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We begin the study of a class of string-motivated effective supergravity theories in light of current
data from the CERN Large Hadron Collider (LHC). The case of heterotic string theory, in which the
dilaton is stabilized via non-perturbative corrections to the Kähler metric, will be considered first.
The model, which represents the strong dynamics of a presumed gaugino condensation in the hidden
sector, is highly constrained and therefore predictive. We find that much of the parameter space
associated with confined hidden sector gauge groups up to rank five is now observationally disfavored
by the LHC results. Most of the theoretically-motivated parameter space that remains can be probed
with data that has already been collected, and most of the remainder will be definitively explored
within the first year of operation at

√
s = 13 TeV. Expected signatures for a number of benchmark

points are discussed. We find that the surviving space of the model makes a precise prediction as to
the relation of many superpartner masses, as well as the manner in which the correct dark matter
relic density is obtained. Implications for current and future dark matter search experiments are
discussed.

I. INTRODUCTION

The Large Hardron Collider (LHC) has now ushered in the long-awaited data era for physics beyond the Standard
Model. The recent discovery of a resonance consistent with the Higgs boson of the Standard Model [1, 2], and the
observation of the rare decay Bs → µ+µ− [3], has triumphantly affirmed the Standard Model while providing crucial
clues as to what may, and may not, be the next great theory of nature. Supersymmetry has long held pride of place
among such postulated theories, and while the recent results are generally in conflict with very low superpartner
masses, the notion that supersymmetry is relevant for physics at the electroweak scale is still very much a compelling
paradigm.

As most sensible theories of low-energy physics arising from string compactification contain supersymmetry in four
dimensions, the on-going LHC data continues to raise the stakes for the notion that a meaningful ‘string phenomenol-
ogy’ exists. It is entirely appropriate for the string theory community to pause and reflect on what, if anything,
the LHC data is saying about the construction of low-energy particle physics from string compactification. In this
regard, ‘top-down’ models are a good place to begin asking questions about how LHC data is shaping the theoretical
consensus on how supersymmetry is broken and then transmitted to the fields of the observable sector. Such questions
require a model context to be sensible scientific questions.

String-theoretic models must have stabilized moduli to make bona fide statements about supersymmetry breaking,
and hence the superpartner spectrum. One is thus restricted to only a few well-studied examples in the string
phenomenology literature. Here we will focus on the class of models which give rise to the so-called ‘mirage pattern’
of gaugino masses [4], in which the ratios of the soft supersymmetry-breaking gaugino masses at the electroweak scale
are governed by the approximate formula

M1 : M2 : M3 = (1.0 + 0.66α) : (1.93 + 0.19α) : (5.87− 1.76α) . (1)

The parameter α is determined by the model-dependent dynamics which stabilize the relevant moduli in the theory,
and it is indirectly measurable with sufficient LHC data through its influence on various collider observables [5]. For
example, when α ' 2 gaugino soft masses are nearly equal at the electroweak scale. Such a compressed gaugino mass
spectrum may allow a gluino to exist in the LHC data at a mass significantly smaller than the nominal limit coming
from direct searches [6, 7]. For most semi-realistic string models – and certainly for the model considered in this
paper – such values are unlikely to arise, yet substantial departures from the ratios predicted by unified theories such
as minimal supergravity (mSUGRA) [8–10] are nevertheless likely. We will refer to any string-motivated model of
supersymmetry breaking whose gaugino sector follows the pattern in (1) as a ‘mirage model’, though this term will
include theories with widely differing patterns of soft supersymmetry-breaking scalar masses.

There are many reasons to begin a study of string phenomenology in the LHC data era with such models. As
mentioned above, the mirage pattern in the gaugino sector is known to allow for lighter gluino masses relative to squark
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masses than in more constrained models, given the current direct search strategies at the LHC. More importantly
for our purposes, the mirage pattern in the gaugino sector is a surprisingly robust prediction of a diverse array of
string compactifications. The reason for this ubiquity can be identified in the rather simple properties all such mirage
models share: (1) the modulus which determines the gauge couplings in the observable sector is the last modulus
to be stabilized, (2) this stabilization involves gaugino condensation in a hidden sector, and (3) the non-canonical
kinetic term for this modulus is effectively altered from its tree-level form via some sort of non-perturbative effect,
which is tuned to result in vanishing vacuum energy in the eventual minimum. It is the last property that contains
the model-dependence and which distinguishes one manifestation of the mirage pattern from another.

Finally, mirage models represent some of the most thoroughly studied effective supergravity theories within the
context of string phenomenology. The models which form the focus of this paper – Kähler-stabilized heterotic string
compactifications – were the first such models to be constructed and remain among the most predictive due to their
relatively small number of free parameters [11]. The three conditions identified above, in the context of heterotic
strings, are precisely the ingredients of what Casas referred to as the ‘generalized dilaton domination’ scenario [12].
The model, first constructed by Binétruy, Gaillard and Wu (henceforth ’BGW’) [13, 14], can therefore be thought of
as a concrete top-down manifestation of a bottom-up phenomenological paradigm. We will support these observations
in the following section, in which the broad theoretical outlines of the BGW scneario are laid out. In Section III we
put the BGW model to the test in confronting data, especially the impact on the parameter space of the theory
from the observation of a Standard Model-like Higgs boson with a mass near 126 GeV, and the constraint from the
WMAP satellite on the relic density of stable neutralinos. In Section IV we consider the limits from direct searches
for superpartners at the LHC on that part of the theory space which still remains. Gluinos with masses below
800-900 GeV are excluded in the BGW model, primarily from searches for same-sign dileptons with accompanying
b-tagged jets. In general, we find that the model is highly constrained, with the remaining viable parameter space
predicting an ensemble of electroweak charginos and neutralinos with high Higgsino content in the mass range of
300-700 GeV. In Section V we comment on the prospects for discovery of superpartners at the LHC at post-shutdown
center-of-mass energies of

√
s = 13 TeV. We also comment on the likelihood of measuring the presence of neutralino

dark matter in current and future dark matter detection experiments.

II. THE BGW MODEL

The BGW model is motivated from orbifold compactifications of heterotic string theory, though many of its features
would be equally applicable to smooth Calabi-Yau compactifications. The moduli sector of the theory will here be
confined to three Kähler moduli and a single dilaton field. The low-energy supergravity theory will be assumed to
respect an SL(2,Z) symmetry operating upon the Kähler moduli. We will refer to this symmetry as simply ‘modular
invariance’ when describing the effective Lagrangian. Such modular transformations are classical symmetries of the
supergravity theory, but are anomalous at the quantum level. The invariance is restored by a string-derived Green-
Schwarz counterterm [15–18] and possible stringy threshold corrections to gauge couplings [19].

Moduli stabilization is to be achieved in the BGW model via confinement of hidden sector gauge groups. More
than one such group is accommodated in the model, as are possible matter condensates for fields charged under the
confining gauge groups. Kähler moduli will be stabilized at self-dual points, while the dilaton is minimized in such
a way as to achieve a weak-coupling solution to the scalar potential and vanishing vacuum energy simultaneously.
This is accomplished by introducing non-perturbative corrections to the dilaton action arising from string instanton
effects. These corrections are treated in a phenomenological manner, and result in a modification of the Kähler metric
for the dilaton in the component Lagrangian. As stated above, this can be thought of as an implementation of the
generalized dilaton domination scenario of Casas, which will necessarily give rise to the mirage pattern of gaugino
masses.

A. Walk-Through of the Model

The goal of this section is to lay out the features of the BGW model and specify notation so as to identify the
free parameters of the theory. Additional background and detail are provided in the references given throughout this
section. We note that we will display terms in the effective superspace Lagrangian using the formalism of Kähler U(1)
superspace [20]. Most intuition as to the resulting component Lagrangian from the formalism of Wess and Bagger [21]
continues to hold; a useful primer into the differences can be found in the brief appendix to reference [11].

The choice of Kähler U(1) superspace is motivated in large part because it naturally incorporates the string theory
dilaton into a real, linear multiplet [22], in which form the implementation of non-perturbative effects arising from
string theory is made far more transparent. Since these effects form the crux of the BGW stabilization mechanism,
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the linear multiplet formulation is highly preferable to the familiar chiral formulation. At the leading order the two
formalisms are related by the simple superfield identification

L =
1

S + S
(2)

though this identification fails to be satisfactory at higher loop level. The lowest component ` of the superfield L
is then the dilaton and the vacuum expectation value (VEV) of the lowest component ` = L|θ=θ̄=0 determines the
(universal) gauge coupling constant gstr at the scale Λstr via the relation

g2
str

2
= 〈`〉 . (3)

This quantity represents the string loop expansion parameter. Therefore string theory information from higher loops
is more naturally encoded in terms of this set of component fields.

Stabilization will occur through non-perturbative corrections to the dilaton action motivated by string instanton
calculations. Such corrections can be represented as a modification to the Kähler potential k(L) for the dilaton,
though in the Kähler U(1) superspace formulation it is the modifications to the action, via the kinetic superspace
Lagrangian, that should be taken as the fundamental quantity. We can therefore parameterize the corrections by two
(related) functions of the linear multiplet

LKE =

∫
d4θ E [−2 + f(L)] , k(L) = ln L+ g(L) , (4)

where f(L) and g(L) are related by the differential equation

L
dg(L)

dL
= −Ldf(L)

dL
+ f(L) . (5)

Note that the tree level dilaton Kähler potential is the straightforward analog to that of the chiral formulation
K = − ln(S + S). Including the three Kähler moduli T I we have the complete Kähler potential for the geometrical
moduli

K = ln(L) + g(L)−
∑
I

ln
(
T I + T

I
)
. (6)

As we wish to obtain the classical limit at weak coupling, we impose a further boundary condition at vanishing
coupling that g(L = 0) = 0 and f(L = 0) = 0. In the presence of these nonperturbative effects the relationship
between the dilaton and the effective field theory gauge coupling is modified from the relation in (3) to

g2
str

2
=

〈
`

1 + f (`)

〉
. (7)

The corrections to the dilaton action will take the form of a sum over instanton corrections, with undetermined
coefficients An [23–26]

f(L) =
∑
n

An(
√
L)−ne−B/

√
L . (8)

For simplicity we have taken a single overall normalization for the argument of the exponent, but this can easily be
relaxed. It is an important feature of (8) that these string instanton effects scale like e−1/g (when we use ` ∼ g2)

and are thus stronger than analogous nonperturbative effects in field theory which have the form e−1/g2 .They can
therefore be of significance even in cases where the effective four-dimensional gauge coupling at the string scale is
weak [27].

Subsequent phenomenology is largely insensitive to the precise values of the coefficients in the series (8). We will
therefore allow ourselves the freedom to assume that the coefficients can be tuned so as to achieve the three necessary
conditions of the minimum: (1) that a minimum at finite 〈`〉 is achieved, (2) that the dilaton potential vanishes in the
vacuum at that value, and (3) that the string coupling given by (7) satisfies g2

str = 1/2 at the minimum. In practice,
it is sufficient to truncate this sum to only the first two terms

f(L) =

(
A0 +

A1√
L

)
e−B/

√
L , (9)
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which allows a simultaneous solution to be obtained for 〈L〉 = ` and two out of the three constants A0, A1 and B,
with the third being fixed beforehand.

The other ingredient for our dilaton stabilization mechanism is provided by non-perturbative field theoretic con-
tributions arising from gaugino condensation in the hidden sector of the theory. We will allow for a general hidden
sector group

Ghidden =

n∏
a=1

Ga ⊗ U(1)m . (10)

where the label a counts non-Abelian factors in the hidden sector. Gaugino condensates are represented in superspace
by a composite field operator Ua [28], which denotes a Ga-charged gauge condensate chiral superfield

Ua 'Wα
aW

a
α , (11)

where the lowest component of ua = Ua|θ=θ̄=0 involves the gaugino bilinear λaλa. We also wish to add the possibility
of matter charged under the condensing group. From our experience in QCD we generally expect states charged
under the strong group to experience confinement and form composites. We will represent these by the composite
field operators [29, 30]

Πα
a '

∏
i

(
Φ

(a)
i

)nα,(a)i

, (12)

where the product involves only those fields Φ
(a)
i charged under the confined group Ga. In (12) the label α is a species

index for the matter condensates, each of which may consist of different component fields labeled by the integers

n
α,(a)
i . Note that the canonical mass dimension of this operator Πα

a is given by

dim (Πα
a ) ≡ dαa =

∑
i

n
α,(a)
i (13)

In Kähler U(1) superspace the effective Lagrangian describing these condensates takes the Veneziano-Yankielowicz-
Taylor form [31, 32]

LVYT =
1

8

∫
d4θ

E

R

∑
a

Ua

[
b′a ln(e−K/2Ua) +

∑
α

bαa ln Πα
a

]
+ h.c. , (14)

where there are now two separate coefficients b′a and bαa which must be determined for each condensing group Ga. These
are obtained by matching the anomalies of the effective theory to those of the underlying theory. The Lagrangian (14)
has the correct anomaly structure under Kähler U(1), R-symmetry, conformal transformations, and modular (T-
duality) transformations, provided the conditions

b′a =
1

8π2

(
Ca −

∑
i

Cia

)
, bαa =

∑
i∈α

Cia
4π2dαa

, (15)

are satisfied [33]. In (15) Ca and Cia are the quadratic Casimir operators for the gauge group Ga in the adjoint
representation and in the representation of the matter fields Zi charged under that group, respectively. Note the
important property that when dαa = 3 for all Π’s charged with respect to the condensing group Ga, we have the
identity

b′a +
∑
α

bαa = ba =
1

8π2

(
Ca −

1

3

∑
i

Cia

)
, (16)

with ba being the beta-function coefficient associated with the coupling for the group Ga. We will make the assumption
that dαa = 3 in what follows below. The conventions in (16) imply that a group Ga with ba > 0 will flow to strong
coupling in the infrared.1

1 To recover the ‘standard’ conventions of (for example) Martin and Vaughn [34] one must take ba → −(2/3)ba|MV.
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The composite chiral superfields Πα
a are invariant under the nonanomalous symmetries, and may be used to construct

an invariant superpotential [29, 35]

Lpot =
1

2

∫
d4θ

E

R
eK/2W

(
Πα, T I

)
+ h.c. . (17)

We will adopt the simplifying assumption [14] that for fixed α, bαa 6= 0 for only one value of a. In other words, we
assume that each matter condensate is made up fields charged under only one of the confining groups. This is not
a necessary requirement, but it will make the phenomenological analysis of the model much easier to perform. We
next assume that there are no unconfined matter fields charged under the confined hidden sector gauge groups, and
ignore possible dimension-two matter condensates involving vector-like pairs of matter fields. This allows a simple
factorization of the superpotential of the form

W
(
Πα, T I

)
=
∑
α

Wα (T ) Πα, (18)

where the functions Wα are given by

Wα (T ) = cα
∏
I

[
η
(
T I
)]2(qαI −1)

. (19)

Here qαI =
∑
i n

α
i q
I
i is the effective modular weight for the matter condensate. It will not be important for the

phenomenology which follows. The Yukawa coefficients cα are a priori unknown variables, and the function η(T I) is
the classical Dedekind eta-function, which endows the superpotential with the proper transformation property under
SL(2,Z) modular transformations.

Such transformations are classical symmetries of the supergravity theory, but are anomalous at the loop level. This
anomaly is canceled by a combination of the Green-Schwarz (GS) mechanism and threshold corrections to the gauge
kinetic functions. The GS mechanism is represented by a superspace interaction term between the dilaton and the
Kähler moduli given by

LGS = −bgs
∫

d4θ E L
∑
I

ln
(
T I + T

I
)

(20)

where the coefficient bgs is normalized as bgs = Cgs/8π
2. The Green-Schwarz coefficient Cgs is a calculable parameter of

the compactification which, for example, will satisfy Cgs ≤ 30 for heterotic string theory compactified on orbifolds [36].
Threshold corrections are represented by an additional term in the effective Lagrangian given by

Lth = −
∑
I

1

64π2

∫
d4θ

E

R

[∑
a

bIaUa

]
ln η2(T I) + h.c. (21)

The coefficients bIa are themselves completely determined by the value of bGS in (20) and by the charges and modular
weights of the confined fields; they do not appear explicitly in the expression for the potential given below. Modular
invariance will yield a solution in which all three Kähler moduli are stabilized at one of the self dual points 〈tI〉 = 1
or 〈tI〉 = eiπ/2, where the associated auxiliary fields FT I vanish in the vacuum. Thus, the BGW model is an example
of the generalized dilaton domination scenario of Casas.

B. Moduli Stabilization and Supersymmetry Breaking

The dynamical degrees of freedom associated with the composite fields (11) and (12) acquire masses larger than the
condensation scale Λa, and may be integrated out [37]. This results in an effective theory constructed as described
in (14) with the composite fields taken to be nonpropagating. We can therefore find an expression for the gaugino
condensates by solving the equations of motion for the auxiliary fields FUa + FUa [14]

u2
a = e−2

b′a
ba eKe−

(1+f)
ba` e−

bgs
ba

∑
I ln(tI+t

I)
∏
I

∣∣η (tI)∣∣ 4(bgs−ba)
ba

∏
α

|bαa/4cα|
−2

bαa
ba . (22)

The explicit expression for the condensate value is sufficiently complicated to warrant some commentary before
proceeding. First we note that the expression is dimensionless by construction – physical masses and scales will be
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shown explicitly below with the Planck mass restored. The third exponential term is the familiar one from field-
theoretic arguments

〈λaλa〉 ∼M3
ple
−1/bag

2
a(Mpl) . (23)

The product of Dedekind functions with the fourth exponential term provides an overall transformation property
for the superpotential consistent with target space modular invariance [38–41]. The final product is over the matter
condensates in the theory (labeled by α), and involves the Yukawa couplings cα of (19). This is consistent with
the exact beta-function of Shifman and Vainshtein [42], where the final term represents the contribution from wave-
function renormalization [43].

The scalar potential for the dilaton can now be identified in terms of the gaugino condensate factors

V =
1

16`2

(
1 + `

dg

d`

) ∣∣∣∣∣∑
a

(1 + ba`)ua

∣∣∣∣∣
2

− 3

16

∣∣∣∣∣∑
a

baua

∣∣∣∣∣
2

, (24)

and the vacuum expectation value of the supergravity auxiliary field determines the gravitino mass as

m3/2 =
Mpl

4
〈|
∑
a

baua|〉 . (25)

In practice, even very small differences in the value of ba between the various confining gauge groups can cause large
differences in the scale of gaugino condensation, and hence very different contributions to the scale of supersymmetry
breaking represented by the gravitino mass in (25) [44]. It is therefore sufficient to consider the largest value of ba
among all of the confining groups, which we hereafter refer to as b+. Then we have the expressions

m3/2 =
Mpl

4
b+u+ , Λcond = Mpl (u+)

1/3
(26)

and the dilaton potential can be minimized with the overall scale, determined by |u+|2, factored out of the expression
in (24).

The above parameter space can be simplified greatly by assuming that all of the matter in the hidden sector which
transforms under a given subgroup Ga is of the same representation, such as the fundamental representation. This
is not unreasonable given known heterotic string constructions. In this case the sum of the coefficients bαa over the
number of condensates can be replaced by one effective variable∑

α

bαa −→ (bαa )eff ; (bαa )eff = Ncb
rep
a . (27)

In the above equation brep
a is proportional to the quadratic Casimir operator for the matter fields in the common

representation and the number of condensates, Nc, can range from zero to a maximum value determined by the
condition that the gauge group presumed to be condensing must remain asymptotically free. The variable bαa can
then be eliminated in (22) in favor of (bαa )eff provided the simultaneous redefinition cα −→ (cα)eff is made so as to
keep the final product in (22) invariant. Combined with the assumption of universal representations for the matter
fields, this implies

(cα)eff ≡ Nc

(
Nc∏
α=1

cα

) 1
Nc

. (28)

C. Soft Supersymmetry Breaking in the Observable Sector

The massless spectrum of a linear multiplet contains no auxiliary fields. Thus, there is no analog to the highest
component FS of the chiral dilaton formulation to serve as an order parameter for supersymmetry breaking. Super-
symmetry breaking soft-terms for the fields of the observable sector (here assumed to be those of the MSSM) must be
read directly from the component Lagrangian itself [14, 44, 45]. It is far more instructive, however, to translate these
results into the familiar chiral language of, for example, Brignole et al. [46]. This was the approach taken in [47], and
we here reproduce some of the discussion presented more fully there.
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The basic idea is to note that the effect of the non-perturbative corrections to the dilaton action is to modify the
effective Kahler metric for the chiral dilaton away from its tree level value of

〈
(Ktree

ss̄ )1/2
〉

= 〈1/(s+ s̄)〉 = g2
str/2 ' 1/4.

We can parameterize this departure via the quantity

anp ≡
(
Ktree
ss̄

Ktrue
ss̄

)1/2

. (29)

As with the phenomenological approach of Brignole et al., we can now demand that supersymmetry breaking occur,
with

〈
FS
〉
6= 0, while simultaneously demanding that 〈V 〉 = 0. In such circumstances, in which the dilaton is the sole

source of supersymmetry breaking, a simple relation must exist between the value of FS and the gravitino mass in
the vacuum

FS =
√

3m3/2(Kss̄)
−1/2 =

√
3m3/2anp(Ktree

ss̄ )−1/2, . (30)

It was the simple observation that vanishing vacuum energy would require anp 6= 1 that gave birth to the generalized
dilaton domination scenario [12].

The BGW model provides an explicit expression for anp in terms of the non-peturbative correction in (8). Relating
the chiral and linear multiplet formulations, in the presence of the nonperturbative effects given in (5), yields the
following expressions for the derivatives of the Kähler potential in the vacuum

〈Ks〉 = −`
〈
Ktrue
ss̄

〉
=

`2

1 + `g′(`)
. (31)

To make this relation more specific, we can choose to minimize (24) for a single condensate ba → b+ using the
parameter set

A0 = 8.9 A1 = −4.5 B = 0.75 (32)

in (9). This yields a solution for which 〈f(`)〉 ' 0 and thus 〈`〉 ≈ g2
str/2 as it would be in the perturbative limit. In

this case, using the fact that (24) must vanish in the vacuum, we can write the parameter anp explicitly as

anp =
√

3
g2s
2 b+

1 +
g2s
2 b+

. (33)

We note that since b+ ∼ O(0.1), the quantity anp is generally much less than unity.
Tree-level soft supersymmetry breaking terms for dimension-one quantities (gaugino masses and trilinear A-terms)

arise from the dilaton via FS , while those for the scalar masses get a direct contribution from the gravitino mass
alone. However, from (30) it is clear that in the vacuum we have

FS

m3/2
∼ anp � 1 , (34)

and thus we should expect loop-corrections to be important for both the gaugino masses and the scalar triliear
couplings. Full one-loop expressions for soft supersymmetry breaking in general supergravity effective theories were
computed in [45, 48–50]. Here we collect only what we need for the generalized dilaton domination paradigm.

Gaugino masses for the observable sector gauge groups (a = SU(3), SU(2), U(1)Y ) are given by

Ma =
g2
a (µR)

2

[
−3bam3/2 + (1− b′aKs)F

S
]
, (35)

where µR is the boundary condition scale, which we take to coincide with the cutoff scale which can be taken to be
the scale at which the supergravity approximation breaks down. For calculational purposes we will take the common
approach of treating this scale to be the grand unification scale at which gauge couplings are approximately unified.
The first term in (35) is the contribution from the superconformal anomaly [45, 51]. The second term is the universal
contribution from the dilaton (plus the one-loop correction to that universal piece). From (30) we see that this model
is indeed a mirage model, with the value of the parameter α given, in the conventions of Choi et al. [52], by

α =
1√

3 ln
(
Mpl/m3/2

)
anp

. (36)
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The soft supersymmetry-breaking trilinear scalar couplings and scalar mass-squareds are given by a combination of
bulk supergravity contributions and superconformal anomaly contributions

Aijk = −Ks

3
FS +

1

3
γim3/2 + cyclic(ijk)

M2
i = (1 + γi)m

2
3/2 − γ̃i

(
m3/2F

S

2
+ h.c.

)
. (37)

The anomalous dimensions factors γi, and the related quantities γ̃i, are given in the appendix to this paper in the
approximation in which generational mixing can be neglected.

III. BGW PARAMETER SCAN

A. Simplification of the Effective Parameter Space

The preceding section represents an overview of the BGW model, though even a simplified description of the theory
can be quite involved. Nevertheless, the model has relatively few free parameters. This is because at its essence
the model is very phenomenological: it is a model of modular-invariant gaugino condensation which invokes the
generalized dilaton domination scenario of Casas. Simply put, the BGW model represents any theory which breaks
supersymmetry using gaugino condensation in a hidden sector under the assumptions of the generalized dilaton
domination paradigm.

The input parameters can be segregated into various classes which can then be fixed for the subsequent level of
analysis. The first step is the minimization of the effective potential (24) for the dilaton field `. Once a choice such
as (32) is made for the function (9), the phenomenology requires that we satisfy (7). While the solution is dependent
on the choice of b+, it is only weakly dependent on this choice. Thus we can speak of a ‘universal solution’ for the
dilaton potential, leaving us with two quantities, 〈`〉 and 〈f(`)〉, relevant for the calculation of the gaugino condensate
u+ via (22). As mentioned in the previous section, we can use the freedom in the parameterization (9) to find a
solution such that 〈f(`)〉 ' 0 and thus 〈`〉 ≈ g2

str/2. With this choice, we are left with the parameter b+ as the sole
input parameter at this stage in the calculation.

Under the assumptions described in Section II B we can describe the gaugino condensate as being determined by
(1) the identity of the condensing group with the largest beta-function coefficient, (2) the number of fundamental
representations charged under that group, and (3) the effective Yukawa coupling amongst these matter fields in the
hidden sector. These three properties determine b+, (bα+)eff and (cα)eff (and also b′+ via the identity (16)). The
gaugino condensate value is a strong function of these three quantities, and so too is the scale of supersymmetry
breaking given by m3/2 via (26).

However, as was shown in [44], the dependence of the condensate value on the combination (bα+)eff and (cα)eff , via
the last product in (22), is such that for any value of b+ <∼ 0.12 one can obtain a realistic gravitino mass of order
1-10 TeV with effective Yukawa couplings in the range 10−3 ≤ (cα)eff ≤ 103. This is illustrated in Figure 1, where the
region in which m3/2 = 10 TeV is shown in the

{
b+, (bα+)eff

}
plane. We can therefore feel justified, in the BGW model

context, in taking b+ and m3/2 as independent parameters provided we restrict ourselves to cases in which b+ <∼ 0.15.
This is a welcome outcome, since the soft supersymmetry breaking terms in (35) and (37) are manifestly functions of

onlym3/2 and b+, the latter entering through the ratio between FS andm3/2 given by anp in (33). The parameter space
that defines the superpartner spectrum is thus effectively two-dimensional. We will therefore begin our investigation
taking b+ and m3/2 as effectively independent input parameters. In addition, we will follow the common practice of
using the known mass of the Z-boson to replace the parameters µ and B in the electroweak sector with the value of
tanβ. This makes the parameter space effectively three-dimensional.2

Adopting the assumptions that lead to the expression for ba in (16) we see that each fundamental charged under the
confining group G+ contributes a fractional amount to the numerator. Our scan results will be far easier to interpret
if we therefore re-normalize our expression for the beta-function coefficient to match that of standard supersymmetric
renormalization group analyses. We will therefore scan over the quantity

β+ =

(
3C+ −

∑
i

Ci+

)
(38)

2 We will throughout fix µ > 0 as our results are only negligibly affected by the sign of this parameter.
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FIG. 1: Preferred Region in Group Theory Space. The shaded region represents the combinations of b+ and (bα+)eff for
which the resulting gravitino mass is m3/2 = 10 TeV. In this plot the value of the effective Yukawa coupling (cα)eff was allowed

to vary from 10−3 (right edge) to 103 (left edge). The labeled points represent example hidden sector configurations: (A) SU(6)
with no matter, (B) SO(10) with three 16 representations, (C) E6 with nine fundamentals. All hidden sector configurations
for these three gauge groups will lie on the dotted lines indicated in the plot. The horizontal axis translates the value of b+
into the integer β+ used throughout the remainder of the text.

which we take to be an integer satisfying 3 ≤ β+ ≤ 90. The upper bound is set by the maximum rank of the confining
hidden sector gauge group, which, for the weakly coupled E8 × E8 heterotic string would be C+ = 30 for the group
E8. The input parameter b+ is then simply

b+ =
2

3

(
β+

16π2

)
, (39)

where the quantity in parenthesis is the traditional beta-function coefficient of Martin and Vaughn [34]. The corre-
spondence between the two variables is indicated by the two axes in Figure 1.

Of course an arbitrary choice of gauge group and matter content need not necessarily exhibit confinement. Nor,
for that matter, is such an arbitrary choice guaranteed to be free of anomalies. Strictly speaking, an explicit model
of hidden sector gaugino condensation, such as the BGW model, should restrict the valid choices of β+ to reflect
these facts. Thus we should not expect the distribution of β+ values to be truly flat from the point of view of the
underlying string theory. In general, the compactification of weakly-coupled E8×E8 heterotic string theory will favor
small values of β+, and will struggle to achieve a realistic outcome for β+

>∼ 36.
Furthermore, the variables β+ and m3/2 are not truly independent, so we should not expect a flat distribution in

m3/2 when treated as an a priori variable. We will nevertheless do so here in part for the sake of simplicity, but
also to better capture the physics of more phenomenological versions of the model, such as the generalized dilaton
domination scenario, in which the mechanism of supersymmetry breaking is left unspecified. In such a paradigm it
is more legitimate to treat the mass scale m3/2 and the parameter β+ as independent with flat priors. It is also with
such phenomenological scenarios in mind that we will allow β+ to be as large as its maximal value of β+ = 90, though
we will often focus our attention on the smaller values indicated by the explicit BGW construction. In any event, our
goal in this paper is not to present a statistical analysis of the BGW parameter space, nor make statements as to the
most likely region within that parameter space. We merely wish to understand whether the model is still viable after
one year of LHC data and, if so, what are the typical features of the model points that survive.
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FIG. 2: Dark Matter Constraints. Distribution of points with proper EWSB and chargino mass, and with a neutralino
relic density obeying Ωχh

2 ≤ 0.12. The shaded region is excluded by the chargino mass constraint m
χ±1

> 103.5 GeV. The

nature of the LSP wavefunction changes dramatically across the plane, as indicated by the labels and described in the text. As
a visual reference, contours of constant Higgs mass mh are given for a fixed value of tanβ = 42.5. The right most contour is
the central value of the LHC measurment mh = 125.3 GeV reported by CMS, while the contours to the left are the one, two
and three sigma lower bounds on the Higgs mass of mh = 124.7, 124.1, 123.5 GeV, respectively.

B. Three-Dimensional Scan

To fully explore the parameter space, we performed a Monte Carlo scan over the parameters m3/2, tanβ, and
β+, for which 50,000 random combinations of these parameters was generated, henceforth called ‘points’. The three
parameters were treated as independent variables with flat priors across the ranges 1 TeV ≤ m3/2 ≤ 10 TeV, 2 ≤
tanβ ≤ 50 and 3 ≤ β+ ≤ 90. The last quantity was restricted to the domain of integers, as indicated in the previous
subsection.

Having selected a trio of parameters {m3/2, β+, tanβ}, soft supersymmetry-breaking parameters are calculated
using (35) and (37). The ensemble is then evolved to the electroweak scale using SOFTSUSY 3.3.5 [53] to solve the
renormalization group equations. At this stage the radiatively-corrected Higgs potential is minimized and physical
masses are calculated. To restrict our parameter space, we begin with a series of basic requirements on the data set.
First, we require that each of these points can achieve electroweak symmetry breaking (EWSB), by which we mean a
convergent solution for µ such that µ2 > 0 is found. And we require simultaneously that the lightest superpartner be
neutral and colorless. Once this requirement is satisfied, we demand that the superpartner spectrum have sufficiently
massive charginos, sneutrinos, and sleptons to have evaded detection via direct searches at LEP.

In practice, the only one of these mass limits which constrains the theory is the chargino mass bound, for which we
require mχ±1

> 103.5 GeV. In the BGW model the parameter β+ is bounded from above by the fact that the hidden

sector gauge group is presumed to be no larger than E8. This corresponds to a restriction, from (33), of anp ≤ 0.15,
and thus we expect the typical gaugino mass scale to be no larger than a quarter of the scalar masses. Thus, for
β+ = 90 the gravitino mass is bounded from below as m3/2 ≥ 1000 GeV in order to satisfy the LEP bound on the
lightest chargino mass. At smaller values of β+, where the gaugino mass suppression is more severe, the lower bound
on m3/2 is higher.

Given the inherent hierarchy between scalar masses and gaugino masses in the BGW construction, it is not surprising
that the phenomenology of the model will be similar to that of the ‘focus point’ [54] or ‘hyperbolic branch’ [55] of
minimal supergravity. It is well appreciated that results in this region are sensitive to the value of the top mass chosen.
In our analysis we have used the central value of the top (pole) mass, mt = 173.5 GeV, as reported by the most recent
iteration of the Particle Data Group summary document [56], which includes the results of recent measurements
made at the LHC. Most of the phenomenology which we will discuss below is insensitive to small variations in the
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top mass. However, the range of tanβ values for which a given pair of values {m3/2, β+} can achieve proper EWSB
is an important counter-example, as is the mass mh of the lightest CP-even Higgs eigenstate for a given pair of values
{m3/2, β+}. We will discuss the top mass sensitivity for these quantities in Section III C below.

Very recently the WMAP collaboration released their final data analysis, the culmination of nine years of observa-
tions [57]. The WMAP data alone is best fit by a relic cold dark matter density of Ωχh

2 = 0.1138 ± 0.0045. When
added to external data sets representing ‘extended’ CMB measurements, baryon acoustic oscillations, and direct mea-
surements of the Hubble constant, the best fit value becomes Ωχh

2 = 0.1153± 0.0019. In interpreting this result for
physical models we choose to be as conservative as possible. We therefore allow for the possibility of multi-component
dark matter, of which the stable neutralino is but one component, and impose only an upper bound on the neutralino
relic density of Ωχh

2 ≤ 0.12, approximately 2σ above the mean value of the best fit to the combined data.
Thermal relic abundances of the stable neutralino are computed using MicrOmegas 2.4.5 [58, 59], as are dark

matter detection observables discussed later. When the WMAP relic density constraint is imposed the number of
points which satisfy the requirement drops to 2,175 of the original 50,000 points. While all values of {m3/2, β+} which
pass the EWSB requirements have the potential to achieve the correct neutralino relic density, the manner in which
this is achieved varies across the {m3/2, β+} plane. The surviving points are displayed in Figure 2. The shaded area
in the lower left of the figure is already ruled out by the chargino mass bound, arising from direct searches at LEP,
as discussed previously. This figures sums over the entire range of scanned tanβ values, the distribution of which
is mostly flat across the entire scan range. In previous studies of the BGW model [44, 47], a strong preference for
low values of tanβ <∼ 10 was found, as dictated by the demands on EWSB. The ability to achieve moderate to large
values of tanβ in our study is largely the result of improvements made very recently to the treatment of radiative
corrections in the Higgs sector with SOFTSUSY versions 3.3.4 and 3.3.5 [60].

The correct relic density is most robustly achieved in the region where 5 ≤ β+ ≤ 10. In this region the relative
values of the wino mass M2 and the bino mass M1 are such that the LSP has a sizable wino fraction. The nature of
the cases with β+ ≤ 10 was studied some time ago in the context of the BGW model [61, 62]. At very small values
of m3/2 it again becomes relatively easy to satisfy the dark matter constraint. Here the relic density is generally
well below the WMAP central value as the LSP is light (100 GeV <∼ mχ0

1

<∼ 200 GeV) and admits a large Higgsino

content (|N13|2 + |N14|2 ∼ 0.5). Away from these two regions it is still possible to achieve a realistic relic density,
but it requires greater tuning of the parameters, particularly the value of tanβ. In this region, for arbitrary choices
of the value of tanβ, the LSP mass can be quite large and the predicted thermal relic density is as much as three
orders of magnitude larger than that required by observations. Here the neutralino is predominantly Higgsino-like
(|N13|2 + |N14|2 ∼ 1) with a mass determined largely by the value of µ which satisfies the EWSB conditions. This
value is subject to large radiative corrections – the same corrections that allow EWSB to occur in the first place –
and are thus subject to theoretical uncertainties associated with how the radiative corrections are implemented into
the computer code [60].

Data analyzed in 2012 revealed evidence of a Higgs-like boson at both the ATLAS and CMS experiments. In the
case of CMS [1] the early data indicated a mass of mh = 125.3±0.6 GeV, where we have added the reported statistical
and systematic errors in quadrature. For ATLAS [2] the central value was slightly higher, with mh = 126.0±0.6 GeV,
again adding the reported errors in quadrature. In recent days these measurement have been updated with additional
data, and a mass closer to 126 GeV seems to be preferred. Nevertheless, for this analysis we will be conservative and
allow for a three-standard deviation range about the CMS value of mh = 125.3 as our constraint on the Higgs mass.
In practice, for the BGW model this only enforces a lower bound, that is mh ≥ 123.5 GeV. For the three-dimensional
scan of 50,000 generated points, 11,189 satisfied this requirement on the mass of the lightest CP-even Higgs. These
points all satisfy β+ ≥ 10 and m3/2 ≥ 6.9 TeV. The contours for the central value and the one-, two- and three-sigma
lower bounds on the Higgs mass mh are shown in the upper right of Figure 2.

The Higgs mass constraint from the recent LHC measurements is in some degree of tension with the results from
the WMAP satellite for the BGW model. The distribution of β+ values across the 2,175 points with a relic density
Ωχh

2 ≤ 0.12 is given by the blue histogram in Figure 3. Meanwhile, the distribution of the 11,189 points with
mh ≥ 124.1 GeV and mh ≥ 123.5 GeV is given by the red and yellow histograms, respectively, in the same figure.
There is a small overlap at β+ ' 10 if a two-sigma lower bound on the Higgs mass is employed, though most of the
wino-like region is viable if a looser three-sigma lower bound is utilized.

The distribution in calculated mh values for the lightest CP-even Higgs is given in Figure 4 for the two areas
of the BGW parameter space for which the dark matter relic density constraint is readily satisfied. The area with
large β+ but low m3/2 tends to favor the region 112 GeV <∼ mh

<∼ 117 GeV. These Higgs masses were already being
constrained by the searches at LEP. For the promising wino-like region the tension is less: Higgs masses are generally
in the window 120 GeV <∼ mh

<∼ 124 GeV, just below the two-sigma lower bound on the Higgs mass using the 2012
LHC results. Away from these two areas the Higgs mass measurement and neutralino relic density constraint can still
be reconciled, provided the value of tanβ is reasonably large. With the value of mt = 173.5 GeV, a sufficiently heavy
CP-even Higgs mass arises once tanβ ≥ 42.5. It is important to note, however, that the region of the parameter space



12

FIG. 3: Histogram of Allowed β+ Values, Dark Matter Preferred Regions versus Higgs Mass. The blue bars
represent the distribution in β+ values with the dark matter constraint Ωh2 < 0.12 imposed, but no Higgs mass constraint.
The red bars are β+ values with mh > 124.1 GeV, and no dark matter constraint. The yellow bars are β+ values with
mh > 123.5 GeV, and no dark matter constraint.

for which a Higgs mass mh ≥ 123.5 GeV can be achieved is sensitive to the value of the input top quark mass. For
higher values of mt, more of the wino-like region at low β+ values becomes allowed.

C. Two-Dimensional Scan

In order to generate enough data to be able to adequately visualize the phenomenology of the remaining parameter
space, we perform a second scan using the same methodology as before, but in this instance we will fix the value of
tanβ = 42.5. Again 311,111 points are generated across the {m3/2, β+} plane, this time with 1 TeV ≤ m3/2 ≤ 15 TeV
and 3 ≤ β+ ≤ 90. The points which passed the initial requirements of proper EWSB and sufficiently heavy chargino
and sleptons are shown in Figure 5.

As before, the area in the lower left of the figure is excluded by the requirement that the chargino mass satisfy
mχ±1

> 103.5 GeV. Beyond m3/2 = 10 TeV the radiative corrections to the Higgs potential eventually become large

enough to drive the effective value of µ to below about 200 GeV. At this point, the convergence on the calculated value
of µ2 which satisfies the EWSB requirement becomes quite poor. The nature of this region was the focus of a detailed
study [60], using the most recent version of SoftSUSY. We have decided to take the onset of this poor convergence
region as an upper bound on the gravitino mass we will consider. In some sense this is a theoretical prejudice: the
question of whether the parameter space beyond this region is truly valid must await further theoretical improvements
in the treatment of radiative corrections to the Higgs potential. Operationally speaking, the lack of convergence on
the calculation of µ will imply that phenomenology involving the lightest neutralino will become increasingly suspect
in this region, so we have chosen to be prudent by only displaying results for which SoftSUSY 3.3.5 returns a result
with µ ≥ 300 GeV.

We are forced to explore this extreme region of the parameter space by the Higgs mass measurement at the LHC. The
color in Figure 5 indicates the mass mh of the lightest CP-even Higgs eigenstate. The demand that mh ≥ 123.5 GeV
requires m3/2

>∼ 6.2 TeV, as was already apparent from the three-dimensional scan results. The LHC upper bound, at
the two sigma level, already includes most of the parameter space up to the region of poor convergence. The ability
to achieve a Higgs mass mh ' 126 GeV, while simultaneously achieving reliable EWSB, necessitates the choice of
mt = 173.5 GeV. For example, using the best-fit value reported by the PDG in 2011, mt = 172.9 GeV, would have
placed the bulk of the parameter space in which mh ≥ 125.3 beyond the region where EWSB becomes unreliable.

Having therefore imposed the lower bound mh ≥ 123.5 GeV for mt = 173.5 GeV, we indicate the calculated thermal
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FIG. 4: Histogram of Higgs Masses, Dark Matter Preferred Regions. The distribution in mh values with the dark
matter constraint Ωh2 < 0.12 imposed, for all values of tanβ. The wino-like region (β+ ≤ 10) is described by the blue bars.
The mixed LSP case with low m3/2 is described by the red bars. As described in Section III C, achieving mh ' 126 GeV will
require fixing tanβ >∼ 42.

relic density for the remaining points in Figure 6. The horizontal scale now begins at m3/2 = 5 TeV, and the color of

the point indicates the neutralino relic density on a logarithmic scale log10

(
Ωh2

)
. The WMAP preference is then for

points with a value log10

(
Ωh2

)
<∼ −1, which is roughly the yellow band in Figure 6. A great deal of the parameter

space is immediately eliminated for having a thermal dark matter abundance far too high relative to the WMAP
measurement. At the lowest values of β+ the LSP is overwhelmingly wino-like and thus Ωh2 is quite small. As the
value of β+ increases, for a fixed mass scale m3/2, the LSP rapidly becomes entirely bino-like and the annihilation
rate for the lightest neutralino in the early universe drops precipitously. This persists until one reaches the region in
which radiative corrections come to dominate. Here the LSP begins to develop a sizeable Higgsino component as the
radiatively-corrected value of µ diminishes. This behavior, and the general area of the parameter space eliminated by
WMAP constraints, is not measureably affected by changes in the top mass.

The parameter space for the BGW model, in its simplest manifestation, is therefore constrained from all sides,
though the upper bound on the mass scale m3/2 is a result of theoretical uncertainty in handling radiative corrections
to EWSB. The final allowed parameter space is shown in Figure 7, which includes only those points with mχ±1

>

103.5 GeV, mh ≥ 123.5, Ωh2 ≤ 0.12 and sufficiently convergent EWSB. The right-most edge of this region is mildly
sensitive to the value of mt. The left-most edge is sensitive to the value of tanβ chosen. In Figure 7 these values are
mt = 173.5 GeV and tanβ = 42.5, respectively.

Having an effectively finite parameter space allows us to make definite predictions for the model. For example,
this model is consistent with all indirect searches for supersymmetry. For example, the branching ratio Bs → µ+µ−

takes a value 3.05 ± 0.02 × 10−9 across this space, in perfect agreement with the experimental results and Standard
Model predictions. This is largely the result of the very heavy scalars in the allowed parameter space. Similarly, the
model is perfectly consistent with the Standard Model for other rare decays, such as b → sγ decays. The remaining
parameter space also predicts a vanishingly small contribution to the anomalous magnetic moment of the muon, with
8.0×10−12 ≤ δaµ ≤ 4.6×10−11. It continues to be an open question as to how consistent experimental measurements
of gµ−2 are with the theoretical predictions of the Standard Model [63, 64]. Clearly, the BGW model does not imply
a new physics contribution to this quantity.

Despite the large mass scale, superpartners are nevertheless within reach of the LHC, particularly after the shutdown
and upgrade to higher center-of-mass energies. Points in Figure 7 are colored according to the predicted gluino mass
for that point. The allowed parameter space predicts gluinos as light as 200 GeV, reaching a maximum mass, for
β+ = 90, of 5400 GeV. Clearly, gluino masses on the low end of this range are excluded by the LHC search limits in
channels such as multijets and missing transverse energy. We will discuss these limits in the next section. Here we



14

FIG. 5: Two-Dimensional Scan of BGW Parameter Space for tanβ = 42.5. Distribution of points with proper EWSB
and chargino mass, for mt = 173.5 GeV. The Higgs mass (in units of GeV) is indicated by the color. The region in the lower
left is excluded by the chargino mass bound as before. The region to the right at extreme values of m3/2 is excluded by a lack
of reliable EWSB.

wish merely to point out that the string theory preferred region of β+ ≤ 36 puts an upper bound on the gluino mass
of mg̃ ≤ 2910 GeV; requiring β+ ≤ 24 (as implied by Figure 1) would predict mg̃ ≤ 2040 GeV. Meanwhile the gluino
mass exceeds 1 TeV only for β+ ≥ 14. Thus, the theoretically interesting region of the parameter space is already
being probed with current LHC data, and most of this interesting region is within reach at

√
s = 13 TeV.

IV. LHC IMPLICATIONS

A. Discussion of Benchmark Points

In the previous section, a region of parameter space for the BGW model was established which is in agreement with
the WMAP constraint on the density of neutralino dark matter, as well as the combined ATLAS/CMS discovery of
a Higgs boson with mass of approximately 125-126 GeV. We also established that the masses of superpartners were
sufficiently heavy so as to avoid direct discovery at pre-LHC collider experiments. Specifically, however, we did not
impose a strict lower bound on the gluino mass, which is constrained not only by search limits from the LHC, but
also by Tevatron search results. As we will see shortly, the gluino is within the current experimental reach of ATLAS
and CMS for low values of β+, and should be accessible after the shutdown for much of the theoretically interesting
parameter space.

To determine what part of the parameter space is already constrained by searches for supersymmetry at the LHC,
and what area is within reach in the near future, we should analyze simulated collider data at each point in the
remaining parameter space, using the techniques employed by the two general-purpose detectors at the LHC. This
is computationally prohibitive, but we are fortunate in that the parameter space of the BGW model can be made
effectively two-dimensional, as was seen in Section III C. Furthermore, Figure 7 indicates that the mass of the gluino
is roughly proportional to β+ (and independent of the gravitino mass) for much of the parameter space with β+ ≤ 36.
This makes the model effectively one-dimensional. We can therefore feel confident that it is sufficient to sample the
parameter space via a few well-chosen benchmark points and interpolate between them to get a general feel for the
LHC implications of the BGW model.

In order to discuss the reach of the LHC experiments in the {β+, m3/2} plane – and to illustrate correlations between
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FIG. 6: Neutralino Relic Density for tanβ = 42.5 and mh ≥ 123.5 GeV. Distribution of points with proper EWSB,
chargino mass, and Higgs mass. The empty region to the left has mh < 123.5 GeV. The empty region to the right is excluded
by a lack of reliable EWSB. The neutralino relic density is calculated on a logarithmic scale log10

(
Ωh2

)
and is indicated by

the color. The interior red-colored points with large relic densities correspond to points with an overwhelmingly bino-like LSP.

LHC phenomenology and future dark matter direct detection experiments – we have chosen a set of 14 benchmark
points from Figure 7 which span the range 9 ≤ β+ ≤ 81. These benchmarks are shown in Table I, where the physical

masses of the gluino, lightest neutralino Ñ1, lightest chargino C̃1 and the lightest Higgs eigenstate are given in GeV.
These points cover nearly an order of magnitude in gluino mass (from 500 to 5000 GeV), though the squark and slepton
masses are roughly 10 TeV for all benchmark points. Note that the average Higgs mass across these 14 benchmarks
is 126.0 GeV.

For each benchmark point, we compute the high scale boundary terms using (35) and (37). We then evolve these
values to the electroweak scale using SOFTSUSY 3.3.5, which also generates the physical masses and couplings of
the superpartners. Calculation of decay widths and branching ratios is then performed using SUSY-HIT [65]. This
information is then passed to PYTHIA 6.4 [66] for event generation and PGS4 [67] to simulate the detector response.
For each point we consider, we generate a fixed number of 50,000 events in order to achieve accurate results which
can then be scaled to the integrated luminosity appropriate to any particular published result. In practice, for all of
our benchmarks, this number of events represents an integrated luminosity well above the amount thus far analyzed.

In what follows, the analysis will necessarily be at a somewhat superficial level. For example, we use the general
purpose PGS4 software to simulate detector response without imposing any trigger requirements on the signal. In
what follows we will estimate the reduction of the signal when triggering efficiencies are considered by imposing the
level-one trigger requirement contained within PGS4, but all results will always be displayed without triggers. In
addition, we will consider only the searches conducted by the ATLAS detector. We do so for two reasons. First,
the particle identification requirements and methodology for computing such objects as missing transverse energy
(Emiss

T ) are nearly universal across all ATLAS SUSY searches. Second, ATLAS search strategies have thus far been
built from simple geometric cuts on individual detector objects, and certain simple kinematic variables constructed
from these objects. The CMS collaboration, by contrast, often utilizes more sophisticated objects such as αT [68],
MT2 [69] and the razor distribution [70]. Thus, the CMS searches are often designed in such a way as to make use of
a complete knowledge of detector geometry and calorimetry that is not available to the theorist. The overall reach for
superpartners at CMS is not substantially different from that obtained at ATLAS, however. Finally, we will simulate
only the signal for our benchmark points, and not the underlying Standard Model backgrounds. We use the reported
event rates and estimated cross-section limits directly from the ATLAS searches to determine compatability of a given
benchmark with the data. In this paper our goal is to understand how LHC data is beginning to impact bona fide
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FIG. 7: Final Allowed BGW Parameter Space for tanβ = 42.5. Distribution of points with proper EWSB, chargino
mass, Higgs mass, and neutralino relic density. The empty region to the left has mh < 123.5 GeV and/or Ωh2 > 0.12. The
empty region to the right is excluded by a lack of reliable EWSB. The gluino mass (in units of GeV) is indicated by the color.

models of string theory, starting with one of the most simple models available. We therefore feel that this level of
analysis is suitable, particularly given the sizeable theoretical uncertainties described in the previous sections.

B. ATLAS Searches and Signal Regions

ATLAS has published the results of over a dozen SUSY searches for data taken at 8 TeV, allowing several possible
avenues for discovery. These results represent integrated luminosities between 5.8 and 20.7 fb−1, with the more
generic searches having been performed earlier and thus typically involving smaller data sets.3 The more recent
searches have been optimized for special circumstances in the parameter space of supersymmetric models, such as
preferential production of third-generation squarks, R-parity violation, and gauge-mediated models. These cases tend
to emphasize high-pT leptons and b-tagged jets in the event selection. Many of these dedicated searches are not
relevant for the BGW model. For example, a typical event for any of the benchmarks in Table I has zero or one
high-pT electron or muon; cases with two or more such leptons are quite rare. In addition, mass differences between
light electroweak gauginos are typically too small to generate any on-shell Z-bosons in the gaugino decays. On the
other hand, these benchmark points tend to generate a fairly large number of b-tagged jets. We will therefore focus
our efforts on jet-based searches involving large missing transverse energy, few leptons and b-tagging. To that end, we
use the same modifications to the internal b-tagging algorithm of PGS4 as was described in [71], which better matches
the estimated b-tagging efficiency of the ATLAS detector.

Each of these searches differs slightly in object reconstruction, but for the most part a standard set of object
identification requirements is imposed across all searches. These criteria are as follows:

• Jets are typically required to have a minimum transverse momentum pT > 20 GeV and |η| < 2.8.

• Electrons are required to have pT > 20 GeV and |η| < 2.47 while muons must have pT > 10 GeV and |η| < 2.4.

3 We will always scale our simulated data to the appropriate integrated luminosity, using the total SUSY production cross-section as
reported by PYTHIA as our guide.
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BGW Parameters Key Physical Masses (GeV)

Point β+ m3/2 mg̃ mÑ1
mC̃1 mh

A 9 9425 498 246 263 125.3

B 10 10465 628 266 283 125.9

C 11 10360 699 309 345 125.7

D 12 10828 808 340 381 126.0

E 13 11175 913 369 413 126.1

F 14 11870 1050 366 383 126.4

G 15 11649 1114 422 467 126.3

H 18 11994 1392 492 535 126.4

I 24 11983 1866 607 645 126.5

J 33 11457 2437 707 723 126.3

K 42 11369 3031 637 642 126.3

L 60 8279 3099 869 891 124.9

M 60 10502 3877 577 581 126.0

N 81 9996 4800 498 500 125.9

TABLE I: Benchmark Points for Phenomenological Analysis. Sample points from the BGW parameter space which
pass all pre-LHC phenomenological constraints. All points have µ > 0 and tanβ = 42.5. Masses for the gravitino, gluino,
lightest neutralino Ñ1, lightest chargino C̃1 and the lightest Higgs eigenstate are given in GeV. Physical squark and slepton
masses are roughly 10 TeV for all benchmarks.

• An isolation criterion is applied wherein if ∆R ≡
√

(∆η)2 + (∆φ)2 < 0.2 between an electron and any given jet,
the jet candidate is discarded, and any lepton within ∆R = 0.4 of a jet is discarded.

• The missing transverse momentum is calculated as the negative vector sum of the x- and y- components of the
reconstructed transverse momenta of all surviving jets and leptons.

The above object definitions are imposed universally across all analyses we perform. Note that the last item in the
list requires a modification to the default calculation of missing transverse energy performed within PGS4.

We briefly summarize the defining characteristics of each of these searches and their signal regions below. In what
follows, we will follow the ATLAS collaboration in making use of several variants of the effective mass quantity meff .
Most often, this variable represents the scalar sum of the transverse momenta of the leading Nj jets, together with the
missing transverse momentum. In these cases it is denoted meff(Nj). For the low- and high-multiplicity jet searches
the inclusive effective mass meff(inc.) is simply the scalar sum of the transverse momenta of all jets with pT > 40 GeV.
In the case of the high-multiplicity jets search this variable is denoted HT . For the single lepton analysis, two different
effective masses were used. One was the inclusive effective mass, which included all jets with a pT above 40 GeV,
and the single hardest lepton. The other was simply the effective mass coming from the four hardest jets and the one
hardest lepton. For further details, the reader is encouraged to visit the referenced conference notes [72].

Low Jets (ATLAS-CONF-2012-109: L = 5.8 fb−1) This search contains 12 distinct signal regions. For each,
there must be no reconstructed leptons, a minimum number of between 2 and 6 jets with the leading jet having
pT > 160 GeV and subsequent jets having pT > 60 GeV. The three hardest jets (when applicable) must be
separated from the missing transverse energy by ∆φ > 0.4; any applicable subsequent jets must have only
∆φ > 0.2. All channels require Emiss

T > 160 GeV. A requirement is placed on the inclusive effective mass
varying for each signal region but ranging between 1000 GeV and 1900 GeV. Finally, the ratio Emiss

T /meff(Nj)
is restricted to be a minimum of between 0.15 and 0.4, depending on the signal region.

High Jets (ATLAS-CONF-2012-103: L = 5.8 fb−1) This search contains 6 signal regions. In addition to a veto
on reconstructed leptons, a minimum jet multiplicity requirement of between 6 and 9 jets is imposed. Depending
on the signal region, these jets must have have a minimum pT of either 55 or 80 GeV per jet. Finally, while there
is no requirement on the absolute size of the missing transverse energy, a requirement is placed on Emiss

T /
√
HT >

4 GeV1/2.

Single Lepton (ATLAS-CONF-2012-104: L = 5.8 fb−1) The single lepton search defines two signal regions: one
with a single electron, and one with a single muon. For each, p`T > 25 GeV, with no other reconstructed leptons.
There must be at least four jets with pT > 80 GeV. Furthermore, each signal region requires Emiss

T > 250 GeV,
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meff > 800 GeV, Emiss
T /meff > 0.2, and mT > 100GeV, where mT is the standard transverse mass variable

formed from the single lepton and the missing transverse momentum.

Same Sign Dilepton (ATLAS-CONF-2012-105: L = 5.8 fb−1) This search requires at least two leptons (e or
µ) with the same sign and pT > 20 GeV. Three signal regions: e e, e µ, and µµ are then defined, as well
as a combined result for ``. A minimum of 4 jets are required with pT > 50 GeV, as well as a minimum
Emiss
T > 150 GeV.

SS Dilepton + B-Jets (ATLAS-CONF-2013-007: L = 20.7 fb−1) For this search there must be at least two
leptons (e or µ) with the same sign and pT > 20 GeV. Three signal regions are then defined. The first (SR
0b) imposes a veto on b-tagged jets, requires at least 3 non-b-jets with pT threshold of pT > 40 GeV and
Emis
T > 150 GeV. In addition the transverse mass formed from the hardest lepton and the missing transverse

momentum must satisfy mT > 100 GeV, and the effective mass formed from the two hardest leptons, jets and
missing transverse energy must be greater than 400 GeV. A second signal region (SR 1b) requires at least 1
b-tagged jet, and increases the effective mass requirement to 700 GeV. The third signal region requires only
that there be at least 4 jets and a minimum of 3 b-tagged jets. For this analysis, the reconstruction criteria are
altered from the previous analysis: the minimum pT for a b-tagged jet remains 20 GeV, while non-b-tagged jets
require a minimum pT of 40 GeV. The minimum muon pT is raised to 20 GeV.

Signal Observed 95% Upper Limit Signal Observed 95% Upper Limit

Region Events σBSM (fb) NBSM Region Events σBSM (fb) NBSM

2 jets (loose) 643 38.8 225 7 jets (55 GeV) 381 21 122

2 jets (medium) 111 5.8 34 8 jets (55 GeV) 48 5 29

2 jets (tight) 10 1.5 9 9 jets (55 GeV) 3 0.9 5

3 jets (medium) 106 7.6 44 6 jets (80 GeV) 248 15.7 91

3 jets (tight) 7 1.3 7 7 jets (80 GeV) 26 4.3 25

4 jets (loose) 156 11.3 66 8 jets (80 GeV) 1 0.7 4

4 jets (medium) 31 3.1 18 1 lepton (e) 10 1.7 10

4 jets (tight) 1 0.6 3 1 lepton (µ) 4 1.1 6

5 jets 5 1.0 6 SS 2` + 0 B-jets 5 0.3 7

6 jets (loose) 9 1.8 10 SS 2` + 1+ B-jets 8 0.5 11

6 jets (medium) 7 1.7 10 SS 2` + 3+ B-jets 4 0.3 7

6 jets (tight) 9 1.6 9

TABLE II: Results of Relevant ATLAS SUSY Searches. The reported number of observed events, 95% upper limit on
the cross-section (σBSM), and 95% upper limit on the number of events (NBSM) for beyond the Standard Model contributions
to the signal.

To date, none of the searches for supersymmetric particles has yielded a signal strength that is inconsistent with
the background-only hypothesis. For all but one of the analyses we consider, the event rates were large enough to be
able to establish an upper bound to the number of events, and effective cross-section, for contributions beyond that of
the Standard Model at the 95% level. The reported number of observed events, and upper limit on the cross-section
(σBSM) and number of events (NBSM), for these signal regions are given in Table II. In the absence of a proper
treatment of backgrounds, we will utilize the reported NBSM number to determine if a model point would have been
detected in a given channel. The exceptional case was the same-sign dilepton analysis without b-tagged jets, where
the observed number of events was very low: one event in the e e and µµ channel, and two in the e µ channel. We
will therefore consider a signal of three times this amount as an observable signal for the purposes of comparing a
theoretical prediction to the data.

C. The BGW Model at ATLAS

Looking at the benchmarks in Table I, it is clear that only about half of the points could reasonably be expected to
be probed at the LHC with a center-of-mass energy of

√
s = 8 TeV, even with the full 21.7 fb−1 dataset. This is verified

in Table III, where certain global properties of the benchmark points are given which are relevant for supersymmetry
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BGW Parameters Key Masses (GeV) Production Gross Properties

Point β+ m3/2 mg̃ mÑ1 ∆m
σtot

SUSY

(fb)
N(g̃g̃) N(χ̃χ̃) Trig.

Eff.
N jet N ` N1b N2b+

A 9 9425 498 246 18 2514 12917 1664 74.4% 7.5 0.7 12514 3858

B 10 10465 628 266 17 633.2 2556 1117 71.1% 4.5 0.7 14321 10838

C 11 10360 699 309 36 292.7 1155 543 71.8% 7.5 1.1 14185 11045

D 12 10828 808 340 41 123.8 375 343 26.4% 7.2 1.1 11637 8963

E 13 11175 913 369 44 63.0 135 230 58% 6.9 1.1 9720 6633

F 14 11870 1050 366 17 48.6 38 244 39.4% 5.6 0.7 5206 2663

G 15 11649 1114 422 46 23.8 22 116 49.0% 6.2 1.0 6518 3170

H 18 11994 1392 492 43 9.1 2 51 43.7% 5.8 0.8 5448 1269

I 24 11983 1866 607 37 2.6 0 15 14.6% 5.3 0.7 4178 532

J 33 11457 2437 707 16 1.1 0 6 9.3% 4.5 0.4 1924 175

K 42 11369 3031 637 5 2.1 0 12 16.3% 3.9 0.2 774 24

L 60 8279 3099 869 22 0.3 0 1 21.3% 4.5 0.5 1963 95

M 60 10502 3877 577 3 3.8 0 22 15.4% 3.8 0.1 691 19

N 81 9996 4800 498 3 8.4 0 49 15.1% 3.8 0.1 683 9

TABLE III: Global Properties of Benchmark Points for LHC Searches. Superpartner production at the LHC for
the BGW model is dominated by pair production of gluinos and electroweak gauginos. The mass of the gluino and lightest
neutralino are given in GeV, as well as the mass gap ∆m between the lightest neutralino and the lightest chargino. The overall
production cross-section is given for

√
s = 8 TeV, and the number of gluino pairs and electroweak gaugino pairs produced is

given for an integrated luminosity of 5.8 fb−1. Triggering efficiency is estimated from a sample of 50,000 events, passed through
the PGS level-one trigger selection. Also listed is the mean number of jets (N jet) and mean number of leptons (N `) across the
50,000 simulated events, as well as the number of these events with precisely one b-tagged jet (N1b) or two or more b-tagged
jets (N2b+).

searches at the LHC. The most important of these is the gluino mass, which increases roughly linearly with the
value of β+, particularly for low values of this parameter. Gluino pair production is the dominant SUSY production
channel up to mg̃ ' 800 GeV, at which point production of electroweak gauginos (neutralinos and charginos) becomes
dominant. This cross-over occurs at slightly higher gluino masses than in minimal supergravity as the lowest-lying
eigensates of the chargino and neutralino mass matrices tend to be about twice as heavy as in an analogous mSUGRA
model. In the table, the overall SUSY production cross section is given at

√
s = 8 TeV, while the number of gluino pair

production events and electroweak gaugino pair production events is given at a fixed integrated luminosity of 5.8 fb−1.
We note that squarks and sleptons are never produced at the LHC at

√
s = 8 TeV for any of these benchmark points.

For all of these points the value of µ is well below one TeV, which imparts a substantial Higgsino component to
the LSP. Consequently, the mass gap between the LSP and the lightest chargino (or nearly equivalently, between
the second lightest neutralino and the LSP), indicated by the value of ∆m in Table III, tends to be small, but still
sufficiently large to occasionally produce energetic jets and leptons. Nevertheless, when production of electroweak
gauginos begins to dominate the overall triggering efficiency, as estimated by the level-one trigger selection in PGS4,
tends to drop significantly. The rather low mean lepton count – generally at or less than one high-pT lepton per event
– and soft jet production makes these events both difficult to trigger upon and difficult to separate from Standard
Model backgrounds, despite the reasonable number of events produced for β+

<∼ 15 in 5.8 fb−1 of data. We note that
the level-one trigger in PGS can be satisfied by a single inclusive jet with pT > 400 GeV, or by a jet with pT > 180 GeV
combined with Emiss

T > 80 GeV. In general it is the large jet-pT requirement that adversely effects the trigger efficiency
for the BGW model. In the analysis that follows we will not impose any trigger requirements, but assume all produced
signal events are recorded.

The low lepton multiplicity immediately suggests that multi-lepton signatures are not effective discovery channels
for the BGW model, with the possible exception of same-sign dilepton events arising from gluino pair production
events. The small mass gaps ∆m between kinematically accessible electroweak gaugino states implies that there
should be no on-shell Z-bosons, thereby eliminating another possible channel from the analysis. The overall jet
multiplicity (defined as jets with pT > 40 GeV) is in the 5-8 jet range for most of the cases with mg̃ ≤ 2 TeV, with

the exception being point B for which the branching fraction BR(g̃ → g Ñi) approaches 50%. Generally at least one,
and often more than one, of these jets is identified as arising from a bottom quark.

Table IV gives the number of events satisfying the ATLAS search criteria in our simulated data for benchmark points
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Low Multiplicity Jets Leptonic Channels

2 Jets 3 Jets 4 Jets 1 Lepton SS Dilepton SS 2`, B-Jets

Point β+ mg̃ M T M T L M T 5J 1e 1µ eµ µµ 0b 1b 3b

A 9 498 24 9 32 6 101 27 5 6 2 12 6 1 24 15 2

B 10 628 6 1 10 1 39 11 1 2 2 11 6 1 33 68 21

C 11 699 4 1 6 1 23 7 – 1 1 7 8 4 22 44 13

D 12 808 2 – 3 – 13 3 – – 1 4 6 3 12 33 9

E 13 913 2 – 2 – 7 2 – – 1 2 3 2 7 18 4

F 14 1050 2 – 2 – 4 2 – – – 2 1 1 2 6 1

G 15 1114 1 – 1 – 2 1 – – – 1 1 1 2 4 1

H 18 1392 – – – – – – – – – – – – – 1 –

Observed 111 10 106 7 156 31 1 5 10 4 2 1 5 8 4

NBSM 34 9 44 7 66 18 3 6 10 6 6 3 7 11 7

TABLE IV: Event Counts for BGW Benchmark Points at
√
s = 8 TeV for Selected ATLAS Searches. Signal events

are displayed for selected ATLAS search channels described in Section IV B. Chosen channels were those in which one or more
benchmark point generated a signal comparable in size to the 95% confidence level upper bound on the number of signal events
(NBSM), as reported by the ATLAS collaboration. These channels include most of the low-multiplicity multijet channels, the
single lepton and same-sign dilepton channels, and (especially) the same-sign dilepton channel with accompanying b-tagged
jets. The last three columns represent a simulated integrated luminosity of 20.7 fb−1, while the others involve 5.8 fb−1. Also
given is the number of events observed by ATLAS in each channel, corresponding to the entries in Table II. Table entries in
boldface indicate a channel which would have produced a discovery for that point.

A-H. For points with heavier gluinos no events would have been observed in any of the ATLAS searches described in
Section IV B. We display only those channels for which one or more benchmark points generated a signal comparable
in size to the 95% confidence level upper bound on the number of signal events (NBSM) reported by the ATLAS
collaboration. We remind the reader that the last three columns are scaled to an integrated luminosity of 20.7 fb−1,
while the others are scaled to an integrated luminosity of 5.8 fb−1. Also given is the number of events observed by
ATLAS in each channel, corresponding to the entries in Table II.

For each benchmark, if a particular channel resulted in more signal events than the reported value of NBSM, the
corresponding number of events is entered into Table IV in boldface. Thus we see that the overall reach across all
channels is somewhere at, or just below, 1 TeV in the gluino mass. This is comparable to, but slightly weaker than,
the reach in the minimal supergravity scenario. This statement is true both globally – across all search channels –
and for each channel considered individually. The reach is best in the same-sign dilepton channels which often arise
in gluino pair production events, and for which the Standard Model background rates are low enough to produce a
rather small value for NBSM. In terms of the theoretical parameter space, this immediately implies that models with
β+ ≤ 12, and a large fraction of the parameter space with β+ = 13, are now no longer viable in light of ATLAS
supersymmetry searches. Among these points are all the cases in which the LSP has a sizable wino component.

The combination of low jet-pT , and jet multiplicities typically below 8 jets, resulted in negligible numbers of events
in the high-multiplicity multijet channels, and the low-multiplicity jets plus Emiss

T channels fared little better. The
reach in this set of channels was no better than roughly 500 GeV in the gluino mass. This is to be compared with
a reported reach of up to 950 GeV in the mSUGRA/CMSSM paradigm, or 1100 GeV in the ‘simplified model’ with
very heavy scalars and a massless LSP. Of course, the previous numbers involved a combination across all channels in
the low-multiplicity multijet search, but there is still a sizable difference between the reach for these models and the
BGW scenario. That the reach is higher when the lightest neutralino is assumed to be massless is easily understood;
the resulting jets in the gluino decays are able to carry more pT from the increased phase space, and thereby generate
a larger value of the effective mass variable for the same value of the gluino mass. To reduce the sizeable Standard
Model background in these channels, the effective mass cut was set at rather substantial values: at least one TeV in
the ‘loose’ variants of each channel, and generally much higher for the ‘medium’ and ‘tight’ variants of these channels.

The BGW model works in the opposite direction from the simplified models. The mass difference between the
gluinos and the low-lying electroweak gauginos is smaller than in the mSUGRA model, and significantly so. While
not quite to the extreme level as some ‘compressed spectrum’ models considered in the literature [73, 74], the mass
differences can have a real impact when the effective mass threshold is set very high. Consider benchmark points C
and D from Tables I, III and IV, which have gluinos of roughly 700 and 800 GeV, respectively. A point in mSUGRA
with a gluino of the equivalent mass should be discoverable at ATLAS already with 5.8 fb−1 of data, yet neither of
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FIG. 8: Effective Mass Distribution of Jets Plus Emiss
T . The distribution in the effective mass variable formed from

Emiss
T plus the jet-pT for all jets with pT > 40 GeV is shown for BGW benchmarks C (with mg̃ = 699 GeV) and D (with

mg̃ = 808 GeV) and their mSUGRA analogs. The models with 700 GeV gluinos are the solid lines, while the dashed lines are
the models with 800 GeV gluinos.

the two BGW points generates a strong signal in the multijets channel. To understand why, we studied two look-alike
points in minimal supergravity for BGW points C and D, with m0 set to the value of m3/2 from Table I, A0 = 0,
tanβ = 42.5 and m1/2 chosen so as to generate a gluino of precisely the same mass as the BGW analog. The number of
gluino pairs produced at a given value of integrated luminosity is therefore precisely the same between the look-alikes.

The total production cross-section for superpartners was up to three times larger for the mSUGRA analogs given
their much lighter electroweak gauginos. Therefore the fraction of events involving gluino pairs at a given integrated
luminosity was smaller for the mSUGRA points: 25% and 16% for mSUGRA C and mSUGRA D versus 68% and
52% for BGW point C and BGW point D. However, since electroweak gaugino production produces quiet events in
both models, they tend to have lower values of Emiss

T , so after requiring Emiss
T > 160 GeV both points have roughly

the same number of events.
The distribution of the effective mass, formed from the jets with pT > 40 GeV and the missing transverse energy,

is shown in Figure 8 for the BGW benchmarks C and D, as well as the two mSUGRA look-alikes. The cases with
mg̃ ' 700 GeV are given by the solid lines. The cases with mg̃ ' 800 GeV are given by the dashed lines. Clearly,
the mSUGRA models give generally larger typical values for the effective mass, with the cross-over occurring near
meff ' mg̃. Demanding large values of this variable therefore favors the mSUGRA models considerably. Note that the
mSUGRA models (blue histograms) show evidence of the electroweak gaugino production in the low effective mass
bins, which is mostly absent in the BGW models (red histograms).

By the end of the summer in 2012 two crucial pieces of information were well established in ATLAS data: (1) a
Higgs-like boson consistent with the Standard Model with mass near 125-126 GeV had been discovered, and (2) no
sign of supersymmetry had been detected in the standard search channels, in roughly 6 fb−1 of data. Far from being
mutually inconsistent, these results are exactly what one might predict in supersymmetric theories with very large
scalar masses and gluinos with masses around 1 TeV. In these scenarios in which squarks are quite heavy, gluino pair
production becomes the only hope for discovery, and the branching fractions for gluino decays into third-generation
quarks can be sizeable. The BGW model is precisely such a theory.

The ATLAS collaboration has therefore begun designing searches with selection criteria optimized to this paradigm.
The same-sign dilepton search with accompanying b-tagged jets is one such analysis which is quite effective at pushing
the reach in the BGW model back up to near the 1 TeV mark in gluino masses. The 0b signal region, with a veto on
b-jets, is similar to the inclusive same-sign dilepton search with 5.8 fb−1, and signal rates for the BGW benchmarks
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BGW Parameters 21.7 fb−1 at
√
s = 8 TeV 100 fb−1 at

√
s = 13 TeV

Point β+ m3/2 mg̃
σtot

SUSY

(fb)
N(g̃g̃) N(χ̃χ̃)

σtot
SUSY

(fb)
N(g̃g̃) N(χ̃χ̃)

D 12 10828 808 123.8 1403 1284 864 68221 18156

E 13 11175 913 63.0 506 861 426 29695 12891

F 14 11870 1050 48.6 141 914 242 11007 13173

G 15 11649 1114 23.8 81 435 143 7023 7266

H 18 11994 1392 9.1 7 189 48 1194 3632

I 24 11983 1866 2.6 – 56 14 81 1333

J 33 11457 2437 1.1 – 24 6 4 642

K 42 11369 3031 2.1 – 46 10 – 995

L 60 8279 3099 0.3 – 5 2 – 205

M 60 10502 3877 3.8 – 82 15 – 1547

N 81 9996 4800 8.4 – 183 30 – 3001

TABLE V: LHC Superpartner Production Rates for BGW Benchmark Points. Production cross sections at
√
s =

8 TeV and
√
s = 13 TeV are given for BGW benchmark points D-N. Also shown are the number of gluino pairs and electroweak

gaugino pairs produced in the 2012 data (21.7 fb−1 at
√
s = 8 TeV) and in 100 fb−1 at

√
s = 13 TeV.

do tend to scale up with integrated luminosity proportionately. Note that the effective mass cut in the b-jet analysis is
not a significant deviation from earlier analyses, since the signal requirements in the previous analysis already implied
at least 390 GeV of effective mass from the two leptons, four jets (at pT > 50 GeV per jet) and Emiss

T .

V. PROSPECTS FOR THE BGW MODEL AT FUTURE DETECTION EXPERIMENTS

A. LHC Searches at
√
s = 8 TeV and

√
s = 13 TeV

The total integrated luminosity recorded by ATLAS at
√
s = 8 TeV in 2012 amounted to 21.7 fb−1. We imagine,

therefore, that earlier general-purpose SUSY search analyses performed at much lower integrated luminosities may
be updated to reflect the full data set collected prior to the recent shutdown. Without a full background analysis it
is impossible to precisely calculate the reach in the BGW model with this projected data set, but we can indicate
the number of pairs of gluinos and electroweak gauginos that can be expected to have been recorded prior to the
shutdown. This information is summarized in Table V.

As has been emphasized elsewhere [75], the kinematic reach for gluino pairs has largely been saturated. We do not
expect the reach to increase by more than about 100 GeV in the gluino mass when multijet and single-lepton analyses
are updated to incorporate the full

√
s = 8 TeV data. That is, we might expect β+ ≤ 14 to be probed in data already

recorded, with an updated multijet search covering the region with mg̃
<∼ 800 GeV.

After the shutdown, when the center-of-mass energy increases to
√
s = 13 TeV, we expect much of the theoretically

relevant parameter space to be probed immediately. In the first 100 fb−1 after the shutdown we expect the reach
to increase to at least β+ ≤ 18, and likely to β+ ≤ 24. At this point, most of the theoretically motivated values
of β+ from realistic orbifold and Calabi-Yau compactifications of heterotic string theory will be within reach. This
presumed reach of about 1800 GeV in the gluino mass with 100 fb−1 of data at

√
s = 13 TeV is consistent with previous

studies [76]. The ultimate reach could be increased significantly if electroweak gaugino production could be efficiently
triggered upon and measured, given the reasonably large number of events produced for all BGW benchmarks.

B. Direct Detection of Neutralino Dark Matter

While it is reasonable to expect that all points in the parameter space of the BGW model with β+ ≤ 24 will be
probed at the LHC at

√
s = 13 TeV, higher values of the gluino mass may prove difficult to observe. But the prospects

are somewhat brighter for these cases in terms of direct detection of neutralino dark matter. Table VI revisits the
14 benchmark points, but this time we focus on the properties of the lightest neutralino, and the implications for dark
matter detection experiments.
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Recoil Events in LXe, 5-25 keV Monochromatic

BGW Parameters LSP Properties Unscaled Scaled Gamma Flux

Point β+ m3/2 mLSP B% W% H% Ωχh
2 XE100 LUX300 XE100 LUX300 cm−2s−1

A 9 9425 246 67.9% 18.2% 13.9% 0.018 3.8 14.9 0.6 2.3 6.13× 10−12

B 10 10465 266 28.7% 20.9% 50.4% 0.010 11.4 44.7 1.0 3.9 1.71× 10−12

C 11 10360 309 84.8% 5.4% 9.8% 0.114 1.3 5.2 1.3 5.2 8.91× 10−13

D 12 10828 340 81.4% 5.1% 13.5% 0.115 1.6 6.3 1.6 6.3 3.89× 10−13

E 13 11175 369 78.5% 4.6% 16.7% 0.115 1.7 6.8 1.7 6.8 2.02× 10−13

F 14 11870 366 18.4% 8.4% 73.2% 0.020 5.0 19.7 0.9 3.4 2.67× 10−13

G 15 11649 422 73.1% 3.8% 23.1% 0.113 1.8 7.3 1.8 7.1 8.27× 10−14

H 18 11994 492 66.4% 2.9% 30.7% 0.114 1.8 6.9 1.7 6.9 3.81× 10−14

I 24 11983 607 56.7% 1.9% 41.5% 0.118 1.5 5.8 1.5 6.0 1.87× 10−14

J 33 11457 707 16.4% 1.7% 81.8% 0.068 1.0 4.1 0.6 2.4 2.16× 10−14

K 42 11369 637 1.1% 0.6% 98.3% 0.045 0.2 0.8 0.1 0.3 3.91× 10−14

L 60 8279 869 28.0% 0.9% 71.2% 0.120 0.9 3.5 0.9 3.6 8.92× 10−15

M 60 10502 577 0.3% 0.2% 99.5% 0.036 0.1 0.3 – 0.1 3.59× 10−14

N 81 9996 498 0.1% 0.1% 99.7% 0.027 0.0 0.2 – – 9.07× 10−14

TABLE VI: Dark Matter Phenomenology of Benchmark Points. The mass of the lightest neutralino is given in GeV
for the fourteen benchmark points of Table I. The wavefunction composition of the LSP is given in terms of the bino, wino and
Higgsino percentage. Thermal relic abundance is calculated using MicrOmegas, as are the event rates in liquid Xenon and the
flux of photons from the galactic center for the combined γγ and γZ monochromatic signals. The “XE100” signal represents
the number of events in the reported Xenon100 exposure of 7636 kg-days, while “LUX300” represents the number of events in
300 days of exposure for the LUX 100 kg detector. For these event rates we show the expected events assuming a normalization
of 0.3 GeV/cm3 (unscaled), and a halo density scaled by the ratio of the predicted value of Ωχh

2 to the value extracted from
WMAP data (scaled).

Restricting our attention to cases which would not have been detected at the LHC implies a relatively heavy
LSP neutralino: generally heavier than 300-350 GeV in mass. Many of the benchmark points generate a thermal
relic abundance for the LSP commensurate with (or even slightly larger) than the central value extracted from
WMAP measurements of the cosmic microwave background. These points generally have a mixed LSP, split between
bino and Higgsino components. Such neutralinos are well known to have a relatively large interaction cross-section
for spin-independent elastic collisions with nucleons. Heavier mass cases tend to be almost exclusively Higgsino-like,
with relatively smaller interaction cross-sections.

The points which passed all phenomenological constraints for tanβ = 42.5, represented graphically by the points
in Figure 7, were passed to MicrOmegas where the spin-independent cross-section for elastic scattering from protons
was computed. The distribution of these points versus the LSP mass is shown in Figure 9. As before, the gluino mass
is indicated in GeV by the color code shown on the right of the plot. The striation of the plot arises both from the
logarithmic scale of the horizontal axis and from the discrete nature of the input variable β+. As this value increases,
for a fixed value of m3/2, the overall mass scale of the gauginos increases as well. The blue lines at low values of the
LSP mass correspond to small values of β+. For these cases there is a wide variation in the composition of the LSP,
from bino-like to wino-like, as the gravitino mass is varied. This results in a large range of possible spin-independent
cross-sections. Note that these blue lines at low values of β+ would already have been ruled out by direct searches
for gluinos at the LHC. At higher values of β+ the distribution begins to be more continuous, and the LSP is more
Higgsino-like across the range of allowed gravitino masses. The highest cross-sections correspond to model points
with 10 <∼ β+

<∼ 36, where the LSP is a mixed neutralino dominated by the Higgsino component. Such states are
known to have the largest cross-section for direct detection at heavy target experiments such as those based on liquid
xenon [77]. In this case, these are also precisely the points with gluinos in a mass range where pair production at the
LHC can be substantial.

Last summer, the Xenon100 experiment released the results of 225 days of exposure of their 34 kg liquid xenon
detector [78]. Recoils were counted with energies between 6.6 and 30.5 keV (electron-equivalent). The detector
observed two candidate events within the signal region, which was consistent with a background expectation of
1.0±0.2 events in the same 7636.4 kg-days of exposure. This translates into an upper bound on the spin-independent
elastic cross-section for neutralino scattering on protons of σSI

p ≤ 2.0× 10−45 cm2, for a neutralino of mass 55 GeV. A
large fraction of the surviving points of the BGW parameter space have elastic scattering cross-sections well in excess
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FIG. 9: Spin-Indepenent Cross-section on Protons for Points in Figure 7. Spin-independent cross-section on the
proton for the LSP versus LSP mass for the models passing all constraints in Figure 7. The gluino mass (in units of GeV) is
indicated by the color, as in Figure 7.

of this limit – including all of the points with β+ ≤ 36 with gluino masses above 800 GeV. However, the cross-section
limits are significantly weaker for larger mass neutralinos: all of the points with mg̃ ≥ 800 GeV have cross-sections no
larger than one-sigma above the central value of the upper bound for mLSP ≥ 300 GeV.

It is therefore more appropriate to compute the number of recoil events expected, per kilogram-day of exposure,
in liquid xenon across a certain recoil energy window. We have chosen to compute the rate in the energy range 5-
25 keV (electron equivalent). In Table VI we give the calculated number of events in 7636.4 kg-days at the Xenon100
experiment for the fourteen benchmark points. Points A, B and F would have produced a signal larger than that
actually observed by the experiment, though points A and B are already excluded by direct searches at the LHC.
Yet even this number is deceptive. To compute it we assumed a local halo density of ρ = 0.3 GeV/cm3 for these
neutralinos, which best fits rotation models for objects in the Milky Way halo. In the case of point F, the relatively
high wino content results in a relic abundance roughly six times smaller than the measured abundance from WMAP.
This is not necessarily inconsistent, though it would tend to require some sort of non-thermal production of neutralinos
in the early universe to reconcile the two values. Alternatively, if dark matter consists of multiple components, one
might instead scale the event rate by this factor of six to account for the reduced flux of neutralino WIMPS in the
detector. This ‘scaled’ event count is also given in Table VI. Having performed this scaling, none of our benchmark
points would have been inconsistent with the results from Xenon100.

The LUX experiment [79] has now been installed in its deep underground site and should release its first underground
data this year. The LUX experiment involves a 100 kg fiducial target mass, and the number of expected events in
300 days of exposure is given in Table VI both with, and without, scaling the event rate by the relative dark matter
relic abundance. The LUX collaboration intends to reach a background level of less than one event per 300 days
of exposure [79, 80], suggesting that all but three of the benchmark points should give a signal in this level of data
collection. This is even after re-scaling the data to account for lower thermal relic abundances. The event rate in
30,000 kg-days of exposure in liquid xenon is given for the entire set of BGW points with tanβ = 42.5 in Figures 10
and 11. Figure 10 assumes an abundance of neutralinos in the Milky Way halo equivalent to 0.3 GeV/cm3, while
Figure 11 scales the event rate by the ratio of Ωχh

2 predicted by thermal production to the WMAP abundance. Note
that the effect of this scaling is most pronounced for the very lightest gluino masses (which are mostly eliminated
from the LHC searches of the previous section) and the heaviest gluino masses.

This correlation between dark matter direct detection and the gluino mass is not uncommon in string-motivated
supersymmetric models [81]. In the case of the BGW model, we can take mg̃ ≥ 800 GeV as a rough bound on the
gluino mass arising from LHC searches. From above, the gluino mass is everywhere less than 5 TeV in the allowed
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FIG. 10: Event Rate in 300 Days Exposure at LUX. Number of recoil events between 5 and 25 keV (electron equivalent)
of recoil energy in liquid xenon, normalized to 300 days of 100 kg fiducial target. The values assume an abundance of neutralinos
in the Milky Way halo equivalent to 0.3 GeV/cm3. Points correspond to those of Figure 9, with the gluino mass (in units of
GeV) indicated by the color, as in Figure 7.

parameter space, but it is much lighter for the values of β+ that correspond to realistic hidden sectors from the
point of view of compactifications of heterotic string theory. If the hidden sector is no larger than E6 than we must
have β+ ≤ 36, in which case the model predicts a cross-section which will be probed by the LUX experiment in 2013.
This statement assumes that all of the dark matter density inferred from the WMAP experiment is made up of relic
neutralinos. The statement continues to hold, however, for β+ ≤ 24 even after scaling the event rate to account for
a lower thermal relic abundance. In either case, ton-scale liquid xenon detectors will certainly give a robust signal
across all of these points. The event rate in Figures 10 and 11 are easily scaled to units of ton-years by multiplying
the leftmost axis by a factor of ten. Xenon1T – the one-ton extension to Xenon100 – is due to begin taking data in
2015, at about the time that the LHC resumes proton collisions. For the case in which we do not scale event rates by
the thermal relic abundance we find that all parameter points of the BGW model will give a signal in one ton-year of
exposure.

Finally, we should expect a corroborating signal from neutralino annihilation at the galactic center, in the form of
monochromatic photons with energies very near the mass of the LSP. Excluding points which would have given rise
to signals at the LHC in analyses published thus far, we find that the lightest neutralino will always be well above
200 GeV in mass. This suggests that the Fermi satellite will not be sensitive to the high energy gamma rays arising
from loop-induced annihilation processes. Instead we must turn to ground based atmospheric Cherenkov telescopes
(ACTs), whose resolution will generally not be sufficient to distinguish between the γγ and γ Z annihilation channels.
We therefore give the combined flux of gamma-ray photons from the direction of the galactic center, using the NFW
halo profile, in the final column of Table VI. Despite the loop-induced nature of these signals, the large Higgsino
component to the LSP can boost the signal to a range that might be detectable in the future. For example, benchmark
points D-N would give rise to a monochromatic gamma ray signal above the threshold of 310 GeV for detection at the
HESS experiment [82]. Observations of the galactic center of 112 hours, released in 2012, put a 95% confidence level
upper limit on this flux of 1.14× 10−11cm−2 s−1 for a 500 GeV signal, assuming a cone size of 1o opening angle about
the galactic center. The HESS II upgrade now taking data has an effective collection area four times the size of its
predecessor, but even after 200 hours of observation of the galactic center the reach in the monochromatic photon flux
only rules out models that are already eliminated by LHC data. The proposed Cherenkov Telescope Array (CTA) [83],
however, should be able to observe monochromatic photon fluxes to the 10−14 cm−2 s−1 level [84], thereby providing
important cross-checks on the most theoretically motivated parts of the BGW parameter space.
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FIG. 11: Event Rate in 300 Days Exposure at LUX, Scaled. Number of recoil events between 5 and 25 keV (electron
equivalent) of recoil energy in liquid xenon, normalized to 300 days of 100 kg fiducial target. The values have been scaled by
the ratio of Ωχh

2 predicted by thermal production to the WMAP abundance. Points correspond to those of Figure 9, with the
gluino mass (in units of GeV) indicated by the color, as in Figure 7.

VI. CONCLUSIONS

Weakly-coupled heterotic string theory, with dilaton stabilization through non-perturbative corrections to the dila-
tonic action, was the first manifestation of a pattern of supersymmetry breaking that later came to be known as
‘mirage mediation’. Since the BGW model first appeared nearly twenty years ago, the pattern has emerged in many
other contexts, most notably Type IIB string theory compactified on orientifolds in the presence of fluxes. Such
constructions are some of the best-motivated, and most-studied, models of low-energy particle physics from string
theory.

In this paper we have begun the process of confronting string models with data by focusing on one of the simplest
models to analyze. The theory can be described by the confinement of a single gauge group, whose beta-function
coefficient is given by the parameter β+, and an overall mass-scale given by the gravitino mass m3/2. All of the other
intricacies of the model are related to achieving vanishing vacuum energy at the minimum of the dilaton potential,
cancelling divergences, and achieving weak coupling at the string scale. From the low-energy point of view, the model
is effectively two-dimensional, plus the specification of tanβ for electroweak symmetry breaking. In this sense the
model is a concrete manifestation of the more general dilaton domination scenario.

Because the model is relatively simple it is highly constrained by the LHC data. This is an unequivocally good
thing, and should put to rest the notion that string phenomenology is not a legitimate way to test string theory. In
fact the data collected by the LHC, as we enter the first shutdown period, has left a region of parameter space for
the BGW construction that makes some specific predictions. Assuming an MSSM field content, and focusing on the
parameter space with β+ ≤ 36, we can list these predictions as follows: (1) scalars are inaccessible to the LHC and
any scalar-mediated processes (such as rare B-meson decays) will be consistent with the Standard Model, (2) gluinos
are no heavier than 2900 GeV for β+ ≤ 36, and are less than 2100 GeV (and therefore accessible at

√
s = 13 TeV) for

hidden sectors with β+ ≤ 24, as is very typical in the orbifold limit of compactifications, (3) the Higgs mass will be
less than 127 GeV and the Higgs boson will be Standard Model like in its couplings, (4) The value of tanβ will be
large (typically tanβ ≥ 40), and the inferred value of the µ parameter will be small, (5) there will be a collection of
low-lying neutralino and chargino states with mass gaps between them at the 1-10% level, (6) the neutralino LSP will
have a large Higgsino component (and may be entirely all Higgsino), (7) evidence of neutralino dark matter should
be discovered at the LUX experiment within the first year, or two years, of data-taking – perhaps even before the
LHC resumes taking data.

Much of the above is true for any model of supersymmetry breaking with the MSSM field content, simply by virtue of
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the rather large Higgs mass and the absence of a supersymmetric signal at the LHC. But what distinguishes the BGW
model (and mirage models, generally) from most of the models being considered in the literature, is the relatively
large mass of the neutralinos relative to the gluino. One can expect a lightest neutralino that will be approximately
twice as massive as that in a minimal supergravity model that otherwise satisfies all the experimental constraints.
This is important, since it allows us to make one more prediction that will help to distinguish the BGW paradigm
from the other models being considered: the BGW model will not give rise to a monochromatic gamma ray signal that
can be observed by the Fermi-LAT satellite. Thus, the reported line signal at about 130 GeV must be interpreted as
poorly understood astrophysical backgrounds [85, 86]. Instead, the heavy neutralinos in the BGW parameter space
will give rise to such a signal which can only be observed by atmospheric Cherenkov telescopes with large effective
areas and/or large exposure times on the galactic center.

If one or more of these predictions fail to come to pass, is this effective theory falsified? In brief, yes it is. But
we hasten to add that this is the simplest manifestation of hidden sector gaugino condensation in heterotic string
theory with Kähler stabilization of the dilaton. Variations on the model, still within the overarching context of the
supergravity framework of Section II, are possible. For example, heterotic string theory always contains at least one
U(1) factor which is anomalous in the four-dimensional effective theory. If observable sector states carry charges
under this anomalous U(1) then additional D-term contributions, arising from the Green-Schwarz mechanism, can
alter the pattern of scalar masses. Furthermore, we have assumed that the GS counterterm in (20), which cancels the
sigma-model anomalies in the effective supergravity theory, is independent of the matter fields in the theory. This is
usually not the case, as matter fields arising from various twisted sectors may have more complicated involvements
in the GS counterterm. Such additional contributions to scalar masses could reduce the mass of certain squarks and
sleptons, and may even make them relevant for LHC phenomenology.

To the extent that the BGW model remains an example of the ‘mirage pattern’ of gaugino masses, however, the bulk
of the phenomenology described in this paper will continue to hold. However, models in which two gauge groups, with
closely tuned beta-function coefficients, compete to drive supersymmetry breaking – so-called racetrack models – alter
a very different set of possibilities. While multiple condensing gauge groups in the hidden sector is a generic outcome,
the coincidence of very similar beta-function coefficients needed for realistic minima is not. In the BGW context,
the group with the largest beta-function coefficient dominates, and this drives the subsequent phenomenology. In
non-generic outcomes we may expect some of the above predictions to be evaded. Nevertheless, the dramatic results
from the LHC are already putting extreme pressure on supersymmetric theories, most especially those with high-scale
motivation from string theories.
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VIII. APPENDIX

In the approximation that generational mixing can be neglected, so that only third-generation Yukawa couplings
are relevant, we have
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while the closely related γ̃i factors are given by
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