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A single fluid approximation which treats perturbations in baryons and dark matter as equal
has sometimes been used to calculate the growth of linear matter density perturbations in the
Universe. We demonstrate that properly accounting for the separate growth of baryon and dark
matter fluctuations can change some predictions of structure formation in the linear domain in a way
that can alter conclusions about the consistency between predictions and observations for ΛCDM
models versus modified gravity scenarios . Our results may also be useful for 21cm tomography
constraints on alternative cosmological models for the formation of large scale structure.
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I. INTRODUCTION

Since the discovery that the universe is apparently
dark energy-dominated causing an observed acceleration
([1, 2], also inferred indirectly on the basis of other ob-
servational constraints, i.e. see, for example [3]), a vast
expenditure of effort has been made towards possible ex-
planations of the acceleration. The standard paradigm of
cold dark matter with a cosmological constant (ΛCDM)
in the cosmological framework of general relativity (GR)
accommodates all experimental evidence, and remains
the simplest and most economical cosmological model
consistent with the data. Though the ΛCDM cosmology
fits all the present data, issues such as the hierarchy and
coincidence problems remain which highlight the issue of
how the acceleration can be realized in a fully consistent
theoretical framework. This has led to a consideration
of alternative cosmological models, including models in
which gravity varies away from GR on large scales. As
observations become increasingly precise, the ΛCDM pic-
ture will be put through ever more rigorous tests in the
effort to constrain new physics. It is important there-
fore to have accurate theoretical frameworks by which to
judge whether observations may indicate a discrepancy
with the predictions of the standard model.
By now a standard way to constrain various cosmo-

logical alternatives is via an exploration of the growth of
linear matter perturbations for various redshifts. These
perturbations have been parameterized via a growth in-
dex (see for example [4–9]), which has a specific value for
ΛCDM (to first order in deviations from a purely CDM
dominated universe, where the deviation is due to a cos-
mological constant, this index has been estimated to be
simply 6/11).
The growth is typically found in the following manner.
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One defines a matter overdensity given in k-space by δ ≡

δρ/ρ with ρ being the background matter density. Using
the standard Einstein equations, one finds the dynamical
equation typically called the growth equation, for a single
component matter field in a matter dominated universe

δ̈ + 2Hδ̇ − 4πGNρδ = 0 (1)

where the overdot is a derivative with respect to coordi-
nate time and we have dropped the k index. This relation
is given in the synchronous gauge where it holds on all
scales (for gauge related issues see for example [10–17]).
From here one can define a function g ≡ dlnδ/dlna ≡

Ωm(a)γ which leads to the equation

g′ + g2 + g

(

Ḣ

H2
+ 2

)

=
3

2
Ωm (2)

where the prime denotes a derivate with respect to the
natural log of the scale factor. The function g can be
identified as the growth factor for matter density pertur-
bations. The solution to this for a flat universe with a
dark energy equation of state wΛ is given, to first order
in the expansion parameter 1− ΩΛ by

γ =
3(wΛ − 1)

6wΛ − 5
(3)

This relation reduces to γ = 6/11 for the case of ΛCDM.
The growth factor g defined in (2) is affected only by
CDM overdensities. In our paper we will consider the
effect of considering both CDM and baryonic perturba-
tions on the growth factor.
Therefore we focus on two facts:

• The matter content of the universe is not solely
composed of cold dark matter, as the baryonic con-
tent is roughly one-fifth that of dark matter [18].
If one writes separate growth equations for dark
matter and baryonic matter densities, each contain
a source term involving the gravitational potential
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which is a function of the full matter content, in-
cluding both baryons and dark matter (for exam-
ple, the third term in Eq.(1) arises from the Poisson
equation for the gravitational potential).

• Because baryonic matter has a non-zero sound
speed, dark matter and baryonic matter perturba-
tions obey different dynamical equations [19–21].

Here we explore the consequences of properly incorpo-
rating both of these effects, and quantify and compare
differences in the perturbative densities when the full set
of baryonic plus dark matter equations are solved versus
the case when baryons are ignored. One of the central
purposes of this effort is to compare the relative differ-
ences between results of these two approaches compared
to the differences obtained when different cosmological
models are explored, in order to determine the sensitiv-
ity to cosmological model dependence versus the need to
properly account for baryons.
To explore these effects we perform calculations un-

der both the standard ΛCDM scenario and a modified
gravity model, for which we choose the DGP [22] model.
(Note that because of various problems with this model,
including ghost instabilities, we do not treat this model
as a realistic alternative to ΛCDM, but rather as a well-
examined toy model that gives non-standard cosmic evo-
lution to compare to ΛCDM.) We compare bias factors,
total matter density perturbations and the growth factor
in these to cosmological scenarios scenarios to explore
the sensitivity to not including baryonic perturbations.
We find that an accurate treatment of baryonic fluctua-
tions will alter quantities like the bias factor and the total
matter density fluctuation even in the linear regime in a
way that can exceed the change induced in the quantities
by varying the the background cosmology. On the other
hand we find that the growth factor, defined as dlnδ

dlna
is rel-

atively insensitive to inclusion or non-inclusion of bary-
onic dynamics over linear scales. It is on the other hand
very sensitive to the background cosmological model.
In Section II we briefly present the formalism for the

full set of dynamical equations. In Section III we present
our results, and finally in Sec. IV we conclude with a
brief discussion of their implications.

II. CALCULATION

The full set of coupled linear differential equations
for the growth of perturbations in dark matter (δc) and
baryons (δb) along with radiation (δrad) is

δ̈c + 2H(z)δ̇c =
3

2
H2(fcδc + fbδb + frδrad)

δ̈b + 2H(z)δ̇b + c2sk
2 =

3

2
H2(fcδc + fbδb + frδrad)

δrad =
4

3
δb (4)

fc = Ωc(z) fb = Ωb(z)

fr = Ωrad(z), 0 (z > zdec, z < zdec) (5)

where Ωc, Ωb and Ωrad are CDM, baryons and radiation

energy density at a given epoch. We define cs =
(

δP
δρ

)

S

[20], where the subscript S stands indicates that cs is
defined at constant entropy, S. At low redshifts cs is pri-
marily due to baryonic pressure and at high-redshift(pre-
decoupling redshifts), the contribution is mainly from ra-
diation pressure. At high redshifts we use Eqns.(4) and
(5) to solve for the baryonic and dark matter perturba-
tions. We evolve the perturbations in each Fourier mode
k, starting from the epoch of horizon entry for that par-
ticular mode. Therefore our boundary values for δb and
δc, corresponding to a mode k, are set at the epoch of
horizon entry, zent, such that

A = 3δCOBE

k0 =
a(zeq)H(zent)

c

δc,b(zent, k) = A

(

k

k0

)

ns
2

(k < keq)

= A

(

k

k0

)

ns−4

2

(k > keq)

˙δc,b(zent, k) = δc,b(zent, k)H(zent) (zent > zeq) (6)

= δc,b(zent, k)a(zent)H(zent) (zent < zeq)

In Eq.(6), modes that enters the horizon at the epoch of
matter and radiation equality (zeq) are denoted by k0.
Fluctuations are normalized by using the temperature
fluctuation over angular scales of 7 degrees at the surface
of last scattering measured by the COBE mission which
is denoted by δCOBE [23]. The spectral index of the
primordial fluctuations (coming from very early times) is
set by ns over all Fourier modes.
The boundary conditions for δc,b described by Eq.(6)

come from the following argument. Given a primor-
dial power spectra of shape Pi(k) ∝ kns , fluctuations
grow during the radiation dominated epoch such that
δ ∝ a2. Therefore when a given mode enters the horizon,
its power is described by Pent(k) ∝ a2Pi(k) ∼ kns−4 if

zent > zeq [24], and we replace δc,b(zent, k) ∝
√

Pent(k).
Note that if ns ≈ 1, then k3Pent(k) is constant at hori-
zon crossing. Similarly, we find that, Pent(k) ∝ kns cor-
responding to the modes which enter the horizon after
matter-radiation equality.
The calculation of cs involves matter and radiation

temperatures along with their fluctuations. We calcu-
late the matter temperature, Tmat(z), at a given epoch z
using the following equation [25].

dT̄mat

dt
= 2H(z)T̄mat

+
xe(t)

tγ

(

T̄γ − T̄mat

)

a−4 (7)
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The radiation temperature, T (z), at a given epoch z is
estimated by the standard relation T (z) = T0(1+z), with
T0 given by the present CMB temperature [26]. Fluctua-
tions in the matter temperature after mechanical decou-
pling (z < 1100), δT , are calculated using

dδT
dt

=
2

3

dδb
dt

−

xe(t)

tγ
a−4 T̄γ

T̄
δT (8)

δT thus computed is in turn used for the calculation of
the sound speed post recombination, and therefore the
modified baryonic growth equation becomes [21]

δ̈b + 2H(z)δ̇b =
3

2
H2(fcδc + fbδb)

−

k2

a2
kBT

µ
(δb + δT ) (9)

For scales which enter the horizon before the epoch of
recombination, zrec, matter temperature fluctuations are
described by δT = δTγ

at z = zent.
As we would like to examine growth not only in the

standard cosmology, but in a modified gravity scenario as
well, we will now discuss how the calculation needs to be
altered. In the DGP scenario, the CDM and baryon per-
turbation equations are modified such that in the source
term on the right hand side of Eq.(4), the factor H(z)2

is replaced by H2
DGP g(a, k). In this case HDGP (z) is the

modified background expansion rate and g(a, k) is the
factor by which Newton’s constant gets modified under
the new gravity scenario.
We use [27] and [28] to construct HDGP (z) and g(a, k).

Using these modifications and Eqns.(4-5), we calculate
the growth of perturbations in the DGP theory up to a
scale corresponding to k < 0.05Mpc−1. We chose to re-
strict ourselves to these scales in order to avoid complica-
tions due to non-linear PPF parameters as described in
[27]. The matter temperature perturbations in Eqns.(7-
9) also get modified by replacing H(z) with HDGP (z).
The input parameters of our calculation are ns, δTγ

,
Ωb,c, h, Ωk, Ωtot and zeq. Additionally, the epoch
of decoupling, zdec, is determined such that the pho-
ton mean-free path is larger than Hubble distance, or
λγ = 1

neσT
∼ cH−1. For simplicity, we set Ων = 0,

dns

dlnk
= 0 and allow a sharp drop in optical depth of pho-

tons at the epoch of mechanical decoupling. In the next
section we will describe our results using WMAP9 values
[26], along with additional DGP fits.

III. RESULTS

In Figure 1 we represent the background expansion
rate with respect to redshift, H(z), in different cosmologi-
cal cases. We consider fCDM, fDGP (flat ΛCDM and flat
DGP), and oDGP (open DGP) models. For cosmological
parameters we use Ωch

2 = 0.12, Ωbh
2 = 0.023, h = 0.69

from WMAP9, and apply those to both fCDM and fDGP

models. For the oDGP models we use Ωch
2 = 0.099,

Ωbh
2 = 0.023, Ωk = 0.03 and h = 0.76 [28], and for the

fDGP model we use Ωch
2 = 0.12,Ωbh

2 = 0.023, h = 0.69.
Eqn.(4-5) of [28] are incorporated to compute the mod-
ified expansion rate HDGP (z). We have plotted up to
z ∼ 1 to highlight the effect at low redshift, where one
would expect modifications of gravity designed to mimic
dark energy to be most relevant.

FIG. 1: Background expansion rates (H/H0) as a function of
redshift based on different fCDM (flat ΛCDM), fDGP (flat
DGP) and oDGP(open DGP) cosmologies. Relevant cosmo-
logical parameters are described in the text.

In Figure 2 we present the bias, defined as b(z, k) = δb
δc
,

with respect to redshift. We choose three length scales
corresponding to Fourier modes k = 0.005, k = 0.01
and k = 0.05 in units of Mpc−1, where b(z, k) is repre-
sented in those regimes respectively by solid, dotted and
dashed lines. We choose fCDM, fDGP and oDGP cos-
mologies described by the same cosmological parameters
as in Figure 1. For a single fluid model the bias is unity
by construction. As can be seen in Figure 2 the devia-
tion from unity in all models decreases with decreasing
redshift. This can be understood on physical grounds,
as at high redshifts the baryon acoustic pressure, coming
from non-negligible sound speed, cs, hinders their infall
into gravitational potential wells, unlike CDM particles.
After recombination, as the cs term drops, baryonic in-
fall is more efficient, and baryonic density fluctuations
begin to catch up with and more closely track CDM fluc-
tuations. As is also evident in Figure 2, for all scales ex-
plored, the difference in bias between the DGP and CDM
models is less than their deviation from unity. This de-
viation (with respect to unit bias in a single-fluid model)
increases both with redshift and diminishing scale. For
low redshift (z ∼ 0.2) and k = 0.01Mpc−1, the differ-
ence between the bias calculated from fCDM and fDGP
models (using WMAP9 parameters) is about 0.04% with
a difference of 4.2% in the background expansion rate.
The bias becomes close to 1% near z ∼ 1, while the dif-
ference in bias between fCDM and fDGP (using WMAP9
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parameters) is only up to 0.02% for k = 0.05Mpc−1.

FIG. 2: The bias as a function of redshift in different cos-
mologies for scales corresponding to k = 0.005(solid lines),
k = 0.01(dotted lines) and k = 0.05(dashed lines) in units of
Mpc−1.

The bias can be directly related to the total den-
sity fluctuation δ = fcδc + fbδb such that δ =
(fc + b(z, k)fb) δc, where b(z, k) represents the bias at a
given epoch and a given scale k. In Figure 3 we display
δtot(z, k) as a function of redshift in the linear regime,
k = 0.005Mpc−1. The same normalization was used for
all cosmologies, set by Eq.(6). We use dotted lines to re-
fer to the single fluid (s-f) models and solid lines for the
baryon+CDM fluid models. We note that at low red-
shift, the difference in the oDGP and fCDM models is
comparable to that between the fCDM, s-f and two fluid
models. This is an intriguing conclusion which suggests
the importance of the two-fluid treatment in order to cor-
rectly use structure formation observations to constrain
cosmological models. The significance of δtot is that it is
a scale and cosmology dependent quantity. Observation-
ally, future weak lensing surveys can estimate δtot but
the interpretation of observational data must be made
by properly incorporating bias on all scales of interest.
In Figure 4, we plot growth factor only due to CDM

gc =
dlnδc
dlna

(solid lines) with respect to redshift for a cho-

sen scale corresponding to k = 0.005Mpc−1. Note that

we over plot (dashed line) the parameterization Ω
6

11

m [29]
which agrees quite well with the numerical estimates for
fCDM. We therefore conclude that gc is roughly scale-
independent, but is sensitive to the background cosmol-
ogy.
We can also consider the evolution of the total growth

factor due to CDM and baryons as gtot =
dlnδtot
dlna

with re-

spect to redshift at a scale of k = 0.005Mpc−1, to check
to see if there is any difference in using this value instead
of the CDM growth factor. We define δtot = δcfc+δbfb

fc+fm
.

We find that both parameters gc and gtot are weakly de-
pendent on the selection of scale k., with gtot to be com-
paratively more rigid over a range of various k values.
However in general gc ∼ gtot so there is no significant

FIG. 3: The total matter fluctuation δ = fcδc + fbδb is shown
as a function of redshift under different cosmologies at a scale
corresponding to k = 0.005Mpc−1 . Solid lines indicate two-
fluid models and dotted lines represent single fluid (s-f) mod-
els.

FIG. 4: The growth factor due to only CDM described by
gc = dlnlδc

dlna
is plotted as a function of redshift for differ-

ent fCDM (flat ΛCDM), fDGP (flat DGP) and oDGP(open
DGP) cosmologies. This is done at a single scale k =
0.005Mpc−1 .Two component models are presented in solid
lines and the dash-dotted line referred as analytic indicates
Ωm(z)γ such that γ = 6

11
for fCDM using WMAP9 parame-

ters.

handicap in using gc to constain cosmological models.

IV. DISCUSSION AND FUTURE DIRECTIONS

In this work we have examined the impact on calcula-
tions of the growth of structure through the use of a sim-
ple single matter fluid approximation vs. a model that
correctly incorporates baryons and cold dark matter in a
two component analysis. We have then compared the dif-
ference in matter perturbations in the standard ΛCDM
cosmology and modified DGP gravity.
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Among the quantities we discussed in our paper, the
growth factor g = dlnδ

dlna
is measured observationally from

galaxy redshift surveys [30]. We found the growth factor,
g to be rigid with variation in k under both ΛCDM and
DGP cosmologies, and largely independent of baryonic
dynamics.
Using weak lensing to measure the total δ = fcδc+fbδb

is a way to get a handle on total matter density fluctua-
tions but this quantity is sensitive to baryonic dynamics
(3) and depends on the relevant scale of structure forma-
tion even in the linear regime. In addition, we find that
at low-redshift (0.7 < z < 1.5) the effect of baryonic dy-
namics can be comparable to that introduced by modify-
ing the underlying cosmology. We show in Figure 3 that
for z ∼ 1, modifications due to two component model
is comparable to that due to modifying the cosmology.
Therefore accurate inclusion of the baryonic dynamics
is required for interpreting observations associated with
this quantity
It is also worth noting various studies of the growth of

large scale structures in different modified gravity con-
texts have been performed using a single growth equa-
tion (for a sample see [31–40]). Preliminary results, to
be described in a future work suggest that the use of a

proper two component fluid formalism can significantly
weaken the ability to distinguish between cosmological
predictions in such models.

Finally, another area of cosmology which has attracted
a great deal of interest recently, and relies on accurate
calculations of the evolution of density perturbations, is
the signal arising from the 21cm spin-flip transition of
neutral hydrogen (for recent reviews, see [41–43]). One
may study, for example, the perturbations of the bright-
ness temperature of the CMB over a large redshift range
in the so-called Dark Ages, which rely on the density per-
turbations of hydrogen. These perturbations are seeded
by dark matter, and therefore a precise calculation merits
the inclusion of the full baryonic plus dark matter system.
We are currently using the formalism we have described
here to investigate how it will impact upon conclusions
one may draw from the use of such observations.
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