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Coalescing compact binary systems consisting of neutron stars and/or black holes should be de-
tectable with upcoming advanced gravitational-wave detectors such as LIGO, Virgo, GEO and KA-
GRA. Gravitational-wave experiments to date have been riddled with non-Gaussian, non-stationary
noise that makes it challenging to ascertain the significance of an event. A popular method to
estimate significance is to time shift the events collected between detectors in order to establish
a false coincidence rate. Here we propose a method for estimating the false alarm probability of
events using variables commonly available to search candidates that does not rely on explicitly time
shifting the events while still capturing the non-Gaussianity of the data. We present a method for
establishing a statistical detection of events in the case where several silver-plated (3–5σ) events ex-
ist but not necessarily any gold-plated (> 5σ) events. We use LIGO data and a simulated, realistic,
blind signal population to test our method.

I. INTRODUCTION

Detecting the gravitational-waves (GWs) from coalesc-
ing neutron stars and or black holes should be possible
with advanced GW detectors such as LIGO, Virgo, GEO
and KAGRA [1–5]. If the performance of past detec-
tors is any indicator of the performance of future GW
detectors, they are likely to be affected by non-Gaussian
noise [6]. Coincident observations are crucial in validat-
ing the detection of GWs but it is necessary to establish
the probability that the coincident event could arise from
noise alone.

If the detectors’ data were Gaussian and stationary,
it would be straightforward to compute the false alarm
probability (FAP) of a coincident event based solely on
its signal-to-noise ratio (SNR) and the number of inde-
pendent trials. With non-stationary, non-Gaussian data
the SNR is not sufficient to describe the significance of
an event and, furthermore, the distribution of detector
noise is not known a priori.

Estimating false-coincident backgrounds from time de-
lay coincidence associated with searches for GWs was
first proposed for targeted compact binary coalescence
GW searches in [7]. This method has been the com-
monest used in subsequent searches [8–18]. We present
a method to estimate the false alarm probability of a
GW event from coalescing compact objects without time
shifts by measuring the false alarm probability distribu-
tions for non-coincident events using a set of common
variables available to the searches. This greatly simpli-
fies analysis and lends itself nicely to an online analysis
environment.
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This paper is organized as follows. In Sec. II we de-
scribe a formalism for ranking GW events and establish-
ing the probability distribution for a given event’s rank in
noise. In Sec. II C we present how to estimate the signifi-
cance of a population of CBC events, which might include
silver-plated (i.e. less than 5σ) events. In Sec. III, we
test our method with a mock, advanced detector search
that uses four days of LIGO fifth science run (S5) data
that has been recolored to have an Advanced LIGO spec-
trum containing a plausible, simulated, blind population
of double neutron star binary mergers. We demonstrate
that we can detect GWs from neutron star binaries with
very low false alarm probability.

II. METHOD

GW searches for compact binary coalescence begin by
matched filtering data in the detectors [19]. If peaks in
SNR times series for more than one detector are con-
sistent with the light travel time between detectors and
timing errors, these peaks are considered to be a coinci-
dent event.

GW data to date have not been stationary and Gaus-
sian [6] thus making it difficult to model the noise in GW
searches. Non-stationary noise degrades the effectiveness
of standard matched filter searches. For that reason addi-
tional signal consistency tests are often employed, such as
explicit χ2 tests [20, 21]. Non-stationarity occurs on sev-
eral timescales. Here we are more concerned with short
duration non-stationary bursts of noise called glitches for
which χ2 tests are very useful discriminators.

In this section we will present a method using common
variables available to a compact binary search to estimate
the FAP without relying on time shifting the detector
data. Although many variables and measurements may
be used, in this paper we consider two parameters: the
matched filter SNR ρi and the χ2 statistic χ2

i , which
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depend on the detector i, as well as parameters intrinsic
to the source that the template describes such as mass
and spin, θ̄. In this section, we introduce the framework
for evaluating the FAP of GW candidates.

A. Ranking events

Here is our concise definition of a coincident gravita-
tional wave search for compact binary sources. i) The
search consists of D detectors. ii) We seek to find the
significance of an event found in the D detectors local-
ized in time. iii) The intrinsic parameters of the event
will be unknown a priori. Our detection pipeline will
measure the significance as a function of the parameters
of the template waveform θ̄.

For each detector i of a D detector network we use ρi
and χ2

i to rank candidates with parameters θ̄ from least
likely to be a gravitational wave to most likely. We use
a standard likelihood ratio [22] defined as

L(ρ1, χ
2
1, . . . ρD, χ

2
D, θ̄) =

P (ρ1, χ
2
1, . . . ρD, χ

2
D, θ̄|s)

P (ρ1, χ2
1, . . . ρD, χ

2
D, θ̄|n)

, (1)

where P (. . . |s) is the probability of observing (. . . ) given
a signal, and P (. . . |n) is the probability of observing (. . . )
given noise. It is assumed that the signal distribution has
been marginalized over all relevant parameters and the
θ̄ refers only to the template waveform parameters that
are measured by the pipeline. We make the simplifying
assumption [23] that the likelihood ratio can be factored
into products of likelihood ratios from individual detec-
tors,

L(ρ1, χ
2
1, . . . ρD, χ

2
D, θ̄) ≈

D∏
i

Li(ρi, χ2
i , θ̄). (2)

The simplification that the likelihood ratio function can
be factored implies statistical independence between de-
tectors for both signals and noise. This results in a sub-
optimal ranking statistic. However, we can compute the
FAP associated with this statistic, and in fact, it becomes
much easier to do so.

B. Computing the FAP

The FAP is the probability of measuring a given L if
the data contains only noise. N.B., this is not the same
as assessing the probability that the data contains only
noise, which requires knowing the prior probabilities of
both signal and noise. In constructing the FAP, P (L|n),
we start with

P (L, θ̄|n) =

∫
Σ

P (L1, . . .LD, θ̄|n) dD−1Σ, (3)

where Σ is the surface of constant L =
∏D
i Li. From

(2), we have, assuming that the likelihood ratio values in

noise are independent between the detectors,

P (Li, . . .LD, θ̄|n) =

D∏
i

P (Li, θ̄|n), (4)

where P (Li, θ̄|n) is obtained by marginalizing over ρi,
and χ2

i in the single-detector terms,

P (Li, θ̄|n) =

∫
σ

P (ρi, χ
2
i , θ̄|n) dσ, (5)

where σ is the contour of constant Li in the {ρi, χ2
i }

surface at constant θ̄. Implicit in (4) and (5) is the as-
sumption that the coincidence criteria do not depend on
ρi, χ

2
i or θ̄. Finally, P (L|n) is obtained by marginalizing

over θ̄,

P (L|n) =

∫
P (L, θ̄|n) dθ̄. (6)

Given an event resulting from noise, the probability of
observing it to have a likelihood ratio value at least as
large as some threshold L∗ is

P (L ≥ L∗|n) =

∫ ∞
L∗

P (L|n) dL. (7)

A GW search will typically produce multiple coincident
events during a given experiment. That means that there
will be multiple opportunities to produce an event with
a certain likelihood value. We are ultimately interested
in the probability of getting one or more events with L ≥
L∗ after all the events are considered. The probability of
getting at least one such event after forming M indepen-
dent coincidences1 can be adjusted by the complement
of the binomial distribution

P (L ≥ L∗|n1, . . . , nM ) :=

1−
(
M

0

)
P (L ≥ L∗|n)0(1− P (L ≥ L∗|n))M

= 1− (1− P (L ≥ L∗|n))M . (8)

This is the FAP at L∗ in an experiment that yielded M
coincident events.

C. FAP of populations of GW events

A population of events can collectively be more sig-
nificant than the single most significant event alone. In-
deed, population analyses have previously been employed

1 In practice it can be difficult to know if the coincidences formed
are independent, however as long as they are related to the true
number of independent trials by an overall scaling, one can ad-
just the number so that it agrees with the observed rate of co-
incidences for low significance events. This works because GWs
are very rare and true signals will vastly underwhelm the false
positives that a pipeline produces at high FAP. Thus the bias in
calibrating M to high FAP events is very small.
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in looking for GW signals associated with gamma-ray
bursts (GRBs). For example, a Student-T test was pro-
posed in [24] to test for deviations in the cross-correlation
of detectors’ output preceding a set of times associated
with GRBs (i.e., on-source times) when compared to
other off-source times not associated with GRBs, a bi-
nomial test was employed in [25, 26] using the X% most
significant events to test for excess numbers of events at
their associated FAPs, a Kolmogorov test was used in [27]
to look for deviations from isotropy in GRB direction
based on the directional sensitivity of the bar detectors,
and a Mann-Whitney U (or Mann-Whitney-Wilcoxon)
test was performed in [28] to test if the all the FAPs as-
sociated with the on-source events of the GRBs were on
average smaller than the expected distribution given by
the off-source events, as would be the case if the average
significance were elevated due to the presence of GWs in
the on-source events.

As noted in [25, 26], seeking significance by consider-
ing different choices of populations diminishes the sig-
nificance of each on account of the trials that have
been conducted. We propose to control this by restrict-
ing ourselves to considering only populations consist-
ing of events for whose ranking statistic values the ex-
pected number of background events was less than 1 (i.e.,
MP (L ≥ L∗|n) < 1). Although it’s conceivable that still
less significant events could be sufficiently numerous to
be statistically significant as a population, we consider it
unlikely that such events will be interesting and so this is
a natural stopping condition for considering events. The
statistic we propose is

Q := min
i
{P (≥ i|xi)} , (9)

where xi is related to the significance of the ith most sig-
nificant event and P (≥ i|xi) is the probability of obtain-
ing i or more events of that significance. In Appendix A
we go into more detail defining xi as well as providing an
algorithm for computing the FAP of this statistic semi-
analytically (i.e., without the use of a potentially com-
putationally costly Monte Carlo simulation).

III. EXAMPLE

We have applied these techniques to a mock search
for GWs from binary neutron stars in four days of S5
LIGO data that has been recolored to match the Ad-
vanced LIGO design spectrum2 [29]. This provides a po-
tentially realistic data set that contains glitches from the
original LIGO instruments. A population of neutron star
binaries was added at a rate of 4 / Mpc3 / Myr, (see [1]
for the expected rates.) We self-blinded the signal pa-
rameters with a random number generator.

2 Specifically the zero-detuned, high-power noise curve was used.

Our analysis targeted compact binary systems with
component masses between 1.2 and 2 M�. We used
3.5 post-Newtonian order stationary phase approxima-
tion templates to cover the parameter space with a 97%
minimal match [30] by neglecting the effects of spin in the
waveform models [31]. This required ∼15,000 templates.
We started the matched filter integrals at 15 Hz and ex-
tended the integral to the innermost stable circular orbit
frequency. The analysis gathered the data, whitened it,
filtered it, identified events in the single detectors, found
coincidences and ranked the events by their likelihood
ratios. The filtering algorithm is described in [32].

The previous section described our method for estimat-
ing the significance of events but did not describe many
details of how the calculation is done in practice. We will
point out a few of those details now.

The numerator of (1) is evaluated by assuming the sig-
nals follow their expected distribution in Gaussian noise.
We note that this is a reasonable assumption because
detections are likely to come from periods of relatively
stationary and Gaussian data. Note that the expecta-
tion for ρ can be obtained by assuming that sources are
distributed uniformly in space. The expectation for the
χ2 of a signal can be found in [20].

The denominator of (1) is found by explicitly his-
togramming the single detector events that are not found
in coincidence. By excluding coincident events we lower
the chance that a gravitational wave will bias the noise
distribution of the likelihood ratios. In general the his-
togramming will suffer from finite statistics and “edge”
effects. We generate the histograms at a finer resolution
than required to track the likelihood ratio and then apply
a Gaussian smoothing kernel with a width characteristic
of the uncertainty in ρ.

We are unable to collect enough statistics to fully re-
solve the tail of the background ρ distribution. Thus,
we add a prior distribution into the background statis-
tics that models the ρ falloff as expected from a 2 de-
gree of freedom matched filter in Gaussian noise, i.e.
p(ρ|n) ∝ exp [−ρ2/2]. This helps ensure that the like-
lihood ratio contours increase as a function of ρ at large
ρ. At some point the probability of getting a given value
of ρ, χ2 becomes smaller than double precision float ep-
silon. We extend the background distribution above a
given value of ρ with a polynomial in ρ that falls off faster
than the signal distribution (which is ∝ ρ−4) but is shal-
low enough to prevent numerical problems. In both cases
the point of the prior is not to influence the ranking of
typical events but rather to make the calculations more
numerically well-behaved. The prior is added so that the
total probability amounts only to a single event in each
detector. Thus the background (as billions of events are
collected) quickly overwhelms the prior except for at the
edges where there is no data. The point where the calcu-
lation is no longer based on having at least 1 actual event
in background is important since it will effectively mark
the limiting FAP. More discussion of that point follows.

In Fig. 1 we show some of the intermediate data used
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in estimating the significance of events in our example.
Namely, we show the individual likelihood ratio contours
for ρ and χ2 described in (1) in the H1 and L1 instru-
ments for signals with a chirp mass consistent with a
neutron star binary (1.2M�) in Subfig. 1(a) and 1(b) re-
spectively. The probability of getting an event with a
likelihood ratio greater than L∗ after M trials for the H1
and L1 instruments (8) is shown in Fig. 1(c). Our ability
to measure P (L ≥ L∗|n1, . . . , nM ) is limited by the num-
ber of events that we collect in our background estimate.
The shaded region shows the

√
N error region found by

assuming Poisson errors on the number of events that
went into computing a given point on the curve. We have
indicated the FAP at which there ceases to be more than
1 event collected in the background by a dashed line. The
dashed line shows the P (L ≥ L∗|n1, . . . , nM ) has back-
ground events to P := 7× 10−5 which is nearly the FAP
required for a 4σ detection. Below the dashed line the
FAP estimate is dominated by the Gaussian smoothing
kernel applied to the planes in Figs. 1(a) and 1(b). We
believe that it is reasonable to trust the FAP estimate
beyond the single background event limit but note that
5σ level confidence can still be reached without extrap-
olation with tighter coincidence criteria. Tighter coinci-
dence criteria would reduce the trials factor and permit
higher significances to be estimated. The best way to
do this is to demand that three or more detectors see
an event. In our example a third detector would lower
the trials factor by ∼ 100, which would shift the limiting
FAP, P to ∼ 7 × 10−7. It is worth mentioning that the
background events and number of independent trials are
accumulated at the same rate. Thus one cannot decrease
the limiting FAP by collecting more data.

After assigning the FAP to events we also assign a
false alarm rate (FAR), which is desribed in Appendix A
and given by (A6). This allows us to produce the stan-
dard IFAR plot commonly produced in recent searches
for compact binaries [14–18] without having relied on
time shifting the detector events to estimate the back-
ground. This is shown in Fig. 2(a).

The IFARs of the most significant events that came out
of this search in Fig. 2(a) can be identified as the long
tail in the observed events distribution. The top event
has a significance greater than 5σ, the level necessary for
claiming the detection of GWs. The second loudest event
has a significance greater than 4σ. Both events surpass
the single background event limit P. If restricted to this
limit then both events are nearly 4σ.

Applying the population procedure we have put forth
in Sec. II C, we produced a more significant statement
about the presence of GWs beyond that of the loudest
event. This effect is mostly attributed to the similar sig-
nificance of the top two events. This could happen in a
real analysis in two ways 1) Nature could just provide
such a set of events as in this example 2) both events
exhaust our ability to measure significance and we must
place an upper bound on the FAP. The latter case, al-
though somewhat artificial, could still play an important

role in analysis, especially if one is unable to confidently
declare a single 5σ event but finds two or more events
with 3 or 4σ. With our example analysis the combina-
tion of the two loudest events was a 5σ excursion even
after restricting the FAP of both events to be P. After
examining the signal population we found that both can-
didates were separately associated with signal injections.

IV. CONCLUSION

We have provided a method for estimating the signif-
icance of GWs from compact binary coalescence using
measurements of single instrument populations of ρ and
χ2 as a function of the template waveform intrinsic pa-
rameters. We demonstrated our method with mock Ad-
vanced LIGO data derived from initial LIGO data includ-
ing a realistic population of compact binary merger sig-
nals and glitches. We found that between our two loudest
events we were able to establish detection at greater than
5σ confidence. Both of the loudest two events exhausted
the P (∼ 4σ) background estimate, but the extrapolated
FAP of the loudest event exceeded 5σ on its own. Both of
the loudest events were associated with the blind signal
population introduced into the data and the remaining
events were consistent with the expectation from back-
ground.
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Appendix A: False Alarm Probability of Q

In this section we describe how we can compute the
FAP of our statistic (9) in two scenarios with different
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choices of xi: the exact solution valid for all values of M ,
and the solution in the limit of M � 1.

The exact solution is given by computing the statistic
using the binomial probability of observing k or more
events for each of the events in the region MP (L ≥
L∗|n) < 1, where P (L ≥ L∗|n) refers to the values calcu-
lated in (7). The probability of obtaining k events with
P (L ≥ L∗|n) ∈ [0, x) is given by

P (k|x) =

(
M

k

)
xk (1− x)

M−k
(A1)

and the probability of getting k or more events more
significant than x is given by

P (≥ k|x) = 1−
k−1∑
j=0

(
M

j

)
xj (1− x)

M−j
. (A2)

When M � 1, the factorials and exponential opera-
tions involved in (A1) and (A2) will become unwieldy.
In the limit of M → ∞, since the interval we are inter-
ested in is [0, 1/M) the average number of events in the
interval is unity and the distribution of events in this in-
terval can be approximated by the Poisson distribution.
In this case, the probability of observing k when λ are
expected is

P (k|λ) =
λk

k!
e−λ (A3)

and the probability of getting k or more events when λ
are expected is

P (≥ k|λ) = 1− e−λ
k−1∑
j=0

λj

j!
. (A4)

To obtain the expected number of events due to back-
ground associated with the single event FAP P (L ≥
L∗|n), we can use (A4), setting N = 1, and solving for λ,

λ(L∗) = − ln [1− P (L ≥ L∗|n)] . (A5)

This is the quantity that would be used in (A4) asso-
ciated with our Q statistic (9) and only those events
with λ(L∗) < 1 are considered for this statistic. His-
torically, GW experiments have used false alarm rates to
rank events [14–18]. The quantity, inverse false alarm
rate, is given here by

IFAR(L∗) = T/λ(L∗), (A6)

where T is the observation time of the experiment.
For either case, the derivation of the FAP associated

with the statistic from (9), Q = mini{P (≥ i|xi)}, pro-
ceeds in the same manner, where xi is P (L ≥ L∗i |n) or
λi for the Binomial or Poisson cases, respectively. For
ease of notation, we outline the derivation for the Pois-
son case in Appendix A 1 and give the differences in the
final result for the Binomial case in Appendix A 2.

1. The Poisson Approximation

The computation of the FAP of the statistic Q from
(9) for events that have λ(L∗i ) < 1, where P (≥ i|λ(L∗i )) is
given by (A4), proceeds as follows. Let us only consider
events that are produced from the background alone.
With each of these background events, let us associate
with the ith most significant event a rate λi. The pos-
sible numbers of events that could have been obtained
with λi < 1 and mini {P (i|λi)} > Q are given by
{k ∈ N∗N : P (k|1) ≥ Q}, where P (k|1) is given by (A3).
Since there are only a finite number of these events, we
find it easier to compute the probability of obtaining a
statistic (9) less significant than Q, rather than more sig-
nificant than Q, and then take the complement to com-
pute the FAP of obtaining Q.

When k events are observed, the probability of getting
mini {P (≥ i|λi)} > Q is given as

P (min
i
{P (≥ i|λi)} > Q|k) =

Ak(Q)

Bk
, (A7)

which can be computed as a series of integrals, one for
each of the As and Bs.

The first set of k integrals compute the normalization
Bk, which is the volume of the k-event parameter space.
This is given by

Bk =

∫ λk=1

λk=0

∫ λk−1=λk

λk−1=0

· · ·
∫ λ1=λ2

λ1=0

P (λ1) · · ·P (λk−1)P (λk) dλ1 . . . dλk−1 dλk, (A8)

where the distribution of each event in λ, P (λi), can be
approximated as uniform in the limit M � 1. The upper
limits on these integrals impose the constraint that the
events are ordered by by their rates, (i.e., λ1 < · · · <
λk < 1). Performing these integrals, we find Bk = 1/k!.

The second set of k integrals compute the volume of
the k-event parameter space that would have produced
mini {P (≥ i|λi)} > Q. Let us identify the root zi of the
function P (≥ i|λ)−Q as the solution of the transcedental
equation

(1−Q) ezi =

i−1∑
j=0

zji
j!
. (A9)

For the ith event, if the event had λi < zi, then this
event would have produced P (≥ i|λi) < Q, an exam-
ple of which is visualized in Fig. 3. Thus, in order
to limit the integrals of (A8) to only the region where
mini {P (≥ i|λ(L∗i ))} > Q, we need to set the lower limit
of the integral over the rate λi to be the root zi. These
integrals then take the form

Ak(Q) =

∫ λk=1

λk=zk(Q)

∫ λk−1=λk

λk−1=zk−1(Q)

· · ·
∫ λ1=λ2

λ1=z1(Q)

P (λ1) · · ·P (λk−1)P (λk) dλ1 . . . dλk−1 dλk. (A10)
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We find a recursion relation exists for the computation
of Ak(Q), where

Ak(Q) =U(Q, k, 1), (A11)

U(Q, k, l) =
1

k!
W (Q, k, k + l − 1)

−
k−1∑
i=1

zil+i
i!
U(Q, k − i, l + i), (A12)

W (Q, i, j) =1− zij(Q). (A13)

Combining the results from (A8) and (A10), we find
(A7) to be

P (min
i
{P (≥ i|λi)} > Q|k) = k!U(Q, k, 1). (A14)

Finally, combining the probability of observing k events
(A3) with the conditional probability of k events produc-
ing a result less significant that Q (A14), we obtain the
FAP of the statistic mini {P (≥ i|λ(L∗i ))},

P (min
i
{P (≥ i|λ(L∗i ))} < Q|n) =

1−
k(Q)∑
i=0

P (i|1)P (min
j
{P (≥ j|λj))} > Q|i). (A15)

This result is displayed visually in Fig. 4 where we show
the effective trials factor, P (mini {P (≥ i|λi)} < Q|n)/Q,
as a function of the observed statistic Q.

2. The Binomial Solution

The equivalent statistic for which we wish to compute
the FAP is mini {P (≥ i|P (L ≥ L∗i |n))}. This calculation
proceeds as in Sec. A 1 with one minor difference. The
polynomial (A13) of the recurrence relation is the given
by

W (Q, i, j) =

(
1

M

)i
− zij(Q), (A16)

where the roots {zi} are associated with P (≥ i|zi) =
Q and P (≥ i|zi) is given by (A2). The final FAP of
mini {P (≥ i|P (L ≥ L∗i |n))} is then

P (min
i
{P (≥ i|P (L ≥ L∗i |n))} < Q|n) =

1−
k(Q)∑
i=0

P (i|1/M)P (min
j

{
P (≥ j|P (L ≥ L∗j |n))

}
> Q|i),

(A17)

where P (i|1/M) is given by (A1) and the conditional
probability P (mini {P (≥ i|P (L ≥ L∗i |n))} > Q|i) is
given by

P (min
i
{P (≥ i|P (L ≥ L∗i |n))} > Q|i) = i!M iU(Q, i, 1),

(A18)
with U(Q, i, 1) internally using (A16).

Appendix B: Numerical Considerations

1. Equation (8)

As the duration of the experiment increases, the nu-
merical evaluation of (8) using fixed-precision floating
point numbers becomes challenging. In this limit, the
per-trial false-alarm probability of interesting events is
very small and the number of trials is very large. Using
double-precision floating-point numbers, when the num-
ber of trials gets larger than about 1010, FAPs of 10−6

and 0 become indistinguishable, and as the number of co-
incidences that are recorded increases further “4σ” and
“5σ” events cannot be differentiated — it is no longer
possible to make detection claims. The following proce-
dure can be used to evaluate (8) for all P (L ≥ L∗|n) and
M . If MP (L ≥ L∗|n) < 1 the Taylor expansion of (8)
about P (L ≥ L∗|n) = 0 converges quickly.

1− (1− P )M = MP − (M2 −M)
P 2

2
+

(M3 − 3M2 + 2M)
P 3

6
−

(M4 − 6M3 + 11M2 − 6M)
P 4

24
+ . . .

=

∞∑
i=0

−1i
P (i+1)

(i+ 1)!
[(M − 0)(M − 1) · · · (M − i)] . (B1)

The last form yields a recursion relation allowing subse-
quent terms in the series to be computed without explicit
evaluation of the numerator and denominator separately
(which, otherwise, would quickly overflow): if the (i−1)th
term is X, the ith term in the series is X i−M

i+1 P .

If MP (L ≥ L∗|n) ≥ 1 the Taylor series still converges
(infact, as long as the number of trials M is an integer
the series is exact in a finite number of terms) but the se-
ries is numerically unstable: the terms alternate sign and
one must rely on careful cancellation of large numbers to
obtain an accurate result. In this regime the expression’s
value is close to 1, so (1−P )M is small. If P is small, we
can write

1− (1− P )M = 1− eM ln(1−P ) (B2a)

and then the Taylor expansion of M ln(1−P ) about P =
0 converges quickly,

M ln(1− P ) = −MP

(
1 +

P

2
+
P 2

3
+ . . .

)
. (B2b)

Altogether, the algorithm for evaluating (8) is: if
MP (L ≥ L∗|n) < 1 use (B1) computed via the recursion
relation; otherwise if P (L ≥ L∗|n) < 0.125 use (B2); oth-
erwise evaluate (8) directly using normal floating point
operations. The threshold of P (L ≥ L∗|n) < 0.125 for
using (B2) is found empirically, the results are not sensi-
tive to the choice of this number.
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2. Equation (A5)

The evaluation of (A5) for events that are interesting
as detection candidates after an experiment is concluded
is straight-forward using double-precision floating-point
arithmetic. In this regime, P (L ≥ L∗|n) ∼ 10−5,
and there is plenty of numerical dynamic range avail-
able. However, the practical use of (A5) is in its abil-
ity to identify “once a day” or “once an hour” events
for the purpose of providing alerts to the transient as-
tronomy community. After just one day, 24 “once an
hour” background events are expected, and their FAP
— the probability of observing at least one such event
from a Poisson process you expect to have produced 24
— is 0.9999999999622486. After 37 events are expected,
double-precision numbers can no longer be used to dif-
ferentiate those events’ FAPs from 1; that is, (A5) can

only assign reliable false-alarm rates to the 30 or so most
significant background events in any experiment.

This problem is addressed by not computing the ex-
pected number of events, λ(L∗), from the false-alarm
probability, P (L ≥ L∗), as shown in (A5), but by first
rewriting (7) and (8) as

1− P (L ≥ L∗|n1, . . . , nM ) =

(∫ L∗

0

P (L|n) dL

)M
,

(B3)
from which we can rewrite (A5) as

λ(L∗) = −M ln

∫ L∗

0

P (L|n) dL. (B4)

This form of the expression presents no challenges to
its evaluation using double-precision floating point arith-
metic.
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FIG. 1. Figure 1(a) and 1(b) show the likelihood ratios LH1,
LL1 as a function of ρ and χ2 for H1 and L1 respectively
for templates with masses consistent with neutron star bina-
ries (1.2–2 M�.) LH1, LL1 appear as the right-hand-side of
(2). White indicates high likelihood ratio values. Figure 1(c)
shows the probability of having obtained a given value of like-
lihood ratio L∗ or greater from noise as defined in (8) after
M trials (where M is the number of independent coincidences
formed. In this example M = 6× 104.)
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FIG. 2. Fig. 2(a) is a standard IFAR plot where the shaded re-
gions correspond to the “1σ” through “7σ” regions computed
using the survival function and point percent function associ-
ated with the Poisson distribution. This is used to determine
where to stop the accumulation of events for the population
statement. Fig. 2(b) shows the FAP associated with each of
the individual events in the population, given by (8) we are
considering as well as the FAP of obtaining the N loudest
events, given by (A4). Also shown in 2(c) are the same traces
obtained after restricting the individual FAPs to be greater
than P = 7 × 10−5. Note in both 2(b) and 2(c) the circle
marker indicates the FAP of having observed the minimum
point on this curve, Q. It is important to note that even in
the case where the limiting FAP for individual events cannot
meet the “5σ” criteria, a population can. This could be a
realistic scenario for early GW detections.
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FIG. 3. The Poisson probability of obtaining i or more events
with a rate λ for several values of i. The horizontal line is an
example observed statistic of Q = 0.1. Looking at the right
edge of the i = 3 curve shows us that we would have obtained
a statistic value less that Q if there had been three events
anywhere in the region λ3 < 1. The vertical lines show the
roots of P (≥ i|λ)−Q for the cases i = 1, 2.
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FIG. 4. The effective trials factor that is applied to the statis-
tic Q = mini {P (≥ i|λ(L∗i ))} in order to obtain the FAP for
Q. The effective trials factor grows with increasing signifi-
cance of the observed statistic.


