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In dipole-dipole scattering at large rapidity χ = ln(s/s0), the induced instanton on the string
world-sheet carries entropy Sk = 2(αPk − 1)χ with αPk − 1 the pomeron intercept for a dipole
source of N-ality k. We argue that this entropy is released promptly over a time tR ≈ (b⊥/χ)3/(4α′)
with α′/2 the pomeron slope and b⊥ the impact parameter. This stringy entropy may explain the
3/2 jump in the total charged multiplicities at about 10 participants reported over a wide range
of collider energies by PHOBOS. We predict the charged multiplicities in pp, pA and central AA
collisions at LHC.

I. 1. INTRODUCTION

The issue of how entropy is released in hadron-hadron
and nucleus-nucleus collisions is a fundamental problem
in the current heavy-ion program at collider energies.
How coherence, which is a hallmark of a fundamental
collision, turns to incoherence, which is at the origin of
the concept of entropy, is a theoretical question of central
importance. A possible understanding for the entropy
deposition was attempted at weak coupling through the
concept of the color glass approach in classical but per-
turbative QCD [1–3] and at strong coupling through the
concept of black hole formation in holographic QCD [4–
8].

The evidence of a strongly coupled plasma released at
collider energies, with large and prompt entropy deposi-
tion and flow, suggest that a strong coupling approach is
needed for the mechanism of entropy decomposition. In
this way, the holographic approach with the release of a
black hole falling along the holographic direction provides
a plausible mechanism for entropy production. However,
this mechanism is detached from our understanding of
fundamental pp collisions, which are after all the seeds
at the origin of the entropy production. This note is an
attempt to provide such an understanding.

pp collisions at large rapidity are dominated by
pomeron and reggeon exchange [9, 10]. In the kine-
matic region

√
s ≫

√
t, pomeron exchange dominates

the eikonalized scattering amplitude, which is modelled
though gluon ladders at weak coupling [11]. At large Nc

and strong coupling, the pomeron exchange has a sim-
ple holographic realization as non-critical closed string
exchange in the t-channel in D = 5 [12]. For early ap-
proaches see [13, 14]. For a description of the pomeron
as a closed string exchange in critical D = 10 dimensions
using the Virasoro-Shapiro string amplitude see [15].

At large rapidity χ, this string exchange is character-
ized by an effective Unruh temperature, which is set by
the impact parameter and the collision energy. This tem-
perature emerges from a longitudinal acceleration of the
string caused by a global and longitudinal ’electric field’
on the string world-sheet. This global electric field en-
codes twisted boundary conditions, and gives rise to a
stringy instanton as the pomeron in dipole-dipole scat-
tering at large rapidity. Below we suggest that the Unruh

temperature causes the string to partially vibrate and
thus carry entropy. The idea of relating the Hawking-
Unruh radiation of a black hole to radiative processes in
a color confining theory such as QCD was explored in
[16] using different arguments.
In section 2 and 3, we recall the holographic dipole-

dipole scattering formulation through bosonic string ex-
change [12] and the close connection to Gribov diffusion
in curved space [17]. In section 4, we revisit the argu-
ments for the emergence of a stringy instanton presented
in dipole-dipole scattering. We then review the connec-
tion between the Schwinger pair-production formalism
and the Unruh effect in section 5 to obtain the entropy re-
leased in the collision in section 6. We derive the entropy
associated to the stringy instanton and tie it with the
wee-dipole multiplicity characteristic of the 1-pomeron
exchange. We further estimate the time it takes for this
entropy to be deposited in section 7. In section 8 and
9 we suggest that this stringy entropy is at work in pp,
pA and AA collisions at collider energies and show that
it can account for a key jump in the total charged multi-
plicities versus the number of participants as reported by
the PHOBOS collaboration. The obtained charged mul-
tiplicities are compared to the pp and AuAu data. We
predict the multiplicities for pPb and PbPb at the LHC.
Our conclusions follow in section 10.

II. 2. HOLOGRAPHIC DIPOLE-DIPOLE

SCATTERING

To make our discussion self-contained, we briefly re-
view the basic formulation for the elastic dipole-dipole
scattering amplitude through a Wilson loop correlator
[18–21] and its holographic translation [12]. Each dipole
is described by a Wilson loop and we seek to express the
scattering amplitude in terms of the two loop correlator.
The kinematics is captured by a fixed impact parameter
b⊥, conjugate to the transferred momentum q⊥, and the
rapidity interval χ related to the collisional energy. At
high energies, the T-matrix factorizes [19, 22, 23]

T12→34(s, t) = 2is

∫

du1du2 ψ4(u1)ψ3(u1)

TDD(χ,b⊥, u1, u2) ψ2(u2)ψ1(u2) , (1)
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where ui is related to the transverse size of the dipole
element described by the wave function ψi. The dipole-
dipole scattering amplitude is given by

TDD(χ,b⊥, u1, u2) =

∫

dD⊥b eiq⊥·b⊥

(1− 〈W(C1)W(C2)〉G)

≡
∫

dD⊥b⊥ eiq⊥·b⊥ WW , (2)

where the integration is taken over the D⊥ dimensional
impact parameter space separating the two diples. We
will use the normalization 〈W〉 = 1 and focus only on
the connected part of the correlator. The subscript
G in (2) indicates that the expectation value of the
Wilson loop correlator is taken over gauge fields. This
implies that the gluonic flux tube does not brake by
dynamic quark-, antiquark pair-production. At high
energies pomerons (correlated gluon ladders) dominate
over reggeons (correlated quark-anti-quark exchange).
The Wilson loops are evaluated along the surfaces
C1, C2 pictured in Fig. 1. Note that in the eikonal
approximation, the ultrarelativistic dipole is a scalar
since it nearly moves on the light cone. In (2) we have
suppressed a dependence on the individual momenta
of the dipole constituents and assumed that the total
momentum of each dipole is equally distributed between
its constituents. The effective size of the dipole is at a
maximum when the momentum is unequally distributed
and, hence, we are restricting our analysis to small
dipoles.

Early calculations of the Wilson loop correlator in
a static setup are found in [24–26]. The correlator
between two circular loops is stable when the distance
separating the loops is of the order of the radius of the
individual loops. A Gross-Ooguri phase transition [25]
occurs when this distance is much larger than the radius;
in order to elongate the surface in bulk, supergravity
interactions in bulk between the two lumps are needed.
In a non-supersymmetric setup, the potential between
two heavy mesons is generated by the exchange of a
”scalarball” [27].

In order to access the scattering amplitude, the bound-
ary conditions for the Wilson loops change from a static
to a dynamic setup. In Euclidean space, this amounts
to changing the angle θ to a non-zero value. This is il-
lustrated in Figure 1. The role of the angle is played
by the rapidity interval after analytic continuation. This
will generate a tunneling contribution absent in the po-
tential. This tunneling contribution will be at the origin
of the entropy in the elastic scattering amplitude as we
detail below. This is one of the fundamental observation
of this paper.
The problem of finding a minimal surface to the dy-

namic setup in Fig. 1 has a long history. Early ap-
proaches [13] attempting to solve for a string world-sheet
at constant time slices yield a reggeized amplitude at

FIG. 1: Dipole-dipole scattering in Euclidean space, see text.
Figure from [12].

large s, but fail to describe inelastic processes and give a
negative pomeron intercept. In [14], a first order pertur-
bation in the bulk AdS fields is taken into account. The
intercept is purely kinematical, i.e. equal to one for the
case of the graviton, as compared to the QCD expecta-
tion s4/παsNcln(2).

When the dipoles are small compared to the impact
parameter and the rapidity interval is large, the surface
connecting the two dipoles is highly twisted and can
be approximated by the world-sheet of a string with
the appropriate boundary conditions, see Figure 2. In
general, the surface is exchanged in D⊥ dimensions.
Below, we show that a detailed comparison with QCD
BFKL expectations and experimental data suggests
D⊥ = 3 [17, 28]. The curved holographic coordinate
scales the momenta of the dipoles [29]. Accordingly,
the change in the curved holographic coordinate or z,
from one end of the string to the other is proportional
to the momentum transfer between the dipoles. Thus,
in the Regge regime with

√
s ≫

√
−t = q⊥, the string

is exchanged in an approximately flat background for
a confining metric. To describe a scattering process
in which a colorless object is exchanged, the string is
bosonic and closed. We will neglect corrections to the
tree level approximation as the string coupling will be
assumed small. However, we will not limit ourselves to
a classical string configuration but take into account
(quantum) oscillations. As similar idea was put forward
more than three decades ago [30].

The problem is set up in Euclidean space and then
continued to Minkowski space. Due to the expected
pole structure of the amplitude, the analytic continua-
tion is by no means trivial. The reliance of the con-
tinuation has been tested on the lattice [31, 32]. Af-
ter analytic continuation from Euclidean to Minkowski
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FIG. 2: Twisted surface connecting the Wilson loops. See
text. Figure from [12].

space, the angle θ is transformed to the rapidity interval
χ ≡ χmax + χmin = iθ, which is defined by

cos θ → coshχ ≡ 1√
1− v2

=
s

s0
− 1 , (3)

where the parameter s0 is related to the effective trans-
verse scattering mass as s0 = m2

⊥ = m2 + p2⊥.
With D⊥ = 3 we will use AdS5 with an IR cutoff real-

ized through a hard wall at z0 as a confining background.
Although the field theory corresponding to this space is
not exactly QCD, it captures some of it essential features
[33]. The Euclidean AdS5 space-time metric is

ds2 =
1

z2
(

(dx0)2 + (dx1)2 + (dx2⊥) + (dz)2
)

, (4)

where we have set the AdS radius to one. The IR cutoff
is at some z0, i.e. 0 ≤ z ≤ z0. The dipoles of fixed size
a,a′ are initially located at the boundary z ≈ 0. Later,
they will be moved to the bulk to account for their
varying sizes.

We will now recall the dipole-dipole correlator for small
momentum transfer where the background space-time is
taken to be flat as detailed in [12] for completeness. In
this approximation, the Wilson loop correlator reads

WW = g2s

∫ ∞

0

dT

2T
K(T ) . (5)

The closed string is parametrized by one parameter, the
modulus (”circumference”) T . The factor g2s in (5) comes

from the genus of the string configuration compared to
the disconnected configuration. The string propagator
reads

K(T ) =

∫

T

d[x] e−S[x]+ghosts . (6)

For closed, long strings where the interaction between
the strings is neglegible the effective string action is the
Polyakov action

S =
σT
2

∫ T

0

dτ

∫ 1

0

(

ẋµẋµ + x′µx′µ
)

(7)

with ẋ = ∂τx and x′ = ∂σx. The string tension is
σT = 1/(2πα′). The Regge slope α′ is related to the
fundamental string length by α′ = l2s . We have made the
following gauge choice for the world-sheet metric hab = δab .
The string coordinate xµ(τ, σ) is closed

xµ(T, σ) = xµ(0, σ) (8)

and attaches to the twisted dipole surfaces

cos(θ/2)x1(τ, 0) + sin(θ/2)x0(τ, 0) = 0 (9)

cos(θ/2)x1(τ, 1)− sin(θ/2)x0(τ, 1) = 0 . (10)

We already see that the freedom in moving the intersec-
tion point of the string world-sheet with the dipole sur-
faces of width a, a′ yields a factor aa′ in the collelator,
(5), (6).
The world-sheet is twisted in the x0, x1 coordinates

(

x0

x1

)

=

(

cos θσ − sin θσ
sin θσ cos θσ

)(

x̃0

x̃1

)

(11)

with θσ = θ(2σ − 1). This twist (rotation) in Euclidean
space corresponds to a Lorentz boost in the longitudinal
direction after analytic continuation.
We can now evaluate the Wilson loop correlator by

solving for the bosonic string world-sheet with Neu-
mann boundary conditions for x̃0 and Dirichlet bound-
ary conditions for x̃1. The Polyakov action is quadratic
in the untwisted coordinates and the solutions can be
parametrized as

x̃0(τ, σ) =
+∞
∑

m=−∞

+∞
∑

n=0

x0mne
2πimτ/T cos(πnσ) (12)

x̃1(τ, σ) =
+∞
∑

m=−∞

+∞
∑

n=0

x1mne
2πimτ/T sin(πnσ) . (13)

Note that the temporal component has a non-vanishing
ground state similar to a zero mode

x̃0ZM (τ, σ) ≡
+∞
∑

m=−∞
x0m0e

2πimτ/T . (14)
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The transverse, untwisted coordinates are periodic with
Dirichlet boundary conditions

x⊥(τ, σ) = −b⊥(1− 2σ)/2

+
+∞
∑

m=−∞

+∞
∑

n=0

x⊥mne
2πimτ/T sin(πnσ) . (15)

Since the action is quadratic, the propagator (6) factor-
izes as

K = K0L ×K∅L ×K⊥ ×Kghost , (16)

with the individual contributionsK0L, K∅L from the lon-
gitudinal zero/non-zero modes and K⊥ the contribution
from the ⊥-modes. Due to the gauge choice for the string
world-sheet metric, the propagator gets the ghost contri-
bution Kghost.
The contributions from the longitudinal modes reads

[12]

K0L(T ) = (2 sinh(θT/2))
−1

(17)

and

K∅L(T ) =
∞
∏

n=1

∏

s=±1

(2 sinh((n+ sθ/π)πT/2))
−1

. (18)

The transverse part of the propagator is given by

K⊥ = e−σTb2

⊥
T/2 η−D⊥(iT/2) (19)

with the Dedekind eta function

η(τ) ≡ q1/24
∏

n

(1− qn) (20)

and q ≡ e2πiτ . The ghost contribution to the propagator
is given by

Kghost(T ) =

∞
∏

n=1

4 sinh2(nπT/2) . (21)

We can now analytically continue from Euclidean to
Minkowski space by letting θ → −iχ. The loop-loop
correlator then reads

WW = g2s

∫ ∞

0

dT

2T
K(T ) (22)

=
ig2saa

′

4α′

∫ ∞

0

dT

T

1

sin(χT/2)
∞
∏

n=1

∏

s=±1

sinh(nπT/2)

sinh((nπ + isχ)T/2)
η−D⊥(iT/2)

e−b2

⊥
T/4πα′

. (23)

For χ→ ∞, we see that the longitudinal zero modes are
responsible for the poles along the real T -axis. Picking

up the residues at the positive poles T = 2πk/χ, (23)
equates to

WW =
g2saa

′

4α′

kmax
∑

k=1

(−1)k

k
η−D⊥(iπk/χ)e−kb2

⊥
/2α′χ .(24)

Using

η−D⊥(iπk/χ) =

(

πk

χ

)D⊥/2

eD⊥χ/12k

∞
∏

n=1

(

1− e−2χn/k
)−D⊥

=

(

πk

χ

)D⊥/2 ∞
∑

n=0

d(n)e−2χn/k , (25)

we can rewrite the Wilson loop correlator as

WW =
g2saa

′

4α′

kmax
∑

k=1

∞
∑

n=0

(−1)k

k

(

πk

χ

)D⊥/2

d(n)

e−kb2

⊥
/2α′χ+D⊥/12k−2χn/k . (26)

For large n the density of string state d(n) rises exponen-
tially [34]

d(n) ∼ e2π
√

D⊥n/6

nD⊥/4
. (27)

The correlator (26) is dominated by the lowest transverse
mode, n = 0. The poles are at different winding k, which
is interpreted as the N-ality. For QCD with Nc = 3, the
exchange is limited to k = 1, 2 strings.

III. 3. GRIBOV DIFFUSION IN CURVED

SPACE

Gribov diffusion [36, 37] is a way to reconcile the
partonic picture with the non-perturbative aspects of
hadronic interactions at high energies. The assumption
is that hadronic interactions at strong coupling are the
result of parton emission. Each emission changes the ra-
pidity of the emitting parton, which results in a diffusive
motion for the partons in impact parameter space. The
difference in rapidities at the initial and following point
in space mimicks the diffusion in time. The spread in
impact parameter space results in a spread in momenta.
The higher the energies, the broader the diffusive regime
and lower momenta start to become important. At large
momentum, the hadron is Lorentz contracted and its ef-
fective volume grows with ln(s) [28] while the number
of partons scales with the momentum as s#, compare
(40). At higher and higher energies, the wave function
of the partons overlap and the probability to recombine
balances the production. The scattering objects become
”black discs”. Gribov anticipated that this should result
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in a constant total cross section for all hadronic interac-
tions.
We will now recall that the string exchange picture

naturally leads to a diffusive process reminiscent of Gri-
bov diffusion in which the long string diffuses in rapidity
through the impact parameter space [17]. The diffusion
constant is related to the t’Hooft coupling λ and the cur-
vature of the embedding space-time gives a correction
to the pomeron intercept. We will then derive the wee-
dipole density and show that it compares to the QCD
BFKL expectations, albeit with a non-perturbative in-
tercept and diffusion constant.
Here we note the alternative non-perturbative deriva-

tion of the pomeron as a graviton exchange in 10 dimen-
sions discussed in [15]. While our string exchange and
the graviton exchanges as models of the pomeron are
similar in spirit, they are different in content. Indeed,
in conformal AdS multigraviton exchanges are the dom-
inant exchange between small dipoles, while in confined
AdS gravitons are massive on the confinement scale. The
interaction between small dipoles is dominated by the ex-
change of correlated gluons (perhaps fishnets [38]) in the
form of a non-critical string exchange. In the conformal
limit, both approaches are similar although with different
pomeron parameters as thoroughly discussed in [17].
The Wilson loop correlator (26) and, hence, the scat-

tering amplitude is dominated by the tachyonic n = 0
contribution. We identify this n = 0 mode with the ex-
changed pomeron. Specifically, we can rewrite (24) as

WW ≈ g2s
4

(

π

σT

)D⊥/2 kmax
∑

k=1

(−1)k

k

aa′

α′ Kk(χ,b⊥) . (28)

The emerging propagator at the poles,

Kk(χ,b⊥) =

(

k

2πα′ χ

)D⊥/2

e−kb2

⊥
/2χα′+D⊥χ/12k (29)

satisfies a diffusion equation in flat space
(

∂T⊥
+ (M2

0 −∇2
⊥)

)

Kk(T⊥,M,b⊥) = 0 (30)

after the identification of the proper time T⊥ = Dkχ with
the diffusion constant Dk = α′/2k. The tachyonic mass
follows from the harmonic string spectrum

M2
n =

4

α′

(

n− D⊥
24

)

→ −D⊥
6α′ . (31)

While the tachyon is a nuisance for the string poten-
tial problem which is overcome by dialing the string in
critical dimensions, it is an asset for the dipole scattering
problem in any dimension as it translates to the pomeron
intercept.
Assuming that for short proper times, T ∼ 1/χ < 1,

the longitudinal pole structure of the diffusion kernel is
unchanged, the tachyonic string receives curvature cor-
rections for transverse modes. These are readily calcu-
lated by letting [28]

aa′

α′ Kk(χ,b⊥) → zz′ N(χ, z, z′,b⊥) . (32)

As a result we identify N with the wee-dipole density. In
a curved background with a confining hard wall, this wee-
dipole densityN can be obtained in closed form using the
initial condition (u = −ln(z/z0))

N(χ = 0, u, u′,b⊥) = δ(u − u′)δ(b⊥) (33)

and the infrared or wall boundary condition

∂u=0N = 0 (34)

as detailed in [28]. The explicit solution is

N(T⊥, u, u
′,b⊥) =

1

z20
eu

′+u ∆⊥(χ, ξ) +
1

z20
eu

′−u ∆⊥(χ, ξ∗)

=
1

zz′
∆⊥(χ, ξ) +

z

z′z20
∆⊥(χ, ξ∗) . (35)

Here ∆⊥ is the diffusive kernel in curved holographic
space without a wall

(

∂T⊥
+ (M2

0 − 1√
g⊥
∂µ g

µν
⊥

√
g⊥ ∂ν)

)

∆⊥(x⊥, x
′
⊥) = 0

(36)

with a delta-function initial condition. Explicitly

∆⊥(χ, ξ) =
ej0Dχ

(4πDχ)3/2
ξe−

ξ2

4Dχ

sinh(ξ)
, (37)

with the chordal distances

coshξ = cosh(u′ − u) +
1

2
b2
⊥ e

u′+u (38)

coshξ∗ = cosh(u′ + u) +
1

2
b2
⊥e

u′−u . (39)

The physical interpretation of N is that of the wee-
dipole of scale u at a transverse distance b⊥ sourced by
a dipole of scale u′ located at b′

⊥ = 0. The wee-dipole
cloud is captured by the string at strong coupling. In a
way, this is the ”Weizsaecker-Williams” dipole cloud as
captured by the string sourced by a mother dipole. It
normalizes to

Nwee =

∫

du db⊥N = e−T (M2

0
+D⊥−2) ≡ (s/s0)

αP−1(40)

with the 1/
√
λ corrected intercept

αP = 1 +
D⊥
12

− (D⊥ − 1)2

8
√
λ

. (41)

For
b2

⊥

2zz′ ≫ 1, the analytic form of this holographic wee-
dipole density in D⊥ = 3 exactly matches the BFKL re-
sult [17]. Perturbative gluon ladders transmute to string
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world-sheets at strong coupling, a point at the origin of
the QCD fishnet approach to large Wilson loops for the
potential problem [38]. The ordered BFKL resummation
of perturbative QCD diagrams is encoded in the stringy
Schwinger mechanism discussed in [12], albeit in hyper-
bolic space. Finally, and in terms of (32), the leading
(k = 1) contribution to (5) in a curved AdS background
reads

WW ≈ −g
2
s

4
(2πα′)

3/2
zz′ N(χ, z, z′,b⊥) . (42)

IV. 4. STRINGY INSTANTON

We will now briefly explain the factor e−kb2

⊥
/2χα′

in
the correlator (26), which drives the Regge behavior of
the scattering amplitude as detailed in [12]. The kth
contribution comes from the poles and the pole struc-
ture originates from the twist in the longitudinal modes.
The rapidity triggers an electric field acting on the end
points of the open string. In Euclidean space this elec-
tric field causes tunneling and, therefore, an instanton.
In Minkowski space this instanton captures the pair-
creation process of the stringy Schwinger mechanism.
Pair-creation means inelasticities and entropy.
The instanton is best described by using the T-dual

transformation of the string coordinates

∂τx
1 = ∂σy

1 (43)

∂σx
1 = ∂τy

1 (44)

for which the Polyakov action (7) now reads

S =
σT
2

∫ T

0

dτ

∫ 1

0

dσ
(

(∂x0)2 + (∂y1)2 + (∂x⊥)2
)

+
E

2

∫ T

0

dτ
(

y1∂τx
0 − x0∂τy

1
)

∣

∣

∣

∣

σ=0,1

, (45)

with

E = F01 = σT tanh(χ/2) . (46)

In the T-dual form the twisted boundary conditions
transmute to an electric field (46) along the y1 direc-
tion. This electric field is purely kinematical and is at
the origin of the world-sheet instanton as we now detail.
The semiclassical extrema of (45) can be labeled by

k > 0. They follow from the saddle points of (45) along
T and the world-sheet coordinates. Explicitly, for x⊥ =
b⊥ σ

x0 = R(σ) cos(2πkτ/T ) , y1 = R(σ) sin(2πkτ/T ) ,
(47)

with R(σ) = (b⊥/χ) cosh (χ (σ − 1/2)). The saddle
point of (45) along the T direction is algebraic, giving
T = 2πk/χ. A similar world-sheet instanton for D-brane
scattering was discussed in [39]. In terms of (47) the in-
stanton contribution to the action (45) is Sk = kb2

⊥/2χα
′

leading to the announced factor of e−Sk in (26).

V. 5. SCHWINGER-UNRUH CONNECTION

The instanton world-sheet solution (47) has a simple
kinematical interpretation. Indeed, since (46) refers to a
”magnetic field” along the transverse 01-direction, (47)
describes a ”cyclotron” motion of the string instanton in
the 01-plane with cyclotron frequency ωk = 2πk/T . In
Minkowski signature, the motion is hyperbolic with local
acceleration

a(σ) =
1

R(σ)
=

χ

b⊥

1

cosh (χ (σ − 1/2))
. (48)

The acceleration is maximum at the center of the string,
σ = 1/2. Due to this local acceleration, the string feels a
σ-dependent Unruh temperature

TU (σ) =
a(σ)

2π

that is maximal at the center with TU = χ/2πb⊥ ≡ 1/β.
This interpretation has a deeper physical meaning by not-
ing that the line-element associated with the instanton
(47) in Minkowski signature is

ds2 ≈ −a2R2d(τb⊥)
2 + dR2 + dx⊥ 2 . (49)

Eq. (49) referes to a Rindler line element with Rindler
time t(τ) = τb⊥. The Rindler acceleration a = χ/b⊥
implies a Rindler horizon R = 1/2a at the position of
the instanton which is the tip of the light-cone in our
dipole-dipole scattering setup.
The occurence of the world-sheet instanton is analo-

gous to the formation of a dynamic black-hole at the
tip of the light-cone. Although this 5-dimensional black-
hole extends in the conformal direction it is very different
from the standard black-hole widely used in holographic
equilibrium. It is similar to the 4-dimensional black-hole
suggested in [40] using arguments based on saturation
and a re-interpretation of the standard Schwinger parti-
cle pair-creation process [41]. To contrast our analysis
with that of [40], we will briefly review the arguments in
the latter. Starting from the Schwinger pair-production
rate in a longitudinal electric field in scalar QED, the
Unruh temperature is identified as

e−
πm2

eE ≡ e−
πm
a ≡ e

−m/2
TU (50)

with TU = a/2π = eE/2πm. In [40] this QED result was
exported to the QCD color glass through the identifica-
tion of eE/m→ QS the QCD saturation scale. This ar-
gument is different from ours in a number of ways: 1/ Our
induced electric field E ≈ σTχ is kinematical and longi-
tudinal as opposed to eE ≈ Q2

S which is dynamic and
transverse; 2/ The scale is set by the string length (strong
coupling) and not the saturation length (weak coupling);
3/ Our Unruh temperature follows from a stringy pair-
creation process not a particle pair-creation process; 4/
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Our strings are holographic in hyperbolic space to ac-
count for the conformal nature of QCD in the ultraviolet;
5/ Our black hole forms at the tip of the light cone but
extends in the holographic or 5th direction.

VI. 6. ENTROPY

As we detailed in section 4, the stringy instanton solu-
tion (47) reduces the on-shell action (45) to

Sk ≈ 1

2
σkb⊥β , (51)

with the k-string tension σk = kσT for N-ality k. For
QCD with 3 colors, only the N-alities k = 1, 2 are al-
lowed [35]. For QCD at large Nc, all N-alities up to the
integer value of Nc/2 are allowed. Only the N-ality k = 1
is selected in the process of scattering dipoles in the fun-
damental representation. We argue below that k = 2 is
released in dense AA collisions.
Eq. (51) receives quantum contributions in the form of

world-sheet fluctuations (Luscher term), that translates
to Gribov diffusion at strong coupling. For large χ and
b⊥, the quantum (O(n)) and curvature (O(1/

√
λ)) cor-

rections are readily implemented by the diffusive nature
of the propagator as reviewed in section 3. The dominant
quantum correction follows from the transverse diffusion
of the tachyonic mode (n = 0) in AdSD⊥

. To order 1/
√
λ

we obtain

Sk ≈ 1

2
σkβb⊥ − 2πb⊥

β

(

D⊥
12k

− (D⊥ − 1)2

8
√
λ

)

. (52)

This Euclidean stringy action amounts to a free en-
ergy Fk = Sk/β, where the temperature is the Unruh
temperature 1/β on the string. In the collision process
this entropy is deposited over a short time as we detail
below. It follows that (52) carries an entropy

Sk ≡ β2 ∂Fk

∂β
≈ χ

(

D⊥
6k

− (D⊥ − 1)2

4
√
λ

)

(53)

or equivalently

Sk ≈ 2 (αPk − 1)χ . (54)

For k = 1, the pomeron intercept is (αP1 − 1) ≈ 0.15
and the entropy per unit rapidity is about 1/3. Using the
optical theorem, the virtual wee-dipoles become on-shell
and their contribution to the entropy gives

Sk ≈ lnN2
wee,k , (55)

where Nwee,k is the total number of wee-dipoles sur-
rounding each of the incoming dipole pairs involved in
the collision

Nwee,k =

∫

du db⊥ Nk = e(αPk−1)χ . (56)

This is to be contrasted with the fully thermal or inco-
herent expectation of lnN and the fully Poissonian or
coherent expectation of ln

√
N with N the mean multi-

plicity number.
Most of this entropy is the result of the tachyon exci-

tation on the string. Indeed, for large impact parameter
b⊥, the Unruh temperature is smaller than the Hagedorn
temperature,

TU =
χ

2πb⊥
< TH =

√

3σT
πD⊥

, (57)

which translates to b⊥ > χ/(2πTH). As the impact
parameter is reduced, the Unruh temperature increases,
causing the string excitations to exponentiate, leading to
a Hagedorn transition. At the Hagedorn point it may be
mapped on the Bekenstein-Hawkins (BH) temperature of
a microscopic black hole, [42–45].

VII. 7. FORMATION TIME

Over what time is the entropy (54-55) associated to the
dipole-dipole collision released? To answer this question,
we note that the emergence of an Unruh temperature on
the string world-sheet suggests that semiclassically the
metric is locally Rindler, see (49).
We now argue that the prompt release time tR can be

set to be the time when the diffusing string in transverse
AdSD⊥

reaches the effective size of the Rindler horizon
R by analogy with the time it takes to a string to fall
on a black hole [43, 46]. Indeed, the string diffusion in
rapidity causes the transverse string size to increase as

< x2⊥ >= χα′ ≡ DR t(1) , (58)

with the diffusion constant in Rindler space DR =
α′/(2R). Through the last equality, we reinterpret (58)
as a diffusion in Rindler space over a typical Rindler time
t(1) = b⊥. The release entropy time tR is then set by
the condition R2 = DRtR or

tR = 2
R3

α′ = 2
(b⊥/2χ)3

α′ . (59)

For a QCD string with α′ = 1/(2GeV)2 = (0.1fm)2 and

a typical impact parameter b⊥ ∼ 10
√
α′, this results in

tR ∼ (25 fm)/χ3, which is short.
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VIII. 8. PP MULTIPLICITIES

pp collisions at large rapidity χ can be viewed as dipole-
dipole scattering from each colliding proton [28]. The
density of dipoles in the proton is set by the saturation
momentum QS ≡

√
2/zS. In holographic QCD this fol-

lows from the transcendental equation [17]

zS√
2
QS(χ,b⊥) =

g2s
2

(2πα′)
3/2

zSzp N(χ, zS, zp,b⊥) = 1 ,

(60)
with the effective string coupling gs and typical proton
virtuality 1/zp. Unlike in a partonic model, the color-less
wee-dipoles are the objects that saturate the transverse
density.
In solving for QS in (60) all the holographic parame-

ters are set by the DIS data analysis in [17, 28]: λ = 23,
D⊥ = 3, gs = 1.5, zp = 1.8 GeV−1, z0 = 2 GeV−1,

s0 = 10−2 GeV2. If App ≈ 1 fm2 is the typical proton
area, then AppQ

2
S ≈ 12 is the typical number of dipoles

with Q2
S ≈ 1/2GeV2 the typical squared saturation mo-

mentum. Thus, for pp collisions the typical entropy re-
lease per unit of rapidity is

Spp/χ ≈
(

App Q
2
S

)

× (S1/χ) ≈ 12× 1

3
= 4 . (61)

In holography, the scaling of the entropy with the en-
ergy follows from the scaling of the saturation momentum
(60) with rapidty. In the conformal limit and at large χ,
the entropy asymptotes

Spp ≈
(

s

s0

)

(√
1+2

√
λ(αP−1)−1

)

/
√
λ

ln(s/s0) , (62)

which is Spp ≈ (s/s0)
0.228ln(s/s0) using the parameters

set by the DIS data. In Figure 3 we show the pp charged
multiplicities [5]

Nch,pp = Spp/7.5 (63)

50 100 200 500 1000
s @GeVD

15

20

25

30

35

Nch

pp collisions

FIG. 3: Energy dependence of the charged multiplicity for pp
collisions. See text.
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FIG. 4: Scaling of the total charged multiplicities with the
number of participants [49] . See text.

at collider energies [47], with b⊥ = 1/3 fm. A recent dis-
cussion of the entropy in the context of saturation models
was made in [48].

IX. 9. PA, AA MULTIPLICITIES

We note that for pA collisions, ApA ≈ A1/3App, so

that SpA/Spp ≈ A1/3. In AA collisions, if the collision
is mainly between dipoles with N-ality k = 1, a simi-
lar scaling with the nucleus number A = A1/3 × A2/3 is
expected to take place. Here A1/3 Lorentz contracted nu-
cleons can be distributed in the A2/3 transverse nucleus
size. However, when the nucleons start to overlap, the
k = 2 N-ality can be exchanged,

SAA

Spp
≈ A





[Nc/2]
∑

1

1

k



 . (64)

In QCD with Nc = 3, the sum is 3/2. The contribution
of the k = 2 N-ality is expected to take place when the
number of participants is about 10 so that 101/3 ≈ 2
corresponds to two overlapping nucleons.
In Figure 4 we show the total charged multiplicities

normalized to the averaged number of participants as a
function of the number of participants for a range of col-
lider energies [49]. For a fixed collider energy, we note
the characteristic 3/2 jump from pp to AA collisions at
a number of participant of around 10.
The charged multiplicity follows as Nch,AuAu =

3/2〈Au〉 Spp/7.5, with the average participating gold nu-
cleon number 〈Au〉. Using the same numerical values
as for Nch,pp and 〈Au〉 = 175 for most central collisions
[50], Figure 5 shows an agreement of our holographic re-
sult with the experimental data at high energies, where
the inelasticities are large. At LHC energies, we expect
Nch,pp ∼ 54, Nch,pPb ∼ 320, Nch,PbPb ∼ 16800 at

√
s =
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FIG. 5: Energy dependence of the charged multiplicity for
central AuAu collisions. See text.

2.76 TeV and Nch,pp ∼ 82, Nch,pPb ∼ 470,Nch,PbPb ∼
23400 at

√
s = 7 TeV using 〈APbPb〉 = 191 [51].

X. 10. CONCLUSIONS

We have suggested that the pomeron viewed as an ex-
change of an instanton on the string world-sheet carries
a free energy Fk/TU = Sk with Sk the instanton action
of N-ality k and TU the Unruh temperature. For large
impact parameter b⊥, the Unruh temperature is low and
the entropy is mostly carried by the lowest string excita-
tion, which is tachyonic. This stringy entropy is neither
coherent nor thermal.
For smaller impact parameters, the Unruh tempera-

ture may reach the Hagedorn temperature, transmuting
the stringy entropy to partonic entropy. The latter is
likely commensurate with the Bekenstein-Hawkins en-
tropy, and the onset of a microscopic black hole. Macro-
scopic black holes [4–8] may be aggregates of these coa-
lescing microscopic black holes as suggested initially in [4]
and more recently in [52].

We have argued that typical pp, pA and AA collisions
at current collider energies may probe this stringy en-
tropy with low Unruh temperature. At large rapidities,
the holographic entropy is in agreement with the data
for the energy scaling of the charged multiplicities. The
3/2 jump in the charged multiplicities reported by the
current collider experiments with 10 number of partici-
pants and higher, is explained by the exchange of N-ality
k = 1, 2 strings. We expect similar jumps in the trans-
port parameters, e.g. viscosity and flow.

Although the measured total multiplicities reflect on
the final state hadronic produces, entropy conservation
guarentees that our prompt and initial entropy estimates
are lower bounds. The general lore of energy and mo-
mentum conservation, say through viscous hydrodynam-
ics evolution, suggests only a moderate increase of the
total entropy by about 25% in going from initial to final
states, making our estimates plausible.
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