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scriptions of brane dynamics in string theory. In the present paper, we study the
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Lagrangian in detail. Supersymmetry requires that the Galileon scalar now becomes
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I. INTRODUCTION

Galileon theories of a real scalar field are special because they have two-derivative equa-

tions of motion despite having higher-derivative Lagrangians. They are a sub-class of the

most general scalar theories with two-derivative equations of motion, known as Horndeski’s

theories [1] (see also [2]). The “standard” Galileons [3] have the additional property that

in the equations of motion there are precisely two derivatives acting on each field. An im-

mediate consequence is that the standard Galileons are invariant under a so-called Galilean

shift symmetry φ → φ+ c+ bµx
µ with c, bµ being constants, whence they derive their name.

Many variants of the original model have been constructed, such as conformal Galileons [4],

DBI Galileons [5], Galileons with an internal symmetry [6, 7], bi-Galileons [8, 9] and so on.

The crucial property of all of these theories is that they have equations of motion with no

more than two derivatives acting on a field. This helps to evade Ostrogradsky’s theorem [10]

– that is, despite the higher-derivative nature of the Lagrangians, for suitable coefficients

of the Galileon Lagrangians (where ’suitable’ depends on the backgrounds one wishes to

consider, see for instance [11]) these theories do not contain perturbative ghosts.

Galileons have attracted considerable interest due to their rather remarkable properties.

For example, they admit de-Sitter-like solutions in the absence of a cosmological constant

[12–14] and they lead to a Vainshtein-type screening mechanism so that they can be in

agreement with solar system “fifth force” constraints while contributing a fifth force on

large scales [15, 16]. Moreover, they allow for solutions that violate the null energy condition

without leading to the appearance of ghosts [4, 17]. This last property means that Galileons

also have applications to early universe cosmology, allowing the construction of emergent

cosmologies (see, for example, the model of Galilean genesis [18]) and non-singular bouncing

cosmologies such as new ekpyrotic theory [19–24] or the matter bounce model [25]. Such

alternative models to inflation even play a significant role in eternal inflation [26–28].

There exists a suggestive construction of Galileon Lagrangians as the theories describ-

ing the dynamics of co-dimension one branes [5]. This has led people to speculate that

Galileons might arise naturally out of string theory and, hence, enjoy a more fundamental

status than other higher-derivative terms, in analogy to the Dirac-Born-Infeld action. Brane

backgrounds in string theory typically preserve some amount of unbroken supersymmetry.

Therefore, if Galileons are to arise from string theory it will be in a supersymmetric context.



3

Hence, it is of importance to study the supersymmetric extensions of Galileon theories. In

previous work [29], it was shown that conformal Galileons can be made globally N = 1

supersymmetric–these theories arising naturally as a way of obtaining correct sign spatial

gradients in supersymmetric ghost-condensates (see also [30, 31]). It was found that the

new fields required by supersymmetry (a second real scalar, a spin 1
2
fermion and a com-

plex auxiliary field) admit stable, positive-energy fluctuations around specific backgrounds,

namely those where the second scalar field is constant. However, possible ghost instabili-

ties associated with vacua with a spacetime dependent second scalar were not explored. We

will do this in the present paper, restricting our discussion for the most part to the cubic

Galileons within the context of four-dimensional global N = 1 supersymmetry.

To begin, we present complex scalar Galileons which, when the second scalar is set to zero,

reduce to real Galileons of the L3, L4 and L5 type. These possess manifestly two-derivative

equations of motion and a Galilean symmetry for the two constituent real scalars fields.

We then show, however, that such complex Galileon theories cannot be obtained in N = 1

supersymmetry. We next consider the cubic-in-the-field, four-derivative L3 Lagrangian, and

show that there is a unique possible N = 1 supersymmetric generalization. However, it

is demonstrated that this Lagrangian leads to higher-derivative equations of motion! An

immediate consequence is that, around general backgrounds, this theory admits a ghost,

whose existence we explicitly demonstrate. In the effective field theory context, we then

calculate the mass of the ghost and argue that for a sufficiently low cut-off scale the ghost

degree of freedom can be safely ignored.

Our analysis illustrates that the appearance of ghosts is rather generic for supersymmetric

extensions of the Galileon Lagrangians. However, a recent paper by Farakos et al. has

explicitly demonstrated that it is possible to construct a ghost-free supersymmetric extension

of L4 [32]. Thus, our no-go result for cubic Galileons does not extend to the quartic Galileons

in general, while the status of the quintic Galileons is currently still an open problem. It is

notable however that, for once, the inclusion of supersymmetry does not necessarily improve

the stability properties of a theory – quite to the contrary!

We note that we have performed our analysis within the context of global rather than local

supersymmetry. However, the generic supersymmetric structure of the higher-derivative

scalar field Lagrangians is not substantially altered in the presence of gravity (see e.g. [33,

34]). That is, the existence of ghosts in the L3 Galileons will persist when these are coupled
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to N = 1 supergravity. Finally, we would like to stress that our results are derived for

the “standard” Galileon theories. Since the cubic conformal Galileon contains precisely the

same cubic term (and in addition a quartic (∂φ)4 term) [4], our results immediately extend

to this Lagrangian also.

II. GALILEONS AND COMPLEX FIELDS

In this and the following two sections, we will focus on the simplest non-trivial Galileon

Lagrangian given by [3]

L3 = −1

2
(∂φ)2�φ. (II.1)

By varying with respect to φ, one can immediately see that the equation of motion is second

order and given by

(�φ)2 − φ,µνφ,µν = 0. (II.2)

Thus, despite the higher-derivative nature of the Lagrangian, the equation of motion is well-

behaved and the Cauchy problem is well-posed. In four dimensions, there are two more such

Galileon Lagrangians,

L4 = −1

2
(∂φ)2

(

(�φ)2 − φ,µνφ,µν

)

, (II.3)

L5 = −1

2
(∂φ)2

(

(�φ)3 − 3�φφ,µνφ,µν + 2φ,µνφ,µρφ,ν
ρ
)

(II.4)

which also lead to second-order equations of motion. For example, the equation of motion

for L4 is given by

(�φ)3 − 3�φφ,µνφ,µν + 2φ,µνφ,µρφ,ν
ρ = 0. (II.5)

In N = 1 supersymmetry, scalar field theories can be constructed using chiral superfields

Φ. The lowest component of such a superfield is a complex scalar A, which can be decomposed

into two real scalars as

A =
1√
2
(φ+ iξ). (II.6)

One consequence is that supersymmetric scalar field actions can always be written as her-

mitian combinations of A and its complex conjugate A∗. Motivated by this, but before

imposing any supersymmetry condition, it is of interest to consider the possible extensions
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of the Galileon Lagrangian (II.1) from the real scalar field φ to the complex scalar A in (II.6).

Specifically, we are interested in Lagrangians which, when the second real scalar ξ is set to

zero, reduce to the Galileon Lagrangian L3 presented in (II.1). There are, in principle, a large

number of such Lagrangians. Here, we do not try to give an exhaustive treatment–since, as

we show in the next section, most will be incompatible with supersymmetry. Rather, we

will illustrate using two concrete examples that, even though by construction these extended

Lagrangians contain the L3 Lagrangian for φ, the properties of the second scalar ξ can vary

considerably, and it is in no way guaranteed that the second scalar also shares the desired

Galilean symmetries. Having established this, we will then–in Section III–move on to su-

persymmetry (where we will give a completely exhaustive treatment) in order to determine

which such complex scalar field generalizations of L3 supersymmetry allows.

Our first example of a generalization of (II.1) from the real scalar φ to a complex scalar

field A is straightforward. It is obtained simply by replacing φ →
√
2A and then taking the

real part. For L3 above, this amounts to considering the Lagrangian

LC

3 = − 1√
2
(∂A)2�A + h.c. , (II.7)

where h.c. stands for “hermitian conjugate”. It is then evident that the resulting equations

of motion are still second order, since they are given by

(�A)2 − A,µνA,µν = 0, (�A∗)2 −A∗,µνA∗
,µν = 0. (II.8)

In terms of the real scalars φ and ξ, the Lagrangian and equations of motion are

LC

3 = −1

2

(

(∂φ)2�φ− (∂ξ)2�φ − 2∂φ · ∂ξ�ξ
)

, (II.9)

0 = (�φ)2 − φ,µνφ,µν − (�ξ)2 + ξ,µνξ,µν , (II.10)

0 = �φ�ξ − φ,µνξ,µν , (II.11)

clearly exhibiting that we now have a coupled two-field Galileon system. Not only are the

equations of motion of second order, but both fields admit independent Galileon-type shift

symmetries φ → φ+ c(φ) + b
(φ)
µ xµ and ξ → ξ + c(ξ) + b

(ξ)
µ xµ respectively.

However, using a second concrete example, we now demonstrate that other extensions of
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the L3 Lagrangian to complex scalar field A do not necessarily lead to second-order equations

of motion. To illustrate this important point, consider the action

L̃C

3 = − 1√
2
∂A · ∂A∗

�A + h.c. (II.12)

= −1

2

(

(∂φ)2�φ+ (∂ξ)2�φ
)

, (II.13)

leading to the equations of motion

0 = (�φ)2 − φ,µνφ,µν − ξ,µνξ,µν − ξ,µξ,ν
νµ, (II.14)

0 = �ξ�φ+ ξ,µφ,ν
νµ. (II.15)

Clearly, these are higher-order in time and, thus, by Ostrogradsky’s theorem [10], lead to

the appearance of ghosts.

Given these two contrasting examples, a crucial question is then: which kinds of complex

scalar field generalizations of the Galileon Lagrangian does supersymmetry allow? We now

turn to this question.

III. SUPERSYMMETRIC CUBIC GALILEONS

In this section, we will construct all possible supersymmetric Lagrangians involving the

product of three fields and four space-time derivatives, in order to see if there might exist

inequivalent supersymmetric extensions of the L3 Lagrangian (II.1). We will work in N = 1

superspace (for a detailed exposition see [35]). Here, in addition to ordinary four-dimensional

bosonic spacetime one adds four fermionic, Grassmann-valued dimensions. These have coor-

dinates θα and θ̄α̇, transforming as a two-component Weyl spinor and conjugate Weyl spinor

respectively. One can then define the superspace derivatives

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ, D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ (III.1)

which satisfy the supersymmetry algebra

{Dα, D̄α̇} = −2iσµ
αα̇∂µ . (III.2)
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Any superfield can be expanded in the anti-commuting coordinates θ, θ̄, with the expansion

terminating at order θθθ̄θ̄ because of the Grassmann nature of the fermionic coordinates. A

chiral superfield Φ is defined by the constraint

D̄Φ = 0 . (III.3)

This has the expansion

Φ = A(x) +
√
2θχ(x) + θθF (x)

+iθσmθ̄∂mA(x)−
i√
2
θθ∂mχ(x)σ

mθ̄ +
1

4
θθθ̄θ̄�A(x), (III.4)

where A is a complex scalar, χα is a spin-1
2
fermion and F is a complex auxiliary field. In

this paper, we will ignore the fermion. Furthermore, since we are only interested in the

structure of kinetic energy terms, we need not introduce a superpotential – in the absence

of which the F field can, and will, be consistently set to zero.

What makes superspace so useful is that the top component (that is, the θθθ̄θ̄ com-

ponent) of a superfield transforms under supersymmetry into a total spacetime derivative.

Hence, one can use this top component to construct supersymmetric Lagrangians. The

top component can be isolated by integrating the superfield Lagrangian over superspace

with d4θ = d2θd2θ̄ or, alternatively, by acting on it with D2D̄2. The supersymmetry algebra

(III.2) then implies that the top component of a superfield will contain two additional space-

time derivatives compared to its lowest component or compared to the superfield expression

itself. For example, ordinary two-derivative scalar field theories are obtained by isolating

the top component of the Kähler potential, which is an hermitian function of the chiral

superfield Φ and its hermitian conjugate Φ† involving no spacetime derivatives.

In our case, we are interested in Lagrangians involving the cubic product of a scalar field

and four spacetime derivatives. This means that we should consider all possible superfield

expressions involving the cubic product of a chiral superfield and two spacetime derivatives

(and linear combinations of all such terms). The superfield Lagrangians of potential interest

are straightforward to write down. They are given by the θθθ̄θ̄ components of the following
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expressions (where derivatives act only on the immediately following superfield):

∂µΦ∂µΦΦ + h.c. (III.5)

∂µΦ∂µΦ
†Φ + h.c. (III.6)

∂µΦ∂µΦΦ
† + h.c. (III.7)

All other terms of potential interest can be related to these via linear combinations and

using integration by parts.

One might be concerned that there could be other allowed terms involving the superspace

derivatives Dα and D̄α̇ in (III.1). Once again, however, upon integration by parts, using the

algebra (III.2) and the chiral superfield constraint (III.3), it follows that these are always

equivalent to some linear combination of (III.5),(III.6) and (III.7). As a concrete example,

consider the term
∫

d4xd4θD̄α̇D
2ΦD̄α̇Φ†Φ . (III.8)

Using integration by parts, algebra (III.2) and the chiral constraint (III.3) this becomes

∫

d4xd4θD̄α̇D
2ΦD̄α̇Φ†Φ (III.9)

=

∫

d4xd4θ(−D̄2D2Φ)Φ†Φ (III.10)

=

∫

d4xd4θ(−16�Φ)Φ†Φ (III.11)

=

∫

d4xd4θ[16∂µΦ∂µΦ
†Φ + 16∂µΦ∂µΦΦ

†] (III.12)

and, hence, is simply a linear combination of (III.6) and (III.7), as claimed. It is straight-

forward to show that this is always the case.

Having established this, let us systematically discuss the Lagrangian associated with each

of the three supersymmetric terms (III.5),(III.6) and (III.7). First consider (III.5). Note

that this is the only one of the three terms that can possibly lead to the complex Galileon

LC

3 given in (II.7) of the previous section. This follows from the fact that it is the sole term

containing only Φ’s or only Φ†’s in a single term. Hence, it appears that this might be a

suitable supersymmetric extension of the L3 Lagrangian with purely second order equations

of motion. However, the chirality of Φ immediately implies that the supersymmetric La-
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grangian associated with (III.5) is, in fact, zero. To see this, instead of integrating over

d4θ, one can make use of the Grassmann nature of the θ, θ̄ coordinates and replace d4θ by a

D2D̄2 derivative of the corresponding superfield expression. Since D̄ commutes with partial

derivatives, it immediately follows that superfield expressions constructed exclusively out

of Φ’s and partial derivatives must vanish, since the D̄ derivative will necessarily act on a

chiral field Φ thus yielding zero. That is, the supersymmetric action associated with (III.5)

is
∫

d4xd4θ∂µΦ∂µΦΦ = 0 . (III.13)

Note that this argument relies solely on holomorphicity and, thus, also extends to potential

supersymmetric extensions of complex Galileons with higher powers of fields, such as LC

4

and LC

5 .

It follows that we are left with only two possible supersymmetric extensions of the L3

Lagrangian–namely, with integrands (III.6) and (III.7). These are

∫

d4xd4θ∂µΦ∂µΦ
†Φ =

∫

d4x
(

− A�A�A∗ −�A∗(∂A)2
)

(III.14)

and
∫

d4xd4θ∂µΦ∂µΦΦ
† =

∫

d4x�A∗(∂A)2 (III.15)

respectively, plus their hermitian conjugates. Note that we have used integration by parts to

simplify these terms as much as possible. Let us first examine the action given in (III.14). We

immediately see that this term is not an appropriate extension of the L3 Galileon Lagrangian.

This follows from the fact that, when the scalar ξ is set to zero, this Lagrangian does not

reduce to L3 and in fact results in a fourth-order equation of motion for φ. Hence, we are

left with a single possible supersymmetric extension of the L3 Galileon Lagrangian, namely

the real part of (III.15). We note that this Lagrangian is equivalent to the supersymmetric

Galileon Lagrangian used in [29]. Thus, we define the supersymmetric extension of L3 as

LSUSY
3 ≡ − 1√

2

∫

d4 θ∂µΦ∂µΦΦ
† + h.c.

= − 1√
2
�A∗(∂A)2 + h.c.

= −1

2

(

(∂φ)2�φ− (∂ξ)2�φ + 2∂φ · ∂ξ�ξ
)

. (III.16)



10

Compared to the complex Galileon (II.9), only the sign of the last term has changed! Nev-

ertheless, this has profound consequences, since the resulting equations of motion are now

of third order in derivatives. They read

0 = (�φ)2 − φ,µνφ,µν + (�ξ)2 + ξ,µνξ,µν + 2ξ,µξ,ν
νµ, (III.17)

0 = ξ,µνφ,µν + ξ,µφ,ν
νµ. (III.18)

As one can clearly see, it is the presence of the second scalar ξ that induces the dangerous

higher-derivative terms. That is, LSUSY
3 in (III.16), similarly to the second of our concrete

examples given in (II.12), has higher-order equations of motion. We will show explicitly in

the next section that the presence of these higher derivatives leads to the appearance of a

ghost.

IV. HIDING FROM THE GHOST

We would now like to explicitly demonstrate the ghost degree of freedom in LSUSY
3 ,

whose presence is already implied by Ostrogradsky’s theorem [10]. Instead of following

Ostrogradsky’s more formal proof, we will analyze the Lagrangian LSUSY
3 directly, both

because it is instructive to see the ghost appearing at the level of the Lagrangian and because

such an analysis elucidates in what regime the ghost can be harmless. For this purpose, it

suffices to look at the time-derivative terms in the Lagrangian, since it is these that are

associated with ghosts. Adding a canonical kinetic term LSUSY
2 =

∫

d4θΦΦ† = −∂µA∂µA
∗,

as well as an overall constant c3 in front of the LSUSY
3 Lagrangian, the Lagrangian of interest

becomes

LSUSY
2+3 ≡ LSUSY

2 + c3L
SUSY
3 =

1

2
φ̇2 +

1

2
ξ̇2 + c3ξ̇

2φ̈, (IV.1)

where we have integrated by parts in order to place all double derivatives on φ rather than

ξ. Note that this is a completely arbitrary choice and does not reduce the generality of our

analysis. We consider a time-dependent background and would like to study perturbations

around it. Thus, we define

φ = φ̄(t) + δφ(xµ), ξ = ξ̄(t) + δξ(xµ). (IV.2)
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Even though the perturbations depend on both time and space, we will only be interested in

the time dependence here. To quadratic order in fluctuations, the Lagrangian then becomes

LSUSY
2+3 quad =

1

2
( ˙δφ)2 +

1

2
(1 + 2c3

¨̄φ)(δ̇ξ)2 + 2c3
˙̄ξ δ̇ξδ̈φ. (IV.3)

By defining a new fluctuation variable

δ̇b ≡ δ̇ξ +
2c3

˙̄ξ

1 + 2c3
¨̄φ
δ̈φ , (IV.4)

the quadratic Lagrangian can then be diagonalized to become

LSUSY
2+3 quad =

1

2
( ˙δφ)2 +

1

2
(1 + 2c3

¨̄φ)
(

(δ̇b)2 − 4c23
˙̄ξ2

(1 + 2c3
¨̄φ)2

(δ̈φ)2
)

. (IV.5)

At this point, in the spirit of Ostrogradsky’s construction [36], it is useful to consider δφ̇ ≡ δa

as an independent variable, so that the Lagrangian reads

LSUSY
2+3 quad =

1

2
(δa)2 +

1

2
(1 + 2c3

¨̄φ)
(

(δ̇b)2 − 4c23
˙̄ξ2

(1 + 2c3
¨̄φ)2

(δ̇a)2
)

. (IV.6)

Note that (δ̇a)2 and (δ̇b)2 enter with opposite signs and, hence, one of these two terms is

ghost-like1. Assuming that the factor (1 + 2c3
¨̄φ) is positive, the ghost then resides in (δ̇a).

As the Lagrangian shows, the significance of the ghost is essentially controlled by the size

of c3
˙̄ξ. This can be confirmed by looking at the dispersion relation of δφ. If one denotes the

four-momentum of δφ by pµ, then the associated dispersion relation is given by

p20
(

1− 4c23
˙̄ξ2

(1 + 2c3
¨̄φ)
p20
)

= 0 , (IV.7)

where we have assumed that ξ̇ and φ̈ are slowly varying. The mass m is defined via p2 =

−p20 = −m2 and, hence, the dispersion relation implies that δφ consists of two modes. The

first is a massless mode which arises from the ordinary correct-sign kinetic term. The second

1 This ghost was not seen in [29] because in that paper the perturbation analysis was performed solely

around ξ̄ = constant backgrounds.
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is the ghost, which has a mass

m2
g =

(1 + 2c3
¨̄φ)

4c23
˙̄ξ2

. (IV.8)

Perhaps even more directly, this mass can also be inferred from the Lagrangian (IV.6) as the

relative coefficient of δa and δ̇a. Note that, as there is an overall wrong sign for the ghost in

the Lagrangian, the mass is formally tachyonic. However, it is important to realize that this

mass does not arise from a potential, but rather from the kinetic term ( ˙δφ)2. The implication

is that this mass does not indicate a time scale over which the (perturbative) vacuum becomes

unstable, but rather an energy scale associated with the ghost. In other words, as long as

we are considering fluctuations with energy below mg, the ghost does not get excited. From

an effective field theory point of view, we are protected from the catastrophic instabilities

associated with the ghost if we take the cut-off Λ of the effective field theory to lie below mg.

At the same time, we must ensure that the background itself, that is, ˙̄ξ, remains within the

range of validity of the effective theory. Hence, an additional requirement is that | ˙̄ξ| < Λ2,

and similar inequalities must also hold for higher time derivatives of ξ. Together with the

requirement Λ < mg, this implies that we must impose (assuming |c3 ¨̄φ| ≪ 1)

| ˙̄ξ| < 1

|c3|2/3
, | ¨̄ξ| < 1

|c3|
, . . . (IV.9)

in order to safely suppress the ghost. Hence, the requirement that our supersymmetric ex-

tension of L3 be perturbatively stable adds an additional (background-dependent) constraint

to the Galileon theory, beyond those already present in its non-supersymmetric incarnation.

V. DISCUSSION

The fact that N = 1 supersymmetric Galileons containing the product of three chiral

fields necessarily admit higher-derivative equations of motion implies that these theories

contain ghosts. This means that when supersymmetry is included, cubic Galileons, both

of the standard and the conformal variety, lose their special status among higher-derivative

scalar theories and should be treated in much the same way as other higher-derivative terms.

That is to say, they should be regarded as correction terms in a perturbative, effective field

theory framework. By extension, our results are also likely to apply to the relevant parts of
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Horndeski’s most general scalar-tensor theory [1]. We stress that our work has been done in

the context of minimal N = 1 supersymmetry. It would be interesting to carry out a similar

analysis for extended supersymmetries.

As discussed in the introduction, the brane construction of Galileon Lagrangians sug-

gested that they could arise as the sole constitutents of membrane worldvolume theories

in string theory–that is, in a well-defined ultraviolet framework. However, when explicit

calculations of higher-order corrections to brane dynamics were carried out–in the non-

supersymmetric case of AdS space [37] and in the N = 1 supersymmetric context of heterotic

M-theory [38–43]–it was found that, in addition to the Galileon terms, other higher-derivative

terms occur. These new terms are not naturally suppressed relative to the Galileons and

lead to higher-order equations of motion. This paper shows that, with hindsight, this result

is unsurprising–since in a full supersymmetric context the cubic Galileon terms themselves

already admit higher-derivative equations.

A final comment: as already mentioned, a supersymmetric version of L4 leading to second-

order equations of motion has recently been discovered by Farakos et al. in [32]. Their

construction explicitly shows that there is enough freedom in the supersymmetric extensions

of L4 to find a linear combination of terms where all higher-derivative terms cancel out in the

equations of motion. It is of importance to realize that many of the interesting applications

of Galileon theories crucially depend on having several of the Galileon terms, i.e. cubic,

quartic and/or quintic Galileons, present simultaneously. Thus, in the cases where the cubic

Galileon is present also, an open question raised by the present work is then whether or not

the attractive properties of the most interesting solutions–such as Vainshtein screening or

consistent violations of the null energy condition–can be maintained in a supersymmetric

perturbative context. We leave this question for future work.
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