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We calculate the leading radiative corrections to the axial current in the chiral separation effect
in dense QED in a magnetic field. Contrary to the conventional wisdom, suggesting that the axial
current should be exactly fixed by the chiral anomaly relation and is described by the topological
contribution on the lowest Landau level in the free theory, we find in fact that the axial current
receives nontrivial radiative corrections. The direct calculations performed to the linear order in
the external magnetic field show that the nontrivial radiative corrections to the axial current are
provided by the Fermi surface singularity in the fermion propagator at nonzero fermion density.
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I. INTRODUCTION

Recently there was a significant interest in the dynamics of relativistic matter in a magnetic field. Assuming that
QCD topological fluctuations produce local P and CP-odd states [1] leading to a chiral chemical potential µ5, it was
suggested that there exists a non-dissipative electric current j = e2Bµ5/(2π

2) in relativistic matter in a magnetic field
B [2–4]. This phenomenon is known in the literature as the chiral magnetic effect (CME). (For a recent review see
Ref. [5].) Moreover, the charge-dependent correlations and flow, observed in heavy-ions collisions at RHIC [6–9] and
LHC [10], appear to be in a qualitative agreement with the predictions of the CME [11, 12].
Unlike the chiral chemical potential, which is a rather exotic quantity and not so well defined theoretically, the

chemical potential µ (associated, for example, with conserved electric or baryon charges) is common in many physical
systems. It was shown in Refs. [13–15] that a non-dissipative axial current j5 = eBµ/(2π2) exists in the equilibrium
state of noninteracting massless fermion matter in a magnetic field. This effect is known as the chiral separation effect
(CSE) in the literature. (For a brief review, see Sec. 2 in Ref. [5].) In fact, as suggested in Refs. [16, 17], the CSE
may lead to a chiral charge separation (i.e., effectively inducing a nonzero chiral chemical potential µ5) and, thus,
trigger the CME even in the absence of topological fluctuations in the initial state.
The approach in Refs. [14, 15] was based on the use of the operator form of the chiral anomaly relation [18]. It

is well known that the corresponding relation, calculated at one-loop order, is exact and, as such, it cannot get any
higher-order radiative corrections [19]. Therefore, it was argued in [14, 15] that like the chiral anomaly, the one-loop
result for the axial current density, j5 = eBµ/(2π2), should be exact as well.
Since the fermion propagator in a magnetic field depends nonlinearly on the magnetic field, the linear dependence

of the axial current on B calls for a physical explanation. Using an expansion over the Landau levels, it was shown
in Ref. [14] that the axial current j5 = eBµ/(2π2) is topological in nature (see also Ref. [20] for a nice exposition
and some details) and is defined by the fermion number density on the lowest Landau level (LLL). Moreover, it was
shown [14] that a similar result holds even for massive fermions at finite temperature T , where the axial current equals
j5 = eBnL(m,T )/(2π) and nL(m,T ) is the effective one-dimensional (along the direction of magnetic field) fermion

number density on the LLL. At zero temperature the axial current is given by j5 = eB
√

µ2 −m2/(2π2). Of course,
in the chiral limit m→ 0 this reduces to the same expression for the axial current as derived from the chiral anomaly.
Note, however, that the connection between the induced axial current and the anomaly relation is not obvious beyond
the chiral limit.
The chiral anomaly is exact as an operator relation, but it contains the divergence of the axial current rather than

the current itself. Consequently, to get the axial current from the chiral anomaly one should “integrate” the anomaly
and calculate the ground state expectation value of the corresponding operator. Then, the question concerning an
“integration constant” in the induced axial current and its dependence on interactions naturally arises. Until now, no
conclusive answer to this question was given (e.g., see the discussion in Ref. [5]).
The first studies of the interactions effects were done in Refs. [16, 21–23] in the framework of the dense Nambu–

Jona-Lasinio (NJL) model in a magnetic field. Using the Schwinger–Dyson equation for the fermion propagator, it
was found [16, 21, 22] that the four-fermion interactions generates a chiral shift parameter ∆. In the chiral limit,
this parameter determines a relative shift of the momenta in the dispersion relations for opposite chirality fermions
k3 → k3±∆, where the momentum k3 is directed along the magnetic field. The presence of the chiral shift parameter
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leads to an additional dynamical contribution in the axial current. Unlike the topological contribution in the axial
current at the LLL, the dynamical one affects the fermions in all Landau levels, including those around the whole
Fermi surface. Further, it was explicitly checked in Ref. [22] that although the axial current gets corrections due to
the NJL interactions, the chiral anomaly does not.
Since the NJL model is nonrenormalizable and the chiral anomaly is intimately connected with ultraviolet diver-

gencies, in order to reach a solid conclusion about the presence or absence of higher-order radiative corrections to the
axial current, one should consider them in a renormalizable model. In the present paper, assuming that the magnetic
field B is weak and using the expansion in powers of B up to linear order, the leading radiative corrections to the axial
current in QED are calculated. We find that they do not vanish and attribute this result to the singularities in the
fermion propagator at the Fermi surface. On the technical side, the iǫ sign(k0) prescription in the fermion propagator,
which is the only thing that distinguishes a chemical potential from the time component A0 of the photon field, plays
a crucial role in deriving this result.
This paper is organized as follows. In Sec. II we introduce the model and set up the notation. Also, we discuss

some properties of the fermion propagator and the one-loop self-energy in the presence of an external magnetic field
and a nonzero density. The calculation of the leading radiative corrections to the axial current is presented in Sec. III.
We start from the formal definition of the current in terms of the fermion propagator, use its systematic expansion in
powers of the magnetic field, and finally perform the explicit calculations. Our discussion of the results and conclusions
are given in Sec. IV. A new form of the Schwinger parametrization for the fermion propagator in the case of a nonzero
magnetic field and a nonzero chemical potential, utilized in the main part of the paper, is presented in Appendix A.
The details of the calculations of the radiative corrections to the axial current are given in Appendix B.

II. FERMION SELF-ENERGY IN A MAGNETIC FIELD

The Lagrangian density of QED in a magnetic field is given by

L = −1

4
FµνFµν + ψ̄

(

iγνDν + µγ0 −m
)

ψ + δ2ψ̄(iγ
ν∂ν + µγ0 + eAext

ν γν)ψ − δmψ̄ψ, (1)

where µ is the fermion chemical potential, the last two terms are counterterms (we use the notation of Ref. [24], but
with the opposite sign of the electric charge, e → −e), and the covariant derivative is Dµ = ∂µ − ieAµ − ieAext

µ .
Without the loss of generality, we assume that the external magnetic field B points in the +x3 direction and is
described by the vector potential in the Landau gauge, Aext

µ = (0, 0, Bx1, 0). Note that the counterterms include the

chemical potential µ and the external field Aext
µ .

To leading order in the coupling constant α = e2/(4π), the fermion self-energy in QED is given by

Σ(x, y) = −4iπαγµS(x, y)γνDµν(x− y), (2)

where S(x, y) is the free fermion propagator in magnetic field and Dµν(x− y) is the free photon propagator.
As is well known, the fermion propagator S(x, y) in the presence of an external magnetic field is not translation

invariant. It can be written, however, in a form of an overall Schwinger phase (breaking the translation invariance)
and a translation invariant function [25], i.e.,

S(x, y) = exp [iΦ(x, y)] S̄(x− y), (3)

where the Schwinger phase equals Φ(x, y) = −eB(x1 + y1)(x2 − y2)/2 in the Landau gauge. The Fourier transform of
S̄(x − y) is presented in Eq. (A1) in Appendix A. The expression in Eq. (2) implies that the self-energy Σ(x, y) has
an analogous representation

Σ(x, y) = exp [iΦ(x, y)] Σ̄(x − y), (4)

with the same Schwinger phase as in the propagator.
In this study we use the photon propagator in the Feynman gauge. In momentum space, it reads

Dµν(q) = −i gµν
q2Λ

≡ −i
(

gµν
q20 − q2 −m2

γ + iǫ
− gµν
q20 − q2 − Λ2 + iǫ

)

. (5)

Here we introduced a nonzero photon mass mγ which serves as an infrared regulator at the intermediate stages of
calculations. Of course, none of the physical observables should depend on this parameter (see Sec. IV below). (Note
that since the classical paper of Stueckelberg [26], it is well known that, unlike non-Abelian theories, introducing a
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photon mass causes no problems in an Abelian gauge theory, such as QED.) We will see in Sec. III that the leading
radiative corrections are logarithmically divergent in the ultraviolet region. As in Ref. [19], we find that the Feynman
regularization of the photon propagator (5) with ultraviolet regularization parameter Λ presents the most convenient
way of regularizing the theory.
The Fourier transform of the translation invariant function Σ̄(x− y) is given by the following expression:

Σ̄(p) = −4iπα

∫

d4k

(2π)4
γµ S̄(k)γνDµν(k − p), (6)

where S̄(k) is the Fourier transform of the translation invariant part of the fermion propagator and Dµν(q) is the
photon propagator (5).
To linear order in B, the translation invariant part of the free fermion propagator in the momentum representation

has the following structure:

S̄(k) = S̄(0)(k) + S̄(1)(k) + · · · , (7)

where S̄(0) is the free fermion propagator in the absence of magnetic field and S̄(1) is the linear in magnetic field
part. Both of them are derived in Appendix A by making use of a generalized Schwinger parametrization when the
chemical potential is nonzero. The final expressions for S̄(0) and S̄(1) can be also rendered in the following equivalent
form:

S̄(0)(k) = i
(k0 + µ)γ0 − k · γ +m

(k0 + µ+ iǫ sign(k0))2 − k2 −m2
(8)

and

S̄(1)(k) = −γ1γ2eB (k0 + µ)γ0 − k3γ
3 +m

[(k0 + µ+ iǫ sign(k0))2 − k2 −m2]
2 . (9)

The self-energy at zero magnetic field

Σ̄(0)(p) = −4iπα

∫

d4k

(2π)4
γµS̄(0)(k)γνDµν(p− k) (10)

determines the counterterms δ2 and δm in Eq. (1). To calculate the self-energy (10), we will use the generalized
Schwinger parametrization of the fermion propagator S̄(0)(k), see Eq. (A11) in Appendix A. Such a representation
allows a natural separation of the propagator (as well as the resulting self-energy) into the “vacuum” and “matter”
parts. The former is very similar to the usual vacuum self-energy in QED in the one-loop approximation. The only
difference will be the appearance of p0 + µ instead of p0. The matter part is an additional contribution that comes
from the δ-function contribution in Eq. (A11). Unlike the vacuum part, the matter one has no ultraviolet divergences
and vanishes when |µ| < m.
The explicit expression for the vacuum part reads

Σ̄(0)
vac(p) =

α

2π

∫ 1

0

dx
{

2m− x
[

(p0 + µ)γ0 − p · γ
]}

ln
xΛ2

(1− x)m2 + xm2
γ − x(1− x) [(p0 + µ)2 − p2]

. (11)

Note that, while the integral over x can be easily calculated, we keep the result in this more compact form. We see
that the self-energy (11) becomes identical with the well-known vacuum self-energy in QED in the Feynman gauge
after performing the substitution p0 + µ → p0 [24]. Further, using Eq. (11), we find that the counterterms in (1) are
defined as follows [24]:

δ2 =
dΣ̄

(0)
vac(p)

d6P
∣

∣

∣

6P=m
= − α

2π

(

1

2
ln

Λ2

m2
+ ln

m2
γ

m2
+

9

4

)

, (12)

δm = m−m0 = Σ̄(0)
vac(p)

∣

∣

∣

6P=m
=

3α

4π
m

(

ln
Λ2

m2
+

1

2

)

, (13)

where P = (p0+µ,p). Note that the fermion wave function renormalization constant is defined as follows: Z2 = 1+δ2.
For completeness, let us calculate the additional matter part of the self-energy due to the filled fermion states given

by

Σ̄
(0)
mat(p) = − iα

π2

∫ 0

−µ

dk0

∫

d3k
(k0 + µ)γ0 − k · γ − 2m

(k0 − p0)2 − (k− p)2
δ
[

(k0 + µ)2 − k2 −m2
]

. (14)
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FIG. 1. The leading radiative corrections to the axial current in the linear in magnetic field approximation. Solid and wavy
lines correspond to the fermion and photon propagators, respectively. Double solid lines describe the axial current insertions
and the external wavy lines attached to the fermion loops indicate the insertions of the external gauge field.

After performing the integration over the energy and spatial angular coordinates, we find

Σ̄
(0)
mat(p) = −α

π

∫

√
µ2−m2

0

kdk

|p|

{

1

2

(

γ0 − 2m√
k2 +m2

)

ln
(p0 + µ−

√
m2 + k2)2 − (k − |p|)2

(p0 + µ−
√
m2 + k2)2 − (k + |p|)2

− k(p · γ)
|p|

√
m2 + k2

(

1 +
k2 + p2 − (p0 + µ−

√
m2 + k2)2

4k|p| ln
(p0 + µ−

√
m2 + k2)2 − (k − |p|)2

(p0 + µ−
√
m2 + k2)2 − (k + |p|)2

)}

. (15)

While the remaining integral over the absolute value of the momentum k can be also performed, the result will take
a rather complicated form that will not add any clarity.
The linear in the magnetic field correction to the translation invariant part of the fermion self-energy in a magnetic

field reads

Σ̄(1)(p) = −4iπα

∫

d4k

(2π)4
γµS̄(1)(k)γνDµν(p− k). (16)

This correction, which in particular contains a chiral shift parameter term, has been recently analyzed in Ref. [27].
We use this expression for Σ̄(1)(p) in the derivation of the leading corrections in the axial current in Sec. III below.

III. THE LEADING RADIATIVE CORRECTIONS TO THE AXIAL CURRENT

The renormalization group invariant axial current density, which is a quantity of the principal interest in the present
paper, is given by

〈j35 〉 = −Z2tr
[

γ3γ5G(x, x)
]

, (17)

where G(x, y) is the full fermion propagator and Z2 = 1 + δ2 is the wave function renormalization constant of the
fermion propagator, cf. Eq. (1).
To the first order in the coupling constant α = e2/(4π), the propagator reads

G(x, y) = S(x, y) + i

∫

d4ud4vS(x, u)Σ(u, v)S(v, y) + i

∫

d4ud4vS(x, u)Σct(u, v)S(v, y), (18)

where S(x, y) is the free fermion propagator in the magnetic field, Σ(u, v) is the one-loop fermion self-energy, and
Σct(u, v) is the counterterms contribution to the self-energy. The structure of the counterterms contribution is
determined by the last two terms in the Lagrangian density (1).
In this paper, we make use of the weak magnetic field expansion in the calculation of the axial current density.

Such an expansion is straightforward to obtain from the general expression in Eq. (17) and the representation (18)
for the fermion propagator. For the fermion propagator to linear in B order, we have

S(x, y) = S̄(0)(x− y) + ie

∫

d4z S̄(0)(x− z)γν S̄(0)(z − y)Aext
ν (z). (19)

Further, by making use of Eq. (19), the weak field expansion of the self-energy follows from the definition in Eq. (2).
(Note that the photon propagator is independent of the magnetic field to this order.) Combining all pieces together,
we can find the complete expression for the leading radiative corrections to the axial current (17) in the approximation
linear in the magnetic field. In this framework, the diagrammatical representation for the leading radiative corrections
to the axial current are shown in Fig. 1 (for simplicity, we do not display the contributions due to counterterms) [28].
Instead of using the expansion for the free propagator in Eq. (19), we find it much more convenient to utilize the

Schwinger form of the fermion propagator (3), which consists of a simple phase, that breaks the translation invariance,
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and a translation invariant function. Taking into account that the Schwinger phase Φ(x, y) is linear in magnetic field,
we arrive at the following alternative form of the weak field expansion of the fermion propagator in the linear in B
approximation:

S(x, y) = S̄(0)(x− y) + iΦ(x, y)S̄(0)(x − y) + S̄(1)(x− y), (20)

where S̄(0)(x − y) and S̄(1)(x − y) are the zeroth and first order terms in powers of B in the translation invariant
part of the propagator. [For the explicit forms of their Fourier transforms see Eqs. (8) and (9) above.] Of course, the
representations in Eqs. (19) and (20) are equivalent. One can check this explicitly, for example, by making use of the
Landau gauge for the external field Aext

ν .
Furthermore, Eq. (2) implies that a similar expansion takes place also for the fermion self-energy

Σ(u, v) = Σ̄(0)(u − v) + iΦ(u, v)Σ̄(0)(u− v) + Σ̄(1)(u− v). (21)

The Fourier transforms of the self-energies Σ̄(0)(x− y) and Σ̄(1)(x− y) are given by Eqs. (10) and (16), respectively.
Omitting the noninteresting zeroth order in B contribution in Eq. (18), we arrive at the following linear in B

contribution to the propagator:

G(1)(x, x) = S̄(1)(x, x) + i

∫

d4ud4v
[

S̄(1)(x − u)Σ̄(0)(u− v)S̄(0)(v − x) + S̄(0)(x− u)Σ̄(0)(u − v)S̄(1)(v − x)
]

+ i

∫

d4ud4v
[

S̄(0)(x− u)Σ̄(1)(u− v)S̄(0)(v − x)
]

−
∫

d4ud4v [Φ(x, u) + Φ(u, v) + Φ(v, x)] S̄(0)(x− u)Σ̄(0)(u− v)S̄(0)(v − x). (22)

Noting that Φ(x, u) + Φ(u, v) + Φ(v, x) = − eB
2 [(x1 − u1)(v2 − x2)− (v1 − x1)(x2 − u2)] is a translation invariant

function, it is convenient to switch to the momentum space on the right hand side of Eq. (22). The result reads

G(1)(x, x) =

∫

d4p

(2π)4
S̄(1)(p) + i

∫

d4p

(2π)4

[

S̄(1)(p)Σ̄(0)(p)S̄(0)(p) + S̄(0)(p)Σ̄(0)(p)S̄(1)(p) + S̄(0)(p)Σ̄(1)(p)S̄(0)(p)
]

− eB

2

∫

d4p

(2π)4

[

∂S̄(0)(p)

∂p1
Σ̄(0)(p)

∂S̄(0)(p)

∂p2
− ∂S̄(0)(p)

∂p2
Σ̄(0)(p)

∂S̄(0)(p)

∂p1

]

. (23)

By substituting this into the definition in Eq. (17), we obtain the following expression for the axial current density:

〈j35 〉 = 〈j35 〉0 + 〈j35〉α, (24)

where

〈j35 〉0 = −
∫

d4p

(2π)4
tr
[

γ3γ5S̄(1)(p)
]

(25)

is the contribution to the axial current in the free theory and

〈j35〉α =
eB

2

∫

d4p

(2π)4
tr

[

γ3γ5
∂S̄(0)(p)

∂p1
Σ̄(0)(p)

∂S̄(0)(p)

∂p2
− γ3γ5

∂S̄(0)(p)

∂p2
Σ̄(0)(p)

∂S̄(0)(p)

∂p1

]

− i

∫

d4p

(2π)4
tr

[

γ3γ5S̄(1)(p)Σ̄(0)(p)S̄(0)(p) + γ3γ5S̄(0)(p)Σ̄(0)(p)S̄(1)(p) + γ3γ5S̄(0)(p)Σ̄(1)(p)S̄(0)(p)

]

+ 〈j35〉ct

(26)

defines the leading radiative corrections to the axial current. The counterterms contribution 〈j35〉ct in Eq. (26) contains
all the contributions with δ2 and δm. Its explicit form will be given in Subsec. III B below.
It is instructive to start from investigating the structure of Eq. (26) in the free theory (i.e., to the zeroth order in

α). By making use of the explicit form of S̄(1)(k) in Eq. (9), we straightforwardly derive the following contribution
to the axial current density:

〈j35〉0 = −eB sign(µ)

4π3

∫

d3k δ(µ2 − k2 −m2) = −eB sign(µ)

2π2

√

µ2 −m2, (27)

which coincides, of course, with the very well known topological contribution [14]. Note that in contrast to the
approach using the expansion over the Landau levels, where the contribution to 〈j35〉0 comes only from the filled LLL
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states, the origin of the same topological contribution in the formalism of weak magnetic fields is quite different.
As Eq. (27) implies, it comes from the Fermi surface and, therefore, provides a dual description of the topological
contribution in this formalism. (Interestingly, the origin of the topological contribution in the weak field analysis
above may have some similarities with the Wigner function formalism [29].)
By substituting the propagators (8) and (9) into Eq. (26), we find the following leading radiative corrections to the

axial current:

〈j35〉α = 32παeB

∫

d4p d4k

(2π)8
1

(P −K)2Λ

[

(k0 + µ)[(p0 + µ)2 + p2⊥ − p23 −m2]− 2(p0 + µ)(p1k1 + p2k2)

(P 2 −m2)3(K2 −m2)

−2
(p0 + µ)(p1k1 + p2k2 + 2k3p3 + 4m2)− (k0 + µ)[(p0 + µ)2 + p23 +m2]

(P 2 −m2)3(K2 −m2)

− (k0 + µ)[(p0 + µ)2 − p2⊥ + p23 +m2]− 2(p0 + µ)p3k3
(P 2 −m2)2(K2 −m2)2

]

+ 〈j35〉ct

= 32παeB

∫

d4p d4k

(2π)8
1

(P −K)2Λ

[

(k0 + µ)[3(p0 + µ)2 + p2 +m2]− 4(p0 + µ)(p · k+ 2m2)

(P 2 −m2)3(K2 −m2)

− (k0 + µ)[3(p0 + µ)2 − p2 + 3m2]− 2(p0 + µ)(p · k)
3(P 2 −m2)2(K2 −m2)2

]

+ 〈j35 〉ct. (28)

Here we use the shorthand notation K2 = [k0 +µ+ iǫ sign(k0)]
2 −k2 and P 2 = [p0 +µ+ iǫ sign(p0)]

2 −p2. As for the
definition of (P −K)2Λ, it follows Eq. (5). Furthermore, the following replacements have been made in the integrand:
p2⊥ → 2

3p
2, p23 → 1

3p
2, and p3k3 → 1

3 (p · k). These replacements are allowed by the rotational symmetry of the other
parts of the integrand.

A. Integration by parts

It is convenient to represent Eq. (28) as follows:

〈j35〉α = 32παeB

∫

d4pd4k

(2π)8
1

(P −K)2Λ

[

4(p0 + µ)[(k0 + µ)(p0 + µ)− p · k− 2m2]

(P 2 −m2)3(K2 −m2)
− (k0 + µ)

(P 2 −m2)2(K2 −m2)

− (k0 + µ)[3(p0 + µ)2 − p2 + 3m2 − 2(p · k)]
3(P 2 −m2)2(K2 −m2)2

]

+ 〈j35 〉ct. (29)

Since the denominators of the integrand in this expression contain the factors (P 2 − m2)n and (K2 − m2)n, with
n = 2, 3, which vanish on the Fermi surface, the integrand in (29) is singular there. Therefore, one should carefully
treat the singularities in the calculation of the axial current. For this, we find it very convenient to use the following
identity valid for all integer n ≥ 1:

1

[[k0 + µ+ iǫ sign(k0)]2 − k2 −m2]
n =

1

[(k0 + µ)2 − k2 −m2 + iǫ]
n

+
2πi(−1)n−1

(n− 1)!
θ(|µ| − |k0|)θ(−k0µ)δ(n−1)

[

(k0 + µ)2 − k2 −m2
]

, (30)

which can be obtained from Eq. (A5) in Appendix A by differentiating it n− 1 times with respect to m2. Since the
first term on the right-hand side has the pole prescription as in the theory without the filled fermion states, we call
it the “vacuum” part. The second term in this expression takes care of the filled fermion states, and we call it the
“matter” part.
One can also obtain another useful relation by differentiating Eq. (30) with respect to energy k0,

∂

∂k0

(

1

[[k0 + µ+ iǫ sign(k0)]2 −m2 − k2]
n

)

= − 2n(k0 + µ)

[[k0 + µ+ iǫ sign(k0)]2 −m2 − k2]
n+1

+
2πi(−1)nsign(µ)

(n− 1)!
δ(n−1)

[

(k0 + µ)2 − k2 −m2
]

[δ(k0)− δ(k0 + µ)] ,(31)
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where we made use of Eq. (30) the second time, albeit with n → n + 1, in order to render the result of derivation
on the right hand side in the form of the (n+ 1)th order pole with the conventional iǫ-prescription at nonzero µ. In
addition, we used the following easy to derive result:

∂

∂k0
[θ(|µ| − |k0|)θ(−k0µ)] = sign(µ) [δ(k0 + µ)− δ(k0)] . (32)

We note that δ(k0 + µ) in the last term on the right hand side of Eq. (31) never contributes. Indeed, this δ-function
is nonvanishing only when k0 + µ = 0. It multiplies, however, another δ-function, which is nonvanishing only when
(k0 +µ)2 −k2 −m2 = 0. Since the two conditions cannot be simultaneously satisfied, the corresponding contribution
is trivial. After taking this into account, we finally obtain

∂

∂k0

(

1

[[k0 + µ+ iǫ sign(k0)]2 −m2 − k2]
n

)

= − 2n(k0 + µ)

[[k0 + µ+ iǫ sign(k0)]2 −m2 − k2]n+1

+
2πi(−1)nsign(µ)

(n− 1)!
δ(n−1)

(

µ2 − k2 −m2
)

δ(k0). (33)

Now, by making use of the above identities, we can proceed to the calculation of 〈j35 〉α in Eq. (29). We start by
simplifying the corresponding expression using integrations by parts. Note that the Λ-regulated representation has
nice convergence properties in the ultraviolet and, therefore, all integrations by parts in the analysis that follows will
be perfectly justified.
The first term in 〈j35〉α in Eq. (29) is proportional to p0 + µ and contains (P 2 −m2)3 in the denominator. This

suggests to use identity (33) with n = 2 and k → p, i.e.,

4(p0 + µ)

(P 2 −m2)
3 = − ∂

∂p0

(

1

(P 2 −m2)2

)

+ 2iπδ′
[

µ2 −m2 − p2
]

δ(p0). (34)

Using it, we rewrite the first term in the integrand of Eq. (29) as follows:

1st = f1 + 32αeB

∫

d4pd4k

(2π)8
(k0 + µ)(p0 + µ)− p · k− 2m2

(P −K)2Λ(K
2 −m2)

∂

∂p0

( −1

(P 2 −m2)2

)

= f1 + 32αeB

∫

d4pd4k

(2π)8
1

(P 2 −m2)2
∂

∂p0

(

(k0 + µ)(p0 + µ)− p · k− 2m2

(P −K)2Λ(K
2 −m2)

)

= f1 + 32αeB

∫

d4pd4k

(2π)8
1

(P 2 −m2)2

(

(k0 + µ)

(P −K)2Λ(K
2 −m2)

+
(k0 + µ)(p0 + µ)− p · k− 2m2

(K2 −m2)

∂

∂p0

1

(P −K)2Λ

)

,

(35)

where the singular “matter” term, containing the derivative of a δ-function at the Fermi surface, was separated into
a new function,

f1 = 64iπ2αeB

∫

d4pd4k

(2π)8
(k0 + µ)(p0 + µ)− p · k− 2m2

(P −K)2Λ(K
2 −m2)

δ′
[

µ2 −m2 − p2
]

δ(p0). (36)

We note that the first term in the parenthesis in Eq. (35) cancels with the second term in the integrand of Eq. (29).
Then using

∂

∂p0

1

(P −K)2Λ
= − ∂

∂k0

1

(P −K)2Λ
(37)

and integrating by parts, we find that the sum of first and second terms in the integrand of Eq. (29) is equal to

(1st + 2nd) = f1 + 32αeB

∫

d4pd4k

(2π)8
1

(P −K)2Λ(P
2 −m2)2

(

p0 + µ

(K2 −m2)
+
[

(k0 + µ)(p0 + µ)− p · k− 2m2
] ∂

∂k0

1

(K2 −m2)

)

= f1 + f2 + 32αeB

∫

d4pd4k

(2π)8
1

(P −K)2Λ

(

(p0 + µ)

(P 2 −m2)2(K2 −m2)
− 2(k0 + µ)

(k0 + µ)(p0 + µ)− p · k− 2m2

(P 2 −m2)2(K2 −m2)2

)

.

(38)

Note that here we used the identity

∂

∂k0

(

1

K2 −m2

)

=
−2(k0 + µ)

(K2 −m2)2
− 2iπδ

(

µ2 −m2 − k2
)

δ(k0), (39)
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which follows from Eq. (33) with n = 1, and introduced another function, which contains the leftover contribution
with the δ-function,

f2 = −64iπ2αeB

∫

d4pd4k

(2π)8
(k0 + µ)(p0 + µ)− p · k− 2m2

(P −K)2Λ(P
2 −m2)2

δ
(

µ2 −m2 − k2
)

δ(k0). (40)

It is convenient to make the change of variables p → k and k → p in the first term in Eq. (38). Then, the two terms
in the integrand can be combined, resulting in

(1st + 2nd) = f1 + f2 + 32αeB

∫

d4pd4k

(2π)8
(k0 + µ)

[

−(p0 + µ)2 − p2 + 2p · k+ 3m2
]

(P −K)2Λ(P
2 −m2)2(K2 −m2)2

. (41)

Finally, by combining the result in Eq. (41) with the last term in the integrand of Eq. (29), we obtain

〈j35 〉α = f1 + f2 −
64

3
παeB

∫

d4pd4k

(2π)8
(k0 + µ)

(P −K)2Λ

3(P 2 −m2) + 4p · (p− k)

(P 2 −m2)2(K2 −m2)2
+ 〈j35〉ct. (42)

Using the identity in Eq. (39) once again, we rewrite the last expression as follows:

〈j35 〉α = f1 + f2 + f3 + 〈j35 〉ct

+
64

3
παeB

∫

d4pd4k

(2π)8
(k0 − p0)

(P −K)4Λ

(

3

(P 2 −m2)(K2 −m2)
+

4p · (p− k)

(P 2 −m2)2(K2 −m2)

)

, (43)

where

f3 =
64iπ2αeB

3

∫

d4pd4k

(2π)8
3(P 2 −m2) + 4p · (p− k)

(P −K)2Λ(P
2 −m2)2

δ
(

µ2 −m2 − k2
)

δ(k0). (44)

Since the first term of the integrand in the second line of Eq. (43) is odd under the exchange p↔ k, its contribution
vanishes, and we obtain

〈j35 〉α = f1 + f2 + f3 + 〈j35 〉ct +
64

3
παeB

∫

d4pd4k

(2π)8
(k0 − p0)

(P −K)4Λ

4p · (p− k)

(P 2 −m2)2(K2 −m2)
. (45)

Finally, by making use of the identity

p · (p− k)

(P −K)4Λ
=

1

2
p ·∇k

−1

(P −K)2Λ
(46)

and integrating by parts, we derive

〈j35〉α = f1 + f2 + f3 + 〈j35 〉ct +
64

3
παeB

∫

d4pd4k

(2π)8
2(k0 − p0)

(P 2 −m2)2(K2 −m2)
p ·∇k

−1

(P −K)2Λ

= f1 + f2 + f3 + 〈j35 〉ct +
64

3
παeB

∫

d4pd4k

(2π)8
2(k0 − p0)

(P −K)2Λ(P
2 −m2)2

p ·∇k

1

(K2 −m2)

= f1 + f2 + f3 + 〈j35 〉ct +
64

3
παeB

∫

d4pd4k

(2π)8
4(k0 − p0)p · k

(P −K)2Λ(P
2 −m2)2(K2 −m2)2

= f1 + f2 + f3 + 〈j35 〉ct, (47)

where the last integral term in the penultimate line of Eq. (47) vanishes because it is odd under the exchange p↔ k.
Collecting together all contributions, i.e., f1 in Eq. (36), f2 in Eq. (40) and f3 in Eq. (44), we have the following
leading radiative corrections to the axial current:

〈j35〉α = 64iπ2αeB

∫

d4pd4k

(2π)8

[

(k0 + µ)(p0 + µ)− p · k− 2m2

(P −K)2Λ(K
2 −m2)

δ′
[

µ2 −m2 − p2
]

δ(p0)

+
3(p0 + µ)2 − 3(k0 + µ)(p0 + µ) + p2 − p · k+ 3m2

3(P −K)2Λ(P
2 −m2)2

δ
(

µ2 −m2 − k2
)

δ(k0)

]

+ 〈j35 〉ct, (48)
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where the first term in the integrand comes from f1, while the second term comes from the sum f2+ f3. The result in
Eq. (48) is quite remarkable for several reasons. From a technical viewpoint, it reveals that the integration by parts
allowed us to reduce the original two-loop expression in Eq. (29) down to a much simpler one-loop form. Indeed,
after the integration over one of the momenta in Eq. (48) is performed using the δ-functions in the integrand, the
expression will have an explicit one-loop form. Such a simplification will turn out to be extremely valuable, allowing
us to obtain an analytic result for the leading radiative corrections to the axial current.
In addition, the result in Eq. (48) reveals important physics details about the origin of the radiative corrections to

the axial current. It shows that all nonzero corrections come from the regions of the phase space, where either p or
k momentum is restricted to the Fermi surface. This resembles the origin of the topological contribution in Eq. (27).
In both cases, the presence of the singular “matter” terms in identities like (34) and (39) was crucial for obtaining a
nonzero result. Moreover, by tracing back the derivation of the result in Eq. (48), we see that all nonsingular terms
are gone after the integration by parts. This makes us to conclude that the nonzero radiative corrections to the axial
current are intimately connected with the precise form of the singularities in the fermion propagator at the Fermi
surface, that separates the filled fermion states with energies less than µ and empty states with larger energies.

B. Counterterms contribution

The calculation of the axial current in Eq. (48) is still technically quite involved. However, it is relatively straight-
forward to show [see also the derivation of Eq. (B7) in Appendix B] that the right-hand side in (48) without the
counterterm has a logarithmically divergent contribution when Λ → ∞, i.e.,

αeB(2µ2 +m2)

4π3
√

µ2 −m2
ln

Λ

m
. (49)

To cancel this divergence, we should add the contribution due the counterterms in Lagrangian (1). The Fourier
transforms of the translational invariant part of the counterterm contribution to the self-energy reads

Σ̄
(0)
ct (p) = δ2[(p0 + µ)γ0 − p · γ]− δm, (50)

where δ2 was defined in Eq. (12), while δm = Z2m0 −m ≃ mδ2 − δm and δm was defined in Eq. (13).
We find the following leading order contributions to the axial current density due to counterterms:

〈j35〉ct = −δ2〈j35 〉0 − 4ieB

∫

d4p

(2π)4
δ2(p0 + µ)

(P 2 −m2)2
− 8ieB

∫

d4p

(2π)4
(p0 + µ)

[

δ2((p0 + µ)2 − p2 +m2)− 2mδm
]

(P 2 −m2)3

= −8ieB

∫

d4p

(2π)4
(p0 + µ)

[

δ2(P
2 −m2) + 2m(mδ2 − δm)

]

(P 2 −m2)3

= −8ieBδ2

∫

d4p

(2π)4
p0 + µ

(P 2 −m2)2
− 8im (mδ2 − δm) eB

∂

∂(m2)

∫

d4p

(2π)4
p0 + µ

(P 2 −m2)2

= −eB
π2

√

µ2 −m2δ2 +
eBm (mδ2 − δm)

2π2
√

µ2 −m2
. (51)

Here we used the same result of integration as in the topological term, see Eq. (27).
By making use of the explicit form of the counterterms (12) and (13), we obtain

〈j35 〉ct = −αeB
2π3

√

µ2 −m2

(

1

2
ln

Λ2

m2
+ ln

m2
γ

m2
+

9

4

)

− 3αeBm2

4π3
√

µ2 −m2

(

1

2
ln

Λ2

m2
+

1

4

)

. (52)

For m≪ |µ|, it reduces to

〈j35 〉ct ≃ −αeBµ
2π3

(

1

2
ln

Λ2

m2
+ ln

m2
γ

m2
+

9

4

)

− αeBm2

2π3µ

(

1

2
ln

Λ2

m2
γ

− 3

4

)

. (53)

C. The final result

The complete expression for the leading radiative corrections to the axial current is given by Eq. (47). It consists of
the counterterm contribution, calculated in the previous subsection, and the additional matter contribution f1+f2+f3.
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The latter is calculated in Appendix B. For m≪ |µ|, it reads

f1 + f2 + f3 =
αeBµ

2π3

(

ln
Λ

2µ
+

11

12

)

+
αeBm2

2π3µ

(

ln
Λ

23/2µ
+

1

6

)

. (54)

Note that this expression has the right ultraviolet logarithmic divergencies (when Λ → ∞) that will cancel exactly
with those in the counterterm (53). Combining the two results, we finally obtain the following leading radiative
corrections to the axial current in the case m≪ |µ|:

〈j35 〉α = −αeBµ
2π3

(

ln
2µ

m
+ ln

m2
γ

m2
+

4

3

)

− αeBm2

2π3µ

(

ln
23/2µ

mγ
− 11

12

)

. (55)

As expected, this result is independent of the ultraviolet regulator Λ. It does contain, however, the dependence on
the fictitious photon mass mγ . This is the only infrared regulator left in our result. Its origin can be easily traced
back to the infrared singularity of the wave function renormalization Z2 in the Feynman gauge used. As we discuss in
the next section, this singularity is typical for a class of QED observables, obtained by perturbative methods. As we
will explain below, in the complete physical expression for the axial current, obtained by going beyond the simplest
double expansion in the coupling constant and magnetic field, the regulator m2

γ will likely be replaced by a physical

scale, e.g., such as |eB| or αµ2.

IV. DISCUSSIONS AND CONCLUSIONS

Our study of the chiral separation effect in dense QED in the limit of a weak magnetic field suggests a conceptually
new way to interpret and calculate the axial current density even in noninteracting theory. In contrast to the original
formulation, which suggests that the topological contribution comes exclusively from the LLL filled states [14], we
show that the origin of the same contribution in the formalism of weak magnetic fields (27) is quite different: it comes
from the whole Fermi surface. Such a dual description of the topological contribution is of interest on its own. It
is sensible to suggest that the underlying origin for such a dual description must be connected with the topological
nature of the effect. It remains to be sorted out how this happens in detail.
Our result for the axial current density, obtained perturbatively in the coupling constant and in linear order in the

external magnetic field, shows that the chiral separation effect in QED has nonvanishing radiative corrections. To
leading order, these corrections are shown to be directly connected with the Fermi surface singularities in the fermion
propagator at nonzero density. This interpretation is strongly supported by another observation: had we ignored the
corresponding singular terms in the fermion propagator, the calculation of the two-loop radiative corrections would
give a vanishing result.
The final result for the leading radiative corrections to the axial current density is presented in Eq. (55). This is

obtained by a direct calculation of all relevant contributions to linear order in α and to linear order in the external
magnetic field (strictly speaking, linear in eB because the field always couples with the charge). The result in Eq. (55)
is presented in terms of renormalized (physical) parameters. As expected, it is independent of the ultraviolet regulator
Λ, used at intermediate stages of calculations. This is a nontrivial statement since the original two-loop expression for
the leading radiative corrections contains ultraviolet divergencies. In fact, the divergencies are unavoidable because
the corresponding diagrams contain the insertions of the one-loop self-energy and vertex diagrams, which are known
to have logarithmic divergencies. However, at the end of the day, all such divergencies are canceled exactly with the
contributions due to the counterterms.
Our analysis shows that the matter contribution, f1 + f2 + f3, to the axial current density (calculated in the

Feynman gauge) has no additional singularities. While functions f1 and f2+f3 separately do have additional infrared
singularities, the physically relevant result for the sum f1 + f2 + f3 is finite, see Appendix B for details. As we see
from Eq. (55), however, the final result depends on the photon mass mγ , which was introduced as the conventional
infrared regulator. This feature deserves some additional discussion.
It is straightforward to trace the origin of the mγ dependence in Eq. (55) to the calculation of the well known result

for the wave function renormalization constant δ2, presented in Eq. (12). In fact, this infrared problem is common for
dynamics in external fields in QED (for a thorough discussion, see Sec. 14 in book [30]). The most famous example is
provided by the calculation of the Lamb shift, when an electron is in a Coulomb field. The point is that even for a light
nucleus with Zα≪ 1, one cannot consider the Coulomb field as a weak perturbation in deep infrared. The reason is
that this field essentially changes the dispersion relation for the electron at low energy and momenta. As a result, its
four-momenta are not on the electron mass shell, where the infrared divergence is generated in the renormalization
constant Z2. Because of that, this infrared divergence is fictitious. The correct approach is to consider the Coulomb
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interaction perturbatively only at high energies, while to treat it nonperturbatively at low energies. The crucial point
is matching those two regions that leads to replacing the fictituous parameter mγ by a physical infrared scale. This
is the main subtlety that makes the calculation of the Lamb shift quite involved [30].

In the case of the Lamb shift, the infrared scale is related to the atomic binding energy, or equivalently the inverse
Bohr radius. For smaller energies and momenta, the electron wave functions cannot possibly be approximated with
plane waves, which is the tacit assumption of the weak field approximation. Almost exactly the same line of arguments
applies in the present problem of QED in an external magnetic field. In particular, the fermion momenta perpendicular
to the magnetic field cannot be defined with a precision better than

√

|eB|, or equivalently the inverse magnetic length.
This implies that the contribution to the axial current, which comes from the low-energy photon exchange between
the fermion states near the Fermi surface, should be treated nonperturbatively. Just like in the Lamb shift problem
[30], we can anticipate that a proper nonperturbative treatment will result in a term proportional to ln(|eB|/m2

γ),
with a coefficient such as to cancel the mγ dependence in Eq. (55).

The additional complication in the problem at hand, which is absent in the study of the Lamb shift, is a nonzero
density of matter. While doing the expansion in α and keeping only the leading order corrections, we ignored all
screening effects, which formally appear to be of higher order. It is understood, however, that such effects can be very
important at nonzero density. In particular, they could replace the unphysical infrared regulator m2

γ with a physical

screening mass, i.e., the Debye mass
√
αµ.

In contrast to the physics underlying the Lamb shift, where the nonperturbative result can be obtained with the
logarithmic accuracy by simply replacing mγ with the only physically relevant infrared scale in problem, the same is
not possible in the problem of the axial current at hand. The major complication here comes from the existence of two
different physical regulators that can replace the unphysical infrared scale mγ . One of them is

√

|eB| and the other
is

√
αµ. Because of the use of a double perturbative expansion in the analysis, controlled by the small parameters

|eB|/µ2 and α, it is not possible to unambiguously resolve (without performing a direct nonperturtative calculation)
which one of the two scales (or their combination) will cure the singularity in Eq. (55).

Another natural question to address is the chiral limit, m → 0. As one can see from Eq. (55), the current 〈j35 〉α
is singular in this limit. This point reflects the well known fact that massless QED possesses new types of infrared
singularities: Beside the well known divergences connected with soft photons, there are also divergences connected
with the emission and absorption of collinear fermion-antifermion pairs [31, 32]. In addition, because of a Gaussian
infrared fixed point in massless QED, the renormalized electric charge of massless fermions is completely shielded.
One can show that this property is also intimately related to the collinear infrared divergences [33]. The complete
screening of the renormalized electric charge makes this theory very different from massive QED. It remains to be
examined whether there is a sensible way to describe the interactions with external electromagnetic fields in massless
QED [34].

In addition to the quantitative study of the nonperturbative low-energy contributions and the effect of screening,
there remain several other interesting problems to investigate in the future. Here we will mention only the following
two. (i) It is of special interest to clarify the connection of the nontrivial radiative corrections to the axial current
density calculated in this paper with the generation of the chiral shift parameter in dense QED. The analysis in
the recent Ref. [27] shows that there is indeed such a connection but it is more complicated than that in the NJL
model [16, 21, 22]. (ii) In order to make a contact with the physics of heavy ion collisions, it would be interesting to
generalize our study to the case of a nonzero temperature. The corresponding study in the NJL model [16] suggests
that the temperature dependence of the axial current density should be weak. (iii) The analysis made in the NJL
model shows a lot of similarities between the structure of the chiral current in the CSE effect [16, 21, 22] with that of
the electromagnetic current in the CME one [23]. On the other hand, the arguments of Ref. [36] may suggest that the
dynamical part of the result for the electromagnetic current should vanish, while the topological contribution (which
needs to be added as part of the modified conserved axial current) will have no radiative corrections. It remains to
be seen if these expectations will be supported by direct calculations of the induced electromagnetic current in the
CME effect in QED with a chiral chemical potential µ5.
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Appendix A: Schwinger parametrization for the fermion propagator at B 6= 0 and µ 6= 0

The proper-time representation for the fermion propagator in a constant external magnetic field was obtained long
time ago by Schwinger [25]. A naive generalization of the corresponding representation to the case of a nonzero
chemical potential (or density) does not work however. This is due to the complications in the definition of the
causal Feynman propagator in the complex energy plane when µ 6= 0. The correct analytical properties of such
a propagator, describing particles above Fermi surface propagating forward in time and holes below Fermi surface
propagating backward in time, are implemented by introducing an appropriate iǫ-prescription. In particular, one
replaces k0 + µ with k0 + µ + iǫ sign(k0), where ǫ is a vanishingly small positive parameter. For example, in the
Landau level representation, the Fourier transform of the translation invariant part of the fermion propagator is
defined as follows:

S̄(k) = ie−k2

⊥
ℓ2

∞
∑

n=0

(−1)nDn(k)

[k0 + µ+ iǫ sign(k0)]2 −m2 − k23 − 2n|eB| , (A1)

where the residue at each individual Landau level is determined by

Dn(k) = 2
[

(k0 + µ)γ0 +m− k3γ3
] [

P−Ln

(

2k2⊥ℓ
2
)

− P+Ln−1

(

2k2⊥ℓ
2
)]

+ 4(k⊥ · γ⊥)L
1
n−1

(

2k2⊥ℓ
2
)

, (A2)

where Lα
n(x) are associated Laguerre polynominals.

Let us start by reminding the usual Schwinger’s proper-time representation at zero fermion density, i.e.,

1

[k0 + iǫ sign(k0)]2 −M2
n

≡ 1

k20 −M2
n + iǫ

= −i
∫ ∞

0

dseis(k
2

0
−M2

n
+iǫ), (A3)

where M2
n = m2 + k23 + 2n|eB|. It is important to emphasize that the convergence of the integral and, thus, the

validity of the representation are insured by having the positive parameter ǫ in the exponent. Unfortunately, such a
representation fails at finite fermion density. Indeed, by taking into account that

1

[k0 + µ+ iǫ sign(k0)]2 −M2
n

≡ 1

(k0 + µ)2 −M2
n + iǫ sign(k0)sign(k0 + µ)

, (A4)

we see that the sign of the iǫ-term in the denominator is not fixed any more. The corresponding sign is determined
by the product of sign(k0) and sign(k0 +µ) and can change, depending on the values of k0 and µ. For example, while
it is positive for |k0| > |µ|, it turns negative when |k0| < |µ| and k0µ < 0. This seemingly innocuous property causes
a serious problem for the integral representation utilized in Eq. (A3). The sign changing iǫ-term in the exponent
invalidates the representation at least for a range of quasiparticle energies.
In order to derive a modified proper-time representation for the fermion propagator, we will make use of the following

identity:

1

[k0 + µ+ iǫ sign(k0)]2 −M2
n

=
θ(|k0| − |µ|)

(k0 + µ)2 −M2
n + iǫ

+ θ(|µ| − |k0|)
(

θ(k0µ)

(k0 + µ)2 −M2
n + iǫ

+
θ(−k0µ)

(k0 + µ)2 −M2
n − iǫ

)

=
1

(k0 + µ)2 −M2
n + iǫ

− θ(|µ| − |k0|)θ(−k0µ)
(

1

(k0 + µ)2 −M2
n + iǫ

− 1

(k0 + µ)2 −M2
n − iǫ

)

=
1

(k0 + µ)2 −M2
n + iǫ

+ 2iπ θ(|µ| − |k0|)θ(−k0µ)δ
[

(k0 + µ)2 −M2
n

]

. (A5)

The first term on the right hand side of Eq. (A5) has a vacuum-like iǫ-prescription and, thus, allows a usual proper-
time representation. The second term is singular and represents the additional “matter” piece, which would be lost in
the naive proper-time representation. After making use of this identity, we derive the following modified proper-time
representation for the propagator:

S̄(k) = e−k2

⊥
ℓ2

∞
∑

n=0

(−1)nDn(k)

∫ ∞

0

ds eis[(k0+µ)2−m2−k2

3
−2n|eB|+iǫ]

−θ(|µ| − |k0|)θ(−k0µ)e−k2

⊥
ℓ2

∞
∑

n=0

(−1)nDn(k)

[

∫ ∞

0

ds eis[(k0+µ)2−m2−k2

3
−2n|eB|+iǫ]

+

∫ ∞

0

ds e−is[(k0+µ)2−m2−k2

3
−2n|eB|−iǫ]

]

. (A6)
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In order to perform the sum over the Landau levels, we use the following result for the infinite sum of the Laguerre
polynominals:

∞
∑

n=0

znLα
n(x) =

1

(1− z)1+α
exp

(

xz

z − 1

)

. (A7)

Then we obtain

S̄(k) =

∫ ∞

0

ds eis[(k0+µ)2−m2−k2

3
+iǫ]−ik2

⊥
ℓ2 tan(s|eB|)

[

(k0 + µ)γ0 +m− k · γ − (k1γ2 − k2γ1) tan(seB)
]

×
[

1 + γ1γ2 tan(seB)
]

− θ(|µ| − |k0|)θ(−k0µ)

×
{

∫ ∞

0

dseis[(k0+µ)2−m2−k2

3
+iǫ]−ik2

⊥
ℓ2 tan(s|eB|)

[

(k0 + µ)γ0 +m− k · γ − (k1γ
2 − k2γ

1) tan(seB)
]

×
[

1 + γ1γ2 tan(seB)
]

+

∫ ∞

0

dse−is[(k0+µ)2−m2−k2

3
−iǫ]+ik2

⊥
ℓ2 tan(s|eB|)

[

(k0 + µ)γ0 +m− k · γ + (k1γ
2 − k2γ

1) tan(seB)
]

×
[

1− γ1γ2 tan(seB)
]

}

. (A8)

This is a very convenient alternative representation for the fermion propagator in a constant external magnetic when
µ 6= 0. It allows, in particular, a straightforward derivation of the expansion in powers of the magnetic field. To
zeroth order in magnetic field, we obtain

S̄(0)(k) = S̄(0)
vac(k) + S̄

(0)
mat(k), (A9)

where

S̄(0)
vac(k) =

∫ ∞

0

ds eis[(k0+µ)2−m2−k
2+iǫ]

[

(k0 + µ)γ0 +m− k · γ
]

(A10)

and

S̄
0)
mat(k) = −2π θ(|µ| − |k0|)θ(−k0µ)

[

(k0 + µ)γ0 +m− k · γ
]

δ
[

(k0 + µ)2 −m2 − k2
]

(A11)

are the vacuum and matter parts, respectively. After integration of the proper time and making use of the identity
in Eq. (A5), we find that this is identical to the usual free fermion propagator (8) in the absence of the field.
Expanding the expression in Eq. (A8) to linear order in magnetic field, we also easily obtain the following linear in

B correction to the fermion propagator:

S̄(1)(k) = γ1γ2eB

{

∫ ∞

0

sds eis[(k0+µ)2−m2−k
2+iǫ] + 2iπθ(|µ| − |k0|)θ(−k0µ)δ′

[

(k0 + µ)2 −m2 − k2
]

}

×
[

(k0 + µ)γ0 +m− k3γ3
]

. (A12)

After integration over the proper time and making use of an identity, obtained from Eq. (A5) by differentiating with
respect to M2

n, we obtain Eq. (9).

Appendix B: Calculation of the f1, f2, and f3 terms

In this Appendix, we give the details of the calculation of the radiative corrections to axial current due to the f1, f2,
and f3 terms. We start from the general form of the result in Eq. (47) and calculate separately the two contributions,
f1 and f2+f3. At the end we combine all contributions and calculate the final result for the f1+f2+f3 contribution.

1. Calculation of f1

Starting from the definition in Eq. (36), we find it convenient to rewrite the expression for f1 in the following
equivalent form:

f1 ≡ f1(mγ)− f1(Λ), (B1)
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where we took into account that the photon propagator is defined by Eq. (5), with Λ playing the role of the ultraviolet
regulator. As follows from the definition,

f1(mγ) = −64iπ2αeB
∂

∂(mc)2

∫

d4pd4k

(2π)8
µ(p0 + µ)− p · k− 2m2

[(P −K)2 −m2
γ ](P

2 −m2)
δ
[

µ2 −m2
c − k2

]

δ(k0)

=
16iπαeB

kF

∂

∂kF

[

kF

∫

p2dpdp0dξ

(2π)5
µ(p0 + µ)− pkF ξ − 2m2

(p20 − p2 − k2F + 2pkF ξ −m2
γ)[(p0 + µ)2 − p2 −m2]

]

, (B2)

where we integrated over the energy k0, the absolute value of the spacial momentum k, and all angular coordinates
except for the angle θkp between k and p. We also introduced the following short-hand notations: kF =

√

µ2 −m2
c

and ξ = cos θkp. Note that the auxiliary quantities mc and kF should be replaced by the physical fermion mass m

and the Fermi momentum pF =
√

µ2 −m2, respectively, at the end of the calculation.
The integral over the energy p0 can be calculated, using the following general result for the energy integration:

i

∫

[X(p0 + µ)µ+ Y ] dp0
(p20 − b2) [(p0 + µ)2 − a2]

=
π

b

[

θ(µ− a) [X(b+ µ)µ+ Y ]

[(b + µ)2 − a2]
− θ(a− µ)

[

Xaµ2 + (a+ b)Y
]

a [(a+ b)2 − µ2]

]

, (B3)

where a =
√

p2 +m2 and b =
√

p2 + k2F − 2pkF ξ +m2
γ . Then we obtain

f1(mγ) =
αeB

2π3kF

∂

∂kF

∫

kF p
2dpdξ

b

(

θ(pF − p)
[

µ(b + µ)− pkF ξ − 2m2
]

(b+ µ)2 − a2

− θ(p− pF )
[

aµ2 − (a+ b)(pkF ξ + 2m2)
]

a [(a+ b)2 − µ2]

)

, (B4)

The integral over the angular coordinate ξ can be easily performed, leading to the following result:

f1(0) =
αeB

4π3kF

∂

∂kF

∫

pdp

[

θ(pF − p)

(

p+ kF − |p− kF |+
µ2 − 3m2 − k2F

2a
ln

(µ+ |p− kF |+ a)(µ+ p+ kF − a)

(µ+ p+ kF + a)(µ+ |p− kF | − a)

)

+θ(p− pF )

(

p+ kF − |p− kF | −
2kF p

a
+
µ2 − 3m2 − k2F

2a
ln

(a+ |p− kF |)2 − µ2

(a+ p+ kF )2 − µ2

)]

. (B5)

Here, without loss of generality, we presented the result only for the case of the vanishing photon mass. This is justified
because, as we will see below, the limit mγ → 0 does not produce any infrared singularities in the final result for f1. If
needed, an analogous expression for the case of a nonzero photon mass mγ can be readily written down as well. It can

be obtained from the above result for making the following three replacements: (i) |p− kF | →
√

(p− kF )2 +m2
γ , (ii)

p+ kF →
√

(p+ kF )2 +m2
γ , and (iii) µ2 − 3m2 − k2F → µ2 − 3m2 − k2F −m2

γ at two places in front of the logarithms.

After calculating the derivative with respect to kF in Eq. (B5) and then substituting kF → pF , we obtain

f1(0) =
αeB

4π3pF

∫

pdp

[

θ(pF − p)

(

2m2p

(pF + µ)(p2F − p2)
− pF

a
ln

(µ+ pF )
2 − (p− a)2

(µ+ pF )2 − (p+ a)2

)

+θ(p− pF )

(

2− 2p

a
− pF

a
ln
p− pF
p+ pF

− 2m2p2F
a(a+ p)(p2 − p2F )

+
2m2p

a(p2 − p2F )

)]

. (B6)

It is easy to check that the above expression has a logarithmic ultraviolet divergency, i.e.,

fUV
1 (0) ≃ αeB

2µ2 +m2

4π3
√

µ2 −m2

∫

dp

p
. (B7)

This confirms that an ultraviolet regularization is required in the calculation. As mentioned earlier, we utilize the
Feynman regularization (B1), which is equivalent to using the photon propagator in Eq. (5). This is the same
regularization, which is commonly used in the calculation of vacuum diagrams in QED, when the regularized expression
is obtained from the divergent one by subtracting the contribution with a large photon mass Λ. In the case at hand,
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therefore, we need the explicit expression for the function f1(Λ). The corresponding calculation is tedious, but
straightforward. The result reads

f1(Λ) =
αeB

4π3pF

∫

pdp

[

θ(pF − p)

(

p+ pF
√

(p+ pF )2 + Λ2
+

p− pF
√

(p− pF )2 + Λ2

+
(pF − p)(2m2 + Λ2)

√

(p− pF )2 + Λ2
(

2p2F − 2pF p+ Λ2 + 2µ
√

(p− pF )2 + Λ2
)

− (pF + p)(2m2 + Λ2)
√

(p+ pF )2 + Λ2
(

2p2F + 2pF p+ Λ2 + 2µ
√

(p+ pF )2 + Λ2
)

+
pF
a

ln

(

µ+
√

(p+ pF )2 + Λ2 + a
)(

µ+
√

(p− pF )2 + Λ2 − a
)

(

µ+
√

(p− pF )2 + Λ2 + a
)(

µ+
√

(p+ pF )2 + Λ2 − a
)

)

+θ(p− pF )

(

p+ pF
√

(p+ pF )2 + Λ2
+

p− pF
√

(p− pF )2 + Λ2
− 2p

a

+
(2m2 + Λ2)(p− pF )

(

a+
√

(p− pF )2 + Λ2
)

a
√

(p− pF )2 + Λ2
(

2p2 − 2ppF + Λ2 + 2a
√

(p− pF )2 + Λ2
)

+
(2m2 + Λ2)(p+ pF )

(

a+
√

(p+ pF )2 + Λ2
)

a
√

(p+ pF )2 + Λ2
(

2p2 + 2ppF + Λ2 + 2a
√

(p+ pF )2 + Λ2
)

+
pF
a

ln
2p2 + 2ppF + Λ2 + 2a

√

(p+ pF )2 + Λ2

2p2 − 2ppF + Λ2 + 2a
√

(p− pF )2 + Λ2

)]

. (B8)

Finally, as follows from the definition in Eq. (B1), the regularized expression of f1 reads

f1 =
αeB

4π3kF

∫ pF

0

pdp

(

m2

(pF − p) (pF + µ)
− m2

(p+ pF ) (pF + µ)
+
pF
a

ln
(µ+ pF + p+ a) (µ+ pF − p− a)

(µ+ pF − p+ a) (µ+ pF + p− a)

)

+
αeB

4π3kF

∫ ∞

pF

pdp

(

2− p+ pF
√

(p+ pF )2 + Λ2
− p− pF
√

(p− pF )2 + Λ2

+
m2 (a+ p− pF )

a(p− pF ) (a+ p)
−

(2m2 + Λ2)(p− pF )
(

a+
√

(p− pF )2 + Λ2
)

a
√

(p− pF )2 + Λ2
(

2p2 − 2ppF + Λ2 + 2a
√

(p− pF )2 + Λ2
)

+
m2 (a+ p+ pF )

a(p+ pF ) (a+ p)
−

(2m2 + Λ2)(p+ pF )
(

a+
√

(p+ pF )2 + Λ2
)

a
√

(p+ pF )2 + Λ2
(

2p2 + 2ppF + Λ2 + 2a
√

(p+ pF )2 + Λ2
)

+
pF
a

ln
p+ pF
p− pF

− pF
a

ln
2p2 + 2ppF + Λ2 + 2a

√

(p+ pF )2 + Λ2

2p2 − 2ppF + Λ2 + 2a
√

(p− pF )2 + Λ2

)∣

∣

∣

∣

∣

Λ≫µ

. (B9)

Note that, in the first integral below the Fermi surface (p ≤ pF ), we took the limit Λ → ∞ because it does not cause
any problem. It is essential, however, to keep Λ finite in the second integral above the Fermi surface (p ≥ pF ).
A careful analysis of the regularized expression for f1 in Eq. (B9) reveals a potentially serious problem: both integrals

below and above the Fermi surface have infrared logarithmic divergencies, coming from from the regions near pF .
These divergencies cannot be avoided even when the photon mass is introduced as a regulator. (The divergencies do
happen to vanish in the theory with massless fermions, m = 0, but this is of no importance as we discuss below.)
Fortunately, as we will see below, the corresponding divergencies exactly cancel similar infrared divergencies in the
expression for f2 + f3. Therefore, we come to the conclusion that the appearance of infrared divergencies in f1, as
well as in f2 + f3, is purely accidental and has no implications on physical observables. They can be viewed as a
consequence of an ambiguous split of the finite expression f1 + f2 + f3 into two separate contributions.
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In order to carefully sort out the cancelation of the above mentioned (unphysical) infrared divergencies, it is useful to

explicitly separate the divergent terms from regular ones in the corresponding expression for f1 = f
(IR,div)
1 + f

(IR,reg)
1 .

The divergent part of the expression reads

f
(IR,div)
1 =

αeBm2

4π3kF

[

∫ kF−ǫ1

0

pdp

(kF − p)(kF + µ)
+

∫ ∞

kF+ǫ2

pdp

(

1

(p− kF )(a+ p)
− 1

2p2

)

]

=
αeBm2

4π3

[

1

kF + µ

(

ln
kF
ǫ1

− 1

)

+
1

kF + µ

(

ln
µ

ǫ2
− 3

2

)

+
1

2kF

(

ln
2kF

kF + µ
+

1

2

)

+
µ+ kF
m2

ln
2µ

kF + µ

]

,(B10)

where we introduced infrared regulators ǫ1 and ǫ2 (with ǫ1, ǫ2 → 0) that allow to deal with the problem in a rigorous
way. Notice that, in the second integral we added a simple regular term, whose only purpose is to insure the ultraviolet
convergence of the whole expression. The remaining regular part of the expression for f1 reads

f
(IR,reg)
1 =

αeB

4π3kF

∫ kF

0

pdp

(

− m2

(p+ kF ) (kF + µ)
+
kF
a

ln
(µ+ kF + p+ a) (µ+ kF − p− a)

(µ+ kF − p+ a) (µ+ kF + p− a)

)

+
αeB

4π3kF

∫ ∞

kF

pdp

(

2− p+ kF
√

(p+ kF )2 + Λ2
− p− kF
√

(p− kF )2 + Λ2
+
m2

2p2
+

2m2

a (a+ p)
+

m2

(p+ kF ) (a+ p)

−
(2m2 + Λ2)(p− kF )

(

a+
√

(p− kF )2 + Λ2
)

a
√

(p− kF )2 + Λ2
(

2p2 − 2pkF + Λ2 + 2a
√

(p− kF )2 + Λ2
)

−
(2m2 + Λ2)(p+ kF )

(

a+
√

(p+ kF )2 + Λ2
)

a
√

(p+ kF )2 + Λ2
(

2p2 + 2pkF + Λ2 + 2a
√

(p+ kF )2 + Λ2
)

+
kF
a

ln
p+ kF
p− kF

− kF
a

ln
2p2 + 2pkF + Λ2 + 2a

√

(p+ kF )2 + Λ2

2p2 − 2pkF + Λ2 + 2a
√

(p− kF )2 + Λ2

)∣

∣

∣

∣

∣

Λ≫µ

. (B11)

Calculating the integrals in the case m≪ |µ|, we arrive at the following results

f
(IR,div)
1 ≃ αeBm2

8π3µ

(

ln
µ

ǫ1
+ ln

µ

ǫ2
− 1

)

, (B12)

f
(IR,reg)
1 ≃ αeBµ

2π3

(

ln
Λ

2µ
+

5

4

)

+
αeBm2

2π3µ
ln

Λ

2µ
. (B13)

2. Calculation of f2 + f3

In this subsection, we calculate the expression for the sum f2+f3 starting from the definition in Eqs. (40) and (44).
As we we see below, the corresponding expression has no ultraviolet divergencies. Therefore, we could take the limit
Λ → ∞ in the expression for f2 + f3, i.e.,

f2 + f3 =
64iπ2αeB

3

∂

∂(ma)2

∫

d4pd4k

(2π)8
3(p0 + µ)2 − 3µ(p0 + µ) + p2 − pkF ξ + 3m2

[

(P −K)2 −m2
γ

]

(P 2 −m2
a)

δ
(

µ2 −m2 − k2
)

δ(k0)

=
32iπαeBkF

3

∂

∂(ma)2

∫

p2dpdp0dξ

(2π)5
4p2 − pkF ξ + 3m2

a + 3m2 − 3µ(p0 + µ)

(p20 − p2 − k2F + 2pkF ξ −m2
γ)[(p0 + µ)2 − p2 −m2

a]
, (B14)

where we integrated over the energy k0, the absolute value of the spacial momentum k, and all angular coordinates
except for the angle θkp between k and p. We also introduced an auxiliary quantity ma, which should be replaced by
the physical fermion mass m at the end of the calculation. It should be also noted that the some terms independent
of ma were dropped in the integrand of the last expression. This is justified because they vanish anyway after the
derivative with respect to m2

a is calculated.
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In order to calculate the integral over the energy p0, we use again the result in Eq. (B3). Then, we arrive at

f2 + f3 = −αeB
6π3

∂

∂pF

∫

p2dpdξ

b

(

θ(pF − p)
[

−3bµ+ 4p2 − pkF ξ − 3p2F + 3m2
]

(b+ µ)2 − a2

− θ(p− pF )
[

3bµ2 + (a+ b)(4p2 − pkF ξ − 3p2F + 3m2)
]

a [(a+ b)2 − µ2]

)

, (B15)

where b =
√

p2 + k2F − 2pkF ξ +m2
γ and a =

√

p2 + µ2 − p2F . Note that, in this subsection, we distinguish the quantity

pF ≡
√

µ2 −m2
a from the physical Fermi momentum kF =

√

µ2 −m2. After the partial derivative with respect to
pF is performed, the value of pF will be replaced by kF . Similarly, the auxiliary quantity a, which is a function of

pF , will be replaced by its physical counterpart
√

p2 +m2.

The integral over the angular coordinate ξ can be easily performed, leading to the following result:

f2 + f3 = − αeB

12π3kF

∂

∂pF

∫

pdp

[

θ(pF − p)

(

p+ kF − |p− kF |+ 4µ ln
(µ+ |p− kF |)2 − a2

(µ+ p+ kF )2 − a2

+
7(k2F − p2F ) + 8p2 + 14m2

2a
ln

(µ+ |p− kF |+ a)(µ+ p+ kF − a)

(µ+ p+ kF + a)(µ+ |p− kF | − a)

)

+θ(p− pF )

(

p+ kF − |p− kF | −
2kFp

a
+ 4µ ln

(a+ |p− kF |+ µ)(a+ p+ kF − µ)

(a+ p+ kF + µ)(a+ |p− kF | − µ)

+
7(k2F − p2F ) + 8p2 + 14m2

2a
ln

(a+ |p− kF |)2 − µ2

(a+ p+ kF )2 − µ2

)]

, (B16)

where, without loss of generality, we again took the limit of vanishing photon mass.

It is straightforward to show that the integral in Eq. (B16) has infrared logarithmic divergencies, similar to those
in function f1. Therefore, we follow the same kind of analysis as in the case of f1 and extract explicitly the following
infrared divergent terms:

f
(IR,div)
2 + f

(IR,div)
3 = − αeB

12π3kF

∂

∂pF

∫

pdp

[

θ(pF − ǫ1 − p)

(

− 3m2

µ
ln

(µ+ |p− kF |)2 − a2

(µ+ p+ kF )2 − a2

)

+θ(p− pF − ǫ2)

(

3m2

a
ln
a− µ+ p− kF
a+ µ+ p+ kF

+
3m2(kF + µ)

p2

)]

=
αeBm2

4π3

[

1

kF + µ

(

ln
µǫ1

kF (kF + µ)
− 2kF

µ

)

+
1

kF + µ
ln

ǫ2
kF + µ

+
kF + µ

k2F

]

. (B17)

Then, the leftover regular part reads

f
(IR,reg)
2 + f

(IR,reg)
3 = − αeB

12π3kF

∂

∂pF

∫

pdp

[

θ(pF − p)

(

p+ kF − |p− kF |+ 4µ ln
(µ+ |p− kF |)2 − a2

(µ+ p+ kF )2 − a2

+
7(k2F − p2F ) + 8p2 + 14m2

2a
ln

(µ+ |p− kF |+ a)(µ+ p+ kF − a)

(µ+ p+ kF + a)(µ+ |p− kF | − a)
+

3m2

µ
ln

(µ+ |p− kF |)2 − a2

(µ+ p+ kF )2 − a2

)

+θ(p− pF )

(

p+ kF − |p− kF | −
2kF p

a
+ 4µ ln

(a+ |p− kF |+ µ)(a+ p+ kF − µ)

(a+ p+ kF + µ)(a+ |p− kF | − µ)

+
7(k2F − p2F ) + 8p2 + 14m2

2a
ln

(a+ |p− kF |)2 − µ2

(a+ p+ kF )2 − µ2
− 3m2

a
ln
a− µ+ p− kF
a+ µ+ p+ kF

− 3m2(kF + µ)

p2

)]

.(B18)

After calculating the derivative with respect to pF in the regular piece (note that a =
√

p2 + µ2 − p2F , i.e., a is a
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function of pF ) and substituting pF → kF afterwards, we obtain

f
(IR,reg)
2 + f

(IR,reg)
3 = −αeB

2π3

(

k2F
3µ

+
m2

µ
ln

k2F
µ(µ+ kF )

+
m2(kF + µ)

2k2F

)

+
αeB

4π3

∫

pdp

a2

[

θ(kF − p)

(

2m2p

µ(kF + µ)
+
p2

a
ln
kF (kF + µ) + p(a− p)

kF (kF + µ)− p(a+ p)

)

+θ(p− kF )

(

2pkF
3a

+
8akF

3(a+ p)
− m2(a− p)

akF + pµ
+
p2

a
ln
p− kF
p+ kF

+
m2

a
ln
a+ p− kF − µ

a+ p+ kF + µ

)]

.(B19)

As is easy to check, the integrand is ∝ 1/p3 when p→ ∞. It is clear, therefore, that the expression is convergent and
no additional ultraviolet regularization is needed. Integrating over the momentum, we finally obtain

f
(IR,reg)
2 + f

(IR,reg)
3 = −αeBkF

2π3

[

kF
3µ

+
m2

kFµ
ln

k2F
µ(µ+ kF )

+
m2(kF + µ)

2k3F

]

+
αeB

2π3

[

kF

(

1 +
m2

µ(kF + µ)
− µ2 +m2

kFµ
ln
kF + µ

µ

)

+ µ

(

µ− kF
kF + µ

(

1 +
kFm

2

3µ2(kF + µ)

)

+
kF (kF + µ)

2µ2
ln

µ

kF
−
(

2 +
kF
µ

)

ln
2µ

kF + µ
+ ln 2− 1

)]

.(B20)

For m≪ |µ|, the final expressions for the infrared divergent and regular contributions simplify as follows:

f
(IR,div)
2 + f

(IR,div)
2 ≃ αeBm2

2π3µ

[

1

4

(

ln
ǫ1
2µ

− 2

)

+
1

4
ln
ǫ2
2µ

+ 1

]

, (B21)

f
(IR,reg)
2 + f

(IR,reg)
3 ≃ −αeBµ

6π3
− αeBm2

24π3µ
. (B22)

3. Collecting all contributions

As seen from Eq. (47), the final expression for the axial current is given in terms of the sum f1 + f2 + f3. The
corresponding function is obtained by collecting all the divergent and regular terms, calculated in the previous two
subsections of this Appendix. In the case m≪ |µ|, in particular, the result reads

f1 + f2 + f3 = f
(IR,div)
1 + f

(IR,div)
2 + f

(IR,div)
2 + f

(IR,reg)
1 + f

(IR,reg)
2 + f

(IR,reg)
3

≃ αeBµ

2π3

(

ln
Λ

2µ
+

11

12

)

+
αeBm2

2π3µ

(

ln
Λ

23/2µ
+

1

6

)

. (B23)

Notice that all infrared regulators (ǫ1 and ǫ2), which were introduced in the divergent parts of f1 and f2+f3 cancelled
out. The only regulator in the last expression is the ultraviolet one Λ. In the final expression for the axial current
(55), this dependence on the ultraviolet regulator cancels out exactly with a similar dependence coming from the
counterterms contribution in Eq. (52).
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