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The consequences of large θ13 for the turbulence signatures in supernova neutrinos

James P. Kneller∗ and Alex W. Mauney†

Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

The set of transition probabilities for a single neutrino emitted from a point proto-neutron source
after passage through a turbulent supernova density profile have been found to be random variates
drawn from parent distributions whose properties depend upon the stage of the explosion, the neu-
trino energy and mixing parameters, the observed channel, and the properties of the turbulence such
as the amplitude C⋆. In this paper we examine the consequences of the recently measured mixing
angle θ13 upon the neutrino flavor transformation in supernova when passing through turbulence,
in order to provide some clarity as to what one should expect in the way of turbulence effects in
the next supernova neutrino burst signal. We find the measurements of a relatively large value of
θ13 means the neutrinos are relatively immune to small, C⋆ . 1%, amplitude turbulence but as C⋆

increases the turbulence effects grow rapidly and spread to all mixing channels. For C⋆ & 10% the
turbulence effects in the high (H) density resonance mixing channels are independent of θ13 but
non-resonant mixing channels are more sensitive to turbulence when θ13 is large.

PACS numbers: 47.27.-i,14.60.Pq,97.60.Bw

I. INTRODUCTION

The progress in the field of supernova neutrinos over
the past decade has been frenetic. The rich phenomenol-
ogy of neutrino collective effects [1–15] (for a review
see [16, 17]) have received the most attention but there
has been an equally radical overhaul of the Mikheyev,
Smirnov & Wolfenstein (MSW) [18, 19] effect as applied
to supernovae ever since it was realized by Schirato &
Fuller [20] that the shockwave racing through the stel-
lar mantle could leave an imprint upon the neutrinos
emitted from the cooling proto-neutron star [20–26]. Re-
cent studies indicate Earth matter effects may be mini-
mal [27]. From this ever-growing body of literature one
now expects that the neutrino signal from the next su-
pernova in our Galaxy will be pregnant with informa-
tion. If the signal can be decoded we might be able to
both determine any unresolved properties of the neutrino
and also to observe the explosion while it is still deep
within the star. Yet most, though not all, of these stud-
ies of neutrino propagation in supernovae use spherically
symmetric density profiles either in a parametrized form
or taken from one-dimensional hydrodynamical simula-
tions. While the use of one-dimensional hydrodynami-
cal profiles for neutrino signal construction is probably
adequate for certain situations - such as neutrinos from
Oxygen, Neon, Magnesium supernova [28–30] which ex-
plode in spherically symmetric simulations [31–33] - it is
now apparent that iron core collapse supernova should
not be expected to be spherically symmetric. Large scale
inhomogeneities are created deep within the explosion
and one observes turbulence during the neutrino heat-
ing/Standing Accretion Shock Instability phase [41–48]
leading to the expectation of violent fluid motions and
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turbulence in the stellar mantle after the shock is revived
and moves outwards. Like collective and shock effects,
turbulence is another supernova feature that can leave
its fingerprints upon the neutrino burst [10, 49–52]. At
first glance turbulence is just a case of a more compli-
cated MSW effect but, upon further reflection, one real-
izes that the randomness of the profiles means the tran-
sition probabilities for a particular neutrino - the set of
probabilities that relates the initial state to the state af-
ter passing through the supernova - along a given ray are
not unique: they will depend upon the exact turbulence
pattern seen by the neutrino as it traveled through the
supernova. The transition probabilities are drawn from a
distribution whose properties will depend upon the stage
of the explosion, the character of the turbulence, and the
neutrino energy and mixing parameters, including θ13.
When the mixing angle θ13 was unknown it was difficult
to make robust statements about the effect of turbulence
because at one value of θ13 the turbulence effects would
be negligible, at another the turbulence would be en-
demic. The recent measurements of the last mixing an-
gle θ13 by T2K [34], Double Chooz [37], RENO [35] and
Daya Bay [36] are all in the region of θ13 ≈ 9◦, signifi-
cantly higher than the Dighe & Smirnov [38] threshold,
and it is now possible to be more definitive about the
consequences of turbulence.

A focused consideration of turbulence effects upon su-
pernova neutrinos for values of θ13 as large as 9◦ is
presently not available and it is the purpose of this pa-
per to fill in that hole in the literature. Our calculations
follow on from the work of Kneller & Volpe [52] upon
which we shall rely heavily for the techniques used to
calculate the turbulence effects and as reference for our
results. We first describe the calculations we undertook
then present our results for the turbulence effects when
the turbulence amplitude is small, less than 1% com-
paring large and small θ13 in order to demonstrate why
values of θ13 ≈ 9◦ greatly reduce the sensitivity of the
neutrinos to small amplitude turbulence. We then turn
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to the case of large amplitude turbulence and compute
the expectation values of the transition probability distri-
butions in both neutrinos and antineutrinos again com-
paring large and small θ13 in order to show why, in this
scenario, large θ13 does not change the sensitivity of the
neutrinos to the turbulence. We finish with a summary
and our conclusions.

II. DESCRIPTION OF THE CALCULATIONS

The quantities we are interested in calculating are the
probabilities that some initial neutrino state |ν(x)〉 at x
is later detected as the state |ν(x′)〉 at x′. These prob-
abilities are computed from the S-matrix which relates
the initial and final states via |ν(x′)〉 = S(x′, x) |ν(x)〉.
The S-matrix is found by solving the equation

ı
dS

dx
= H S (1)

where H is the Hamiltonian. In matter the Hamiltonian
is composed of at least two terms: the vacuum contri-
bution H0 and the MSW potential V . When solving
for S one must work in a particular basis and the ba-
sis determines the structure of the terms in the Hamil-
tonian. In the ‘mass’ basis the vacuum Hamiltonian is
diagonal and described by two mass squared differences
δm2

ij = m2

i − m2

j and the neutrino energy E. Through

this paper we shall use the values of δm2

21
= 8×10−5 eV2

and |δm2
32| = 3 × 10−3 eV2 which are consistent with

present experimental values. In the flavor basis the
off-diagonal elements are non-zero leading to the phe-
nomenon of flavor oscillations. The two bases are related
by the Maki-Nakagawa-Sakata-Pontecorvo [39, 40] uni-
tary matrix parametrized by three mixing angles, θ12,
θ13 and θ23, a CP phase and two Majoranna phases. For
this paper we adopt sin2 2θ12 = 0.83 and sin2 2θ23 = 1
which are, again, consistent with present experimental
values
In contrast, the matter potential is diagonal in the

flavor basis because the matter picks out the neutrino
flavors. The common neutral current contribution to
the matter potential may be dropped because it leads
only to a global phase which is unobservable leaving just
the charged current potential,

√
2GFne(r) where GF is

the Fermi constant and ne(r) the electron density, which
affects just the electron neutrino/antineutrino i.e. the
element Vee. In addition to the matter potential, it
has been found that the neutrino density in supernovae
is so high that an additional potential due to neutrino
self-interactions must be included. This neutrino self-
coupling has been shown to lead to very interesting be-
havior but for our purposes the self-interaction is negli-
gible when the turbulent region in the star has moved
beyond 1000 km so we shall ignore this contribution.
When the vacuum and matter terms are added to-

gether the Hamiltonian is neither diagonal in the mass
nor the flavor bases so one would expect oscillations of
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FIG. 1. The matter potential as a function of distance
through a supernova taken from a hydrodynamical simulation
at 4.5 s post bounce. The vertical lines indicate the positions
of the reverse and forward shock in the profile. The hori-
zontal dashed-dotted line is the two-flavor resonance density
for a 25 MeV neutrino with mixing angle sin2 2θ = 0.1 and
mass splitting δm2 = 3 × 10−3 eV2 i.e. the high (H) density
resonance

both the flavor and mass probabilities. These oscillations
are a source of potential confusion for any analysis. A ba-
sis can be found which diagonalizes H for a given value
of the electron density in the sense that there is a matrix
U such that U †HU = K where K is the diagonal matrix
of eigenvalues. This basis is known as the matter basis
which becomes the mass basis (up to arbitrary phases)
when the matter potential disappears. The matter mix-
ing matrix U which achieves this diagonalization depends
upon the position through the star therefore dU/dx 6= 0
in general. The non-zero derivative of the matter mixing
matrix re-introduces off-diagonal elements into the mat-
ter basis Hamiltonian which will lead to mixing between
the matter basis states if they become large. We refer the
reader to Kneller & McLaughlin [55] and Galais, Kneller
& Volpe [12] for a more detailed description of the mat-
ter mixing matrix. We shall report our results using the
matter basis states throughout this paper.

Next we must introduce the turbulent density pro-
file though which the neutrinos will propagate. Ideally
one would like to use density profiles taken from multi-
dimensional simulations but at the present time that is
not possible. The current multi-dimensional simulations
do not extend out to the region of r & 104 km where
the turbulence would have its greatest effects because
the matter there has little bearing upon the explosion,
and even if they did, they do not run to sufficiently late
post-bounce times to see the shock move out there. Fi-
nally, the dynamic scale the simulations would need to
cover would be of order forty to fifty decibels - four to
five orders of magnitude - because the neutrino oscilla-
tion wavelength is significantly smaller than the radius
in the high (H) density resonance region and beyond.
For these reasons the effect of the turbulence upon the
neutrinos is most often modeled as a random field. We
adopt a one-dimensional supernova profile from a hydro-
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dynamical simulation and in order to facilitate compar-
ison the profile we select is the same 4.5 s post bounce
snapshot taken from Kneller, McLaughlin & Brockman
used in Kneller & Volpe. This profile is shown in fig-
ure (1). In the figure we find two shocks: the forward
shock at rs formed from the core bounce, and the re-
verse shock at rr formed by the wind created above the
proto-neutron star running into the material ahead of it.
In multi-dimensional simulations of supernova both these
shock fronts are distorted leading to strong turbulence in
the region between them. The reason we select the profile
shown in figure (1) is because the shock in this simula-
tion has propagated out to the H resonance region at this
time. Simulations of supernova using different progenitor
structures have found considerable variation in the delay
before the shock arrives in the H resonance region, see
Lund & Kneller [57].
Now that we have our profile we need to adopt a neu-

trino energy. The effect of turbulence upon a given neu-
trino at a given epoch depends upon its energy because
different neutrino energies have different resonance den-
sities and the turbulence will not affect these resonances
equally. This is shown in Galais et al. [56] where the
reader may find a plot of the effect of a single realiza-
tion of turbulence inserted into exactly the same density
profile we will use upon a neutrino spectrum albeit at a
mixing angle of θ13 = 0.573◦. For this paper we shall
use a neutrino energy such that the H resonance den-
sity does not intersect the shocks. The reason we avoid
the shocks is twofold. Hydrodynamical simulations typ-
ically yield ‘soft’ shocks that do not cause transitions
between the neutrino states if the mixing angle is too
big [20, 23, 56, 57]. This lack of a transition is unphys-
ical. The second reason is that we wish to focus solely
upon the turbulence effect and diabatic1 MSW transi-
tions caused by the shocks complicates the interpreta-
tion. For these reasons we focus upon neutrino energies
in the range 20 − 30 MeV and the two-flavor resonance
density for a 25 MeV is shown in figure (1). The reader
can verify that it does not intersect the profile at either
shock.
For future reference we shown in figure (2) the transi-

tion probability P23 for a normal hierarchy and P̄13 for
an inverted hierarchy using the density profile shown in
figure (1) for a 25 MeV neutrino as a function of the
mixing angle θ13. Note that these transition probabil-
ities are very close to zero when using a mixing angle
given by sin2 2θ13 = 0.1. The reader may be surprised to
see that the figure indicates the transition probabilities
change from the diabatic limit, P̄13 = 1 or P23 = 1, to the
adiabatic limit P̄13 = 0 or P23 = 0 is not monotonic in the
H resonance channel because of the aforementioned pres-
ence of the multiple H resonances in the profile. The mul-

1 Throughout this paper we shall use the term ‘diabatic’ to mean

the opposite of ‘adiabatic’: the reader will sometimes encounter

in other literature the term ‘non-adiabatic’ instead.
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FIG. 2. The transition probability P̄13 in an inverted hierar-
chy (top panel) and P23 in a normal hierarchy (lower panel)
after passing through the density profile shown in figure (1)
for a 25 MeV neutrino as a function of the mixing angle θ13

tiple H resonances leads to an interference effect which
is sensitive to θ13 when 0.1◦ . θ13 . 1◦ for this neutrino
energy, profile and mass splitting [53, 54].

A. Modeling the turbulence

The turbulence is introduced by multiplying the pro-
file in the region between the reverse and forward shocks
by a factor 1 + F (r) where F (r) is a Gaussian random
field with zero mean. An example a turbulent profile
generated this way can be seen in figure (1) of Kneller
& Volpe. Since the quality of our results in this entire
paper rests upon our ability to do this well, it is worth
our effort to explain carefully how F (r) was constructed.
The random field is represented using a Fourier series i.e.

F (r) = C⋆ tanh

(

r − rr
λ

)

tanh

(

rs − r

λ

)

×
Nk
∑

n=1

√

Vn {An cos (kn r) +Bn sin (kn r)} .
(2)

for radii between rr ≤ r ≤ rs and zero outside this range.
The two radii rr and rs are the positions of the reverse
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FIG. 3. The reduced wavelength of the splitting between the eigenvalues. The density profile is that shown in figure (1), the
neutrino energy is 25 MeV and the neutrino mixing angle θ13 is given by sin2 2θ13 = 0.1. In the left panel we show the normal
hierarchy case, in the right panel the inverted and the top row of each is for the neutrinos and the bottom row for antineutrinos.

and forward shock respectively found in the underlying
profile. In this equation the parameter C⋆ sets the ampli-
tude of the fluctuations. The two tanh terms are included
to suppress fluctuations close to the shocks and prevent
discontinuities at rs and rr, and the parameter λ is a
scale over which the fluctuations reach their extent size.
We set λ = 100 km. In the second half of equation (2) the
members of the set of co-efficients {A} and {B} are in-
dependent standard Gaussian random variates with zero
mean thus ensuring the vanishing expectation value of
F . The Nk wavenumbers form a set {k} and, finally, the
parameters Vn are k-space volume co-efficients to which
we return shortly. The power spectrum of the random
field was selected to be

E(k) =
(α− 1)

2 k⋆

(

k⋆
|k|

)α

Θ(|k| − k⋆). (3)

Here k⋆ is the cutoff scale, α is the spectral index and Θ
is the Heaviside step function. Throughout this paper we
shall use a wavenumber cutoff k⋆ set to k⋆ = π/(rs − rr)
i.e. a wavelength twice the distance between the shocks
and we shall adopt the Kolmogorov spectrum where
α = 5/3. The method of fixing the Nk k’s, V ’s, A’s and
B’s for a realization of F is ‘variant C’ of the Random-
ization Method described in Kramer, Kurbanmuradov,
& Sabelfeld [59]. This Randomization Method partitions
the k-space into Nk regions and from each we select a
random wavevector using the power-spectrum, E(k), as
a probability distribution. The volume parameters Vn are
the integrals of the power spectrum over each partition if
the power spectrum is normalized to unity. Variant C of
the Randomization Method divides the k-space so that

the number of partitions per decade is uniform over Nd

decades starting from a cutoff scale k⋆. The logarithmic
distribution of the modes is designed to ensure the quality
of the agreement between the exact statistical behavior
of the field and that of an ensemble of realizations is uni-
form over a the range of lengthscales considered i.e. it is
scale invariant. This feature is important for our study
because the oscillation wavelength of the neutrinos is con-
stantly changing as the density evolves. The evolution
of the reduced oscillation wavelengths for the neutrinos -
λij = 1/|δkij | - and antineutrinos - λ̄ij = 1/|δk̄ij | - where
δkij and δk̄ij are the differences between the eigenvalues
i and j of the neutrinos and antineutrinos respectively -
as a function of distance through the profile are shown
in figure (3) for both a normal and an inverse hierarchy
when the mixing angle θ13 is set to sin

2 2θ13 = 0.1 and the
energy is E = 25 MeV. Again the reverse and forward
shocks are indicated by the two vertical dashed lines.
This figure can be used to determine a suitable value for
Nd because we observe that in the region between the
shocks the typical wavelengths are & 1 km which is the
minimum lengthscale we need to cover [51, 60]. This
is approximately 4 orders of magnitude smaller than the
turbulence cut-off scale 1/k⋆ thus we deduce that we need
to pick Nd ≥ 4 to cover the necessary decades in k-space.

With Nd determined we now seek a suitable value of
Nk by requiring that the statistical properties of an en-
semble of random field realizations closely match the ex-
act properties for the field. The statistical property we
compute is the second order structure function G2(δr),
the expectation value of the square difference between
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the field at two radial points, and given by

G2(δr) = 〈[F (r + δr) − F (r)]
2〉 (4)

where δr is the separation. The function G2(δr) is re-
lated to the two-point correlation function B(δr) via
G2(δr)/2 = 1 − B(δr) and, for the power spectrum we
have adopted, we can compute the two-point correlation
function analytically to be

B(δr) =
(α− 1)

2
(2π k⋆ δr)

α−1
{

exp
( ıπα

2

)

Γ(1 − α, 2ıπ k⋆ δr) + exp
( ıπα

2

)

Γ(1− α,−2ıπ k⋆ δr)
}

. (5)
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FIG. 4. The ratio R(δr) of the numerically calculated struc-
ture function to the analytic result as a function of k⋆δr. The
two curves in the figure correspond to {Nk, Nd} = {50, 5} (red
solid) and {Nk, Nd} = {90, 9} (blue dashed). At every k⋆δr

we generated 30, 000 realization of the field and the error bar
on each point is the standard deviation of the mean.

where Γ(n, x) is the upper incomplete Gamma function.
In figure (4) we show the ratio R(δr) of the numerically
calculated structure function to the exact solution as a
function of the scale k⋆δr when we use either Nk = 50
wavenumbers spread over Nd = 5 decades or Nk = 90
wavenumbers over Nd = 9 decades. The numerical cal-
culation is the average of 30, 000 realizations of the tur-
bulence and the error bar on each point is the standard
deviation of the sample mean. The figure indicates that
the method we use to generate random field realizations
reproduces the analytic results for the structure function
very well and with high efficiency because good agree-
ment between the statistics of the ensemble and the ex-
act result requires just Nk/Nd = 10. In fact, like Kramer,
Kurbanmuradov, & Sabelfeld [59] before us, we find even
Nk/Nd ratios of just Nk/Nd ∼ 2− 3 are sufficient to give
acceptable agreement. We re-assure the reader we shall
stick with Nk/Nd = 10.

III. RESULTS

With the construction of the random fields in place we
can proceed to generate a turbulent profile and propagate
neutrinos and antineutrinos through it. This construc-
tion and propagation recipe is then repeated a minimum
of one thousand times - sometimes much larger - to con-
struct an ensemble of transition probabilities of size N .
Once we have our sample we can then go ahead and com-
pute means 〈Pij〉, variances σij , etc. The hierarchy will
be set to normal and we shall comment on how our re-
sults translate to the inverted hierarchy. The neutrino
energy will be specified when necessary. The turbulence
effects - or lack of them - when using a value of θ13 close
to the present measurements was not fully explored in
previous studies so to make a connection with previous
works, and to explain why a large value of θ13 gives the
results that it does, we shall consider multiple values of
θ13 in order to show what other possibilities would have
produced in contrast.

A. Small amplitude turbulence

For small amplitude turbulence only the H resonant
channel is affected: mixing between states ν2 and ν3 for
a normal hierarchy and states ν̄1 and ν̄3 for an inverted.
Previously it has been found that effects could appear
in the neutrinos even for turbulence amplitudes in the
range 10−5 . C⋆ . 0.1 when the mixing angle was set at
sin2 2θ13 = 4× 10−4. If we allow the value of θ13 to float
then we find the normal hierarchy H resonance channel
transition probability P23 can become more or less dia-
batic. This can be explained from the behavior of the
diabaticity parameter Γ23 [55], which characterizes the
degree of mixing in the H resonance channel for a normal
hierarchy. This quantity is inversely proportional to the
difference δk23 between the eigenvalues k2 and k3 and
proportional to the derivative of the matter mixing angle
θ̃13. Increasing θ13 increases the eigenvalue splitting and
also makes the resonance ‘wider’ in the sense that the
change between the limiting values of the matter mixing
angle θ̃13 occurs over a greater extent reducing the mat-
ter angle derivative. Both effects decrease the diabaticity
and, for these reasons, reaching the depolarization limit
for P23 becomes more difficult if the domain of turbulence
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is fixed as is the case here. If the profile were changed so
as to allow a larger turbulence region then eventually one
should expect to reach the depolarization limit no matter
what the mixing angle. A similar argument applies when
θ13 becomes small: now the diabaticity increases as θ13
decreases because the splitting between the eigenvalues
at the resonance decreases and the transition occurs more
rapidly. Either way, as θ13 varies the distributions for the
transition probability P23 will differ from the uniform dis-
tributions seen in Kneller & Volpe leading to subsequent
evolution of the expectation values and distribution vari-
ances. This evolution with θ13 is seen in figure (5) where
we plot the mean value 〈P23〉 and the standard deviation
of the samples from a single emission point as a function
of θ13 for three neutrino energies. The reader should
compare the evolution of 〈P23〉 in this figure with that
in figure (2). For all three energies, the mean value of
〈P23〉 has an inflection region between 0.1◦ . θ13 . 1◦:
for the smaller values of θ13 we see 〈P23〉 > 1/2, for the
larger 〈P23〉 < 1/2 and for θ13 ∼ 9◦ the mean value of
P23 is almost zero. One also observes how the sample
standard deviation changes as θ13 varies and sees that it
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FIG. 5. The mean of the transition probability, 〈P23〉 (solid
line, squares) and the standard deviation σ23 (dashed line,
circles) as function of the mixing angle θ13. The turbulence
amplitude is set to C⋆ = 1% and {Nk, Nd} = {50, 5}. In the
top panel the neutrino energy is 20 MeV, in the middle it is
25 MeV, and in the bottom it is 30 MeV.

is maximal at σ23 = 0.28 for the range 0.1◦ . θ13 . 1◦

and almost zero when θ13 ∼ 9◦. This figure shows how
the measurement of θ13 has brought clarity to the issue
of turbulence and supernova neutrinos. For θ13 outside
the range 0.1◦ . θ13 . 1◦ the distribution of P23 is es-
sentially a delta function at either zero or unity; for θ13
inside the range 0.1◦ . θ13 . 1◦ the distribution is uni-
form. Thus when θ13 was unknown it was impossible to
determine whether the effect of small amplitude turbu-
lence was negligible or overwhelming. The measurement
of a large value of θ13 indicates it is the former and the
result has consequences for the observability of spectral
features in the next Galactic supernova burst signal.

B. Large Amplitudes

1. The neutrino mixing channels

For large amplitudes, C⋆ & 0.1, the effects of turbu-
lence are no longer restricted to the H resonance channel
but appear in numerous places. The first effect worth
noting is that the distribution of the H resonance chan-
nel transition probability, P23 in the case of a normal
hierarchy, becomes independent of θ13. This can be seen
in figure (6) where the reader will observe the evolution
of the mean value of this transition probability 〈P23〉 as
a function of C⋆. For the two values of θ13 considered,
the spread in 〈P23〉 at small amplitudes has disappeared
by C⋆ ∼ 0.3. We also notice that around this same tur-
bulence amplitude there begins the shift to three-flavor
depolarization where 〈P23〉 = 1/3.
In addition to the changes in the H resonance chan-

nel we also begin to observe mixing in the low (L)
density resonance channel, between ν1 and ν2 as the
amplitude grows. This simultaneous mixing between
ν1 and ν2 and ν2 and ν3 breaks HL factorization and
Kneller & Volpe presented two examples which explic-
itly showed broken HL factorization. For the neutrino
mixing parameters we are using, the ratio of H and
L resonance densities (using the two-flavor formula) is
ρH/ρL = (δm2

23
cos 2θ13)/(δm

2

12
cos 2θ12) ≈ 90. This

large ratio would seem to imply that we need fluctuations
of order F ∼ 1 because only if F = −0.99 would the den-
sity fluctuation give ρH(1+F ) ≈ ρL. Three effects soften
this requirement: the L resonance has a large width -
∆ρL/ρL = tan 2θ12 ∼ 1, the density in the turbulence
region can be much lower than the resonance density ρH
for the given neutrino energy - see figure (1), and, finally,
our choice of a Gaussian random field for the turbulence
will ensure that large fluctuations will occur occasionally
no matter what we use for the amplitude, larger ampli-
tudes just make the extremal fluctuations more proba-
ble. The clearest signature of broken HL factorization
is a non-zero transition probability P31 because only if
HL factorization is broken can we generate an effective
mixing between ν1 and ν3. To see this we consider the
S-matrices for the case of factored HL resonances and
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emitted from a single point. Each curve corresponds to a
different value of θ13: sin

2 2θ13 = 4× 10−4 are squares joined
by solid lines, sin2 2θ13 = 0.1 are circles joined by dashed
lines. The neutrino energy is 25 MeV.

broken factorization. The S-matrix for passing through
one or several H resonances, SH , has the general form

SH =





1 0 0
0 αH βH

0 −β⋆
H α⋆

H



 (6)

where αH and βH are Cayley-Klein parameters. Simi-
larly the S-matrix for L resonances, SL, is

SL =





αL βL 0
−β⋆

L α⋆
L 0

0 0 1



 (7)

where αH and βH are Cayley-Klein parameters for the L
resonance. If HL factorization holds then the S-matrix
which describes the evolution for the neutrino through
the entire profile is S = SLSH . If all the L resonances
occur after the H resonances then we find the transition
probability P31 = |S31|2 is identically zero. But if addi-
tional H and L resonances occur, denoted by S′

H and S′
L,

then the S-matrix describing the neutrino evolution is of
the form S = S′

LS
′
HSLSH and P31 = |β′

H |2|βL|2 will be
non-zero. In figure (7) we show frequency distributions
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P

31

1
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P 31

)
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1000
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P 31

)

FIG. 7. The frequency distribution of the transition proba-
bility P31 for a turbulence amplitude is set to C⋆ = 0.3. The
neutrino energy is 25 MeV and we used Nk = 50, Nd = 5
for the turbulence generator. The top panel used a value
of θ13 given by sin2 2θ13 = 0.1 and the bottom panel is for
sin2 2θ13 = 4× 10−4.

of the transition probability P31 for neutrinos at two val-
ues of θ13 when C⋆ = 0.3. The distributions are clearly
non-zero for non-zero P31 as expected if HL factorization
were broken. The distributions fall rapidly as something
like inverse-power laws, f(P31) ∝ 1/Pn

31 with n ∼ 2 or
exponentials for this particular calculation.
Other mixing channels which were previously delta-

distributed for small turbulence amplitudes - such as P12

and P13 - also begin to possess similar inverse power-
law/exponential distributions when C⋆ & 0.1 and their
means increase quadratically with C⋆. The evolution of
these two transition probabilities is also shown in figure
(6). The figure shows that 〈P12〉 at some fixed C⋆ in-
creases as θ13 increases but 〈P13〉 decreases as θ13 in-
creases though, in both cases, the change is not very
large. The anticorrelation between 〈P12〉 and 〈P13〉 is
a reflection of the unitarity requirement that ΣjPij = 1
for a given i.

2. The antineutrino mixing channels

In addition to breaking HL factorization, large am-
plitude turbulence induces effects in the non-resonance

channels particularly ν̄1 ↔ ν̄2 regardless of the hierarchy,
ν̄1 ↔ ν̄3 for a normal hierarchy and P23 for an inverted hi-
erarchy. If we stick with considering the normal hierarchy
case then we can compute the mean of the non-resonant
transition probabilities P̄12, P̄13 and P̄23 as a function of
the mixing angle θ13 and turbulence amplitude C⋆. These
are shown in figure (8). Like 〈P12〉 and 〈P13〉 shown in
figure (6), the reader will observe that the three tran-
sition probabilities grow rapidly with C⋆ reaching the
levels of 〈P̄12〉 ∼ (10%), 〈P̄13〉 ∼ (1%) and 〈P̄23〉 ∼ (1%)
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FIG. 8. The mean of the transition probability P̄12 - top
panel - P̄13 - center panel - and P̄23 - bottom panel - as a
function of C⋆ for antineutrinos. Each curve corresponds to
a different value of θ13: sin2 2θ13 = 4× 10−4 are squares and
sin2 2θ13 = 0.1 are circles.

at C⋆ ∼ 0.5. Further comparison with figure (6) reveals
〈P12〉 ≈ 〈P̄12〉 and the expectation values for the tran-
sition probabilities P̄13 and P̄23 are both smaller than
〈P13〉 by roughly an order of magnitude and much more
sensitive to θ13. The expectation value for P13 varied
by a factor of ∼ 2 when θ13 allowed to float, here P̄13

and P̄23 change by an ∼ 1− 2 orders of magnitude when
increasing from sin2 2θ13 = 4 × 10−4 to sin2 2θ13 = 0.1.
This same sensitivity to θ13 was explained in Kneller &
Volpe as due to the proportionality of the antineutrino
diabaticity parameter Γ̄13 to the vacuum mixing angle.
The current preference for θ13 close to θ13 ∼ 9◦ indicates
〈P̄13〉 and 〈P̄23〉 can be of order a few percent if C⋆ ∼ 0.5.

IV. SUMMARY AND CONCLUSIONS

The effects of supernova turbulence upon the flavor
composition of neutrinos that pass through it depend
upon the numerous parameters that one needs to intro-
duce. Using a supernova density profile taken from a
simulation 4.5 s post-bounce, turbulence of amplitude
C⋆ = 1% only affects the H resonance mixing channel to
any appreciable degree and then only for mixing angles in
the range 0.1◦ . θ13 . 1◦. Now that we know θ13 is closer
to 9◦ we can be definitive and state there is little effect of
small amplitude density fluctuations. This result is valid
for a range of neutrino energies - all those which have
MSW resonances in the region where the turbulence is
located. The removal of turbulence effects upon the neu-
trinos for small amplitudes has important consequences
for the prospect of observing signatures of collective and
shock wave effects in supernova neutrino burst signals,
which is explored in Lund & Kneller [57].
For the same post-bounce epoch, the turbulence ef-

fects metastasize as the amplitude increases. The sen-
sitivity to θ13 in the H resonant mixing channel is lost
and this transistion probability reaches the depolariation
limit. For large amplitudes HL factorization becomes in-
creasingly broken. For amplitudes of C⋆ & 0.3, and a
normal hierarchy the expectation values of the transition
probabilities P12 - the L resonance channel - P13, P23 and
P̄12 are of order 10% or greater; in an inverted hierarchy
it is the transition probabilities P12, P̄12, P̄13 and P̄23

whose expectation values are of equivalent magnitudes.
None appear to be sensitive to θ13 and these channels are
the most promising for observing the signatures of large
amplitude turbulence. The remaining mixing channels
for each hierarchy, P̄13 and P̄23 for a normal case, P13,
P23 and P̄23 for an inverted, are small, a few percent,
even at C⋆ ∼ 0.5 but we find large θ13 increases their
sensitivity to turbulence. Further discussions of the ef-
fects of turbulence at large amplitudes when combined
with collective and shock wave effects can be found in
Lund & Kneller [57].
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