in B approximation. Therefore, we have the following contributions
to the chiral shift and chiral chemical potential terms in Eq. (8):

∆vac(p) = − iα(p0 + µ)eB

2π [(p0 + µ)2 − p2]2

[

(p0 + µ)2 − p2 +m2 ln
|m2 + p2 − (p0 + µ)2|

m2
− iπ m2 θ

[

(p0 + µ)2 − p2 −m2
]

]

,(39)

µvac
5 (p) = −p3∆vac/(p0 + µ), (40)

∆mat(p) = − αeB

4π|p| ln
p20 − (|p| −

√

µ2 −m2)2

p20 − (|p|+
√

µ2 −m2)2
+

αeB
√

µ2 −m2

2π[p2 − (p0 + µ)2]
+

αeBm2(p0 + µ)

2π [(p0 + µ)2 − p2]
2 ln

µ−
√

µ2 −m2

µ+
√

µ2 −m2

+
αeB

8π|p|

(

(p0 + µ+ |p|)2 −m2

(p0 + µ+ |p|)2 ln
p0 + |p| −

√

µ2 −m2

p0 + |p|+
√

µ2 −m2
− (p0 + µ− |p|)2 −m2

(p0 + µ− |p|)2 ln
p0 − |p| −

√

µ2 −m2

p0 − |p|+
√

µ2 −m2

)

,(41)
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µmat
5 (p) = −αeBp

3

2πp2

[

(p0 + µ)
√

µ2 −m2

p2 − (p0 + µ)2
+
µ2 + p0(p0 + µ)− p2 +m2

2pµ
ln
p20 − (|p| −

√

µ2 −m2)2

p20 − (|p|+
√

µ2 −m2)2

+
3(p0 + µ)(p0 + µ+ |p|)2 +m2(p0 + µ+ 2|p|)

4|p|(p0 + µ+ |p|)2 ln
p0 + |p| −

√

µ2 −m2

p0 + |p|+
√

µ2 −m2

− 3(p0 + µ)(p0 + µ− |p|)2 +m2(p0 + µ− 2|p|)
4|p|(p0 + µ− |p|)2 ln

p0 − |p| −
√

µ2 −m2

p0 − |p|+
√

µ2 −m2

]

. (42)

Eq. (42) shows that, as mentioned above, µ5(p) is indeed an odd function of p3 and, therefore, it does not break
parity.
It is useful to consider some particular limits of the obtained expressions. The first interesting case corresponds to

the behavior of the chiral shift and chiral chemical potential on the Fermi surface, i.e., for p0 → 0 and |p| → pF ≡
√

µ2 −m2. We have

∆ = ∆mat +∆vac ≃
αeBµ

πm2

(

ln
m2

2µ (|p| − pF )
− 1

)

, (43)

µ5 = µmat
5 + µvac

5 ≃ −αeBµ cos θ
πm2

(

ln
m2

2µ (|p| − pF )
− 1

)

, (44)

where cos θ = p3/p, i.e., θ is the angle between the magnetic field and momentum. Further, Eqs. (40) and (42) simplify
strongly in the chiral limit, where for µ > 0,

Σ̄(1)(p) ≃ −αeB
2π

γ3γ5
[

p0 + 2µ

(p0 + µ)2 − p2
− 1

4|p| ln
p20 − (|p|+ µ)2

p20 − (|p| − µ)2

]

+
αeB

2π
γ0γ5

p3

p2

[

µ(p0 + µ) + p2

(p0 + µ)2 − p2
+
µ− p0
4|p| ln

p20 − (|p| − µ)2

p20 − (|p|+ µ)2

]

. (45)

VI. CHIRAL ASYMMETRY

The dispersion relations for fermion quasiparticles in a weak magnetic field can be formally obtained by considering
the location of the poles of the fermion propagator. As we discussed in Sec. II, in the limit of large pseudo-momentum
or weak magnetic field (i.e., k2

⊥ ≫ |eB|), the effects of the Schwinger phase can be neglected and pseudo-momentum
can be interpreted as an approximate (or “quasiclassical”) fermion’s momentum. Then the poles of the fermion
propagator are defined by the following equation:

det
[

iS̄−1(p)− Σ(p)
]

= 0. (46)

To determine the dispersion relations from Eq. (46), we should define the inverse free propagator in the pseudo-
momentum representation. It is not difficult to do following the procedure given in Sec. IV. The inverse free propagator
in the coordinate space is defined as follows:

iS−1(x, y) =
(

iγνDν + µγ0 −m
)

δ4(x− y). (47)

By making use of Eq. (11), one can rewrite the inverse free propagator (47) in the form

iS−1(x, y) =

∞
∑

N=0

∫

dp0dp
3dp e−ip0(x0−y0)+ip3(x3−y3)

(2π)2
[

(p0 + µ)γ0 − p3γ3 − (π⊥ · γ⊥)−m
]

ψNp(r⊥)ψ
∗
Np(r

′
⊥). (48)

After taking into account the identity in Eq. (15) and the table integral in Eq. (16), we can easily perform the
integration over the quantum number p. Just like in the case of the self-energy, the result takes the form of a product
of the standard Schwinger phase and a translationally invariant function, i.e.,

iS−1(x, y) = eiΦ(x,y)iS̄−1(x − y). (49)

The translationally invariant function is given by

iS̄−1(x) =
e−ξ/2

2πℓ2

∞
∑

n=0

∫

dp0dp
3

(2π)2
e−ip0x0+ip3x3

{

[

(p0 + µ)γ0 − p3γ3 −m
]

[Ln(ξ)P− + Ln−1(ξ)P+]

+
i

ℓ2
(r⊥ · γ⊥)L

1
n−1(ξ)

}

, (50)
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where ξ = r2⊥/(2ℓ
2). By performing the Fourier transform, we finally arrive at the following expansion of the

translation invariant part of the inverse free propagator over Landau levels [compare with the corresponding expansion
of the self-energy in Eq. (19)]:

iS̄−1(p) = 2e−p2
⊥
ℓ2

∞
∑

n=0

(−1)n
{

[

(p0 + µ)γ0 − p3γ3 −m
] [

P−Ln(2p
2
⊥ℓ

2)− P+Ln−1(2p
2
⊥ℓ

2)
]

+2(γ⊥ ·p⊥)L
1
n−1(2p

2
⊥ℓ

2)
}

.

(51)
Interestingly, by performing in this expression the summation over Landau levels using the following well-known
formula [23]:

∞
∑

n=0

znLα
n(x) =

1

(1− z)1+α
exp

(

xz

z − 1

)

, (52)

we obtain

iS̄−1(p) = (p0 + µ)γ0 − (γ⊥ · p⊥)− p3γ3 −m. (53)

This is a remarkable result because it means that the translation invariant part of the inverse free propagator in a
magnetic field is identical to the inverse free propagator in the absence of a magnetic field. Therefore, for the inverse
free propagator, only the Schwinger phase contains information about the presence of a magnetic field.
For the free propagator in the weak field limit, the dependence on the Landau level index [which is the eigenvalue

of the operator − 1
2 (π⊥ · γ⊥)

2ℓ2] can be unambiguously replaced by the square of the transverse momentum, i.e.,

2n|eB| → p2
⊥. Therefore, when using the pseudo-momentum representation in Eq. (46), we can interpret p2

⊥ as a
convenient shorthand substitution for 2n|eB|. Indeed, this is natural in the weak field limit, when the quantization

of Landau levels is largely irrelevant. This implies the standard dispersion relation p0 = −µ ±
√

p2
⊥ + p23 +m2, or

equivalently p0 = −µ±
√

2n|eB|+ p23 +m2 after the substitution p2
⊥ → 2n|eB|.

By making use of the chiral representation of the Dirac γ-matrices, the inverse free propagator (53), and the
self-energy in the weak magnetic field limit, Eq. (46) can be rewritten in the following equivalent form:

det

(

p0 + µ− (σ⊥ · p⊥) + (∆− p3)σ3 + µ5 m
m p0 + µ+ (σ⊥ · p⊥) + (∆ + p3)σ3 − µ5

)

= 0, (54)

where σ are Pauli matrices. Calculating the determinant, we obtain

[

(p0 + µ− µ5)
2 − p2

⊥ − (p3 +∆)2
] [

(p0 + µ+ µ5)
2 − p2

⊥ − (p3 −∆)2
]

−2m2
[

(p0 + µ)2 +∆2 − p2
⊥ − p23 − µ2

5

]

+m4 = 0.
(55)

This expression can be factorized to produce two equations for predominantly left-handed and predominantly right-
handed particles:

[

(p0 + µ)2 − p2
⊥ − p23 −m2 −∆2 + µ2

5 − 2
√

(p3∆+ µ5(p0 + µ))2 +m2(∆2 − µ2
5)

]

= 0, (56)

[

(p0 + µ)2 − p2
⊥ − p23 −m2 −∆2 + µ2

5 + 2
√

(p3∆+ µ5(p0 + µ))2 +m2(∆2 − µ2
5)

]

= 0. (57)

By making use of the analytical results for the self-energy obtained in the previous section, see Eqs. (39) – (42) and
the dispersion relations that follow from Eqs. (56) and (57), we can easily write down the equations for the Fermi
surfaces of both types of particles. Namely, we take p0 = 0 and solve for p3 as a function of p⊥. The results are shown
in the left panel of Fig. 1 in the case of the physical value of the fine structure constant (α = 1/137) and the magnetic
field |eB| = 0.1µ2. In order to clearly demonstrate the magnitude of the effect, in the right panel of Fig. 1 we also
plot the difference between the longitudinal momenta with and without the inclusion of the interaction induced chiral
asymmetry.
As the results in Fig. 1 demonstrate, the Fermi surface of the predominantly left-handed particles is slightly shifted

in the direction of the magnetic field, while the Fermi surface of the predominantly right-handed particles is slightly
shifted in the direction opposite of the magnetic field. This is in qualitative agreement with the finding in the NJL
model [15]. In the case of QED with its long-range interaction, however, the chiral asymmetry of the Fermi surfaces
comes not only from the ∆ function, but also from the new function µ5(p) ≡ p3f(p). Also, unlike in the NJL
model, both of these functions have a non-trivial dependence on the particles’ momenta. In particular, they reveal a
logarithmic enhancement of the asymmetry near the Fermi surface.
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FIG. 1. Asymmetry of the Fermi surface for predominantly left-handed and right-handed particles for |eB| = 0.1µ2 and
α = 1/137.

VII. DISCUSSION AND CONCLUSION

Studying the fermion self-energy in dense QED in a magnetic field, we confirm, as suggested by the corresponding
studies in the NJL model [14, 15], that nonzero radiative corrections to the axial current found in Ref. [20] are
connected with the presence of chiral asymmetry in higher Landau levels induced by interaction. Our result for the
fermion self-energy, obtained perturbatively in the coupling constant and in linear order in the external magnetic
field, reveals the presence of two chirally asymmetric structures. One of them is the chiral shift function, analogous
to the one previously obtained in the NJL model. The other one is a new structure that resembles the chiral chemical
potential. However, unlike the chiral chemical potential, it preserves parity because it is an odd function of the
momentum directed along the magnetic field. Note that this dependence on momentum is dictated by the parity
symmetry. Since QED in a magnetic field is invariant under parity and the self-energy is obtained in a perturbation
theory, parity cannot be broken. The term µ5ψ̄γ

0γ5ψ is not parity invariant unless µ5 is an odd function of momentum
π3 = −i∂3. The same argument also ensures that there is no electric current along the direction of the magnetic field,
which would be present due to the chiral magnetic effect if one had µ5 = const.
The current study of the chiral asymmetry in the ground state of a cold dense QED plasma is in qualitative

agreement with the earlier study of the asymmetry in the NJL model [14, 15]. In particular, the Fermi surfaces
of the left- and right-handed fermions are shifted relative to each other in momentum space in the direction of the
magnetic field. The value of the shift appears to be rather large and, thus, may have important phenomenological
implications. For example, a relativistic matter in stars, in which the chiral shift parameter is nonvanishing, will
cause neutrinos to scatter off asymmetrically. As proposed in Refs. [14, 15], this can provide a new mechanism for
the pulsar kicks. Indeed, when the trapped neutrinos in a protoneutron star experience multiple elastic scattering on
the chirally asymmetric state, they build up an anisotropic momentum distribution and, thus, provide a kick after
leaving the star.
As should be clear from the physical meaning of the results obtained in this study, the chiral asymmetry in the

ground state of the cold dense QED plasma is the main source of the radiative corrections to the axial current density
calculated in Ref. [20]. Indeed, as the direct calculations show, the corresponding corrections originate from the
perturbative self-energy contribution in the expansion of the fermion propagator. This observation is also consistent
with the fact that the result for the axial current is particularly sensitive to the fermion states in the vicinity of the
Fermi surface, i.e., the region of the phase space where the chiral asymmetry is most important.
In the future, it will be interesting to generalize the current study to the case of strong magnetic fields utilizing

the expansion over Landau levels and using numerical methods in calculations. In addition, the role of the photon
screening effects should be understood in detail. It will be also interesting to clarify the connection between the chiral
shift in relativistic systems in a magnetic field and a class of condensed matter systems with Weyl quasiparticles,
which reveal similar properties even in the absence of external fields [18, 19].
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