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Previous analytic and numerical calculations suggest that, at each instant, the emission from a
precessing black hole binary closely resembles the emission from a nonprecessing analog. In this
paper we quantitatively explore the validity and limitations of that correspondence, extracting the
radiation from a large collection of 224 generic black hole binary merger simulations both in the
simulation frame and in a corotating frame that tracks precession. To a first approximation, the
corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited
frequency interval defined using a fiducial detector (here, advanced LIGO) and the source’s total
mass M . By restricting attention to masses M ∈ 100, 1000M�, we insure our comparisons are sensi-
tive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every
one of our precessing simulations can be fit by some physically similar member of the IMRPhenomB

phenomenological waveform family to better than 95%; most fit significantly better. The best-fit
parameters at low and high mass correspond to natural physical limits: the pre-merger orbit and
post-merger perturbed black hole. Our results suggest that physically-motivated synthetic signals
can be derived by viewing radiation from suitable nonprecessing binaries in a suitable nonintertial
reference frame. While a good first approximation, precessing systems have degrees of freedom (i.e.,
the transverse spins) which a nonprecessing simulation cannot reproduce. We quantify the extent to
which these missing degrees of freedom limit the utility of synthetic precessing signals for detection
and parameter estimation.

I. INTRODUCTION

Coalescing comparable-mass black hole binaries are
among the most likely and useful sources of gravitational
waves for existing and planned gravitational wave detec-
tors like LIGO [1], Virgo, [2], the Einstein telescope [3],
and LISA [4, 5]. For sources in a suitable mass range,
the signal these detectors receive contains significant fea-
tures from the late-stage, strong-field dynamics of the
black hole merger. Only full numerical simulations of
Einstein’s equations can provide first-principle models for
this epoch, including all dynamics and emission [6, 7].
Given the large computational cost per simulation, rel-
atively few well-determined models have been produced.
Most models thoroughly explored the physics and wave-
form from nonprecessing binary systems [8–10]. By con-
trast, relatively few simulations of binaries with more
generic spins have been published1 and even fewer have
provided their gravitational wave signal [14–17].

Generic precessing black-hole binaries produce a rich
multimodal gravitational wave signal during their inspi-
ral and merger. To simplify the interpretation of these
signals, several authors have proposed transforming the
results of numerical simulations, computed in the simu-
lation frame, into a corotating frame [14, 18–21]. Empir-
ically, a corotating frame demonstrably simplifies (and
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1 Though many simulations have been performed in the analysis of

merger recoil kicks, in many cases their gravitational wave signal
has not been described in detail [6, 11–13].

dramatically reduces in number) the modes needed to
describe the gravitational wave signal, even during and
after merger. On the other hand, post-Newtonian ex-
pressions for the strain also naturally decompose into two
factors: an “instantaneous” factor describing corotating
emission, transformed by a rotation; see, e.g., [22, 23]. A
corotating frame therefore simplifies the comparison of
different simulations to one another; to post-Newtonian
expressions; and to phenomenological or analytic models.
Additionally, studies of how precession-induced modula-
tions impact low-mass [24] and high-mass [14] detection
strategies also naturally express their results in terms
of corotating frame modes and trajectories. The non-
precessing search strategies currently being used miss
precessing signals, roughly in proportion to two factors:
(a) how much the signal precesses (geometrically) [25]
and (b) how much the corotating-frame precessing wave-
form resembles some nonprecessing signal model in the
search [14, 21, 24].

In this paper we compare the gravitational wave signal
from the merger of a generic precessing black hole binary,
expressed in a corotating frame, to nonprecessing merger
waveforms. In this special frame, a precessing merging
binary emits radiation that closely resembles the signal
from a nonprecessing analog, for sufficiently short epochs.
We determine the nonprecessing configuration that best
fits the corotating-frame’s (2, 2) mode, as a function of
reference mass. Though tuned to one mode, selected ex-
amples suggest that the best-fit simulation usually re-
produces multiple modes for a comparable epoch. This
correspondence suggests a simple kludge to reproduce
precessing merger signals, proposed directly or implicitly
by authors who proposed the construction of a corotat-
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ing frame [14, 18–21]. If an appropriate time-dependent
rotation is known, then a suitable nonprecessing source
combined with a time dependent rotation generates an
approximate synthetic precessing waveform. We assess
this procedure constructively, comparing the line-of-sight
waveforms generated by a real precessing system and a
synthetic analog. This procedure can synthesize good ap-
proximations to short waveforms from precessing black
hole binaries, using physically-motivated choices for the
precession rate and inspiral-merger-ringdown signal.

In the most directly comparable study, Schmidt et al.
[21] applied a similar procedure to a small sample of pre-
cessing merger waveforms, derived via a post-Newtonian
approximation. As expected from the functional form
of the post-Newtonian inspiral signal [23], they found
that the (post-Newtonian) corotating-frame signal nearly
matched2 emission from nonprecessing binaries with
nearly-identical physical parameters. In short, this study
provided concrete examples to suggest both that the in-
spiral signal could be efficiently represented in the coro-
tating frame using a nonprecessing signal with nearly
identical physical parameters; by implication, suitable
hybrid precessing inspiral-merger-ringdown signals follow
by adjoining precessing post-Newtonian and numerical
relativity signals in the corotating frame. By contrast,
our study assesses the similarity between our simulations’
corotating-frame signal and well-studied models for the
inspiral and merger of nonprecessing binaries. Specif-
ically, we employ many (224) generic merger signals;
adopt a physically-motivated diagnostic to assess wave-
form similarity; demonstrate that even the merger phase
of generic precessing signals resembles nonprecessing bi-
naries, in a corotating frame; and, critically, identify and
systematic limits to the accuracy of a corotating-frame
approximation.

While a good zeroth approximation, this procedure
does omit physics. Nonprecessing waveforms simply can-
not self-consistently reproduce features tied to the sys-
tem’s kinematics: the orbital phase versus time; the ring-
down mode frequencies, set by the final black hole’s mass
and spin; the ringdown mode amplitudes, which can re-
flect spin-orbit misalignment; et cetera. As a familiar ex-
ample, in post-Newtonian calculations, time-dependent
spin-orbit and spin-spin terms must be included in the
orbital phase and calculated from suitable spin preces-
sion equations. In general, we find the corotating-frame
waveform carries additional information (e.g., about the
transverse spins) that cannot be encoded into a non-
precessing waveform. The presence of these extra degrees
of freedom can explain the observationally-relevant dif-
ferences between corotating-frame and simulation-frame
results. Over sufficiently long time- and frequency-scales,

2 Schmidt et al. [21] adopt a completely different definition of
“match”, based on a single polarization and a white power spec-
trum. Their quantitative statements cannot be directly com-
pared with our own.

the differences between the corotating frame and simu-
lation frame become startlingly apparent. In particular,
early- and late-time waveforms generally resemble differ-
ent nonprecessing systems. As a result, while corotating
waveforms approximately resemble nonprecessing modes,
they do so only for short periods in time and frequency.
In practice, however, real gravitational wave data analy-
ses are also limited to a narrow frequency interval and one
line of sight. Using observationally-motivated diagnostics
to characterize differences between signals, we find non-
precessing systems are a surprisingly effective analog of
generic precessing sources.

We provide an executive summary and detailed out-
line in Section II. In Section III we review why and how
we compare simulations using only their corotating-frame
(2, 2) modes; explain our notation; introduce the simula-
tions used; and describe the IMRPhenomB model [10] we
use in our studies. In Section IV we present our results
of fitting the precessing system. We present our syn-
thetic signal and include a discussion of the physics we
miss in such a signal in Section V. Finally, our conclu-
sions are presented in Section VI. For interested readers,
we include two appendices. Appendix A describes the
previously-developed tools and notation used in this pa-
per to compare detected gravitational waves and to ex-
tract a preferred direction from a precessing binary; and
Appendix B, which describes the simulations performed
and numerical tests we adopted to build quantitative con-
fidence in our results.

II. EXECUTIVE SUMMARY AND DETAILED
OUTLINE

As shown by Figure 1, the pre- and post-merger
leading-order emission from each simulation is well-fit
by some nonprecessing inspiral-merger-ringdown model,
in the corotating frame. The procedure we employ to
compare two signal models is described in Section III.
Specifically, for each of the simulations in our sample,
described at length in Appendix B and enumerated in
Table I, we have transformed to a corotating frame us-
ing a suitable time-dependent rotation R(t), then ex-
tracted the (angular) (l,m) = (2, 2) mode time series

[R−1ψ4]2,2(t) ≡
∫
dΩR−1ψ4Y

(−2)
2,2 (n̂)∗ of the Weyl scalar,

as projected onto spin-weight −2 harmonics. For each
possible mass M ∈ 100 − 1000M�,3 we compare this
time series with all possible IMRPhenomB phenomeno-
logical inspiral-merger-ringdown waveforms ψ4PB(λ) for

3 As noted in the introduction and quantified in the Appendix,
the duration of our numerical simulations was used to select a
mass interval, such that only our numerical simulations would
significantly influence the comparisons we performed. Physically,
at these masses only the late stages of inspiral and merger would
be accessible to the advanced LIGO detector, at plausible signal
amplitudes.
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nonprecessing binaries [10]. The mass range is chosen
at the low end to avoid the use of hybrid waveforms in
this study, and at the high end to ensure the inclusion
of ringdown. Motivated by data analysis, we compare
signals with a complex “overlap”, maximized over time
and polarization [26, 27]; see Appendix A for a brief re-
view. We adopt a fiducial advanced LIGO noise curve
(zero detuned high power; see [28]) and perform inte-
grals over 5− 2000 Hz.4 Using differential evolution [29],
a hill-climbing algorithm, we select the best-fitting non-
precessing (IMPhenomB) mass, spin, and mass ratio for
each precessing binary merger simulation and mass. The
best-fit parameters are denoted by λPB and the best-fit
match is denoted Pmax,corot:

Pmax,corot ≡ max
t

|
〈
[R−1ψ4NR]2,2|[ψ4PB(t, λPB)]2,2

〉
|

|R−1ψ4NR||ψ4PB(λPB)|
.

(1)

Figure 1 shows the fraction of simulations with match
Pmax,corot [Eqs. (A7, A8)] greater than a specified thresh-
old. Most have a match within a few percent of unity;
and, therefore, a precessing model and its nonprecessing
analog would appear very similar to a gravitational wave
detector network with plausible signal amplitude [27].

As described in Section IV, the best-fitting nonprecess-
ing parameters depend on precisely which time and fre-
quency interval we adopt for comparison. For the data-
analysis-driven diagnostic used here, the best-fitting pa-
rameters depend on the mass adopted for the precessing
binary. Roughly speaking, at low mass the best-fitting
nonprecessing model has similar mass ratio and “effective
spin” [10, 30–32]. When fitting the IMRPhenomB model
to our data, our results suggest the best-fitting binary
has the same value of the IMRPhenomB “effective spin”
parameter χPB; see Section IV. For illustration, Figure
2 shows how χPB depends on simulation mass, for a one-
parameter family of equal mass binary mergers.

Conversely, at high mass the signal produced by the
simulation and any nonprecessing model is dominated
by quadrupole radiation from the final black hole. In-
evitably, the best-fitting nonprecessing models must pre-
dict comparable final states.

Despite adopting a phenomenologically-motivated
comparison, our method identifies nontrivial, physically
significant relationships between precessing and non-
precessing signals. As demonstrated in Section IV, the
best-fit nonprecessing model to the early time (here, low
mass) signal has the physically-anticipated parameters
needed to reproduce a common orbital phase evolution:
similar mass ratio and “effective spin”. For this reason,

4 For binary masses M < 300M�(40 Hz/flow), our results are not
strongly sensitive to the lower frequency limit adopted for the in-
tegrand. We adopt flow = 5 Hz, to insure only the detector noise
power spectrum, and not arbitrary choices for flow, determines
our results at high mass.
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FIG. 1: Precessing binaries resemble nonprecessing bi-
naries: Distribution of best fit complex overlap Pmax,corot

[Eq. (1)] between the IMRPhenomB and our simulated signals of
mass M . The solid black curve shows the median-probability
overlap Pmax at each mass: half of our precessing simula-
tions have a fitting factor above the black solid line at each
mass; the dotted black curves show the 90% confidence inter-
val, estimated from our set of 224 simulations. For compari-
son, the red solid and dotted curves show the median fitting
factor and 90% confidence interval estimated from 62 non-
precessing simulations; these simulations are not included in
the previous list. All calculations are performed by compar-
ing the two models’ (2, 2) modes, each in a suitable corotat-
ing frame. Our simulations have significantly different initial
conditions and hence durations: many shorter simulations do
not have enough data to reliably estimate the waveform and
hence P for M <∼ 250M�. Our longer simulations, including
the nonprecessing simulations, are relatively well-fit by the
IMRPhenomB model down to ' 100M�.

we anticipate the corotating-frame modes can be natu-
rally extended to arbitrarily early times via “hybridiza-
tion” with conventional post-Newtonian or effective-one-
body models for the early inspiral. Even though we only
fit the (2, 2) mode, detailed followup of a handful of sim-
ilar systems suggests the best-fitting parameters repro-
duce several modes simultaneously. Indeed, the striking
similarity illustrated by the top panel of Figure 4 and
first noted in Figure 12 of Schmidt et al. [18] was used to
motivate detailed analysis of the corotating frame. Un-
fortunately, we only possess continuously-parameterized
models for one mode from a generic nonprecessing bi-
nary; we defer a detailed quantitative analysis of multiple
modes to a future study.

As noted in Section V, this formal similarity in a
noninertial frame is directly relevant to physical ob-
servers in the inertial frame, each limited to a single
fixed line of sight that does not corotate with the bi-
nary. A nonprecessing signal, combined with a suit-
able rotation, will generate a reasonable facsimile of a
precessing signal, in the observer’s frame. As a re-
sult, even though detailed simulations of precessing bi-
naries are computationally expensive, a computation-
ally trivial procedure can generate plausible precessing
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FIG. 2: Best-fit nonprecessing parameters depend on
precessing parameters and mass, and can differ from
the simulation parameters: Top panel : For selected simu-
lations studied in this work, a plot of the best-fitting effective
spin χPB versus the simulated binary’s mass. The best-fit ef-
fective spin changes as a function of mass: while the initial
and final state separately resemble a nonprecessing system,
no single nonprecessing system fits the whole time-dependent
corotating-frame mode. Instead, the best-fitting parameters
interpolate (sometimes discontinuously) between the initial
and final state. Colors indicate Tq(1.5, 0.4,60,10) (blue); S(1,
0.2, 180,6.2) (black); Sq(4, 0.6,270,6.2) (green); and several
instances of Sq(4, 0.6,270,9) using h=M/180, M/160, and
M/140 resolutions; see Appendix B for details. Bottom panel :
For all simulations used in this work, the ratio Mfit/Msim be-
tween the fitted and simulated mass. As indicated by the
shaded region, the best-fitting mass can differ by up to ' 10%
from the simulated mass.

inspiral-merger-ringdown signals. To demonstrate this
agreement, Figure 3 uses the best-fit corotating-frame
IMRPhenomB parameters λPB derived in the corotating
frame; generates a time-domain corotating-frame signal
consisting of only the IMRPhenomB (2,±2); transforms to
the corotating frame to create a synthetic multimodal
signal R(t)ψ4PB(t, n̂); and calculates the complex match
Pmax between the simulation-frame (2, 2) modes of the
synthetic signal and the original precessing NR simula-
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FIG. 3: Synthetic precessing waveforms resemble pre-
cessing waveforms: Top panel : The distribution of Pmax,sim

[Eq. (2)], the match between ψ4NR2,2 and Rψ4PB , a synthetic
precessing signal derived by applying a known time-dependent
rotation to a best-fitting IMRPhenomB waveform. This distri-
bution is effectively identical to that shown in Figure 1. Bot-
tom panel : For the Sq(1.5, 0.6,45) simulation, a plot of the
match Pmax,sim and Pmax,corot [Eq. (1)]. As this example il-
lustrates, except for very high masses Pmax,corot ' Pmax,sim.
To avoid over-weighting the single worst case, which has
Pmax,corot ' 0.95 for all masses, we have explicitly eliminated
all five resolutions of the strongly-precessing Sq(4,0.6,270,9)
and the equivalent Tq(4,0.6,90,9) from this comparison. By
contrast, all resolutions and iterations are included in Figure
1.

tion to which the corotating-frame mode was fit5:

Pmax,sim = maxt
|
〈
ψ4NR,2,2|[Rψ4PB(t, λPB)]2,2

〉
|

|ψ4NR,2,2||[Rψ4PB(λPB)]2,2|
(2)

At low mass M <∼ 1700M�, these two quantities agree:
Pmax,corot ' Pmax,sim. As expected, at high mass
these two quantities increasingly disagree. This disagree-
ment does not reflect intrinsic dissimilarity between non-

5 In our investigations, we constructed a family of synthetic pre-
cessing signals, unique up to overall mass scale M . The figures
provided in the text describe the performance of the best-fitting
member of that one-parameter family. We obtain almost iden-
tical results if the procedure described in the text is followed
verbatim.
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FIG. 4: Corotating signal resembles nonprecessing
signal : Comparison of |rR−1ψ4l,m| (top panel) and

argR−1ψ42,2 (bottom panel) for a nonspinning q = 4 sim-
ulation (dotted) with the corotating waveform from the
Sq(4,0.6,270,9) simulation (thick). The colored curves cor-
respond to the (2,±2) modes (red, solid); the (2,±1) modes
(blue); and the (3, 3) mode (green). A timeshift has been
applied to align the two simulations. This comparison shows
several modes from the same nonprecessing simulation repro-
duce the corotating frame modes from another [18].

precessing and precessing signals. Instead, it reflects our
strict application of the best-fit parameters derived from
the corotating frame to a slightly different problem: re-
producing ψ4NR in the simulation frame. At high mass,
slightly different choices for ψ4PB are needed to optimally
reproduce the NR signal in each frame.6 In special cases
like Figure 4, a single nonprecessing model can approxi-
mate the entire signal.

Our calculations demonstrate these inexpensive mod-
els provide a fast, surprisingly accurate model for generic
precessing signals. Moreover, though not described in de-
tail here, the rotation operation R(t) can be easily mod-

6 Though the Fourier transform of R(t)ψ4(t) is well-approximated
by R(t(f))ψ̃4(f) at early times, when the rotation operation
changes slowly, at late times a stationary-phase approximation is
not sufficiently accurate for our purposes. Equivalently, the ro-
tation needed at late times oscillates on a timescale comparable
to the quasinormal mode frequency spacing.
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FIG. 5: Precessing systems break reflection symmetry
in the corotating frame: For the Sq(4,0.6,90,9) simula-
tion provided in [14], a plot of the reflection-symmetric (solid)
and reflection-antisymmetric (dotted) parts of the corotating-
frame l = 2 modes, for m = ±2 (red) and ±1 (blue); see Eq.
(3). This figure suggests that precessing binaries radiate in
a way unlike any nonprecessing binary, even one viewed in a
noninertial frame; that this missing physics has a comparable
effect to higher harmonics like the (2,±1) modes (e.g., dotted
red vs solid blue); and that both reflection symmetry break-
ing and higher harmonics are required to accurately model
the merger phase of generic precessing binaries.

eled and fit, particularly in a frame aligned with the to-
tal angular momentum. In principle, comparisons like
our own allow fits to functions λPB(λ) and R(t|λ), hence
producing a “synthetic waveform” R(λ)ψ4PB(λPB). Our
analysis suggests these “synthetic waveforms” can be
used as a simple method with which to prototype data
analysis strategies for precessing, multimodal sources.
However, because nonprecessing models omit critical
physics, particularly in the high-mass regime emphasized
in this paper, we do not recommend high-precision cali-
bration of these synthetic waveforms, particularly if that
calibration is limited to a study of only the leading-order
(2, 2) mode.

Even when viewed in a rotating frame, a nonprecess-
ing binary retains its intrinsic symmetries: spins aligned
with the orbital plane. Without precessing spins to
break symmetry and source other multipoles, the emit-
ted radiation has strong symmetries: reflection symmetry
through the orbital plane, insuring that at every instant
the binary radiates equal and opposite left- and right-
handed radiation, in mirror-symmetric directions. By
contrast, our previous calculations [14] and long expe-
rience with black hole superkicks demonstrate that pre-
cessing black holes radiate asymmetrically, emitting pref-
erentially right-handed or left-handed radiation at any
instant. Equivalently, even in the corotating frame, pre-
cessing binaries break reflection symmetry through the
orbital plane. In Section V we use reflection symmetry
to quantify the extent to which a nonprecessing model
omits critical physics. To quantify the magnitude to
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which reflection symmetry is broken, we use conjugation
symmetry to define CP-odd (bl,m(t) = −(−1)lbl,−m(t)∗)
and CP-even (al,m(t) = (−1)lal,−m(t)∗) parts of the
corotating-frame Weyl scalar (R−1ψ4):

[R−1ψ4]l,m = al,m + bl,m (3)

Globally, this specific symmetry C corresponds to a re-
flection symmetry through the z = 0 plane:

Cψ4 ≡ ψ4(π − θ, φ)∗ (4)

=
∑
l,m

[al,−m − bl,−m][(−1)lY
(−2)
l,m (π − θ, φ)]∗

=
∑
l,m

[al,−m − bl,−m]Y
(−2)
l,−m(θ, φ) (5)

For a nonprecessing binary, the CP-odd term bl,m =
0. Using a concrete precessing example, Figure 5
shows the CP-even (solid) and CP-odd (dotted) parts of
the leading-order corotating-frame angular modes ψ4l,m.
Comparing the red dotted and solid lines, this figure
demonstrates that after merger, the CP-odd part of the
dominant mode is significant. In other words, this figure
shows that, to accurately describe this binary’s emission
versus time and angle, we must include a CP-odd part –
a part no nonprecessing signal could ever produce! More
broadly, because a precessing binary has more physics, its
signal remains more complicated than one from a non-
precessing binary, even in the corotating frame.

Figure 6 illustrates the practical implications of these
asymmetries. This figure shows the match Pmax,corot

for a one-parameter family of high-symmetry simula-
tions: binaries with m1 = m2, ~a1 = an̂(θ, φ), and
~a2 = an̂(θ, φ + π) as a function of φ. By construction,
each member of this one-parameter family has an identi-
cal projection of the spin along the orbital angular mo-
mentum axis (χPB) and more generally identical total
spin S1 + S2; evolves without precession of the orbital
plane; and produce black holes whose final mass and spin
does not change significantly with φ [Table I]. Moreover,
these binaries produce similar symmetric radiation a2,2

for all orientations φ. To quantify this similarity, Figure
6 shows the value of

Pmax,NR,a = max
t

|
〈
a2,2|a′2,2(t)

〉
|

|a2,2||a′2,2|
(6)

evaluated between one reference simulation and all oth-
ers, at one reference mass; the high and nearly con-
stant match demonstrates a2,2 is effectively independent
of φ.7 Nonetheless, the total gravitational wave signal
[R−1ψ4]2,2 = a2,2 + b2,2 emitted by these binaries mea-
surably changes with φ. These differences can be easily

7 Similar results occur at all masses. In the interests of brevity,
we do not plot all of the functions a2,2(φ), even though their
manifest similarity is immediately apparent to the eye.
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FIG. 6: Does it matter if we omit the transverse spin?:
This figure demonstrates that transverse spins have a signif-
icant effect on the gravitational wave signal, via reflection-
symmetry-breaking between the (2,±2) modes. For the
special-purpose V (a, θ, φ) family of precessing simulations de-
scribed in the text and Appendix B, points show the match
Pmax,corot versus the angle φ, for the fixed angle θ = 34o. For
comparison, this figure uses ψ to indicate the match Pmax,NR

[Eq. (7)] evaluated between the corotating-frame (2, 2) mode
for one member of that family [V (0.6, 34, 240)] and all others,
directly demonstrating how much these signals differ from one
another. For another comparison, this figure uses a to indi-
cate the match Pmax,NR,a [Eq. (6)] between the reflection-
symmetric part of the corotating-frame (2, 2) (a2,2) of that
same simulation and all other angles φ. The strong variabil-
ity in the first set (ψ) and lack of variability in the second (a)
suggests that reflection asymmetry is the dominant source of
variation between different simulations. This figure illustrates
strong, generic correlations between the precise magnitude
and direction of the transverse spins; reflection asymmetry
between the (2 ± 2) modes in the corotating frame; and the
degree of similarity between the (2, 2) corotating-frame mode
and conventional non-spinning approximations.

assessed simply by noting the best-fitting parameters and
Pmax,corot recovered when comparing with IMRPhenomB
vary with mass; as an example of the latter diagnostic,
see the points in Figure 6. More directly, these differences
can be demonstrated by computing the overlap between
different simulations [R−1ψ4]2,2 for the values φ, φ′, via

PmaxNR = max
t

|
〈

[R−1ψ4NR]2,2|[R
′−1ψ4

′
NR]2,2

〉
|

|R−1ψ4NR|[R
′−1ψ4

′
NR]2,2

(7)

One such example is provided by the markers labeled ψ
in that figure. Figure 6 suggests the asymmetry (b2,2) is
principally responsible both for a significant fraction of
the mismatch 1 − Pmax,corot and for all the fluctuation
in the match versus φ. This correlation is generic: all
other generic binaries preferentially radiate asymmetri-
cally as the spins precess, above and below the instanta-
neous orbital plane. To a first approximation, the domi-
nant, symmetric part a2,2 resembles a nonprecessing sig-
nal; a comparison between a2,2 and IMRPhenomB approx-
imately determines the best-fitting parameters. Partic-
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ularly during at late times when asymmetries between
(2,±2) become particularly significant, however, the in-
fluence of asymmetry can significantly diminish (or en-
hance) the similarity between nonprecessing and pre-
cessing signals – in our context, change the best-fitting
IMRPhenomB parameters and match Pmax,corot. Broadly
speaking, our results suggest larger degrees of asymmetry
between (2,±2) correlate with a generally larger but spin-
orientation-dependent mismatch between the corotating-
frame (2,2) modes and IMRPhenomB.

To summarize, our study suggests that nonprecessing
signals, suitably rotated, resemble but cannot reproduce
with high precision the gravitational wave signal from
generic precessing binaries. With few exceptions,8 syn-
thetic precessing signals generated from nonprecessing
binaries will not be adequate for high-precision parame-
ter estimation, unless augmented by new physics (i.e.,
transverse spins) and multiple harmonics. That said,
given the robust similarity of nonprecessing and pre-
cessing merger signals over observationally relevant in-
tervals, we anticipate synthetic precessing signals will be
extremely useful as plausible signals. We strongly recom-
mend that existing gravitational wave search strategies
for high-mass merger signals test how reliably they can
recover the complex multimodal from precessing binaries
with M > 100M� using “synthetic” multimodal inspiral-
merger-ringdown signals, generated simply by viewing a
nonprecessing binary in a precessing frame.

Finally, motivated by previous studies and our own re-
sults [e.g., Figure 5], we anticipate that detailed parame-
ter estimation of high-mass (M > 100M�) binary merg-
ers will require detailed modeling of multiple modes of
generically-precessing binaries. A corotating frame and
a nearly- nonprecessing CP-even approximation can re-
duce the number of functions to fit; in this mass region,
however, higher harmonics cannot be neglected.

III. COMPARING THE COROTATING AND
SIMULATION FRAME

A. Why compare nonprecessing and precessing
binaries in the corotating frame?

As we will discuss at greater length in Section V, with
more degrees of freedom in their underlying kinematics,
precessing binary mergers never look exactly like a non-
precessing merger, even in the corotating frame. In the
corotating frame, the gravitational waves from precess-
ing binaries break symmetries and carry more informa-
tion than the signal from the best-fitting nonprecessing

8 For special quantities constrained by symmetry, like the open-
ing angle of the precession cone, parameter estimation should
be reliable, independent of whether the corotating-frame model
works well, due both to separation of timescales and due to the
way polarization modulations enter into the signal
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FIG. 7: Corotating modes evolve nearly in phase prior
to merger: Phases of corotating modes in an absolute scale
(top panel) and scaled in proportion to their angular order
φl,m/|m| (bottom panel), for the Tq(2,0.6,90) simulation. To
a good approximation all evolve in phase prior to merger.
After merger, all angular harmonics shown continue to evolve
nearly in phase, except the (2, 1) mode. Colors indicate the
(l, l) modes (red, with solid as l = 2, dotted as l = 3, and
dashed as l = 4); the (2, 1) mode (blue); the (4,3) mode
(dashed purple); and the (3,2) mode (dotted purple).

analog. Nonetheless, the additional degrees of freedom
are very difficult to excite in a quasicircular inspiral. In
surprisingly many scenarios, a precessing binary may be
well-approximated by the emission from a nonprecess-
ing binary, plus a slowly-changing orientation. Qualita-
tively speaking, the corotating-frame mode amplitudes
R−1ψ4l,m extracted from a precessing binary have sim-
ilar characteristics as the corresponding modes seen in
a nonprecessing binary. In the time domain, all of the
corotating-frame modes R−1ψ4 have smooth phase evo-
lution and (roughly) smooth amplitude evolution.9 This

9 The corotating-frame |R−1ψ4l,m| are weakly modulated during
the inspiral, in two ways. First, the (l,±m) modes can increase
or decrease at the same time (in phase), due to either to residual
eccentricity or suitable spin precession (for suitable modes). The
(l,±m) modes can increase or decrease out of phase, as precess-
ing spins source symmetry-breaking multipole moments. For ex-
ample, during inspiral the leading-order asymmetry occurs from
current quadrupole radiation, sourced by the transverse spins
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smooth and simple behavior in the amplitude and phase
has already been noted previously [18–21]. As a first
approximation, we also find corotating modes resemble
suitable nonprecessing ones; see Figure 4 as an exam-
ple. Because of this correspondence, the corotating frame
waveforms roughly satisfy the same symmetries as non-
precessing binaries. For example, during the inspiral the
modes evolve in phase (i.e., ∝ m−1argR−1ψ4l,m); see Fig-
ure 7. More generally, all modes are approximately phase
conjugate (i.e., argR−1ψ4l,m ' −arg(−1)lR−1ψ4l,−m).
By contrast, as has repeatedly been demonstrated in the
literature, the simulation-frame modes are both signifi-
cantly different and more complicated [14, 18–21]. Ex-
cept for nearly-nonprecessing binaries, the substantial
differences between the corotating-frame and simulation-
frame waveforms are much more significant than the rel-
atively small numerical uncertainties in this mass regime.

In short, the corotating frame provides a significantly
different, simpler waveform with many approximate sym-
metries. Previous experience suggests these symmetries
facilitate interpretation and quantitative calculations for
precessing merging binaries [14, 24]. Moreover, even
though observers cannot co-rotate with the binary, an-
alytic calculations suggest the corotating frame signal
has direct observational relevance, based on separation of
timescales. For example, as we highlighted in our exec-
utive summary, comparisons between the (unobservable)
corotating-frame signals are directly comparable to com-
parisons between (observable) simulation-frame quanti-
ties: Pmax,corot ' Pmax,sim [Eqs. (1,2); see Figure 3].

B. Comparing a corotating mode with a
phenomenological model using a complex overlap

Following previous studies [14, 26, 27], we use a com-
plex overlap to assess the observationally-relevant differ-
ences between two signals a, b

〈a|b〉 ≡ 2

∫ ∞
−∞

a∗(f)b(f)

Sh(2πf)4
(8)

where each of a, b represent some value for the outgoing

Weyl scalar ψ42,2 ≡ 〈2, 2|ψ4〉 =
∫

[Y
(−2)
l,m ]∗ψ4dΩ. see, e.g.,

Eq. (24) in [14] and the detailed review in Appendix A.
In this work, we apply this diagnostic to pairs of signals
in the corotating frame [Eq. (1)] and in the simulation
frame [Eq. (2)].

being transported around the orbit. The theory underlying the
latter scenario is briefly reviewed in the text and Appendix A.

C. The IMRPhenomB family as a continuous reference
model

Though numerous, our numerical simulations of non-
precessing and precessing binaries only discretely sample
the model space. For this reason, rather than directly
compare pairs of simulations, we compare our simulations
against IMRPhenomB [10], a model for h2,2 as a function of
total binary mass M , mass ratio η = m1m2/(m1 +m2)2,
and a single effective spin parameter χPB :

χ± ≡ L̂ · (S1/m
2
1 + S2/m

2
2)/2 (9a)

χPB = L̂ · (m1S1/m
2
1 +m2S2/m

2
2)/M

= [(1 + δ)(S1/m
2
1) + (1− δ)S2/m

2
2]/2

= χ+ + δχ− (9b)

where δ = (m1 − m2)/M . This model employs a
physically-motived piecewise-continuous expression for
h̃22(f), expressed as an amplitude |h22| and phase argh22.
At low frequencies their expressions reproduce con-
ventional stationary-phase approximations derived from
post-Newtonian theory; conversely, at high frequencies,
their amplitude model |h22(f)| has the Lorentzian form
expected from a quasinormal mode ringdown. Parame-
ters of this hybrid, phenomenological model were set by
comparing to numerical simulations and to an extreme-
mass-ratio limit. This model has been calibrated against
numerical simulations; includes the effect of aligned
spins; and has been made publicly-available via the
lalsimulation toolkit. As this code provides a model
for the strain (hPB) rather than the Weyl scalar, we ex-
plicitly convert between representations using the Fourier
transform

ψ̃4PB(f |M,η, χPB , tmgr) = − 1

(2πf)2
h̃PB(f) (10)

Because the inspiral and final black hole depend on
the component masses and spins in distinctly different
ways, no one IMRPhenomB model can reproduce a generic
corotating-frame (2, 2) mode for all time. For this reason,
we distinguish between the simulated binary’s param-
eters (Msim, ηsim, χPB,sim) and the parameters of some
best-fitting IMRPhenomB model (Mfit, ηfit, χPB,fit).

By comparing a model against our simulations rather
than comparable simulations against one another, we
introduce systematic error. To quantify the degree of
similarity between the IMRPhenomB model and our non-
precessing simulations, we have evaluated Pmax,sim =
Pmax,corot between this model and an array of 34 non-
precessing simulations. As indicated by the red curves
in Figure 1, for most simulations and a wide range of
masses, some member of the IMRPhenomB model matches
each of our simulations to better than ' 1 − 2%. The
best-fitting parameters are always close to our simulation
parameters.

Since IMRPhenomB was first published, other models
have been developed that may even more accurately re-
produce the merger of precessing binaries over a wide
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range of masses and spins [8, 33]. While we have com-
pared these models against some of our numerical simu-
lations, in this work we limit our comparisons to the suffi-
ciently accurate and easy-to-evaluate IMRPhenomB model.

D. In the corotating frame, nonprecessing and
precessing binaries resemble one another

Figure 1 summarizes the results of our comparison be-
tween IMRPhenomB and each numerical simulation, in the
corotating frame. In short, the two nearly agree: for ev-
ery simulation, some nonprecessing IMRPhenomB model
exists which nearly reproduces that simulation’s coro-
tating (2, 2) mode ([R−1ψ4]2,2) over an observationally
relevant interval.

A closer investigation of Figure 1, however, suggests
that systematic differences exist between corotating-
frame waveforms and nonprecessing signals. In that fig-
ure, the red curves show that truly nonprecessing simula-
tions are better fit by IMRPhenomB (red curves) than the
corotating-frame signal from a precessing binary (black
curves), with matches of order 1− 3% better. This level
of disagreement is large enough to be observationally ac-
cessible: typically, parameter estimation strategies can
resolve differences between models when their matches
differ by 1/ρ2, expected to be of order >∼ 1/102 for the
first detections at signal amplitude ρ ' 10.

As highlighted in the executive summary and as we
will describe in detail later, these differences between
the corotating-frame and simulation-frame signal are ex-
pected on physical grounds: the real binary has more de-
grees of freedom, reflected in the orbit and critically cur-
rent quadrupole radiation. These differences fundamen-
tally limit the accuracy of synthetic signals that hope to
reproduce precessing signals using suitably-rotated non-
precessing binaries. Equivalently, the difference between
the red and black curves in Figure 1 suggests an accuracy
threshold for proposals that hope to carefully calibrate
such models against numerical merger signals.

For comparison, we have repeated the fitting process in
the simulation frame, computing Pmax by directly com-
paring ψ4PB,2,2 to ψ4NR,2,2. Most of our simulations

have approximately aligned initial orbital (L̂) and total

(Ĵ) angular momentum directions. As a result, the fit-
ting procedure generally finds a similar best fit Pmax at a
similar parameter location. The small offset between the
best-fit simulation frame and corotating frame parame-
ters can be qualitatively understood: rapid in-band pre-
cession shifts the best-fit parameters by an amount pro-
portional to the post-merger precession frequency. The
question of directly comparing precessing simulations to
nonprecessing models has considerable practical interest,
particularly for efforts to estimate binary parameters us-
ing simple models for the merger signal. That said, the
results of this comparison are beyond the scope of our
current study and not provided here.

IV. UNDERSTANDING THE BEST-FIT
PARAMETERS

As described above, for each simulation and mass,
we have found the nonprecessing model parameters
(Msim, ηsim, χPB,sim) such that the corotating-frame (2, 2)
mode and the IMRPhenomB mode are most similar. As
illustrated by Figure 2, the best-fit nonprecessing pa-
rameters are neither constant nor trivially related to the
precessing binary being simulated. In fact, on physi-
cal grounds we expect and our calculations show that
the best-fit nonprecessing model to evolve from a low-
mass limit that reproduces qualitative features of the
corotating-frame inspiral to a high-mass limit that re-
produces qualitative features of the corotating-frame fi-
nal black hole’s ringdown.

A. Low-mass limit

In the advanced LIGO sensitive band, the gravitational
wave signal from a low mass binary M < 300M� is pro-
duced principally prior to merger, when the two objects
can be distinguished as separate objects. At low mass
the best-fitting nonprecessing model should resemble the
initial binary, reproducing its orbital evolution. In other
words, not only will the IMRPhenomB model fit, but the
best-fitting model parameters are actually physical prop-
erties of the binary. Specifically, the best-fitting non-
precessing model ψ4PB(λPB) should have similar mass
ratio and “effective spin” [10, 30–32].

Figure 8 compares the simulation’s mass ratio ηsim

to the best-fitting IMRPhenomB mass ratio ηfit for all of
our long-duration simulations (i.e., an initial separation
d > 7). To emphasize the inspiral, this figure adopts
the best-fit parameters at M = 100M�. Despite sys-
tematic differences between the IMRPhenomB model and
our nonprecessing simulations (green points), this figure
and Figure 1 together suggest that both nonprecessing
and precessing simulations and the IMRPhenomB model
all produce nearly-indistinguishable estimates for the in-
spiral phase of R−1ψ42,2 at the same physical parameters.

In practice, the short duration of most of our precess-
ing simulations limits our ability to recover the inspiral
signal in isolation. Equivalently, as illustrated in Figure
1, the best fit between IMRPhenomB and our precessing
signals is relatively poor below 250M�. That said, be-
cause IMRPhenomB includes both inspiral and merger, we
anticipate the best-fit parameters at M = 300M� will
still correspond to binary parameters that approximate
the simulated system just prior to merger, in a corotating
frame; see the Appendix for further discussion. Figure 9
shows an example of the best-fitting IMRPhenomB spin
parameter χPB,fit for a one-parameter family of simula-
tions, evaluated at M = 300M�. Given the fundamental
physical differences between the IMRPhenomB model and
simulations and given the mass used for comparison, we
are not surprised that the best fit parameters do not lie
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FIG. 8: Low mass limit: Recovering the mass ratio: At
low masses and therefore early times, the best-fit corotating-
frame model reflects the initial binary. These panels show
comparisons between the best-fit IMRPhenomB parameter ηfit
and the physical binary mass ratio η, using best-fit values at
M = 100M�; compare to Figure 9. This figure explicitly ex-
cludes all of our shorter simulations (d < 7M). Green points
are nonprecessing spin-aligned systems; black points are long-
duration simulations from the Sq series; and blue points are
long-duration simulations from the Tq series. A solid blue
line at ηsim = ηfit(100M�) is shown to guide the eye. [An
identical color scheme is adopted in the subsequent Figure 9.]

precisely on any theoretically anticipated correlation.
Even in the best of circumstances, we do not antici-

pate being able to accurately reproduce all parameters
perfectly with our fitting process. At any mass, mass
ratio, and spin, gravitational wave signals like ψ4PB(λ)
with neighboring parameters λ closely resemble one an-
other. Depending on the particular signal model and
parameters λ, some parameter combinations are easier
to identify than others via a fitting process. The easy-to-
measure and hard-to-measure parameters can be iden-
tified via a Fisher matrix [34]; as an example, in the
interpretation of low-mass nonprecessing binaries, a par-
ticular correlated combination of mass, mass ratio, and
spin is exceptionally difficult to constrain observationally
[34]. The accuracy of our fit is also limited by by system-
atic differences between IMRPhenomB and our signal. In
this proof-of-concept study we will not provide a detailed
analysis of the systematic uncertainties associated with
this fitting procedure.

B. High-mass limit

The late-time gravitational wave signal from a merg-
ing binary should be dominated by its leading-order
quadrupole quasinormal mode, both in the simulation
and corotating frame. On physical grounds, we therefore
expect the best-fitting nonprecessing model to predict a
similar final resonant frequency and decay timescale –
or, equivalently, a similar final black hole mass Mf and
spin af . As before, we will distinguish between the fi-
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FIG. 9: Low mass limit: Recovering the effective
spin: At low masses and therefore early times, the best-fit
corotating-frame model reflects the initial binary. These pan-
els show comparisons between the best-fit IMRPhenomB pa-
rameter χeff and χPB [Eq. (9)], using best-fit values at
M = 300M�. Colors indicate the Sq series (black); the Tq
series (blue); and the T series (red). Colors indicate the Sq se-
ries (black); precessing binaries in the Tq series (blue); aligned
spin binaries from the Tq series (green); and the short simu-
lations of the T series (red), Eq series (purple), and Lq series
(dark red). A solid blue line at χPB,sim = ηPB,fit(100M�)
is shown to guide the eye. Though provided at high mass
(M = 300M�) to insure short simulations are well-resolved,
a similar distribution is recovered when using earlier epochs
of longer signals (i.e., M ' 100M�).

nal black hole mass and spins derived from our simu-
lations (Mf,sim, af,sim) and derived from the best-fitting
IMRPhenomB parameters (Mf,fit, af,fit).

The IMRPhenomB parameters χsim, ηsim are not trans-
parently related to the final quasinormal mode frequen-
cies and hence to the assumed final black hole mass and
spin. To transform the best-fitting parameters ηfit, χPB,fit

into a specific final black hole mass Mf,fit and spin af,fit,
we adopt relationships between the “initial” and post-
merger state that reproduce the correlations seen in our
simulations.

The transformation from nonprecessing binaries to fi-
nal black holes is degenerate: the initial state is speci-
fied by three parameters (mass, mass ratio, and at least
one “typical” spin10) while the final black hole has only
two (mass and spin). Expressions exist which relate the
pre- and post-merger parameters [11, 35–39, 39]. For
generic binaries, because spins precess between forma-

10 Physically, a nonprecessing binary has four parameters: mass,
mass ratio, and two spins. Due to symmetry, a nonprecessing
binary’s ψ42,2 must be reflection- and exchange-symmetric, im-
plying it cannot trivially (e.g., linearly) depend on an antisym-
metric combination of the binary’s spins. To an excellent ap-
proximation, the leading order quadrupole (ψ42,2) produced by
a nonprecessing binary depends on only three parameters: mass,
mass ratio, and an effective spin.
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tion and merger, the precise relationship between the
pre- and post-merger state depends on precisely when
the initial binary’s parameters are specified [35, 40, 41].
In this work, however, these approximate analytic re-
lationships will only be applied to nonprecessing initial
parameters.11 In that case, the final black hole mass can
be estimated using the following combination the pre-
merger mass, mass ratio, and spins using [39]

Erad
M

= 1−Mf/M = [1− EISCO(ā)]ν (11a)

+ 4ν2[4po + 16p1ā(ā+ 1) + Eisco(ā)− 1] (11b)

EISCO =
√

1− 2/3rISCO(a) (11c)

ā ≡ L̂ · (S1 + S2)

M2
(11d)

(po, p1) ' (0.04827, 0.01707) (11e)

where rISCO(a) is the (dimensionless) radius of the Kerr
horizon in Boyer-Lindquist coordinates. This approxima-
tion assumes the final black hole mass can depend on the
spins only through ā – specifically, only through the to-
tal spin, projected along the orbital angular momentum;
other approximations allow for more degrees of freedom
and physics [11]. Similarly, the final black hole dimen-
sionless spin can be computed from the pre-merger mass,
mass ratio, and spins using either Eqs. (6-7) from Lousto
et al. [11]12 or the simpler Eq. (6) from [42]:

af ≡ Jf/M
2
f =

|~a1 + ~a2q
2 + L̂|`|q|

(1 + q)2
(12a)

|`| = 2
√

3 + t2η + t3η +
s4|~a1 + ~a2q

2|2

(1 + q2)2

+
s5η + to + 2

1 + q2
L̂ · (~a1 + q2a2) (12b)

(t0, t3, t2) = (−2.89, 2.57,−3.52) (12c)

(s4, st) = (−0.1229, 0.45) (12d)

These expressions accurately reproduce the results of our
nonprecessing simulations. For example, given the initial
spins, these expressions reliably reproduce the final black
hole mass we derive from the final horizon to significantly
better than 1% in all well-resolved simulations.

11 The expressions provided in the text have been extremely accu-
rately tuned for aligned-spin binaries. Though significantly less
accurate for precessing binaries, these expressions are a quali-
tatively consistent relationship between our simulations’ initial
and final states when the binary has two precessing spins. In
particular, these expressions usually predict the final black hole
mass Mf,sim/Msim for generic precessing binaries to well within
1% of their true value. This scale can be helpfully compared with
the significant scatter visible in the top panel of in Figure 10.

12 To implement this expression exactly requires knowledge of the
spins just prior to plunge and merger. We only apply this expres-
sion to nonprecessing systems – in fact, only to the IMRPhenomB

best-fit parameters.

In terms of these relationships, we derive the final
black hole mass and spin implied by the best-fitting
IMRPhenomB parameters Mfit, χPB,fit, ηfit by direct sub-
stitution. For example, we evaluate the final black hole
mass Mf,fit by assuming S1 = χPB,fitm

2
1L̂ and S2 =

χPB,fitm
2
2L̂, where m1,2 are derived from ηfit, in the ex-

pression above:

Mf,fit/Mfit = 1− ηfit(1− EISCO)(ā) (13)

As shown by example in Figure 10, the best-fit pa-
rameters Mf,fit, af,fit should be close to the final black
hole’s state. This figure compares the final black hole
state identified in each simulation with the final state im-
plied by the best-fitting IMRPhenomB parameters. At the
late times and high masses studied here, both the signal
model and IMRPhenomB will be dominated by late-time
quasinormal mode decay, with some characteristic fre-
quency ω2,2(Mf , af). Qualitatively speaking, we expect
the fitting process enforces near-equality between ω2,2 de-
rived from ψ4PB and the late time ringdown frequency
in the corotating frame. The functional dependence of
ω2,2 on Mf , af determines the key features seen in Figure
10. First, the mass ratio Imω2,2/Reω2,2 depends strongly
on the final black hole spin af ; and, therefore, this fit-
ting procedure should reliably determine the final black
hole spin parameter; see, for example, the bottom panel
in Figure 10. Second, because of the extremely limited
number of cycles available to constrain the final black
hole’s properties, the total black hole mass cannot be re-
liably measured.13 In particular, because relatively little
mass is loss to infinity (Mf/M ' 1), the fraction of mass
lost to infinity cannot be reliably determined; see the top
panel of Figure 10.

Above and beyond the fundamental limitations set by
the functional form of ω2,2, the best-fit IMRPhenomB final
spin differs systematically from the physical spin param-
eter for three reasons. Systematic differences exist be-
tween the IMRPhenomB model and our simulations, even
for aligned spins; see the red curves in Figure 1. These
differences arise due principally due to physical differ-
ences between the IMRPhenomB model and our merger
simulations.14 In addition, the IMRPhenomB approxima-
tion uses its own implicit relationship between initial
binary and final black hole, encoded in the final ring-
down frequency [10]. As indicated in Figure 10 using
red points, comparable differences between the physi-
cal final state and a final state derived from the best-fit
IMRPhenomB model appear when this procedure is applied

13 A more detailed treatment of parameter estimation uncertainties
in the ringdown signal is beyond the scope of this paper.

14 We have simulated identical nonprecessing systems at different
resolutions and compared them with IMRPhenomB; all results for
these simulations are included in Figure 1. The best-fit match
and recovered parameters depends only weakly on resolution; by
contrast, significant differences exist between IMRPhenomB and
any of our models.
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both to precessing and nonprecessing binaries. We have
eliminated physical degrees of freedom and introduced
systematic error by requiring the final black hole mass
and spin depend only on the black hole spins through
χPB. By comparison, neither expressions we use to re-
late the initial and final state [Eqs. (11, 12)] depend on
spins through χPB! Instead, both expressions used here
depend on the total spin S1 + S2. Alternatively, Ta-
ble I has several examples of simulations with identical
mass ratio and χPB but producing significantly differ-
ent af ; see, for example, Sq(4,0.6,90) and Sq(4,0.6,270).
Finally, the corotating-frame transformation involves a
rotation at an appreciable proportion of the final black
hole’s quasinormal mode frequency [14]. As a result, we
fully expect the best-fit parameters to be offset from the
physical parameters of the final black hole.

V. SYNTHETIC SIGNALS AND MISSING
PHYSICS

A. Synthetic signals

As described in previous work on corotating frames
[18–21], the similarity between corotating-frame modes
and nonprecessing systems suggests a simple strategy
for synthetic waveform generation. In this procedure,
we join some nonprecessing set of modes ψ4

ROT
l,m to a

time-dependent rotation R̂, constructively generating a
synthetic waveform for each line of sight. For exam-
ple, each of the corotating-frame modes could be inter-
polated phenomenologically, starting with our collection
of corotating-frame modes. Likewise, prior to merger
the rotation operation could track expected trajectory
based on adiabatic quasicircular spin-orbit evolution; af-
ter merger, the rotation operation could be measured
and calibrated to mimic suitable precession. This very
aggressive strategy requires careful, complicated interpo-
lations: each mode and spins depends on several param-
eters (two masses and two spin vectors). Less aggres-
sive strategies could adopt simpler models for precession
or the inspiral signal. For example, a well-motivated,
parameterized inspiral-merger-ringdown model like the
effective-one-body model could track the orbital phase.

To assess how well this strategy could perform in opti-
mal circumstances, we assume the physical rotation and
best-fitting IMRPhenomB can be determined for each can-
didate physical system. In this most optimistic case, the
match Pmax,sim [Eq. (1)] quantifies the degree of simi-
larity between the simulation-frame (2, 2) mode ψ4NR,2,2

and the (2, 2) mode generated by this synthetic proce-
dure: [R−1ψ4PB(λPB)]2,2. The top panel of Figure 3
shows the distribution of Pmax,corot. In short, this strat-
egy will be strikingly successful, fitting the IMR signal
from our generic mergers to better than a few percent.

More striking still, our simulations generally show
Pmax,corot ' Pmax,sim. In other words, we only needed
to assess how similar the corotating-frame signal is to
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FIG. 10: High mass: Best fit approximately recov-
ers the final state: At M ' 1000M�, a scatter plot of
the true (Msim, asim) and best-fit (Mfit, afit) final black hole
masses (bottom panel) and spins (top panel), derived from
our precessing simulations (blue) and nonprecessing simula-
tions (red). The best-fit final black hole properties are derived
from the IMRPhenomB best-fit parameters using Eqs. (11,12).
In both figures, a dotted black line is provided to guide the eye
onto af,sim = af,fint and similarly. Because the IMRPhenomB

model claims to reproduce nonprecessing binaries, the dis-
tribution of the red points can be used to estimate system-
atic uncertainties in this method. For example, in the top
panel, the systematic offset between the red points and the
line af,sim = af,fit suggests significant systematic differences
between our simulations’ ringdown frequencies and the model
of IMRPhenomB. In the bottom panel, the significant scatter
in both red and blue points reflects our inability to measure
total masses to better than a few percent by a fitting pro-
cedure; see also the bottom panel in Figure 2. This figure
includes a separate point for each individual simulation, in-
cluding some simulations with physically identical parameters
but performed with different resolutions. To better resolve
the final black hole quasinormal modes, we have explicitly
excluded all simulations performed with h = M/77.

a nonprecessing signal model, to determine how well a
synthetic precessing search will perform.

Serious challenges exist before this synthetic waveform
can be implemented in practice. For example, the rela-
tionship between the physical parameters of the binary,
the physical rotation versus time, and the best-fitting
nonprecessing model parameters must be carefully tab-
ulated before these synthetic signals could be applied to
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parameter estimation. Also, this model omits physical
degrees of freedom and cannot reproduce the signal per-
fectly, even with the best-possible nonprecessing signal
model. As a practical matter, the latter limit sets the
accuracy to which this program should be pursued in de-
tail.

Our study also allows us to better understand the es-
sential features a more complete interpolation strategy
must have. Because the best-fitting nonprecessing sys-
tems are different at low and high mass, a robust strat-
egy must produce waveforms that resemble different non-
precessing systems early and late in the signal. This
procedure could work physically, with a well-motivated
IMR model; somewhat phenomenologically, using two
basis epochs and interpolating the junction conditions
versus spins; or completely phenomenologically, interpo-
lating the whole waveform.

B. Limitations of nonprecessing analogs and
synthetic precessing waveforms

Precessing binaries break a symmetry: reflection
through the orbital plane. As a result, precessing bi-
naries have waveforms with fundamentally more com-
plexity, even in the corotating frame. No nonprecessing
waveform, no matter how rotated, can reproduce that
symmetry breaking; see Appendices A 4 and A 3. As a
result, the straightforward approach described above has
limited accuracy, applied to generic precessing systems;
see the executive summary and Figure 3. In this sec-
tion, we describe the physics missed when one assumes
the corotating-frame waveform has an instantaneous re-
flection symmetry.

The straightforward approach approach described
above has not included the direct feedback of precessing
spins on the waveform. For example, during the inspi-
ral the orbiting spins source current quadrupole radia-
tion. By breaking reflection symmetry about the instan-
taneous orbital plane, the current quadrupole and sim-
ilar precession-sourced terms introduce behavior which
cannot be reproduced by nonprecessing waveforms, no
matter how rotated. As described in detail in the exec-
utive summary, Figure 5 shows the reflection-symmetric
and reflection-asymmetric parts of the l = 2 corotating-
frame waveform, illustrating the small but increasingly
important impact of symmetry-breaking terms. Prior to
merger, the symmetry-breaking terms are small, typically
several PN orders smaller than the dominant term for
each mode; see Appendix A 4 for a symmetry decompo-
sition of the PN expansion. During and after merger,
however, these symmetry-breaking terms become a sig-
nificant fraction of the overall amplitude |ψ4|. These
symmetry-breaking terms reflect an instantaneous bias
towards preferentially left- or right-handed emission [14].
In Figure 5 as in most cases, the dominant asymmetry
occurs between the (2,±2) modes.

The effect of precessing spins and bias towards one he-

licity or another is far from academic, particularly at high
mass. Using a data-analysis-motivated comparison in the
simulation frame, O’Shaughnessy et al. [14] have already
showed that this oscillating bias towards one handedness
or the other leads to a preferred handedness in the de-
tected signal, changing slowly as a function of mass and
line of sight. These modulations distort the 2, 2 mode
and generally cannot be perfectly reproduced by a non-
precessing waveform. Figure 5 and comparable calcu-
lations for generic sources suggests that strong (tens of
percent) symmetry breaking occurs ubiquitously in pre-
cessing mergers.

The synthetic procedure described above also neglects
higher harmonics. Higher harmonics are well-known
to produce observationally-accessible modulations of the
gravitational wave signal along generic lines of sight for
generic high-mass mergers [25, 26]. As suggested by Fig-
ure 5, higher harmonics are at least as important as (and
difficult to disentangle from) spin precession effects. Our
calculations support previous results suggesting that the
observationally-accessible information requires detailed
models for several harmonics, beyond the leading order
[25, 26].

Our results, along with the previously mentioned helic-
ity bias described in [14], strongly suggest that high-mass
precessing binaries cannot be well-understood without
breaking reflection symmetry through the orbital plane.
In turn, these symmetry-breaking terms cannot be un-
derstood without modeling transverse spin dependence in
detail. For strongly precessing asymmetric binaries, we
do not believe the waveform generation problem cannot
be completely decoupled from kinematics, at an observa-
tionally relevant level. Finally, as in previous studies, we
anticipate higher harmonics will be required to interpret
the merger signal from generic precessing sources.

VI. CONCLUSIONS

In this paper we explore a simple “synthetic” model for
the leading-order gravitational wave signal from precess-
ing, merging binaries: a suitable nonprecessing binary,
viewed in a suitable noninertial frame. Using a data-
analysis-driven diagnostic, we compare the (2, 2) modes
extracted from a large collection of binary black hole
merger simulations to such a synthetic model, both in an
inertial frame and a “corotating” frame which tracks the
evolution of the binary. In all cases explored here, we find
that the late-time inspiral and merger signal from generic
black hole mergers can be reasonably approximated by a
nonprecessing binary seen in a corotating frame. More-
over, as expected on physical grounds, at early times
the corotating-frame signal resembles emission from a
nonprecessing binary with physically similar parameters:
similar mass, mass ratio, and “effective spin.” Our study
restricted attention to our numerical simulations, with-
out analytic extrapolations at early (“hybridization”) or
late times; that said, our results suggest that followup in-
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vestigations with suitable semi-analytic hybrids can rea-
sonably approximate generic precessing merger signals
for all time.

Though this approximation neglects significant physics
and has correspondingly limited accuracy, this “syn-
thetic” approach allows the efficient generation of compli-
cated, multimodal signals from generic merging sources.
Because this procedure bootstraps experience gained
from nonprecessing sources, we strongly recommend
more effort be devoted to modeling, approximating, or
hybridizing the observationally-relevant higher harmon-
ics from generic two-spin nonprecessing binaries; to mod-
eling precession before, during, and after merger; and
hence to generating qualitatively realistic synthetic pre-
cessing merger signals.

While a qualitatively adequate zeroth approximation,
this procedure does not easily generalize to a high-
precision quantitative approximation, with controlled er-
ror estimates. Nonprecessing waveforms simply cannot
self-consistently reproduce features tied to the system’s
kinematics: the orbital phase versus time; the ringdown
mode frequencies, set by the final black hole’s mass and
spin; the ringdown mode amplitudes, which can reflect
spin-orbit misalignment; et cetera. As a familiar ex-
ample, in post-Newtonian calculations, time-dependent
spin-orbit and spin-spin terms must be included in the
orbital phase and calculated from suitable spin preces-
sion equations. More significantly, nonprecessing wave-
forms have a reflection symmetry and thus cannot repro-
duce current quadrupole or similar asymmetric radiation
modes. Our study emphasized reproducing the principal
l = 2 emission from merging binaries; generic asymmet-
ric precessing systems possess several strong higher har-
monics, many of which must be included to accurately
reproduce even a nonprecessing source [25]. Our cal-
culations support previous results suggesting that the
observationally-accessible information requires detailed
models for several harmonics, beyond the leading or-
der [25, 26]. We anticipate detailed parameter estima-
tion of high-mass (M > 100M�) binary mergers will
require detailed modeling of multiple modes of generi-
cally precessing binaries, an effort in support of which
a considerably larger sample of generic binary merg-
ers are required. Moreover, because of the significant
role the merger plays in comparable-mass binary black
hole mergers with M >∼ 20M�, we suspect that high-
precision parameter estimation of generic precessing low-
mass systems will also require a model for precession dur-
ing merger that has been carefully calibrated against nu-
merical simulations.

To the best of our knowledge, gravitational wave de-
tection strategies have never been tested against generic
merger signals that self-consistently include precession
and ringdown. Based on the quantitative similarities
characterized in this work, we strongly recommend that
gravitational wave data analysis strategies for high-mass
binaries (M > 50M�) be tested against simple synthetic
precessing inspiral-merger-ringdown waveforms, gener-

ated by combining plausible rotations and nonprecessing
binary merger signals.

Appendix A: Mathematical methods

1. Extracting the corotating waveform

Particularly early in the inspiral, the gravitational
wave signal from merging binaries can be approximated
by the emission from instantaneously nonprecessing bi-
naries, slowly rotated with time as the orbital plane pre-
cesses [18, 23, 43]. At late times, the gravitational wave
signal will reflect perturbations of a single black hole with
a well-identified spin axis. In both cases and in between,
a well-chosen instantaneous or global frame can dramat-
ically simplify the decomposition of ψ4(n̂, t) in terms of
spin-weighted harmonic functions ψ4l,m(t). These sim-
plifications make it easier to distinguish physically rel-
evant from superfluous modulations; to model emission
and generate hybrids; and to formulate tests of general
relativity itself.

In this paper, we adopt a preferred direction V̂ aligned
with the principal axes of

〈
L(aLb)

〉
[19]. The tensor〈

L(aLb)
〉

is defined by the following angular integral, act-
ing on a symmetric tensor constructed from the rota-
tion group generators La acting on the asymptotic Weyl
scalar:〈

L(aLb)
〉
≡
∫
dΩψ4

∗(t)L(aLb)ψ4(t)∫
dΩ|ψ4|2

(A1)

=

∑
lmm′ ψ4

∗
lm′ψ4lm

〈
lm′

∣∣L(aLb)
∣∣ lm〉∫

dΩ|ψ4|2

where in the second line we expand ψ4 =∑
lm ψ4lm(t)Y

(−2)
lm (θ, φ) and perform the angular

integral. The action of the rotation group generators La
on basis states |lm〉 is well-understood, allowing us to
re-express the tensor

〈
L(aLb)

〉
as [44]:

I2 ≡
1

2
(ψ,L+L+ψ)

=
1

2

∑
l,m

cl,mcl,m+1ψ
∗
l,m+2ψl,m (A2a)

I1 ≡ (ψ,L+(Lz + 1/2)ψ)

=
∑
l,m

cl,m(m+ 1/2)ψ∗l,m+1ψl,m (A2b)

I0 ≡
1

2

(
ψ|L2 − L2

z|ψ
)

=
1

2

∑
l,m

[l(l + 1)−m2]|ψl,m|2 (A2c)

Izz ≡ (ψ,LzLzψ) =
∑
l,m

m2|ψl,m|2 (A2d)

where cl,m =
√
l(l + 1)−m(m+ 1). In terms of these
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expressions, the orientation-averaged tensor is

〈
L(aLb)

〉
=

1∑
l,m |ψl,m|2

I0 + Re(I2) ImI2 ReI1
I0 − Re(I2) ImI1

Izz


(A2e)

The dominant eigendirection V̂ of this tensor specifies
two of the three Euler angles needed to specify a frame:

V̂ = (cosα sinβ, sinα sinβ, cosβ) . (A3)

To determine the remaining Euler angle (γ), we self-
consistently adjoin a rotation in the plane transverse to
this orientation, to account for the gradual buildup of
transverse phase due to precession [20]:

γ(t) = −
∫ t

0

cosβ
dα

dt
dt (A4)

Having specified the three Euler angles that define a

new frame, we rotate the simulation-frame Y
(−2)
l,m coeffi-

cients of ψ4 to the new, time-dependent frame:

ψ4
ROT
l,m =

∑
m̄

Dl
mm̄(R(α, β, γ)−1)ψ4lm̄ (A5)

=
∑
m̄

eim̄γdm̄m(β)eimαψ4lm̄ (A6)

where R(α, β, γ) carries the ẑ axis to V̂ , plus a rotation
transverse to that direction by γ.

All simulations of the same physical system (with the
same tetrad normalization) will agree on ψ4(t, n̂). The
choice of frame at future infinity reparameterizes the
same results. While our choice for the preferred frame
continues to precess during and after merger, to the ex-
tent our simulations have so far resolved, some future
choice for the preferred frame could conceivably converge
to a fixed frame, aligned with the final total angular mo-
mentum direction Ĵf . The choice of corotating frame
depends on convention [44]. As a result, the corotating-
frame waveforms we describe below can differ from those
extracted using other conventions, with differences in-
creasing at late times. For the purposes of this paper
– comparison with nonprecessing binaries, principally of
the leading-order mode – we anticipate these differences
are small.

As shown in prior work [14] and illustrated again in
the bottom panel of Figure 11, the preferred orienta-
tion V̂ and rotation γ evolve smoothly, usually precess-
ing around the total angular momentum direction. In
this work, we do not construct synthetic waveforms and
therefore do not report on a functional approximation to
the Euler angles as a function of time. That said, using a
frame aligned with the (initial) total angular momentum
J to define the Euler angles, the opening angle β is nearly
constant; the precession angle α evolves steadily forward,
at a precession rate set either by spin-orbit coupling (in
the inspiral) or the final quasinormal mode frequencies

(during ringdown); see Figure 8 in [14]. We therefore ex-
pect the rotation R(t) can be easily and reliably fit as a
function of time.

2. Complex overlap and mass-weighted
comparisons

We coherently compare the (noise-free) signal expected
along any pair of orientations with a complex inner prod-
uct motivated by the detector’s noise power spectrum
[19, 26]. For our purposes, numerical relativity simula-
tions take as inputs binary black hole parameters and
desired line of sight (denoted by λ) and return the Weyl
scalar ψ4(t), a complex-valued function of time evaluated
along that line of sight. For any pair of simulations and
lines of sight, we compare ψ4 and ψ4

′ by a complex over-
lap

P (λ, λ′) ≡
(
rψ4|rψ4

′)
|rψ4||rψ4

′|
(A7a)

(A,B) ≡
∫ ∞
−∞

2
df

(2πf)4Sh
Ã(f)∗B̃(f) (A7b)

where Sh is a detector strain noise power spectrum. In
this and subsequent expressions we used unprimed and
primed variables to distinguish between the two wave-
forms being compared, involving potentially distinct pa-
rameters λ′ and lines of sight n̂′. For simplicity and to
avoid ambiguity, in this paper, we adopt a semi-analytic
model for the initial LIGO sensitivity [45]. As with the
single-detector overlap, the complex overlap can be max-
imized over the event time and polarization (tc, ψc) and
by a simple Fourier transform:

Pmax ≡ maxtc,ψc |P | (A8)

=
1

|ψ4||ψ4
′|

∣∣∣∣∫ ∞
−∞

2
df

(2πf)4Sh
ψ̃4(f)∗ψ̃4(f)ei(2πftc+ψc)

∣∣∣∣
The overlap Pmax is unity for identical simulations and

lines of sight. How different must Pmax be from 1 to be
significant? Roughly speaking, mismatch leads to de-
tectable effects when 1 − P > 1/ρ2 [27], for ρ the sig-
nal amplitude. Given the expected signal amplitudes for
the first few gravitational wave events, a nonprecessing
analog is for practical purposes indistinguishable from a
corotating waveform with Pmax > 99%.

Unlike other authors, in this paper we only employ
waveforms extracted from the fully simulated spacetime,
without making any attempt to hybridize that signal onto
a post-Newtonian precursor. At the same time, we adopt
a data-analysis-driven comparison, driven by the unique
bandpass of a plausible detector. This comparison re-
quires us to adopt physical timescales (∝ M) and fre-
quency scales (∝ 1/M). Because the simulation has fi-
nite duration and dynamics with a finite frequency range,
our simulations are physically relevant only for a specific
range of masses. The limit at the low mass end is set by
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the simulations’ initial orbital frequency, which at very
low masses (' 100M�) can lie in a detector’s sensitive
band. At the high mass end, the exponential decay of
post-merger oscillations implies that our comparisons are
contaminated by numerical noise at above ' 1000M�.

To determine these two limits unambiguously, we
perform the following quantitative tests. To set the
upper mass limit, we use a one-parameter family
of simulations k similar to Sq(4, 0.6, 270, 9), per-
formed at different resolutions. We require the overlap〈
ψ42,2,k|ψ42,2,k′

〉
/|ψ42,2,k||ψ4

′
k be greater than 0.97 for

all pairs of resolutions. The largest mass for which this
bound holds is ' 350M�. To set the lower mass limit,
we explored how the overlap between a signal and a trun-
cated copy of itself changed, depending on how much of
the early inspiral was removed; see Appendix B 2 and
Figure 11. To conservatively insure the signal duration
had less than a 1% influence on the overlap, we extremely
conservatively limited M > 200M� for our typical short-
duration signals (rstart = 6.2M).

Advanced detectors can nominally be sensitive to ex-
tremely high-mass objects M > 500M�, if frequencies
below 40 Hz are properly calibrated. In the text, we
have optimistically assumed all frequencies above 5 Hz
will be calibrated, allowing ground-based interferome-
ters to detect and measure the properties of binaries
with total masses up to ' 2500M�. Realistically, how-
ever, ultra-low-frequency detector noise and calibration
remains a significant challenge, owing to the compli-
cated and historically nongaussian noise in this regime
[46]. Given the suspension and other realistic constraints,
advanced detectors may be calibrated only for frequen-
cies above 10 Hz, limiting gravitational wave detection to
<∼ 1500M�.

3. How many degrees of freedom are eliminated in
going to a corotating frame?

At each time step, the corotating frame expansion uses
the extracted waveform data to reconstruct 3 Euler an-
gles. Two of the three Euler angles, specifying the di-
rection of V̂ , are reconstructed from the instantaneous
value of

〈
L(aLb)

〉
and do not depend on the past his-

tory of the binary.15 The third Euler depends weakly
on the past history of the binary, through the minimal-
rotation condition. By contrast, each constant-l subspace
has 2× (2l+ 1) real degrees of freedom in the amplitudes
and phases of its (2l + 1) modes. For example, the l = 2
subspace alone has 10 real degrees of freedom, while the
set of modes l ≤ 4 has 42. By simple parameter counting,
a corotating frame expansion cannot eliminate as many

15 Since the orientation tensor
〈
L(aLb)

〉
cannot distinguish between

±V , we additionally require V̂ be continuous and start with V̂ ·
L̂ > 0.

degrees of freedom as can exist in the waveform.

By contrast, nonprecessing simulations exhibit many
extremely strong symmetries between different modes.
First, nonprecessing modes are always chiral :

ψ̃4l,m(f) = 0 m f < 0 (A9)

Second, nonprecessing binaries have amplitude and phase
conjugation symmetry: ψ4

∗
l,m = (−1)lψ4l,−m. Third,

during the inspiral, all modes evolve in phase, with
argψ4l,m = mΦorb. Repeatedly corroborated empirically
[47], this fact suggests that the inspiralling binary emits
as if a rigid body. These symmetries significantly reduce
the number of degrees of freedom needed to specify a
nonprecessing source. To use the l = 2 subspace as an
example and omitting the three (constant) Euler angles
needed to describe the system, prior to merger only one
phase and 3 amplitudes are needed to describe the sys-
tem, while after merger, 2 phases and three amplitudes
are needed.

Our corotating expansion does not impose any of these
properties. As a concrete example, consider a ficti-
tious source producing only (2, 2) and (2,−2) modes in
some constant frame misaligned with the global refer-
ence frame. This source can produce each mode indepen-
dently, with arbitrary amplitude and (chiral but other-
wise arbitrary) phase as a function of time. Our corotat-
ing expansion would identify the (constant) orientation
of that frame and the (arbitrary) functional form of the
two basis sources.

That said, a phase-conjugate “corotating” signal
(ψ4l,m = (−1)lψ4

∗
l,−m = al,m) plus an arbitrary time-

dependent rotation has enough parameters to fit many
but not all sources. Counting parameters, a phase-
conjugate source would have l+1 amplitudes and l phases
in each constant-l subspace. Including an arbitrary ro-
tation lets a phase-conjugate source fit 2l + 4 degrees of
freedom. For the l = 2 subspace, however, two degrees of
freedom remain that this form, though relatively generic,
cannot fit: the two conjugate-antisymmetric (“odd”) mo-
ments (ψ4l,m = −(−1)lψ4

∗
l−m = blm for m = 1, 2). More

generally, a phase-conjugate corotating source will never
fit the odd moments bl,m in each constant-l subspace.
Additionally, even a phase-conjugate source can conceiv-
ably fit different orientations to each constant-l subspace.

To conclude, nonprecessing simulations exhibit many
strong symmetries. While we hope any “nonprecessing
analog” will satisfy them, our corotating frame will not
enforce them. First, each constant-l subspace has a con-
sistent preferred direction at each time. Second, prior
to merger, the corotating modes have common phase
evolution. Finally, nonprecessing systems cannot source
current moments and must emit symmetrically when re-
flected through the orbital plane.
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4. Symmetry expansions in the corotating frame

To better identify and discuss small features that spin
precession introduces into the waveform, we sometimes
separate the corotating-frame Weyl scalar R−1ψ4 into
different parts, reflecting symmetries.

One way to split ψ4 is the usual (l + 1 derivatives of
the) “mass” and “current” quadrupole moments Il,m and
Sl,m respectively, which we define as [48, 49]

ψ4l,m = − 1√
2rM

[Il,m − iSl,m] (A10)

where Il,m = (−1)mI∗l,−m and Sl,m = (−1)mS∗l,−m have

the usual symmetry [48]. This operation defines two pro-

jections ψ4 = ψ4
M + ψ4

S that uniquely separate ψ4 into
mass and current contributions.

Unfortunately, even the leading-order emission from
nonspinning binaries produces both mass and current
moments [23, 48, 49]. The standard mass and current de-
composition does not provide a high-precision tool to dis-
tinguish between the nonprecessing and precession-only
contributions.

For our phenomenological purposes, a more produc-
tive decomposition uses classical axial and polar par-
ity. For notational convenience, we define this split
on a mode-by-mode basis, using conjugation symme-
try to define CP-odd (bl,m = −(−1)lb∗l,−m) and CP-

even (al,m = (−1)la∗l,−m) parts of the corotating-frame

R−1ψ4, as described in the text [Eq. (3)]. As a con-
crete example, we provide leading-order post-Newtonian
expressions for hl,m below.

Nonprecessing binaries are even under this transforma-
tion, radiating symmetrically above and below their or-
bital plane. Equivalently, on a mode-by-mode basis, each
R-handed mode m > 0 has a corresponding L-handed
mode m < 0 that radiates identically but in the oppo-
site direction. Precessing binaries break this symmetry,
even in the corotating frame. As noted in [14], precess-
ing binaries show a slight bias towards either R- or L-
handed emission at any instant, with the sign of the bias
oscillating as the orbit changes the relative orientation
of the spins to the binary separation. This symmetry-
breaking bias generally persists in the corotating frame
on a mode-by-mode basis: often bl,m 6= 0. For this rea-
son, a conjugation-symmetry-based diagnostic provides
a powerful tool to identify and quantify the impact of
precessing spins in a corotating frame.

To illustrate the expected functional form and symme-
try properties of different multipole orders, we provide
selected terms from the a, b symmetry decomposition of
hl,m, as tabulated elsewhere [23]. To highlight their sym-
metry properties, we convert their notation to explicit
Cartesian 3-vector operations. Specifically, in place of
the orbital phase (including tail terms) Ψ, we adopt a co-
ordinate 3-vector r̂ for the radial separation. To convert
between coordinate expressions and vectors, we employ

a reference frame x̂, ŷ that corotates with the binary16

ê± ≡
∓√

2
(x̂± iŷ) (A11)

eiΨ ≡ −
√

2r̂ · e∗+ (A12)

Our expressions follow directly from their expressions,
substituting ι = 0 and replacing powers of exp iΨ with√

2r̂ · e∗+ as needed.
For example, the leading-order l = 2 multipoles have

the following form, highlighting spin dependence and
working to v4 order:

ah2,2 = spin-independent to O(v5) (A13)

bh2,2 =
M16

√
π/5

dL
v4ηSarb(e+e+)∗ab (A14)

ah2,0 =
4M
√

2π/15

dL
v4(−iη)(r̂ × S) · L̂ (A15)

bh2,0 = 0 (A16)

ah2,1 = r̂ · e∗+
M
√

2π/5

dL
η

[
8

3
δv3 − 4S · L̂v4 +O(v5)

]
(A17)

bh2,1 = O(v5) (A18)

where to simplify comparisons with the literature we pro-
vide the symmetry coefficients a, b derived from the com-
plex h (i.e., ψ4 = ∂2

t h = ∂2
t (ah + bh)). In these expres-

sions, we employ the same notation as [23]:

η ≡ m1m2

(m1 +m2)
(A19)

δ ≡ m1 −m2

m1 +m2
(A20)

χ± = (S1/m
2
1 ± S2/m

2
2)/M (A21)

Additionally, following [44] we introduce

S = χ− + δχ+ (A22)

=
1

M

(
S1

m1
− S2

m2

)

Appendix B: Simulations

1. Simulations

Table 1 in [14] enumerates many of the simulations
and groups of simulations shown in this study; we
adopt similar notation to characterize each simulation
(T,Tq,S,Sq,. . .). To simplify the process of identify-
ing and distinguishing between similar simulations, we

16 In the notation of [23], α would evolve with time.
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provide each simulation with a short descriptive string.
While the specific interpretation of the string depends on
the simulation type, many of our simulations are denoted
by a string of the form X(q, a, θ, d) where q is the mass ra-
tio; a is the typical dimensionless spin; θ is an angle; and
d is the initial binary separation in units of M . Initial
data was evolved with Maya, which was used in previ-
ous binary black hole (BBH) studies [50–58]. The grid
structure for each run consisted of 10 levels of refinement
provided by CARPET [59], a mesh refinement package for
CACTUS [60]. Each successive level’s resolution decreased
by a factor of 2. Sixth-order spatial finite differencing was
used with the BSSN equations implemented with Kranc
[61]. While the initial data, grid size, resolution bound-
aries, and peak resolution all differ between simulation,
each simulation a member of one of the following classes:

• S series: In this series, two equal-mass holes are
positioned at ±3.1M , starting with S1/m

2
1 = −ax̂

and a2 = an̂(θ, 0) for several choices of θ and a.
The outer boundaries are located at 317.4M. Each
simulation was performed at a resolution of M/77
on the highest refinement level. Notably, one refine-
ment region extends between r = 20M to r = 80M .
As previously[62], the outermost refinement levels
from r = 80M to r = 317M are too low resolution
(dx > 3M) to safely reproduce fine, high-frequency
features in the waveform. We therefore extract on
the refinement region bounded by [20, 80]M (i.e.,
at r = 40, 50, 60, 75).

• T series: In this series (also denoted the “A se-
ries” elsewhere), the two equal-mass holes are po-
sitioned at ±3.1M , starting with S1/m

2
1 = aẑ and

S2/m
2
2 = an̂(θ, 0) for several choices of θ and a.

The outer boundaries are at 317M . Each simula-
tion was performed at a resolution of M/77 on the
highest refinement level. Refinement boundaries
occur at r = 40, 79M , with dx = 0.83M in that
refinement region. As previously[62], we therefore
extract on r = 40, 50, 60, 75.

• Sq series: Dimensionless spin vectors Sk/m
2
k are

chosen as in the S series. Each simulation was per-
formed at a resolution of M/140 on the highest re-
finement level. As above, we extract only in one
refinement region, here at r = 40, . . . 90. However,
the grid size depended on the initial starting sepa-
ration.

For simulations started with initial separation d =
9M , the outer boundaries are at 307M . Between
r = 32M and r = 102M , the refinement levels have
dx = 0.9M .

For simulations started with d = 6.2M , the outer
boundaries are at 409M . Between r = 25M and
102M , refinement levels have dx = 0.9M .

• Tq series: Dimensionless spin vectors Sk/m
2
k are

chosen as in the T series. The outer boundaries are

at 409.6M . Each simulation was performed at a
resolution ofM/120 on the highest refinement level.
Refinement boundaries occur at r = 20, 102M , be-
tween which dx = 1M . We extract in this refine-
ment region along r = 40, . . . 90 and extrapolate to
infinity in that zone.

When both spins are in the orbital plane (θ = π/2
or 3π/2), the initial data adopted for these se-
ries can be comparable to evolutions performed
elsewhere. For example, the Sq(4,0.6,90) and
Tq(4,0.6,270) sequences are almost identical, mod-
ulo a small shift in initial separation.

• V series: In this series, the two equal-mass holes
are positioned with a separation d = 6.2, starting
with S1/m

2
1 = an̂(θ, φ) and S2/m

2
2 = an̂(θ, φ+ π).

The outer boundaries are at 317M ; the highest res-
olution is M/77; and we extract information in the
refinement region between 20M . . . 80M , in which
dx = 0.8M .

• Lq series: Similar to the Sq series, except using a
wider range for the smaller black hole’s spin direc-
tion. Each simulation was performed with a reso-
lution M/140 on the highest refinement level; the
simulation extends to r = 409.6M ; we extract only
in one refinement region between 40M . . . 102M ,
where grid spacing is dx = 0.9M .

• Eq series: Similar to the Lq series, except starting
at a larger separation (d = 7M) and both spins
are in the xy plane and antiparallel, with S1/m

2
1 =

0.6n̂(π/2, φ). Resolutions and extraction radii are
as described above.

• z and zq (aligned) series: Equal-mass (z) and un-
equal mass (zq) aligned-spin binaries, with iden-
tical specific angular momentum S/m2 on each
black hole. The outer boundaries are at 317M ;
most simulations have their finest level of refine-
ment at h = M/103; and refinement boundaries
occur at r = 39M and r = 79M , between which
dx = 1.24M .

• zU (aligned, asymmetric): Unequal-mass aligned-
spin binaries, where the two black holes do not have
identical specific angular momentum S/m2. The
outer boundaries are at r = 409.6M ; each simula-
tion’s finest refinement level has h = M/160; and
in the interval 25 . . . 102.4M , where we extract in-
formation, the grid spacing is dx = 0.8M .

Given the significant systematic errors inherent in any
comparison between IMRPhenomB and numerical simula-
tions, we did not extrapolate the waveform to infinity
or in resolution. Instead, we performed calculations on
a fixed resolution and fixed extraction radius. We used
multiple resolutions and extraction radii to assess our
(relatively small) numerical error.
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FIG. 11: Comparing resolutions: Top panel : A plot of
Pmax,corot versus mass for the Sq(4,0.6,270,9) simulation, per-
formed at resolutions h = M/100 (red), M/120 (blue); M/140
(green); M/160 (purple); and M/180 (black). Though sig-
nificant, the differences between resolutions are nonetheless
smaller than the typical differences between simulations; com-
pare to Figure 1. Bottom panel : The path of the preferred
direction derived from simulations with different resolution,
viewed in projection in a frame aligned with the precession
cone (i.e., with Ŵ ' Ĵ ; see [14]).

2. Extrapolation, resolution, and duration tests

Using the ψ4 extracted on each of the constant-
simulation-radius spheres listed above, we have calcu-
lated preferred directions and corotating-frame wave-
forms, both on constant radial slices and using ψ4 ex-
trapolated to infinity. The preferred direction agrees al-
most exactly between these different options. Though
the simulation-frame and corotating-frame ψ4 do change
slightly with extraction radius, they evolve princi-
pally in amplitude and in common. To use a spe-
cific quantitative measure that is directly relevant to
our principal result, we both evaluated normalized
overlaps

〈
ψ42,2(r)|ψ42,2(r′)

〉
/|ψ42,2(r)|ψ42,2(r′)| between

(2,2) modes extracted from different radial slices and
evaluated Pmax using different extraction radii. For the
selected cases examined, the choice of extraction radius
had minimal impact (∆Pmax

<∼ 0.001). We therefore
limit attention to a single extraction radius (r = 75M).
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FIG. 12: Signal duration and the low-mass error: Top
panel : The best-fitting match Pmax,sim between IMRPhenomB

and the (2, 2) mode of an unequal-mass aligned-spin binary
[Tq(1.75,0.2,0,10)]. Dotted curve shows Pmax derived using
the whole signal; solid curve shows Pmax derived after first
truncating the signal, to mimic the results of a shorter simu-
lation starting at d = 6.2. Comparing with Figure 1 and the
text, this illustration shows that signal duration dominates
our error at low mass and has little impact on our results at
high mass. Bottom panel : At M = 100M� (blue and black
arrows) and M = 250M� (purple arrows), the best-fitting
IMRPhenomB parameters which reproduce Tq(1.75,0.2,0,10),
truncated to different lengths. For comparison, the red point
indicates the corresponding physical properties expected from
the initial data. Arrows connect longer to shorter signals, in-
dicating the effect of truncating the signal: a significant error
in η and a moderate bias in χ. As illustrated by the discrep-
ancy between the best-fit points and physical parameters, dif-
ferences between IMRPhenomB model and our simulations also
contribute significantly to systematic error in parameter re-
covery, particularly in mass ratio.

For selected nonprecessing and generic initial config-
urations, we have also performed simulations at suc-
cessively higher resolutions. As concrete example, we
have performed the Sq(4, 0.6, 90, 9) simulation at resolu-
tions M/100,M/120,M/140,M/160,M/180; see Figure
11. Each resolution produces a slightly different dura-
tion, with the dominant source of error being a slowly-
accumulating phase shift, principally accumulating prior
to merger. After recentering our simulations, we find con-
vergence consistent with our differencing order, for the
waveform epochs most significant for our results. Our de-
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fault resolutions (e.g., M/140) provide more than enough
precision for our most striking results: the persistent pre-
cession of V̂ long after merger. The lower resolutions used
on some shorter simulations are also more than adequate
to identify principal features during merger.

Many of our simulations commence shortly prior to
merger, from separations as short as d ' 6.2M . These
short (few hundred M) simulations cannot produce a
gravitational wave signal from an inspiral which they do
not simulate. To quantify the systematic errors intro-
duced by our choice of signal duration, we have artificially
truncated a long, high-resolution nonprecessing signal to
a duration comparable to a typical short signal length
from d ' 6.2M . As illustrated in the top panel of Fig-
ure 12, this truncated signal matches IMRPhenomB signif-
icantly less well than our simulation below M ' 500M�
but agrees at higher masses. Since signal duration de-
pends sensitively on spin orientation, we believe that
most disagreement shown in Figure 1 between our simu-
lations’ corotating-frame signals and IMRPhenomB is dom-
inated by our limited signal duration. In other words, we
anticipate the IMRPhenomB model is an adequate repre-
sentation of any observationally-accessible interval of the
corotating-frame signal.

The signal duration of our shortest simulations also
imposed a severe limit on our ability to reconstruct the
pre-merger binary’s properties using the best-fitting low-
mass parameters. As a concrete example, the bottom
panel of Figure 12 compares the physical simulation prop-
erties (red point) with the parameters derived by fitting

IMRPhenomB to a truncated copy of a long, aligned-spin
simulation, using M = 100M�. Due to systematic dif-
ferences between IMRPhenomB and our signal, the best-
fitting and simulation parameters are significantly offset.
The recovered mass ratio η at low mass depends sen-
sitively on the simulation duration – for the case illus-
trated here, the best-fit mass ratio changed from q ' 1.5
to q ' 1. By contrast, not only was the recovered spin
nearly independent of the simulation duration, but also
it could be reliably estimated using a much later phase
of the signal (i.e., with a much higher mass); see, for ex-
ample, the purple arrows in Figure 12 and the best-fit
spin versus mass shown in Figure 2. For this reason, in
the text we use the recovered spin at M = 300M� to
illustrate reasonable agreement between the IMRPhenomB
model and typical simulations. Using this choice, we
could include many more simulations in Figure 9.
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TABLE I: Simulations: The first column is a key, encoding the fam-
ily, mass ratio, black hole spin magnitude(s) |S1|/M2

1 and |S2|/M2
2 and

alignment. The next column is the simulation resolution h/M . In a
handful of cases used as resolution tests in the text, multiple resolutions
of the same initial data appear in the table. The next 8 columns pro-
vide specific initial conditions: the initial separation (rstart), mass ratio
q = m1/m2, and two component spins S2

k/M
2 relative to the total initial

mass. The column labelled Twave provides an estimate of the duration
of the well-resolved ψ422 mode. The column labelled χPB evaluates χPB

[Eq. (9)] using the specific mass ratio and spins provided in previous
columns. Finally, the last two columns provide the final black hole mass
and angular momentum, derived from the late-time horizon.

Key h−1 rstart q S1,x S1,y S1,z S2,x S2,y S2,z Twave χPB,sim Mf Jf

M−1 M M2 M2 M2 M2 M2 M2 M M M2
f

Eq(2.5, 0.6, 0, 7) 140 7 2.5 0.3061 0 0 -0.049 0 0 310. 0 0.965 0.632
Eq(2.5, 0.6, 30, 7) 140 7 2.5 0.2651 0.153 0 -0.0424 -0.0245 0 310. 0 0.965 0.632
Eq(2.5, 0.6, 60, 7) 140 7 2.5 0.153 0.2651 0 -0.0245 -0.0424 0 310. 0 0.966 0.636
Eq(2.5, 0.6, 90, 7) 140 7 2.5 0 0.3061 0 0 -0.049 0 310. 0 0.966 0.637
Eq(2.5, 0.6, 120, 7) 140 7 2.5 -0.153 0.2651 0 0.0245 -0.0424 0 320. 0 0.966 0.636
Eq(2.5, 0.6, 150, 7) 140 7 2.5 -0.2651 0.153 0 0.0424 -0.0245 0 320. 0 0.965 0.634
Eq(2.5, 0.6, 180, 7) 140 7 2.5 -0.3061 0 0 0.049 0 0 320. 0 0.965 0.632
Eq(2.5, 0.6, 210, 7) 140 7 2.5 -0.2651 -0.153 0 0.0424 0.0245 0 320. 0 0.965 0.632
Eq(2.5, 0.6, 240, 7) 140 7 2.5 -0.153 -0.2651 0 0.0245 0.0424 0 310. 0 0.966 0.636
Eq(2.5, 0.6, 270, 7) 140 7 2.5 0 -0.3061 0 0 0.049 0 310. 0 0.966 0.637
Eq(2.5, 0.6, 300, 7) 140 7 2.5 0.153 -0.2651 0 -0.0245 0.0424 0 310. 0 0.966 0.636
Eq(2.5, 0.6, 330, 7) 140 7 2.5 0.2651 -0.153 0 -0.0424 0.0245 0 310. 0 0.965 0.634
Eq(3., 0.6, 0, 7) 140 7 3. 0.3375 0 0 -0.0375 0 0 320. 0 0.97 0.619
Eq(3., 0.6, 30, 7) 140 7 3. 0.2923 0.1687 0 -0.0325 -0.0187 0 320. 0 0.969 0.616
Eq(3., 0.6, 60, 7) 140 7 3. 0.1687 0.2923 0 -0.0187 -0.0325 0 310. 0 0.969 0.616
Eq(3., 0.6, 90, 7) 140 7 3. 0 0.3375 0 0 -0.0375 0 310. 0 0.97 0.619
Eq(3., 0.6, 120, 7) 140 7 3. -0.1687 0.2923 0 0.0187 -0.0325 0 320. 0 0.97 0.62
Eq(3., 0.6, 150, 7) 140 7 3. -0.2923 0.1687 0 0.0325 -0.0187 0 320. 0 0.97 0.62
Eq(3., 0.6, 180, 7) 140 7 3. -0.3375 0 0 0.0375 0 0 330. 0 0.97 0.619
Eq(3., 0.6, 210, 7) 140 7 3. -0.2923 -0.1687 0 0.0325 0.0187 0 330. 0 0.969 0.616
Eq(3., 0.6, 240, 7) 140 7 3. -0.1687 -0.2923 0 0.0187 0.0325 0 320. 0 0.969 0.616
Eq(3., 0.6, 270, 7) 140 7 3. 0 -0.3375 0 0 0.0375 0 320. 0 0.97 0.619
Eq(3., 0.6, 300, 7) 140 7 3. 0.1687 -0.2923 0 -0.0187 0.0325 0 320. 0 0.97 0.62
Eq(3., 0.6, 330, 7) 140 7 3. 0.2923 -0.1687 0 -0.0325 0.0187 0 320. 0 0.97 0.62
Lq(2.5, 0.6, 0, 6.2) 140 6.2 2.5 0 0 0.3061 0 0 0.049 410. 0.6 0.947 0.825
Lq(2.5, 0.6, 15, 6.2) 140 6.2 2.5 0.0792 0 0.2957 -0.0127 0 0.0473 390. 0.58 0.948 0.82
Lq(2.5, 0.6, 30, 6.2) 140 6.2 2.5 0.153 0 0.2651 -0.0245 0 0.0424 370. 0.52 0.951 0.804
Lq(2.5, 0.6, 45, 6.2) 140 6.2 2.5 0.2164 0 0.2164 -0.0346 0 0.0346 350. 0.42 0.953 0.775
Lq(2.5, 0.6, 60, 6.2) 140 6.2 2.5 0.2651 0 0.153 -0.0424 0 0.0245 310. 0.3 0.957 0.737
Lq(2.5, 0.6, 75, 6.2) 140 6.2 2.5 0.2957 0 0.0792 -0.0473 0 0.0127 280. 0.16 0.962 0.693
Lq(2.5, 0.6, 90, 6.2) 140 6.2 2.5 0.3061 0 0 -0.0489 0 0 250. 0 0.965 0.631
Lq(2.5, 0.6, 120, 6.2) 140 6.2 2.5 0.2651 0 -0.153 -0.0424 0 -0.0245 190. -0.3 0.971 0.499
Lq(2.5, 0.6, 150, 6.2) 140 6.2 2.5 0.153 0 -0.2651 -0.0245 0 -0.0424 170. -0.52 0.975 0.373
Lq(2.5, 0.6, 210, 6.2) 140 6.2 2.5 -0.153 0 -0.2651 0.0245 0 -0.0424 170. -0.52 0.975 0.373
Lq(2.5, 0.6, 240, 6.2) 140 6.2 2.5 -0.2651 0 -0.153 0.0424 0 -0.0245 200. -0.3 0.971 0.499
Lq(2.5, 0.6, 270, 6.2) 140 6.2 2.5 -0.3061 0 0 0.0489 0 0 240. 0 0.965 0.631
Lq(2.5, 0.6, 300, 6.2) 140 6.2 2.5 -0.2651 0 0.153 0.0424 0 0.0245 320. 0.3 0.957 0.737
Lq(2.5, 0.6, 315, 6.2) 140 6.2 2.5 -0.2164 0 0.2164 0.0346 0 0.0346 350. 0.42 0.954 0.775
Lq(2.5, 0.6, 330, 6.2) 140 6.2 2.5 -0.153 0 0.2651 0.0245 0 0.0424 370. 0.52 0.951 0.804
Lq(2.5, 0.6, 345, 6.2) 140 6.2 2.5 -0.0792 0 0.2957 0.0127 0 0.0473 400. 0.58 0.948 0.82
Lq(3., 0.6, 30, 6.2) 140 6.2 3. 0.1687 0 0.2923 -0.0187 0 0.0325 390. 0.52 0.957 0.791
Lq(3., 0.6, 45, 6.2) 140 6.2 3. 0.2386 0 0.2386 -0.0265 0 0.0265 360. 0.42 0.959 0.763
Lq(3., 0.6, 60, 6.2) 140 6.2 3. 0.2923 0 0.1687 -0.0325 0 0.0187 330. 0.3 0.963 0.727
Lq(3., 0.6, 210, 6.2) 140 6.2 3. -0.1687 0 -0.2922 0.0187 0 -0.0324 160. -0.52 0.978 0.324
Lq(3., 0.6, 240, 6.2) 140 6.2 3. -0.2923 0 -0.1687 0.0325 0 -0.0187 200. -0.3 0.975 0.472
Lq(3., 0.6, 270, 6.2) 140 6.2 3. -0.3375 0 0 0.0375 0 0 240. 0 0.969 0.615
S(1, 0.2, 0) 77 6.2 1 0 0 0.05 -0.05 0 0 250. 0.10 0.95 0.802
S(1, 0.2, 45) 77 6.2 1 0.0354 0 0.0354 -0.05 0 0 250. 0.071 0.951 0.788
S(1, 0.2, 90) 77 6.2 1 0.05 0 0 -0.05 0 0 220. 0 0.953 0.76
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S(1, 0.2, 135) 77 6.2 1 0.0354 0 -0.0354 -0.05 0 0 210. -0.071 0.954 0.734
S(1, 0.2, 180) 77 6.2 1 0 0 -0.05 -0.05 0 0 210. -0.10 0.955 0.725
S(1, 0.2, 225) 77 6.2 1 -0.0354 0 -0.0354 -0.05 0 0 210. -0.071 0.954 0.743
S(1, 0.2, 270) 77 6.2 1 -0.05 0 0 -0.05 0 0 220. 0 0.952 0.774
S(1, 0.2, 315) 77 6.2 1 -0.0354 0 0.0354 -0.05 0 0 250. 0.071 0.951 0.798
S(1, 0.4, 0) 77 6.2 1 0 0 0.1 -0.1 0 0 280. 0.20 0.946 0.849
S(1, 0.4, 45) 77 6.2 1 0.0707 0 0.0707 -0.1 0 0 260. 0.14 0.948 0.814
S(1, 0.4, 90) 77 6.2 1 0.1 0 0 -0.1 0 0 230. 0 0.953 0.76
S(1, 0.4, 135) 77 6.2 1 0.0707 0 -0.0707 -0.1 0 0 210. -0.14 0.956 0.706
S(1, 0.4, 180) 77 6.2 1 0 0 -0.1 -0.1 0 0 210. -0.20 0.957 0.697
S(1, 0.4, 225) 77 6.2 1 -0.0707 0 -0.0707 -0.1 0 0 210. -0.14 0.955 0.744
S(1, 0.4, 270) 77 6.2 1 -0.1 0 0 -0.1 0 0 240. 0 0.952 0.813
S(1, 0.4, 315) 77 6.2 1 -0.0707 0 0.0707 -0.1 0 0 270. 0.14 0.948 0.853
S(1, 0.6, 0) 77 6.2 1 0 0 0.15 -0.15 0 0 290. 0.30 0.942 0.904
S(1, 0.6, 15) 77 6.2 1 0.0388 0 0.1449 -0.15 0 0 290. 0.29 0.943 0.887
S(1, 0.6, 30) 77 6.2 1 0.075 0 0.1299 -0.15 0 0 280. 0.26 0.944 0.866
S(1, 0.6, 45) 77 6.2 1 0.1061 0 0.1061 -0.15 0 0 270. 0.21 0.945 0.841
S(1, 0.6, 60) 77 6.2 1 0.1299 0 0.075 -0.15 0 0 260. 0.15 0.946 0.814
S(1, 0.6, 75) 77 6.2 1 0.1449 0 0.0388 -0.15 0 0 250. 0.078 0.949 0.788
S(1, 0.6, 90) 77 6.2 1 0.15 0 0 -0.15 0 0 230. 0 0.953 0.759
S(1, 0.6, 105) 77 6.2 1 0.1449 0 -0.0388 -0.15 0 0 200. -0.078 0.954 0.728
S(1, 0.6, 120) 77 6.2 1 0.1299 0 -0.075 -0.15 0 0 210. -0.15 0.955 0.699
S(1, 0.6, 135) 77 6.2 1 0.1061 0 -0.1061 -0.15 0 0 210. -0.21 0.957 0.679
S(1, 0.6, 150) 77 6.2 1 0.075 0 -0.1299 -0.15 0 0 200. -0.26 0.958 0.667
S(1, 0.6, 165) 77 6.2 1 0.0388 0 -0.1449 -0.15 0 0 200. -0.29 0.959 0.665
S(1, 0.6, 180) 77 6.2 1 0 0 -0.15 -0.15 0 0 200. -0.30 0.959 0.675
S(1, 0.6, 195) 77 6.2 1 -0.0388 0 -0.1449 -0.15 0 0 200. -0.29 0.959 0.696
S(1, 0.6, 210) 77 6.2 1 -0.075 0 -0.1299 -0.15 0 0 200. -0.26 0.957 0.726
S(1, 0.6, 225) 77 6.2 1 -0.1061 0 -0.1061 -0.15 0 0 210. -0.21 0.955 0.761
S(1, 0.6, 240) 77 6.2 1 -0.1299 0 -0.075 -0.15 0 0 200. -0.15 0.954 0.8
S(1, 0.6, 255) 77 6.2 1 -0.1449 0 -0.0388 -0.15 0 0 230. -0.078 0.953 0.839
S(1, 0.6, 260) 77 6.2 1 -0.1477 0 -0.026 -0.15 0 0 250. -0.052 0.953 0.851
S(1, 0.6, 265) 77 6.2 1 -0.1494 0 -0.0131 -0.15 0 0 250. -0.026 0.952 0.862
S(1, 0.6, 270) 77 6.2 1 -0.15 0 0 -0.15 0 0 250. 0 0.951 0.873
S(1, 0.6, 285) 77 6.2 1 -0.1449 0 0.0388 -0.15 0 0 270. 0.078 0.948 0.899
S(1, 0.6, 300) 77 6.2 1 -0.1299 0 0.075 -0.15 0 0 280. 0.15 0.945 0.917
S(1, 0.6, 315) 77 6.2 1 -0.1061 0 0.1061 -0.15 0 0 290. 0.21 0.943 0.925
S(1, 0.6, 330) 77 6.2 1 -0.075 0 0.1299 -0.15 0 0 290. 0.26 0.943 0.925
S(1, 0.6, 345) 77 6.2 1 -0.0388 0 0.1449 -0.15 0 0 290. 0.29 0.942 0.917
S(1, 0.8, 0) 77 6.2 1 0 0 0.2 -0.2 0 0 310. 0.40 0.938 0.936
S(1, 0.8, 120) 77 6.2 1 0.1732 0 -0.1 -0.2 0 0 210. -0.20 0.955 0.676
S(1, 0.8, 150) 77 6.2 1 0.1 0 -0.1732 -0.2 0 0 200. -0.35 0.96 0.634
S(1, 0.8, 180) 77 6.2 1 0 0 -0.2 -0.2 0 0 190. -0.40 0.961 0.641
S(1, 0.8, 210) 77 6.2 1 -0.1 0 -0.1732 -0.2 0 0 200. -0.35 0.958 0.698
S(1, 0.8, 240) 77 6.2 1 -0.1732 0 -0.1 -0.2 0 0 230. -0.2 0.954 0.783
S(1, 0.8, 255) 77 6.2 1 -0.1932 0 -0.0518 -0.2 0 0 260. -0.10 0.954 0.83
S(1, 0.8, 270) 77 6.2 1 -0.2 0 0 -0.2 0 0 280. 0 0.947 0.866
S(1, 0.8, 30) 77 6.2 1 0.1 0 0.1732 -0.2 0 0 290. 0.35 0.94 0.898
S(1, 0.8, 300) 77 6.2 1 -0.1732 0 0.1 -0.2 0 0 290. 0.20 0.943 0.923
S(1, 0.8, 330) 77 6.2 1 -0.1 0 0.1732 -0.2 0 0 310. 0.35 0.94 0.948
S(1, 0.8, 60) 77 6.2 1 0.1732 0 0.1 -0.2 0 0 270. 0.20 0.944 0.83
S(1, 0.8, 90) 77 6.2 1 0.2 0 0 -0.2 0 0 230. 0. 0.952 0.758
S(1, 0.6, 0,8) 77 8 1 0 0 0.15 -0.15 0 0 0.30
S(1, 0.6, 135, 8) 77 8 1 0.1061 0 -0.1061 -0.15 0 0 -0.21
S(1, 0.6, 180, 8) 77 8 1 0 0 -0.15 -0.15 0 0 -0.30
S(1, 0.6, 225, 8) 77 8 1 -0.1061 0 -0.1061 -0.15 0 0 -0.21
S(1, 0.6, 240, 8) 77 8 1 -0.1299 0 -0.075 -0.15 0 0 -0.15
S(1, 0.6, 255, 8) 77 8 1 -0.1449 0 -0.0388 -0.15 0 0 -0.078
S(1, 0.6, 270, 8) 77 8 1 -0.15 0 0 -0.15 0 0 0
S(1, 0.6, 315, 8) 77 8 1 -0.1061 0 0.1061 -0.15 0 0 0.21
S(1, 0.6, 45, 8) 77 8 1 0.1061 0 0.1061 -0.15 0 0 0.21
S(1, 0.6, 90, 8) 77 8 1 0.15 0 0 -0.15 0 0 0
Sq(2, 0.6, 0, 6.2) 120 6.2 2 0 0 0.2666 -0.0666 0 0 340. 0.40 0.946 0.81
Sq(2, 0.6, 150, 6.2) 120 6.2 2 0.1333 0 -0.2309 -0.0666 0 0 200. -0.35 0.969 0.457
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Sq(2, 0.6, 180, 6.2) 120 6.2 2 0 0 -0.2666 -0.0666 0 0 190. -0.40 0.97 0.429
Sq(2, 0.6, 90, 6.2) 120 6.2 2 0.2666 0 0 -0.0666 0 0 260. 0 0.96 0.652
Sq(2.5, 0.6, 0, 6.2) 120 6.2 2.5 0 0 0.3061 -0.0489 0 0 370. 0.43 0.952 0.805
Sq(2.5, 0.6, 120, 6.2) 120 6.2 2.5 0.2651 0 -0.153 -0.0489 0 0 210. -0.21 0.97 0.51
Sq(2.5, 0.6, 15, 6.2) 120 6.2 2.5 0.0792 0 0.2957 -0.0489 0 0 360. 0.41 0.952 0.797
Sq(2.5, 0.6, 150, 6.2) 120 6.2 2.5 0.153 0 -0.2651 -0.0489 0 0 180. -0.37 0.974 0.389
Sq(2.5, 0.6, 180, 6.2) 120 6.2 2.5 0 0 -0.3061 -0.0489 0 0 180. -0.43 0.975 0.344
Sq(2.5, 0.6, 210, 6.2) 120 6.2 2.5 -0.153 0 -0.2651 -0.0489 0 0 190. -0.37 0.973 0.421
Sq(2.5, 0.6, 240, 6.2) 120 6.2 2.5 -0.2651 0 -0.153 -0.0489 0 0 230. -0.21 0.97 0.552
Sq(2.5, 0.6, 270, 6.2) 120 6.2 2.5 -0.3061 0 0 -0.0489 0 0 270. 0 0.964 0.668
Sq(2.5, 0.6, 30, 6.2) 120 6.2 2.5 0.153 0 0.2651 -0.0489 0 0 350. 0.37 0.954 0.783
Sq(2.5, 0.6, 300, 6.2) 120 6.2 2.5 -0.2651 0 0.153 -0.0489 0 0 330. 0.21 0.958 0.75
Sq(2.5, 0.6, 315, 6.2) 120 6.2 2.5 -0.2164 0 0.2164 -0.0489 0 0 340. 0.3 0.955 0.776
Sq(2.5, 0.6, 330, 6.2) 120 6.2 2.5 -0.153 0 0.2651 -0.0489 0 0 360. 0.37 0.953 0.795
Sq(2.5, 0.6, 345, 6.2) 120 6.2 2.5 -0.0792 0 0.2957 -0.0489 0 0 370. 0.41 0.952 0.804
Sq(2.5, 0.6, 45, 6.2) 120 6.2 2.5 0.2164 0 0.2164 -0.0489 0 0 330. 0.3 0.957 0.759
Sq(2.5, 0.6, 60, 6.2) 120 6.2 2.5 0.2651 0 0.153 -0.0489 0 0 300. 0.21 0.958 0.724
Sq(2.5, 0.6, 75, 6.2) 120 6.2 2.5 0.2957 0 0.0792 -0.0489 0 0 280. 0.11 0.963 0.686
Sq(2.5, 0.6, 90, 6.2) 120 6.2 2.5 0.3061 0 0 -0.0489 0 0 260. 0 0.965 0.631
Sq(3, 0.6, 0, 6.2) 120 6.2 3 0 0 0.3375 -0.0375 0 0 390. 0.45 0.957 0.798
Sq(3, 0.6, 120, 6.2) 120 6.2 3 0.2923 0 -0.1687 -0.0375 0 0 210. -0.22 0.975 0.479
Sq(3, 0.6, 15, 6.2) 120 6.2 3 0.0873 0 0.326 -0.0375 0 0 380. 0.43 0.958 0.791
Sq(3, 0.6, 30, 6.2) 120 6.2 3 0.1687 0 0.2923 -0.0375 0 0 370. 0.39 0.959 0.774
Sq(3, 0.6, 45, 6.2) 120 6.2 3 0.2386 0 0.2386 -0.0375 0 0 350. 0.32 0.962 0.752
Sq(3, 0.6, 60, 6.2) 120 6.2 3 0.2923 0 0.1687 -0.0375 0 0 320. 0.22 0.964 0.715
Sq(3, 0.6, 75, 6.2) 120 6.2 3 0.326 0 0.0873 -0.0375 0 0 290. 0.12 0.967 0.674
Sq(3, 0.6, 90, 6.2) 120 6.2 3 0.3375 0 0 -0.0375 0 0 260. 0 0.969 0.615
Sq(3, 0.6, 150, 6.2) 120 6.2 3 0.1687 0 -0.2922 -0.0375 0 0 170. -0.39 0.978 0.333
Sq(3, 0.6, 180, 6.2) 120 6.2 3 0 0 -0.3374 -0.0375 0 0 180. -0.45 0.978 0.269
Sq(3, 0.6, 210, 6.2) 120 6.2 3 -0.1687 0 -0.2922 -0.0375 0 0 180. -0.39 0.977 0.364
Sq(3, 0.6, 240, 6.2) 120 6.2 3 -0.2923 0 -0.1687 -0.0375 0 0 220. -0.22 0.974 0.517
Sq(3, 0.6, 270, 6.2) 120 6.2 3 -0.3375 0 0 -0.0375 0 0 270. 0 0.969 0.648
Sq(3, 0.6, 300, 6.2) 120 6.2 3 -0.2923 0 0.1687 -0.0375 0 0 340. 0.22 0.963 0.736
Sq(3, 0.6, 315, 6.2) 120 6.2 3 -0.2386 0 0.2386 -0.0375 0 0 360. 0.32 0.96 0.765
Sq(3, 0.6, 330, 6.2) 120 6.2 3 -0.1687 0 0.2923 -0.0375 0 0 380. 0.39 0.959 0.786
Sq(3, 0.6, 345, 6.2) 120 6.2 3 -0.0873 0 0.326 -0.0375 0 0 390. 0.43 0.957 0.796
Sq(4, 0.6, 0, 6.2) 120 6.2 4 0 0 0.384 -0.024 0 0 430. 0.48 0.966 0.781
Sq(4, 0.6, 0, 9, 6.2) 120 9 4 0 0 0.384 -0.024 0 0 1300. 0.48 0.965 0.779
Sq(4, 0.6, 30, 6.2) 120 6.2 4 0.192 0 0.3325 -0.024 0 0 430. 0.42 0.967 0.759
Sq(4, 0.6, 90, 6.2) 120 6.2 4 0.384 0 0 -0.024 0 0 260. 0 0.977 0.594
Sq(4, 0.6, 90, 9) 120 9 4 0.384 0 0 -0.024 0 0 870. 0 0.976 0.593
Sq(4, 0.6, 150, 6.2) 120 6.2 4 0.192 0 -0.3325 -0.024 0 0 170. -0.42 0.983 0.255
Sq(4, 0.6, 150, 9) 120 9 4 0.192 0 -0.3325 -0.024 0 0 460. -0.42 0.983 0.258
Sq(4, 0.6, 180, 6.2) 120 6.2 4 0 0 -0.384 -0.024 0 0 170. -0.48 0.983 0.146
Sq(4, 0.6, 180, 9) 120 9 4 0 0 -0.384 -0.024 0 0 430. -0.48 0.983 0.15
Sq(4, 0.6, 210, 9) 120 9 4 -0.192 0 -0.3325 -0.024 0 0 490. -0.42 0.982 0.285
Sq(4, 0.6, 270, 6.2) 120 6.2 4 -0.384 0 0 -0.024 0 0 280. 0 0.976 0.616
Sq(4, 0.6, 270, 9) 120 9 4 -0.384 0 0 -0.024 0 0 890. 0 0.975 0.612
Sq(4, 0.6, 270, 9) 140 9 4 -0.384 0 0 -0.024 0 0 890. 0 0.975 0.612
Sq(4, 0.6, 270, 9) 160 9 4 -0.384 0 0 -0.024 0 0 890. 0 0.975 0.612
Sq(4, 0.6, 270, 9) 180 9 4 -0.384 0 0 -0.024 0 0 890. 0 0.975 0.613
T(1, 0., 0) 77 6.2 1 0 0 0 0 0 0 890. 0 0.951 0.685
T(1, 0.2, 0) 77 6.2 1 0 0 0.05 0 0 0.05 910. 0.2
T(1, 0.2, 45) 77 6.2 1 0 0 0.05 0.0354 0 0.0354 850. 0.17
T(1, 0.2, 60) 77 6.2 1 0 0 0.05 0.0433 0 0.025 840. 0.15
T(1, 0.2, 90) 77 6.2 1 0 0 0.05 0.05 0 0 840. 0.1
T(1, 0.4, 0) 90 6.2 1 0 0 0.1 0 0 0.1 1000. 0.4
T(1, 0.4, 45) 77 6.2 1 0 0 0.1 0.0707 0 0.0707 990. 0.34
T(1, 0.4, 60) 77 6.2 1 0 0 0.1 0.0866 0 0.05 970. 0.3
T(1, 0.4, 90) 77 6.2 1 0 0 0.1 0.1 0 0 910. 0.2
T(1, 0.6, 0) 77 6.2 1 0 0 0.15 0 0 0.15 1100. 0.6
T(1, 0.6, 45) 77 6.2 1 0 0 0.15 0.1061 0 0.1061 1100. 0.51
T(1, 0.6, 60) 77 6.2 1 0 0 0.15 0.1299 0 0.075 990. 0.45
T(1, 0.6, 90) 77 6.2 1 0 0 0.15 0.15 0 0 920. 0.3
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T(1, 0.8, 0) 90 6.2 1 0 0 0.2 0 0 0.2 1200. 0.8 0.906 0.9
Tq(1.5, 0.4, 60, 10) 120 10 1.5 0.1247 0 0.072 0 0 0.064 1200. 0.28 0.947 0.753
Tq(1.5, 0.6, 45, 10) 120 10 1.5 0.1527 0 0.1527 0 0 0.096 1300. 0.49 0.937 0.822
Tq(2, 0.4, 60, 10) 120 10 2 0.1539 0 0.0889 0 0 0.0444 1200. 0.27 0.954 0.722
Tq(2, 0.6, 135, 10) 120 10 2 0.1885 0 -0.1885 0 0 0.0666 930. -0.083 0.964 0.549
Tq(2, 0.6, 180, 10) 120 10 2 0 0 -0.2666 0 0 0.0666 810. -0.20 0.967 0.465
Tq(2, 0.6, 270, 10) 120 10 2 -0.2666 0 0 0 0 0.0666 1200. 0.20 0.955 0.698
Tq(2, 0.6, 45, 10) 120 10 2 0.1885 0 0.1885 0 0 0.0666 1400. 0.48 0.945 0.804
Tq(2, 0.6, 60, 10) 120 10 2 0.2309 0 0.1333 0 0 0.0666 1300. 0.40 0.948 0.777
Tq(2, 0.6, 90, 10) 120 10 2 0.2666 0 0 0 0 0.0666 1200. 0.20 0.955 0.698
Tq(2.5, 0.4, 45, 10) 120 10 2.5 0.1443 0 0.1443 0 0 0.0326 1400. 0.32 0.958 0.715
Tq(2.5, 0.4, 60, 10) 120 10 2.5 0.1767 0 0.102 0 0 0.0326 1300. 0.26 0.96 0.693
Tq(2.5, 0.4, 90, 10) 120 10 2.5 0.2041 0 0 0 0 0.0326 1200. 0.11 0.964 0.626
Tq(2.5, 0.6, 45, 10) 120 10 2.5 0.2164 0 0.2165 0 0 0.049 1500. 0.47 0.952 0.787
Tq(2.5, 0.6, 60, 10) 120 10 2.5 0.2651 0 0.1531 0 0 0.049 1400. 0.39 0.955 0.756
Tq(2.5, 0.6, 90, 10) 120 10 2.5 0.3061 0 0 0 0 0.049 1200. 0.17 0.962 0.671
Tq(4, 0.6, 45, 10) 120 10 4 0.2715 0 0.2715 0 0 0.024 1800. 0.46 0.968 0.749
Tq(4, 0.6, 60, 10) 120 10 4 0.3325 0 0.192 0 0 0.024 1700. 0.36 0.97 0.715
Tq(4, 0.6, 90, 10) 120 10 4 0.384 0 0 0 0 0.024 1400. 0.12 0.975 0.61
V(1, 0.6, 34, 0) 77 6.2 1 0.0839 0 0.1243 -0.0839 0 0.1243 290. 0.50
V(1, 0.6, 34, 30) 77 6.2 1 0.0726 0.0419 0.1243 -0.0726 -0.0419 0.1243 290. 0.50
V(1, 0.6, 34, 45) 77 6.2 1 0.0593 0.0593 0.1243 -0.0593 -0.0593 0.1243 290. 0.50
V(1, 0.6, 34, 60) 77 6.2 1 0.0419 0.0726 0.1243 -0.0419 -0.0726 0.1243 290. 0.50
V(1, 0.6, 34, 90) 77 6.2 1 0 0.0839 0.1243 0 -0.0839 0.1243 300. 0.50 0.932 0.827
V(1, 0.6, 34, 120) 77 6.2 1 -0.0419 0.0726 0.1243 0.0419 -0.0726 0.1243 300. 0.50 0.933 0.828
V(1, 0.6, 34, 150) 77 6.2 1 -0.0726 0.0419 0.1243 0.0726 -0.0419 0.1243 300. 0.50 0.933 0.829
V(1, 0.6, 34, 180) 77 6.2 1 -0.0839 0 0.1243 0.0839 0 0.1243 300. 0.50
V(1, 0.6, 34, 210) 77 6.2 1 -0.0726 -0.0419 0.1243 0.0726 0.0419 0.1243 320. 0.5
V(1, 0.6, 34, 240) 77 6.2 1 -0.0419 -0.0726 0.1243 0.0419 0.0726 0.1243 320. 0.50
V(1, 0.6, 34, 270) 77 6.2 1 0 -0.0839 0.1243 0 0.0839 0.1243 310. 0.5 0.932 0.827
V(1, 0.6, 34, 300) 77 6.2 1 0.0419 -0.0726 0.1243 -0.0419 0.0726 0.1243 310. 0.50 0.933 0.828
V(1, 0.6, 34, 330) 77 6.2 1 0.0726 -0.0419 0.1243 -0.0726 0.0419 0.1243 310. 0.50 0.933 0.829
V(1, 0.6, 66, 0) 77 6.2 1 0.137 0 0.061 -0.137 0 0.061 270. 0.24
V(1, 0.6, 66, 30) 77 6.2 1 0.1186 0.0685 0.061 -0.1186 -0.0685 0.061 270. 0.24
V(1, 0.6, 66, 60) 77 6.2 1 0.0685 0.1186 0.061 -0.0685 -0.1186 0.061 270. 0.24
V(1, 0.6, 66, 90) 77 6.2 1 0 0.137 0.061 0 -0.137 0.061 270. 0.24
V(1, 0.6, 66, 120) 77 6.2 1 -0.0685 0.1186 0.061 0.0685 -0.1186 0.061 270. 0.24
V(1, 0.6, 66, 150) 77 6.2 1 -0.1186 0.0685 0.061 0.1186 -0.0685 0.061 270. 0.24
V(1, 0.6, 90, 0) 77 6.2 1 0.1499 0 0 -0.1499 0 0 220. 0 0.951 0.686
V(1, 0.6, 90, 30) 77 6.2 1 0.1299 0.075 0 -0.1299 -0.075 0 220. 0 0.951 0.684
V(1, 0.6, 90, 45) 77 6.2 1 0.106 0.106 0 -0.106 -0.106 0 210. 0. 0.95 0.683
V(1, 0.6, 90, 60) 77 6.2 1 0.075 0.1299 0 -0.075 -0.1299 0 200. 0. 0.95 0.681
V(1, 0.6, 90, 90) 77 6.2 1 0 0.1499 0 0 -0.1499 0 200. 0 0.949 0.68
V(1, 0.6, 90, 120) 77 6.2 1 -0.075 0.1299 0 0.075 -0.1299 0 210. 0 0.95 0.682
V(1, 0.6, 90, 150) 77 6.2 1 -0.1299 0.075 0 0.1299 -0.075 0 210. 0 0.951 0.685
V(1, 0.6, 90, 180) 77 6.2 1 -0.1499 0 0 0.1499 0 0 220. 0 0.951 0.686
V(1, 0.6, 90, 210) 77 6.2 1 -0.1299 -0.075 0 0.1299 0.075 0 220. 0 0.951 0.684
V(1, 0.6, 90, 240) 77 6.2 1 -0.075 -0.1299 0 0.075 0.1299 0 220. 0. 0.95 0.681
V(1, 0.6, 90, 270) 77 6.2 1 0 -0.1499 0 0 0.1499 0 220. 0 0.949 0.68
V(1, 0.6, 90, 300) 77 6.2 1 0.075 -0.1299 0 -0.075 0.1299 0 220. 0 0.95 0.682
V(1, 0.6, 90, 330) 77 6.2 1 0.1299 -0.075 0 -0.1299 0.075 0 220. 0 0.951 0.685
z(1,0) 103 10 1. 0 0 0 0 0 0 960. 0. 0.952 0.686
z(1,0) 100 10 1 0 0 0 0 0 0 930. 0. 0.951 0.687
z(1,0, 11,a) 120 11 1 0 0 0 0 0 0 1300. 0. 0.951 0.686
z(1, 0, 11,b) 160 11 1 0 0 0 0 0 0 1400. 0. 0.952 0.686
z(1, 0, 11,c) 200 11 1 0 0 0 0 0 0 1400. 0. 0.952 0.686
z(1, 0, 11,d) 240 11 1 0 0 0 0 0 0 1400. 0. 0.952 0.686
zq(1.15,0 ) 103 10 1.15 0 0 0 0 0 0 960. 0. 0.952 0.684
zq(1.25,0) 100 10 1.25 0 0 0 0 0 0 960. 0. 0.952 0.68
zq(1.3,0 ) 103 10 1.3 0 0 0 0 0 0 970. 0. 0.953 0.677
zq(1.45,0) 103 10 1.45 0 0 0 0 0 0 980. 0. 0.955 0.667
zq(1.5,0) 103 10 1.5 0 0 0 0 0 0 990. 0. 0.955 0.664
zq(1.5,0) 100 10 1.5 0 0 0 0 0 0 1000. 0. 0.955 0.664
zq(1.5,0, 11) 200 11 1.5 0 0 0 0 0 0 1400. 0. 0.955 0.664



26

zq(1.6,0) 103 10 1.6 0 0 0 0 0 0 990. 0. 0.956 0.656
zq(1.75,0) 103 10 1.75 0 0 0 0 0 0 1000. 0. 0.958 0.644
zq(1.9,0) 103 10 1.9 0 0 0 0 0 0 1000. 0. 0.96 0.632
zq(2,0) 103 10 2. 0 0 0 0 0 0 1000. 0. 0.961 0.623
zq(2,0) 100 10 2. 0 0 0 0 0 0 1000. 0. 0.961 0.623
zq(2.05,0) 103 10 2.05 0 0 0 0 0 0 1000. 0. 0.962 0.619
zq(2.2,0) 103 10 2.2 0 0 0 0 0 0 1100. 0. 0.963 0.606
zq(2.35,0) 103 10 2.35 0 0 0 0 0 0 1100. 0. 0.965 0.593
zq(2.5,0) 103 10 2.5 0 0 0 0 0 0 1100. 0. 0.967 0.581
zq(2.5,0, 11) 200 11 2.5 0 0 0 0 0 0 1600. 0. 0.967 0.581
zq(3,0) 200 11 3 0 0 0 0 0 0 1700. 0. 0.971 0.54
zq(4, 0,11) 200 11 4 0 0 0 0 0 0 2000. 0. 0.978 0.472
z(1,-0.4, 11) 200 11 1 0 0 -0.1 0 0 -0.1 1100. -0.40 0.96 0.56
z(1, -0.2, 11) 200 11 1 0 0 -0.05 0 0 -0.05 1200. -0.20 0.956 0.624
z(1, 0.2) 100 10 1 0 0 0.05 0 0 0.05 1100. 0.20 0.945 0.746
z(1, 0.2, 11) 200 11 1 0 0 0.05 0 0 0.05 1500. 0.20 0.945 0.746
zq(1.25 , 0.2) 100 10 1.25 0 0 0.0617 0 0 0.0395 1100. 0.2 0.946 0.74
zq(1.5, 0.2) 100 10 1.5 0 0 0.072 0 0 0.032 1100. 0.2 0.949 0.729
zq(1.5, 0.2, 11) 200 11 1.5 0 0 0.072 0 0 0.032 1600. 0.2 0.949 0.729
zq(1.75, 0.2) 100 10 1.75 0 0 0.081 0 0 0.0264 1200. 0.2 0.952 0.714
zq(2, 0.2) 100 10 2. 0 0 0.0889 0 0 0.0222 1200. 0.2 0.956 0.698
zq(2, 0.2, 11) 160 11 2. 0 0 0.0889 0 0 0. 1700. 0.2 0.956 0.698
z(1, 0.4, 11) 200 11 1 0 0 0.1 0 0 0.1 1700. 0.40 0.938 0.804
zq(1.25, 0.4) 100 10 1.25 0 0 0.1234 0 0 0.079 1200. 0.4 0.939 0.8
zq(1.5, 0.4) 100 10 1.5 0 0 0.144 0 0 0.064 1300. 0.4 0.941 0.792
zq(1.5, 0.4) 200 11 1.5 0 0 0.144 0 0 0.064 1700. 0.4 0.942 0.792
zq(1.75, 0.4) 100 10 1.75 0 0 0.162 0 0 0.0529 1300. 0.4 0.945 0.781
zq(2,, 0.4) 100 10 2. 0 0 0.1778 0 0 0.0444 1300. 0.4 0.949 0.768
zq(2, 0.4, 11) 160 11 2. 0 0 0.1778 0 0 0.0444 1900. 0.4 0.949 0.77
z(1, 0.6) 100 10 1 0 0 0.15 0 0 0.15 1400. 0.60 0.926 0.858
z(1, 0.6,11) 200 11 1 0 0 0.15 0 0 0.15 1900. 0.60 0.927 0.858
zq(1.25, 0.6) 100 10 1.25 0 0 0.1852 0 0 0.1185 1400. 0.6 0.928 0.855
zq(1.5, 0.6) 100 10 1.5 0 0 0.216 0 0 0.096 1400. 0.6 0.931 0.851
zq(1.75, 0.6) 100 10 1.75 0 0 0.243 0 0 0.0793 1400. 0.6 0.935 0.845
zq(2, 0.6) 100 10 2. 0 0 0.2666 0 0 0.0666 1500. 0.6 0.939 0.839
zq(2, 0.6,11) 160 11 2. 0 0 0.2666 0 0 0.0666 2000. 0.6 0.94 0.839
z(1, 0.8) 100 10 1 0 0 0.2 0 0 0.2 1500. 0.80 0.912 0.908
z(1, 0.8, 11) 200 11 1 0 0 0.2 0 0 0.2 1900. 0.8 0.912 0.909
zU(1, 0., 0.2, 11) 160 11 1 0 0 0 0 0 0.05 1400. 0.10 0.949 0.716
zU(1, 0., 0.4, 11) 160 11 1 0 0 0 0 0 0.1 1500. 0.20 0.945 0.746
zU(1, 0., 0.6, 11) 160 11 1 0 0 0 0 0 0.15 1600. 0.30 0.942 0.775
zU(1, 0., 0.8, 11) 160 11 1 0 0 0 0 0 0.2 1700. 0.40 0.937 0.802
zU(1, 0.2, 0.4, 11) 160 11 1 0 0 0.05 0 0 0.1 1600. 0.30 0.942 0.775
zU(1, 0.2, 0.6, 11) 160 11 1 0 0 0.05 0 0 0.15 1700. 0.40 0.937 0.803
zU(1, 0.2, 0.8, 11) 160 11 1 0 0 0.05 0 0 0.2 1700. 0.50 0.932 0.83


