
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bispectrum in single-field inflation beyond slow-roll
Peter Adshead, Wayne Hu, and Vinícius Miranda

Phys. Rev. D 88, 023507 — Published  8 July 2013
DOI: 10.1103/PhysRevD.88.023507

http://dx.doi.org/10.1103/PhysRevD.88.023507


Bispectrum in Single-Field Inflation Beyond Slow-Roll

Peter Adshead,1 Wayne Hu,1, 2 and Vińıcius Miranda2, 3
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We develop an integral form for the bispectrum in general single-field inflation whose domain of
validity includes models of inflation where the background evolution is not constrained to be slowly
varying everywhere. Our integral form preserves the squeezed-limit consistency relation, allows for
fast evaluation of the bispectrum for all triangle configurations expediting the efficient comparison
of slow-roll violating models with data, and provides complete and compact slow-roll expressions
correct to first order in slow-roll parameters. Motivated by the recent Planck results, we consider as
an example a sharp step in the warped-brane tension of DBI inflation and provide analytic solutions
for the peak of the resulting bispectrum. For the step in the warp that reproduces the oscillations in
the power spectrum favored by the Planck data, the corresponding equilateral bispectrum is both
extremely large and highly scale dependent. The bispectrum serves as a means of distinguishing
such a model from alternative scenarios that generate otherwise indistinguishable power spectra,
such as a step in the potential in canonical single-field inflation.

I. INTRODUCTION

In this paper we develop a technique for calculating
the bispectrum of primordial fluctuations in general the-
ories of single-field inflation beyond the usual slow-roll
assumption where all of the slow-roll parameters are con-
sidered to be small and constant. This technique is based
on the generalized slow-roll (GSR) approach [1–6] which
has been successfully applied to the bispectrum in canon-
ical single field inflation [7–9]. Here we extend this treat-
ment to also consider terms in the effective field theory
of inflation associated with time variation of the sound
speed or equivalently an inflaton Lagrangian that is a
general function of the field and its kinetic term. Non-
Gaussianity in such models can be doubly enhanced due
to a low and variable sound speed.

This type of enhanced non-Gaussianity can be realized
in several different ways. In Dirac-Born-Infeld (DBI) in-
flation [10, 11], variations in the sound speed are associ-
ated with features in the warped brane tension [12, 13].
For example a step in the tension produces a step in the
sound speed. Step features in the sound speed can be
considered in a more general context such as the effec-
tive field theory of inflation [14].

Furthermore, transient variation in the sound speed
has been shown to arise naturally in effective field the-
ories of inflation from scenarios within multi-field infla-
tion where heavy fields are integrated out [15, 16] (see
also [17]). In these scenarios, turning trajectories in field
space result in variations in the speed of sound of the
fluctuations.

In both of these cases, if the sound speed variations
are sharp enough they generate characteristic oscillations
in the curvature power spectrum [6, 18] and bispectrum
[13, 19]. They represent specific cases of the general phe-
nomenon that slow-roll violations in single-field inflation
lead to features in the spectra of curvature fluctuations
[20–23]. Starobinsky first noted that a sharp change in
the slope of the inflaton potential lead to oscillatory fea-

tures in the power spectrum [24] and it has been recently
shown that these models have large scale-dependent bis-
pectra [25–27]. Violation of slow-roll via a rapidly vary-
ing sinusoidal component of the potential leading to res-
onance effects in the correlation functions was first noted
by [22, 23] before it was found to arise naturally in axion-
monodromy inflation [28–30] (see also [31, 32]). Further
work on slow-roll violating models includes [33–41].

On the observational side, oscillations in the curvature
power spectrum due to transient violations of slow-roll
were invoked to explain broad glitches in the WMAP cos-
mic microwave background (CMB) angular power spec-
trum [42–44]. Intriguingly there is also a slight preference
in the WMAP data for high frequency oscillations in the
power spectrum near the first peak [8]. In the Planck
data, this preference persists out to higher multipoles but
at a somewhat suppressed amplitude and at a harmonic
of approximately twice the period ∆` ≈ 10 [45]. The
high frequency oscillations in the power spectrum take
the same form regardless of whether they came from a
sharp step in the potential or sound speed and hence it
does not distinguish between these possibilities [6].

Different explanations for features in the power spec-
trum should be distinguishable in the angular bispectrum
of the CMB. The techniques developed here allow effi-
cient computation of the curvature bispectrum in all of
these cases, from weak violations of the slow-roll approx-
imation to nearly order unity violations. CMB angular
bispectrum constraints on oscillating curvature bispec-
trum shapes were first considered by Ref. [46] using a
modefunction expansion method [47] on WMAP data.
However, the constraints presented there correspond to
much lower frequency oscillations, for technical reasons.
A similar analysis was performed on the Planck data [48],
where again only periods in the angular bispectrum of
∆` > 140 were considered and no significant evidence
for features was found. Neither of these analyses have
explored the high frequency region of parameter space
where a large non-Gaussian counterpart of the best fit



power spectrum feature would be expected. The compu-
tation of the curvature bispectrum template for match-
ing power spectrum signatures represents the first step
for the analysis of high frequency features in the CMB
bispectrum.

This paper is organized as follows. In §II, we review
the in-in formalism and cast the cubic order action in a
form amenable to bispectrum evaluation. In §III we em-
ploy the generalized slow-roll formalism to derive inte-
gral expressions for the bispectrum that arises in general
single-field inflation. In §IV we consider the specific ex-
ample of warp features in DBI inflation to illustrate our
technique before concluding in §V. In Appendix A we
complete the bispectrum description with operators that
do not appear in DBI inflation as well as treat the re-
maining slow-roll suppressed contributions. In Appendix
B we use our formalism to derive a compact, complete
expression for the slow-roll bispectrum to first order in
slow-roll parameters. In Appendix C, we give computa-
tional details for the DBI example. We take units where
Mpl = 1/

√
8πG = 1 throughout.

II. BISPECTRUM

In this section we consider the bispectrum in a general
single field model of inflation. These models are charac-
terized by a nearly time-translation invariant expansion
history through the Hubble parameter H(t) and its as-
sociated slow-roll parameters

εH ≡ −
1

H

d lnH

dt
,

ηH ≡ εH −
1

2H

d ln εH
dt

, (1)

combined with the sound speed of inflaton fluctuations
cs(t) and its associated slow-roll parameter

σ1 ≡
1

H

d ln cs
dt

. (2)

Beyond the slow-roll approximation, the parameters εH ,
ηH and σ1 are allowed to vary with time as long as in-
flation itself continues without interruption εH � 1. We
establish our bispectrum formalism in terms of these gen-
eral functions that are specified by the model.

We begin in §II A with a brief review of the ‘in-in’
formalism for the calculation of correlation functions and
in §II B we show how the cubic action can be written in
a form that allows a straightforward calculation of all
bispectrum configurations for models where the slow-roll
parameters are allowed to evolve.

A. In-In Formalism

We work in the “in-in” formalism which expresses the
N -point correlation function, or more generally, the ex-
pectation value of a product of field operators O(t) as

[49, 50]

〈O(t∗〉 = 〈U†(t∗, t0)O(t)U(t∗, t0)〉, (3)

where U(t∗, t0) is the time evolution operator in the in-
teraction picture,

U(t∗, t0) = T exp

(
−i
∫ t∗

t0

HI(t)dt

)
, (4)

and HI is the interaction Hamiltonian. We take the ini-
tial time t0 to be in the asymptotic past, t0 = −∞(1+iε),
where the iε prescription projects out the Bunch-Davies
state initially. We take the final time t∗ to be an arbitrary
epoch during inflation after all of the relevant modes have
exited the horizon.

For the curvature bispectrum BR, we wish to compute
the correlator

〈R̂k1
R̂k2
R̂k3
〉 = (2π)3δ(k1+k2+k3)BR(k1, k2, k3), (5)

where R̂k is the Fourier transform of the curvature field
in comoving gauge

R̂(x, t) =

∫
d3k

(2π)3
eik·xR̂k(t), (6)

and the hat (R̂) denotes an operator to differentiate it
from the mode function (R). In the interaction picture,
the curvature fluctuations R evolve according to their
quadratic action

S2 ≡
∫
dtd3xL2

=

∫
dtd3x

a3εH
c2s

[
Ṙ2 − c2s

a2
(∂R)

2

]
, (7)

yielding the equation of motion for R

d

dt

(
a3εH
c2s
Ṙ
)
− aεH∂2R = 0. (8)

The tree-level bispectrum is then given by expanding
Eq. (3) [with O(t∗) = R̂k1(t∗)R̂k2(t∗)R̂k3(t∗)] to linear
order

〈R̂k1(t∗)R̂k2(t∗)R̂k3(t∗)〉 =

2<
[
−i
∫ t∗

−∞
dt〈R̂k1(t∗)R̂k2(t∗)R̂k3(t∗)HI(t)〉

]
, (9)

which can be evaluated in terms of the 2-point correlation
function or classical modefunctions via Wick’s theorem
by making use of the unequal time correlator

〈R̂k(t1)R̂k′(t2)〉 = (2π)3δ3(k + k′)Rk(t1)R∗k(t2). (10)

Note that we normalize the modefunctions to have di-
mensions of the square root of the power spectrum

〈R̂k(t∗)R̂k′(t∗)〉 = (2π)3δ3(k + k′)PR(k). (11)
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We also use the dimensionless power spectrum

∆2
R(k) ≡ k3

2π2
PR(k), (12)

which is more convenient for expressing dimensionless
quantities.

It therefore suffices to calculate the interaction Hamil-
tonian to cubic order in the curvature perturbation
[50, 51] HI ≈ −

∫
d3xL3 where the Lagrangian density

for the curvature field L = L2 + L3 + . . .. The task of
computing the bispectrum therefore begins with examin-
ing the relevant terms in the third order Lagrangian or
action.

B. Cubic Action

In order to compute the bispectrum, we require the cu-
bic action. We also seek to express its form in a way that
the relationship between squeezed bispectrum triangles
and the power spectrum is manifest.

For a general single field model of inflation, in co-
moving gauge with gravitational-wave fluctuations set to
zero, the cubic action is given by [52]

S3 =

∫
dt d3x

[
a3εH
c2s

Ξ
Ṙ3

H
− 2

aεH
c2s
Ṙ∂iR∂iχ

+
a3εH
c4s

(
εH − 3 + 3c2s

)
RṘ2

+
aεH
c2s

(
εH − 2σ1 + 1− c2s

)
R (∂R)

2

+
a3εH
c2s

d

dt

(
εH − ηH

c2s

)
R2Ṙ

− d

dt

(
a3εH
c2s

εH − ηH
c2s

R2Ṙ
)]

, (13)

where

∂2χ =
a2εH
c2s
Ṙ. (14)

Here we have written the term usually associated with a
field redefinition as a boundary term [7, 53], and dropped
terms that are suppressed by additional powers of εH .
Note that we have also dropped boundary terms that
decay at late times in standard inflation, and thus do
not contribute to the bispectrum. However, we shall see
that the boundary terms we have retained are in fact the
most important contributions to the bispectrum in the
squeezed limit.

The Ξ term is associated with an operator Ṙ3 that
does not contribute to squeezed bispectrum configura-
tions. Its value depends on the specific model of infla-
tion, and we have maintained generality here in the spirit

of effective field theory.1 For example in DBI inflation
Ξ = 0. In what follows in §IV, we shall use DBI to il-
lustrate our technique and so we defer consideration of
this term to Appendix A 1. Furthermore the χ term only
contributes at O(εH) to the reduced bispectrum and van-
ishes for squeezed configurations. For completeness, we
consider its effect in Appendix A 2. In the remainder of
this section, we therefore drop these two terms as neither
play a role in establishing the consistency of the squeezed
bispectrum and power spectrum spectral index.

While the remaining four terms in the action of Eq.
(13) are otherwise complete, each contains c−2

s enhanced

terms. In particular the R2Ṙ terms do, and they con-
tribute to squeezed bispectrum configurations. On the
other hand, we know that the theory satisfies the consis-
tency relation

12

5
fNL ≡ lim

kS→0

BR(kS , kL, kL)

PR(kS)PR(kL)

= −d ln k3
LPR(kL)

d ln kL
≡ 1− ns (15)

and so cannot have c−2
s enhanced terms that contribute

to squeezed triangles. While it is well known that the
consistency relation is satisfied in slow roll by the cancel-
lation of terms, beyond slow-roll it is difficult to establish
in this form.

Our strategy is to combine the c−2
s terms that form to-

tal derivatives of quantities which vanish outside of the
horizon and hence provide no contribution to the bispec-
trum. We begin by using the equation of motion (8) and
dropping a total space derivative to show

2FRL2 =
d

dt

(
F
a3εH
c2s
R2Ṙ

)
− Ḟ a

3εH
c2s
R2Ṙ, (16)

for an arbitrary function of time F (t). Hence with F =
(εH − ηH)/c2s

S3 =

∫
dtd3xR

[
εH − σ1

c2s
H2 −

1− c2s
c2s

(H2 + 2L2)

− 2
εH − ηH − σ1/2

c2s
L2

]
. (17)

Here H2 is the quadratic Hamiltonian density

H2 =
a3εH
c2s

[
Ṙ2 +

c2s
a2

(∂R)
2

]
, (18)

and the quadratic Lagrangian density was given in
Eq. (7).

1 We do not consider here effective field theory terms associated
with the extrinsic curvature which appear mainly in ghost infla-
tion [54], Galileon interactions [55] or G-Inflation [56, 57].
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Next we note that several terms in S3 can be grouped
into a total derivative generalizing Ref. [58]

1

F

d

dt

(
FRH2

H

)
=
Ṙ
H
L2 −R(H2 + 2L2)

−2
(
εH − ηH −

σ1

2

)
RL2

+
(
εH + σ1 +

Ḟ

FH

)
RH2, (19)

where again F is an arbitrary function of time. With
F = 1/c2s,

S3 =

∫
dtd3x

[
d

dt

(
R H2

Hc2s

)
+R (H2 + 2L2)− Ṙ

Hc2s
L2

]
.

(20)

The total derivative is irrelevant here, and we can drop
it.2 Although this form for S3 efficiently groups the terms
into c−2

s enhanced an non-enhanced terms, it still ob-
scures the consistency relation from the latter by not
manifestly scaling with slow-roll parameters. To expose
this relation, we can reverse the above operations on the
H2+2L2 term by using the identities Eq. (19) with F = 1
and (16) with F = 2εH − ηH + σ1/2 to obtain

S3 =

∫
dt d3x

{
a3εH
c2s

d

dt

(
2εH − ηH +

σ1

2

)
R2Ṙ (21)

− d

dt

[
a3εH
c2s

(
2εH − ηH +

σ1

2

)
R2Ṙ

]
+ (εH + σ1)R(H2 + 2L2) +

(
1− 1

c2s

)
Ṙ
H
L2

}
,

where we have again dropped the total derivative term for
the same reasons as above. Note that for canonical fields
cs = 1 and this form reproduces the ηH dependence of
the cubic action used in Ref. [7]. It furthermore restores
εH terms which typically do not contribute significantly
to the bispectrum but complete the consistency relation
in the slow-roll limit.

In fact the slow-roll consistency relation can be triv-
ially demonstrated given this form for S3 by making use
of the technique of Ref. [58]. Notice that, to leading or-
der in slow roll, the only term that contributes to the
bispectrum in the squeezed limit is the boundary term,
the second line of in Eq. (21). The first term on the last
line can be seen to be higher order after making use of
the identity at Eq. (19). Since the boundary term is a

2 Recall that H2 generates time translations for R, and so this
operator results in terms which involve Ṙ(t∗) which is exponen-
tially decaying at late times when all modes of interest are outside
the horizon (at least in standard inflationary scenarios). Since
the resulting correlation functions vanish exponentially fast at
late times, they are irrelevant as long as we only interested in
correlations late in inflation.

i Operator Source Squeezed Tij Eq.

0 R2Ṙ 2εH − ηH +
σ1

2
yes (42)

1 R(H2 + 2L2) εH + σ1 yes (46)

2 ṘL2

(
1

c2s
− 1

)
cs
aHs

no (50) (54)

3 Ṙ3 −Ξ
cs
aHs

no (A11) (A17)

4 Ṙ (∂R) ∂χ
εH
c2s

no (A22)

TABLE I. GSR bispectrum operators, sources, and triangle
weights.

total derivative, we can easily evaluate its contribution
to the bispectrum. Making use of the Hermiticity of the
fields, we can rewrite Eq. (9) as the commutator

〈R̂k1
R̂k2
R̂k3
〉 =− i

3∏
i=1

∫
d3qi

(2π)3

a3εH
c2s

(
2εH − ηH +

σ1

2

)
×
〈[
R̂k1
R̂k2
R̂k3

, R̂q1
R̂q2

˙̂Rq3

]〉
× (2π)3δ3(q1 + q2 + q3) + . . . , (22)

where ‘. . .’ refers to terms that vanish in the squeezed
limit. We can then make use of the fact that the canonical
momenta of this theory is given by,

πk =
∂H2

∂Ṙk

= 2
a3εH
c2s
Ṙk, (23)

and satisfies the canonical commutation relation

[Rk, πk′ ] = i(2π)3δ3(k + k′), (24)

to evaluate the commutator in Eq. (22). The leading
order squeezed limit is therefore given by

BR(k1, k2, k3) ≈
(

2εH − ηH +
σ1

2

)
PR(k1)PR(k2)

+ perm. (25)

where “perm.” refers to the two cyclic permutations of
the ki indices. Since in slow roll

ns − 1 =
d ln ∆2

R
d ln k

= −(4εH − 2ηH + σ1), (26)

and PR(k2)PR(k3) � PR(k1)PR(k2) for k1 � k2 ≈
k3, this establishes the slow-roll consistency relation,
Eq. (15).

III. GENERALIZED SLOW ROLL

In this section we construct an efficient integral formu-
lation of the bispectrum contributions from Eq. (9) and

4



ij Wij(x)

00, 10, 20, 30, 40 x sinx

23, 33 x sinx+ cosx

01, 11, 21, 22, 24, 31, 32, 41 cosx

02, 12 1
x

sinx

25, 34 2
x

sinx− cosx

26, 35 W (x/2)

TABLE II. GSR window functions for various operators i and
x-weight factors with W as the power spectrum window of
Eq. (38).

Tij Equilateral Squeezed

T00 −1 −1

T01 −6 −2 kL
kS

T02 9 4 kL
kS

T10
7
6

1

T11
17
3

2 kL
kS

T12 − 9
2

−2 kL
kS

T20 − 1
6

0

T21 − 5
6

0

T22 − 7
6

0

T23
5
6

1

T24
1
4

0

T25 − 37
4

−4 kL
kS
− 3

T26
47
3

8
3

(
kL
kS

)2

+ 4 kL
kS

+ 14
3

T2B + perm. − 15
2

− 8
3

(
kL
kS

)2

− 8
3

T30 − 1
9

0

T31 − 1
3

0

T32 − 2
9

0

T33 1 3
2

T34 −11 −6 kL
kS
− 9

2

T35 16 4
(
kL
kS

)2

+ 6 kL
kS

+ 3

T3B + perm −6 −4
(
kL
kS

)2

T40 4 0

T41
4
3

0

TABLE III. GSR triangle weights for equilateral and squeezed
configurations +O(kS/kL). Squeezed contributions from T2m

and T3m, m ≥ 3 cancel due to Eq. (57) and (A18).

the cubic action of Eq. (21) that allows arbitrary time
variation in the slow-roll parameters εH , ηH , σ1. The re-
maining model-dependent Ṙ3 term and εH suppressed
terms are considered in Appendix A 1 and A 2 respec-
tively.

A. Formalism

To evaluate the bispectrum exactly, we need to solve
for the background evolution for the slow-roll parameters
εH , ηH , σ1 and sound speed cs as well as the modefunc-
tionsRk for each mode in the triangle configuration. The
modefunctions themselves are dependent on the slow-
roll parameters and beyond the slow-roll approximation,
where the slow-roll parameters are taken to be constant,
there is no general analytic solution for their behavior.

The generalized slow-roll approach (GSR) [1, 2, 4] pro-
vides an iterative approximation to the modefunctions.
Their equation of motion Eq. (8) can be recast as [5]

d2y

dx2
+

(
1− 2

x2

)
y =

g(ln s)

x2
y, (27)

where

y ≡
√

k3

2π2

f

x
Rk, (28)

x = ks, and the sound horizon

s(t) =

∫ tend

t

csdt

a
, (29)

with tend defining the end of inflation. Here

g ≡ f ′′ − 3f ′

f
, (30)

with ′ ≡ d/d ln s throughout and

f2 = 8π2 εHcs
H2

(
aHs

cs

)2

. (31)

Note that in the slow-roll limit ∆2
R ≈ f−2 (see Eq. B8).

In the GSR approximation, one first defines the solution
to Eq. (27) with g = 0 and Bunch-Davies initial condi-
tions

y0(x) =

(
1 +

i

x

)
eix, (32)

and then replaces the RHS of Eq. (27) with y → y0. The
solution to first order in g is

y(x) = y0(x)−
∫ ∞
x

du

u2
g(ln s)y0(u)=[y∗0(u)y0(x)], (33)

where u = ks. With these relations we can define an
integral approximation to the bispectrum to leading or-
der in the slow-roll deviations g, εH , ηH and σ1. For S3

operators that already include slow-roll parameters only
the zeroth order y0 modefunctions are required whereas
those that involve none, i.e. ṘL2 for DBI inflation, the
first-order modefunction correction contribute to first or-
der in the GSR approximation.

5



B. Integral Form

All contributions from the S3 operators can be cast
into integral form for the dimensionless bispectrum

G
k1k2k3

=
k2

1k
2
2k

2
3

(2π)4A2
s

BR(k1, k2, k3), (34)

where As is a constant of order the dimensionless power
spectrum ∆2

R = k3PR/2π
2. In the leading order GSR ap-

proximation these integrals depend only on the perimeter
of the triangle K = k1 + k2 + k3 rather than its shape.
Thus this description enables a highly efficient compu-
tation of all bispectrum triangles from a handful of one
dimensional integrals.

We will group our integral results according to sources
Sij(ln s) indexed with: (i) the operators they correspond
to; (j) the scale x = Ks at which the operator sources
contribute. The integrals are given by

Iij(K) = Sij(ln s∗)Wij(Ks∗) +

∫ ∞
s∗

ds

s
S′ij(ln s)Wij(Ks)

(35)
where Wij are fixed window functions that are indepen-
dent of the source. The triangle shape dependence is
carried by Tij which are universal functions of (k1, k2, k3)
such that any bispectrum triangle can be computed as

G
k1k2k3

=
∆R(k1)∆R(k2)∆R(k3)

4A2
s

{∑
ij

TijIij(K)

+[T2BI26(2k3) + perm.]
}
. (36)

In the following sections, we consider the contribution
of each operator composing S3 in turn. We summarize
these terms in Tab. I, their associated windows in Tab. II,
and limiting cases of the triangle weights in Tab. III.

In the leading order GSR approximation, the power
spectrum itself is given by the integral [5]

ln ∆2
R = G(ln s∗)W (ks∗) +

∫ ∞
s∗

ds

s
W (ks)G′(ln s), (37)

where the power spectrum window function is

W (u) =
3 sin(2u)

2u3
− 3 cos(2u)

u2
− 3 sin(2u)

2u
(38)

and the source function

G = −2 ln f +
2

3
(ln f)′. (39)

This power spectrum expression then completes the form
of the bispectrum in Eq. (36).

1. i = 0: R2Ṙ

We start by considering the first two terms in Eq. (21)

which involve the R2Ṙ operator. This operator was con-
sidered in detail in Ref. [7] for canonical (cs = 1) scalar

fields and the results carry directly over to the general
case with the source replacement

S00 = S01 = S02 =
1

f

(
2εH − ηH +

σ1

2

)
. (40)

Namely the windows

W00(x) = x sinx,

W01(x) = cosx,

W02(x) =
sinx

x
, (41)

and the triangle weights

T00 = −1,

T01 = −
∑
i6=j kik

2
j

k1k2k3
,

T02 =
K
∑
i k

2
i

k1k2k3
, (42)

are identical to the canonical case. Compared with the
treatment in Ref. [7], here we include the εH correction

associated with the full R2Ṙ operator in Eq. (21).
As in the canonical case, the appearance of 1/f in

the source makes the integrals in Eq. (35) involve total
derivatives S′ij and hence guarantees that the bispectrum
remains constant once all 3 k-modes have exited the hori-
zon. It was shown in Ref. [7] that this is the consequence
of first-order modefunction corrections using Eq. (33).

Note that both the T01 and T02 terms contribute to
squeezed triangles k1 = kS � kL = k2 ≈ k3

lim
kS�kL

T02 = −2T01 = 4
kL
kS

(43)

and hence are involved in establishing the consistency
relation.

2. i = 1: R(H2 + 2L2)

The R(H2 + 2L2) can likewise be calculated with the
GSR expansion. Again only the zeroth order modefunc-
tions are required throughout and constancy of the bis-
pectrum on superhorizon scales is automatic due to an
integration by parts which brings the source into the form

S10 = S11 = S12 =
εH + σ1

f
, (44)

with windows

W10(x) = x sinx,

W11(x) = cosx,

W12(x) =
sinx

x
, (45)
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and triangle weights

T10 =
3

2
−
∑
i k

2
i

K2
,

T11 =
1

k1k2k3

[1

2

∑
i 6=j

kik
2
j +

4

K

∑
i>j

k2
i k

2
j −

2

K2

∑
i 6=j

k2
i k

3
j

]
,

T12 = −
K
∑
i k

2
i

2k1k2k3
. (46)

Both T11 and T22 contribute in the squeezed limit and in
fact

lim
kS�kL

T11 = −T12 = 2
kL
kS
. (47)

In the slow-roll limit only the boundary terms in I11 and
I12 contribute since source derivatives involve evolution
in the slow-roll parameters (see Appendix B for further
discussion). Given that W11(0) = W12(0) = 1, the sum
of the two terms vanishes and the operator does not con-
tribute to squeezed triangles in the slow-roll limit. They
do contribute beyond the slow-roll limit where the evo-
lution of the sources enters.

3. i = 2: ṘL2

The only operator that is enhanced by c−2
s is ṘL2.

This one is also special in that it is not suppressed by
any slow-roll parameters. To calculate its bispectrum
consistently to leading order in the GSR approximation,
we must use the first order modefunction expansion from
Eq. (33) [see §A 1 for more details on an analogous calcu-
lation]. These terms contribute comparably to those that
describe the evolution of the c−2

s enhanced term itself

S2(ln s) =

(
1

c2s
− 1

)( cs
aHs

) 1

f
, (48)

using zeroth order modefunctions y0.
For the latter effect, it is computationally advanta-

geous to isolate the S2 evolution terms by integrating
by parts so that the new sources are

S20 = S21 = S′2,

S22 = S2, (49)

with

T20 =

∑
i k

2
i − 2

∑
i>j kikj

2K2
, (50)

T21 =
1

k1k2k3

[1

2

∑
i 6=j

kik
2
j −

6

K

∑
i>j

k2
i k

2
j +

4

K2

∑
i 6=j

k2
i k

3
j

]
−1

2
,

T22 =
1

k1k2k3

[1

2

∑
i

k3
i −

4

K

∑
i>j

k2
i k

2
j +

2

K2

∑
i 6=j

k2
i k

3
j

]
,

and

W20(x) = x sinx,

W21(x) = W22(x) = cosx. (51)

By constructing the integrals in this manner, we guaran-
tee that evolution in S2 that has compact support in S′′2
results in rapidly convergent integrals as x → ∞ which
do not require regulation. This should be compared with
the unmanipulated S2 integrals or the exact integration
over modefunctions, both of which have window or mod-
efunction weights that diverge as x3 (see §A 1).

Note that the boundary term of the I22 integral gives
the well known result that

G ≈
(

1

c2s
− 1

)[1

8

∑
i

k3
i −

1

K

∑
i>j

k2
i k

2
j +

1

2K2

∑
i 6=j

k2
i k

3
j

]
(52)

to zeroth order in slow-roll parameters. In Appendix B,
we derive an expression that is correct to first order in
the slow-roll approximation.

Unlike the other operators, there are leading order con-
tributions associated with the deviation of the modefunc-
tions from their y0 de Sitter form. The nested integration
of the modefunction correction inside the bispectrum in-
tegral can be unwound by integration by parts, using the
leading order approximation of S2=const., leaving a new
source

gS2 = S′23 = S′24 = S′25 = S′26, (53)

with

T23 =
3

2
−

2
∑
i>j kikj

K2
,

T24 =
(K − 2k1)(K − 2k2)(K − 2k3)

4k1k2k3
,

T25 = − 1

8k1k2k3(K − 2k3)K2

×
[
(k2

1 − k2
2)2(k2

1 + 6k1k2 + k2
2)

+4(k1 − k2)2(k1 + k2)(k2
1 + 6k1k2 + k2

2)k3

+2(3k4
1 + 23k3

1k2 + 64k2
1k

2
2 + 23k1k

3
2 + 3k4

2)k2
3

+16k1k2(k1 + k2)k3
3 − (7k2

1 + 20k1k2 + 7k2
2)k4

3

−4(k1 + k2)k5
3

]
+ perm.,

T26 =
1

12k1k2k3(K − 2k3)2K2

×
[
(k1 − k2)2(k1 + k2)3(k2

1 + 6k1k2 + k2
2)

+3(k2
1 − k2

2)2(k2
1 + 6k1k2 + k2

2)k3

+2(k1 + k2)(6k4
1 + 35k3

1k2 + 106k2
1k

2
2

+35k1k
3
2 + 6k4

2)k2
3

+2(2k4
1 + 5k3

1k2 − 26k2
1k

2
2 + 5k1k

3
2 + 2k4

2)k3
3

−(k1 + k2)(19k2
1 + 44k1k2 + 19k2

2)k4
3

+(−9k2
1 + 4k1k2 − 9k2

2)k5
3

+6(k1 + k2)k6
3 + 2k7

3

]
+ perm. (54)
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Here “perm” means the 2 additional cyclic permutations.
Integration by parts on the modefunction expansion also
leaves a boundary term that is described by

T2B =
1

6k1k2k3(K − 2k3)2
(55)

×
[
(k1 − k2)2(k1 + k2)(k2

1 + 3k1k2 + k2
2)

−2(k1 − k2)2(k2
1 + 3k1k2 + k2

2)k3

−(k1 + k2)(3k2
1 + 5k1k2 + 3k2

2)k2
3

+(3k2
1 − 2k1k2 + 3k2

2)k3
3 + 2(k1 + k2)k4

3 − k5
3

]
,

and I26(2k3) in Eq. (36). The windows associated with
these terms are

W23(x) =x sinx+ cosx, (56)

W24(x) = cosx,

W25(x) =2
sinx

x
− cosx,

W26(x) =12

(
sinx

x3
− cosx

x2
− sinx

4x

)
.

Note that W26(x) = W (x/2), the window function of the
GSR power spectrum defined in Eq. (38).

While the evaluation at s∗ in Eq. (35) for these 5 mod-
efunction terms would formally require integrating gS2,
the sum exactly vanishes for all triangles and Ks∗ � 1.
They may be omitted in practice so long as the same s∗
is taken for each. This cancellation is a consequence of
the triangle weights obeying

6∑
j=3

T2j + (T2B + perm.) = 0. (57)

Likewise, while individual terms would seem to con-
tribute to squeezed triangles (see Tab. III), the sum is
suppressed by kS/kL for any source evolution so long as
that source contributes when kSs � 1. Note that the
consistency relation is not expected to hold if the long
wavelength mode, kS , is inside the horizon since it can
no longer be considered as a change in the background
for the evolution of the short-wavelength, kL, modes.

C. Consistency Relation

With these integral expressions for the bispectrum and
power spectrum, we can now re-examine the consistency
relation for squeezed bispectra, Eq. (15). Amongst the
integrals only I01, I02, I11, I12 contribute to squeezed
triangles as kL/kS . Note that none of these terms are
enhanced by c−2

s relative to the power spectrum. To
leading order,

12

5
fNL ≈ −2

f ′

f

∣∣∣
s∗

+ f∗

∫ ∞
s∗

ds

s

[(
εH
f

)′
Wε(kLs) (58)

+

(
ηH
f

)′
Wη(kLs) +

(
σ1

f

)′
Wσ(kLs)

]
,

where

Wε(x) = −2cos(2x) +
3

x
sin(2x),

Wη(x) = 2 cos(2x)− 2

x
sin(2x),

Wσ(x) = cos(2x). (59)

Here we have again evaluated the boundary term by as-
suming s∗ is an epoch during slow-roll

2
f ′

f

∣∣∣
s∗
≈ −(4εH − 2ηH + σ1)|s∗ . (60)

This should be compared with the local slope of the
power spectrum [9]

d ln ∆2
R

d ln k

∣∣∣
kL

=

∫ ∞
s∗

ds

s
W ′(kLs)G

′(ln s) (61)

= 2
f ′

f

∣∣∣
s∗

+

∫ ∞
s∗

ds

s

(
f ′

f

)′
Wn(kLs),

where

Wn(x) = −2 cos(2x) +
2

x
sin(2x). (62)

The boundary term obviously matches between
Eqs. (58) and (61) and establishes the slow-roll consis-
tency relation. The integral piece contributes when there
are features that violate the slow-roll approximation. For
a sharp feature at kLs� 1, the parameters with the high-
est number of derivatives of H and cs dominate and we
can approximate(

f ′

f

)′
≈ f∗

(
ηH + σ1/2

f

)′
, (63)

which matches the ηH term in Eq. (58) and the σ1 term
in the kLs� 1 limit assumed. Note that σ1 enters with
opposite sign relative to ηH between the slow-roll and
sharp feature expressions. This is a consequence of the
H2 + 2L2 term entering the latter but not the former.
For kLs ∼ 1, the power spectrum source G′ no longer ap-
pears as a sharp function compared to the windows and
so other terms that impact its shape matter [6]. We illus-
trate below that the GSR approximation maintains the
consistency relation even in this region. Finally note that
once all the terms are considered, including window func-
tion expansions, the contribution of terms not involved
in the consistency relation is suppressed by O(kS/kL)2

independently of the sources as expected [58].

IV. DBI STEP FEATURE

In this section, we illustrate the GSR integral construc-
tion of the bispectrum from §III in a DBI model with
sharp features in the sound speed. We review the DBI
model in §IV A, test the GSR approximation in §IV B
and discuss analytic scaling results in §IV C. Appendix
C gives details on how we set DBI parameters that are
matched to the Planck data.
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A. Model

The DBI action is a specific incarnation of the general
k-inflation action [59]

S =

∫
d4x
√
−g

[
R

2
+ P (X,φ)

]
. (64)

Here R is the Ricci scalar. The scalar field Lagrangian
is taken to be a general function of the field value φ and
its kinetic term

X = −1

2
∇µφ∇µφ. (65)

The scalar field behaves as a perfect fluid with pressure
P ,

ρ = 2XP,X − P, c2s = P,X/ρ,X . (66)

In these models the Ξ term in the cubic action Eq. (13)
is given by

Ξ =
1

c2s
− 1− 2

λ

Σ
, (67)

where [60]

Σ ≡H
2εH
c2s

, λ ≡ X2P,XX +
2

3
X3P,XXX . (68)

In the DBI case,

P (X,φ) =
[
1−

√
1− 2X/T (φ)

]
T (φ)− V (φ), (69)

where T (φ) gives the warped brane tension, and V (φ) is
the interaction potential. Note that Ξ = 0 and so the
only terms involved in the bispectrum are those given in
§III.

We illustrate our bispectrum technique on models
where T (φ) has a step feature [13]. Details of this model
including the background evolution and construction of
the slow-roll parameters can be found in Ref. [6]; we re-
view its basic properties below. The warp factor

T (φ) =
φ4

λB
[1 + bF (φ)], (70)

has a tanh step-like feature

F (φ) = tanh

(
φ− φs
d

)
− 1, (71)

and we consider infra-red DBI inflation [61, 62] where φ
inflates on the potential

V (φ) = V0

(
1− 1

6
βφ2

)
, (72)

rolling from small to large values. We have chosen a
convention that after the feature, T (φ) goes back to its

b = 0 value. We assume that inflation ends when φ =
φend. Note that the step is 2b in amplitude.

The parameters λB , β, and φend are chosen to fix the
amplitude and tilt of the power spectrum to the maxi-
mum likelihood of the Planck data [63]

As = 2.69× 10−9,

ns − 1 = −0.0381, (73)

as well as the sound speed at a sound horizon of s = 3.692
Gpc in the absence of the step (b = 0) as described in
Appendix C. The observables are weakly dependent on
V0 at fixed s and so we follow Ref. [6] in choosing

V0 = 7.10× 10−26. (74)

In the presence of a step, the power spectrum and sound
speed vary from these values but we consider As as a fixed
number and label models with cs evaluated at b→ 0.

The value of the sound horizon in Eq. (73) is motivated
by the recent Planck results [45] where a step feature at
this scale

ss ≡ s(φs) = 3.692 Gpc (75)

with power spectrum amplitude in the DBI model of [6]

C = −2
1− cs
1 + cs

b√
1− 2b

≈ 0.1. (76)

Unlike the WMAP data [8], the Planck data reveals a
preference for a finite width with their increased angular
resolution [45]

xd =
φ′

πd
= 87.4 (77)

with this set of parameters favored at ∆2 lnL ≈ 12. We
shall see that by preferring a specific xd, the Planck data
favor a specific and large maximum for the bispectrum.
We therefore illustrate bispectrum results with these val-
ues for b, φs and d below while also testing for robustness
to parameter variations.

B. GSR Tests

To test the accuracy of the GSR approximation, we
compare the integral approximation at Eq. (36) to a nu-
merical computation of the full bispectrum using mod-
efunctions obtained from numerically solving the linear
equations of motion.

We begin by testing the squeezed limit of the bispec-
trum which mainly checks the validity of the method. We
have constructed the GSR approximation in a manner in
which the squeezed limit and its relationship to the local
slope of the power spectrum is manifest in the i = 0, 1
terms (see §III C). We show in Fig. 1 that the consistency
relation itself is satisfied in the exact calculation of the
bispectrum and power spectrum. We choose to fix the
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FIG. 1. Test of the consistency relation: ns − 1 computed
exactly from the power spectrum vs fNL computed exactly
from the bispectrum for a large amplitude step b = −0.2,
xd = 15, cs = 0.15, kS/kL = 10−4.

ratio kS/kL = 10−4. Since kSss � 1 even for kL in the
damping tail, agreement with the consistency relation is
expected. We know analytically that the i = 2 opera-
tor contribution is suppressed by (kS/kL)2 compared to
true squeezed contributions in this case and so it is com-
putationally most efficient to drop them outright. Note
that the full extent of this suppression is achieved from
cancellation of integral terms which is difficult to repro-
duce numerically. Nonetheless our numerical integration
is sufficient to make residual contributions from numer-
ical errors negligible here compared with the true ones
from i = 0, 1.

The accuracy of the GSR approximation for these
highly squeezed triangles is shown in Fig. 2. In this
case the approximation has small but notable amplitude
errors even in the small amplitude case. As shown in
Ref. [9], these errors in amplitude arise due to slow-roll
corrections in the value of f between when the mode
kS left the horizon and when the features at kL are im-
printed. For the step feature the latter is fixed at ss and
the correction is [9]

R = 1 +
ns − 1

2
ln

(
kSss
xf

)
, kSss < xf (78)

and R = 1 otherwise. Here xf = e2−γE/2 ≈ 2.07 is
the freezeout epoch for the tilt (see Tab. IV). In Fig. 2,
we also show that with this correction, the remaining
error from the feature is in a small out-of-phase compo-
nent. These too can be corrected with the first order
techniques of Ref. [9] but note that in this example they
peak at an unobservable δfNL below 0.02. There is an

FIG. 2. Exact vs GSR approximation for squeezed triangles
for a small amplitude sharp step b = −0.01, xd = 15, cs =
0.15, kS/kL = 10−4. Top panel shows the GSR result with
a small correction due to kS exiting the horizon many efolds
before the feature from Eq. (78). Bottom panel shows the
error in the corrected GSR approximation as well as that of
the original GSR approximation. After correction, the errors
are mainly an out of phase component.

additional correction for the slow-roll contributions on ei-
ther side of the features due to the evolution in f between
horizon crossing of kS and kL. Since these are slow-roll
suppressed, correcting them is never relevant.

Next we compare the equilateral bispectrum where the
c−2
s enhanced i = 2 term contributes. Here we fix the

basic parameters as described in the previous section ac-
cording the Planck best fit, but allow the sound speed
and amplitude b of the feature to vary.

Fig. 3 (top) shows the result for a small amplitude
feature with b = −0.005 for two different values of
cs = 0.1, 0.5. The GSR approximation captures the am-
plitude of the features to a few percent for both cases.
In particular the amplitude increases as (keqss)

2 until it
reaches a peak at keqss ≈ 2xd before damping away. As
we shall see below, varying the sound speed changes the
relative weight of the different operators and so the two
different cases demonstrate that the relevant terms have
been individually calculated correctly.

In Fig. 3 (bottom), we test the larger amplitude fea-
ture preferred by the Planck data. Given that the same
fractional change in the warp or sound speed causes a
smaller effect as cs → 1, the amplitude of the step b re-
quired to match the data increases with cs. On the other
hand the accuracy of the GSR approximation depends
directly on b and so errors increase with b and cs.

For cs = 0.15, the Planck parameters predict an ex-
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FIG. 3. Exact vs. GSR approximation for equilateral triangles. Shown are a small b = −0.005 amplitude warp step (top) and
the large amplitude step that matches the Planck feature (bottom) for a low cs = 0.15 (left) and high cs = 0.5 (right) sound
speed. For the small amplitude step the GSR approximation is accurate in amplitude at the several percent level. For the large
amplitude step the amplitude accuracy is ∼ 20% or better at peak. Other parameters have been set to reproduce the Planck
best fit, in particular xd = 87.4.

tremely large equilateral bispectrum at peak. We illus-
trate this value since the maximum violates even a weak
criteria for the validity of perturbation theory

G
k3

eq

∆R . 1. (79)

Beyond this point, the curvature field is strongly non-
Gaussian and loop corrections likely invalidate the cal-
culation. Note that this sets a firm lower bound on cs
for models that seek to explain the Planck feature with
steps in the warp.

For the case of cs = 0.5, the full change across the
step approaches order unity, specifically |2b| ≈ 0.36 and

the GSR approximation at the peak of the bispectrum
holds to ∼ 20%. For larger values of cs it is impossi-
ble to explain the feature without a very large step in
the warp. Note a step in the potential does not suffer
this problem and they remain viable explanations even
as cs → 1. Likewise for a potential step in canonical sin-
gle field inflation with the same parameters that fit the
Planck power spectrum |G/k3

eq|max ≈ 766. The ampli-
tude of the equilateral bispectrum clearly distinguishes
the two scenarios for cs . 0.5.

The errors in the GSR approximation at high b are
mainly due to the i = 2 operator. Note that in obtain-
ing the modefunction correction source to this term in
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FIG. 4. Modified GSR source correction for the highest am-
plitude b case of Fig. 3. By changing the i = 2 modefunction
correction source to a total derivative of a slow-roll suppressed
quantity through Eq. (80), the errors at kss ∼ 1 decrease.

Eq. (53), we have assumed that S2 in Eq. (48) is con-
stant whereas it is a function of cs. Corrections to this
approximation from the sound speed step are expected
to be important as the amplitude of the step increases.

In fact the errors in the approximation around keqss ∼
1 can be directly attributed to this problem. If xd � 1
subleading terms in the approximation begin to dom-
inate here and cause order unity errors. Fortunately,
this occurs only in the region where the bispectrum is
too small to be observed due to cosmic variance. We
can nonetheless correct for this problem by modifying
the source S2m for m ≥ 3 from the S′2m = gS2 form
of Eq. (53). The problem is that this form is not a total
derivative of a slow-roll suppressed source and so for large
amplitude features it does not integrate back to a slow-
roll suppressed S2m after the inflaton has transited the
feature. Analogous effects in the i = 0 operator are fixed
by self consistently expanding to the next order in the
GSR approximation [7]. Since this would involve nested
integrals, we can fix the problem by simply replacing the
source with a form that is identical in the slow-roll and
small feature limits but which carries the total derivative
structure

S2m →
3

2
[G(ln s)− Ḡ]S2. (80)

To ensure that the source is slow-roll suppressed after
the feature we set the constant Ḡ = G(ln ss; b = 0). In
Fig. 4 we show that this change corrects the kss ∼ 1
problem. On the other hand, this problem appears in a
non-observable part of the spectrum for this model and
also disappears if xd . 25, where one might otherwise
think kss ∼ 1 effects are important, and so we do not

FIG. 5. Comparison between exact, GSR and leading order
analytic solution predictions for the maximum amplitude of
|G/k3eq|. The step parameters are b = −0.005, xd = 30.2.
Dashed lines indicate where the individual contributions have
the opposite sign to total. For cs � 1 the i = 2 term domi-
nates whereas for cs → 1 all terms are comparable.

consider it further.

C. Analytic Scaling

Given the sensitivity of the maximum equilateral bis-
pectrum amplitude to the choice of parameters and the
large current observational uncertainties on their values
from the Planck data, it is useful to have analytic scalings
for the amplitude and form around maximum.

In the sharp-feature limit, the dominant contributions
to the bispectrum arise from the terms with the highest
number of temporal derivatives and the windows with
the steepest scalings with x, i.e. those that involve x sinx
in our source convention. In principle we can also keep
subleading terms in the analytic expression for the bis-
pectrum. The rather involved results are neither illumi-
nating nor necessary near the peak of the bispectrum as
long as xd � 1 and so we omit them here.

It is straightforward to derive an analytic expression
for their contribution in the b → 0 limit. Integrating
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once by parts

I00 ≈
∫
ds

s

ηH − σ1/2

f
X(Ks),

I10 ≈−
∫
ds

s

σ1

f
X(Ks),

I20 ≈
∫
ds

s

[
− 2

c2s

σ1

f
−
(

1− 1

c2s

)
ηH + 3σ1/2

f

]
X(Ks),

I23 ≈
∫
ds

s

(
1− 1

c2s

)
ηH + σ1/2

f
X(Ks), (81)

where X(x) = x2 cosx. Combining these terms, we can
approximate the bispectrum as

G
k1k2k3

≈ −∆R(k1)∆R(k2)∆R(k3)

4A2
s

(82)

×
∫
ds

s

[∑
i k

2
i

K2

σ1

c2sf
+
ηH
c2sf

]
X(Ks).

The slow-roll parameters σ1 and ηH may be approxi-
mated as [6]

σ1 ≈ (1− cs)b
dF

d ln a
,

ηH ≈ −
cs
2

1− cs
1 + cs

b
dF

d ln a
, (83)

where recall that F is a step-like function in ln a. As d→
0, dF/d ln a can be approximated as a delta function with
normalization set by

∫
d ln s(dF/d ln a) ≈ −

∫
dF ≈ 2.

For finite step width d in field space, the inflaton traverses
the step in ∆s/ss ≈ |d ln s/dφ|d. The window functions
X oscillates on a time scale ∆s = 1/k. Thus the integral
is damped for kss > φ′/d and the same characteristic
damping scale as in the power spectrum xd = φ′/πd (see
Eq. 77) appears here. For the tanh step, the integral can
be approximated following [8]

G
k1k2k3

≈ −∆R(k1)∆R(k2)∆R(k3)

4A2
s

D
(
Ks

2xd

)
X(Ks)

c2sf

×
[
2(1− cs)

∑
i k

2
i

K2
− cs

1− cs
1 + cs

]
b

∣∣∣∣∣
ss

, (84)

where the damping function is

D(y) =
y

sinh y
. (85)

In particular, for equilateral triangles, the bispectrum
reaches a maximum of∣∣∣∣ Gk3

eq

∣∣∣∣
max

≈ 10.77
(2− cs)(1− cs)

12(1 + cs)

|b|
c2s
x2
d(2xd)

3(ns−1)/2

(86)
at a scale of approximately kss ≈ 2xd.

In Fig. 5 we compare this analytic expectation with the
GSR and exact calculations at the peak of the equilateral
bispectrum. For the analytic curves, we plot the analog of

Eq. (84) for the terms in Eq. (81). For a small amplitude
step, the agreement between all three is excellent. The
i = 2 term (I20 + I23) dominates at cs � 1 and exhibits
the c−2

s enhancement of the equilateral bispectrum over
power spectrum effects which scale as 2(1− cs)b/(1 + cs)
through Eq. (76) [6]. As cs → 1 all terms are comparable
and in fact partially cancel each other. While the total
is suppressed in this limit, it scales in the same way with
(1− cs) as the power spectrum.

Fig. 3 verifies that the scaling remains qualitatively
correct for the Planck amplitude step. The rough criteria
for the validity of perturbation theory given in Eq. (79)
becomes

10.77
(2− cs)(1− cs)

12(1 + cs)

|b|
c2s
x2
d(2xd)

3(ns−1)/2∆R . 1. (87)

Thus sound speeds smaller than the cs = 0.15 example
in the previous section would become allowed if

√
|b|xd

dropped significantly.
We note that the result we find for the bispectrum

here is different from the estimate in Ref. [13]. The key
difference is that Ref. [13] approximated the enhance-
ment to the bispectrum as arising for modes near hori-
zon crossing due to the slow-roll parameter ηH becoming
large, and therefore the modes interacting more strongly
near where they were freezing out. While this is ap-
proximately true for models with features in the warp
or potential that are crossed on a timescale on the order
of an efolding, in this work we have demonstrated that
the key effect of the sharp feature in the background is
that correlations are frozen at the time of the feature, ss,
rather than near horizon crossing, s ∼ 1/k. This means
that correlations between curvature perturbations with
momentum k � 1/ss are imprinted well before horizon
crossing where the amplitude of the fluctuations is much
larger and is oscillating with varying k. This results in a
strongly scale dependent and oscillatory bispectrum that
is only cut off at the damping scale derived above. We
note that improved estimates of the scaling behavior due
to a sharp step were presented in Ref. [38]. In addition,
the relative contribution of ηH and σ1 terms as a function
of width d was misestimated in Ref. [13].

V. DISCUSSION

In this work we have studied the bispectrum that arises
in general models of single field inflation beyond the slow-
roll expansion. Our integral approach allows the expan-
sion history and inflaton sound speed to be arbitrary
functions of time and encompasses all terms in the ef-
fective field theory of inflation aside from those involving
the extrinsic curvature and Galileon interactions. This
form allows for a fast computation of all bispectrum con-
figurations from a handful of one dimensional integrals
and should facilitate efficient comparison of these models
with data.
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The key assumption of our approach is that the expan-
sion remains nearly de Sitter with εH � 1 during infla-
tion, while εH is allowed to have arbitrary variation. In
particular, we explicitly drop operators that contribute
to the bispectrum as ε2H and approximate the evaluation
of the rest assuming that the curvature modefunctions
remain perturbatively close to their de Sitter forms.

Motivated by recent power spectrum analyses of
WMAP [8] and Planck [45] data, we take as an illus-
trative example a sharp step in the warp-brane tension
in the context of DBI inflation [13]. We show that our
integral approximations are excellent for small amplitude
steps in the warp, while for 40% steps remain accurate to
20%. Further, we demonstrate that the consistency re-
lation between the squeezed limit of the bispectrum and
the power spectrum spectral index is respected in our
approximations.

A step in the sound speed due to a step in the warped-
brane tension large and sharp enough to explain the
high frequency oscillations in the Planck power spectrum
would also generate a very large bispectrum peaking in
the equilateral limit. For low sound speeds, cs, these bis-
pectra are large enough to violate even weak criteria for
the validity of perturbation theory and effectively put a
lower bound of cs > 0.15. Furthermore, as the sound
speed increases, the step in the warp must become larger
and larger in order to produce the same power spectrum
features and ceases to remain viable as cs → 1. In par-
ticular, for cs > 0.5, one requires an order unity step in
the warp to produce the favored 10% oscillations in the
power spectrum. We have also demonstrated that other-
wise degenerate scenarios that produce oscillations in the
power spectrum – steps in the warp or potential – are dis-
tinguished by their various bispectra. For cs < 0.5, the
scenarios are clearly distinguished by the amplitude of
their equilateral bispectra.

Our technique also applies to the cases where the slow-
roll approximation remains valid, but where slow-roll cor-
rections may be large [64]. We provide a complete and
compact first-order expression for all bispectrum configu-
rations. In Appendix B 2 we demonstrate the consistency
of our results with previous work [64] for several limiting
cases. Given the observed value of the tilt, we show that
large slow-roll corrections only exist in two cases: where
one or more of the slow-roll parameters {εH , ηH , σ1} is
anomalously larger than the tilt ns−1 or when the sound
speed cs & 0.8.

Our work is somewhat orthogonal to the work of Ref.
[65] who evaluated the bispectrum for a class of P (X,φ)
theories allowing εH ∼ 1 and σ1 ∼ 1 while higher slow-
roll parameters, σ2, ηH , etc., were assumed small. Fur-
ther, Ref. [66] considered the bispectrum in Horndeski
theories, relaxing the slow-roll assumption, again allow-
ing for εH ∼ 1 and σ1 ∼ 1 in such a way as to preserve a
scale invariant spectrum. However, in the region where
our analyses overlap, one can demonstrate our results are
equivalent to those of [65] (see Appendix B 2 and Refs.
[64, 66]).

The expressions presented here are ideally suited for
use in concert with a fast estimator for the angular bis-
pectrum in CMB. In particular this form should facilitate
searches for the non-Gaussian counterparts to features in
the power spectrum data which could confirm their pri-
mordial origin.
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Appendix A: Completing the Triangle

In the main text, we deferred consideration of two op-
erators that were not important in the DBI step example.
In this Appendix we complete the GSR integral formu-
lation for the bispectrum of general single field inflation.

1. i = 3: Ṙ3

Beyond DBI models, general single field inflation mod-
els can also have c−2

s enhanced bispectra through the Ṙ3

term in the cubic action, Eq. (13). In the P (X,φ) model
it is given by Eq. (67). In the general effective theory of
inflation it is associated with the M3 mass scale defined
in Ref. [54] or equivalently the c3 = −M4

3 /M
4
2 coefficient

of Ref. [67]. For a P (X,φ) theory, in our notation

M4
n(t) = (−X)

n ∂
nP

∂Xn

∣∣∣
X=X̄(t)

,

X̄(t) =
1

2

(
dφ̄

dt

)2

, (A1)

where φ̄ is the homogeneous background scalar field.
With these conventions, M4

2 = Σ(1− c2s)/2 and

M4
3

M4
2

=3

(
1

2
− 1

1− c2s
λ

Σ

)
=

3

2

(
1− 1

c2s

)
, DBI (A2)

(cf. [19] Eq. 5.12). For effective theories that parametrize
turning trajectories in multifield models where the heavy
degrees of freedom have been integrated out this scale
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becomes a specific function of the time-varying sound
speed cs [19]. In summary,

Ξ =



0, DBI
1

c2s
− 1− 2

λ

Σ
, P (X,φ)

(1− c2s)2

2c2s
, turn

(1− c2s)2

c2s
− 2

3
(1− c2s)c3. EFT

(A3)

It is interesting to note that

P (X,φ) = T (φ)

[
1− T (φ)

T (φ)−X

]
− V (φ) (A4)

would mimic the turning trajectory case at the effective
field theory level.

Inserting the Ṙ3 operator into the general expression
Eq. (9), we obtain

G
k1k2k3

⊃ 3

4A2
s

R

(
i

[
3∏
i=1

xi∗yi∗
f∗

]∫ ∞
s∗

ds

s
S3(ln s)

×
3∏
i=1

[
f

xi

(
xiy
∗
i

f

)′])
, (A5)

where

S3(ln s) = − cs
aHs

Ξ

f
. (A6)

As with the terms in the main text, an exact eval-
uation of the Ṙ3 bispectrum contribution involves first
solving numerically for the modefunction y through the
exact equation of motion Eq. (27). Note that as x→∞,
y → eix and so the term in the second bracket tends
to diverge as s3e−3iKs making it challenging to evaluate
numerically. In practice when evaluating the exact bis-
pectrum contributions, we regulate such expressions with
an artificial damping factor at a sufficiently large s that
the model is in the slow-roll regime.

The GSR approximation can be constructed to avoid
such problems. There are two types of terms in gen-
eral: those that involve replacing y → y0 and taking f ≈
const. in Eq. (A5) and those that involve the first-order
modefunction correction from Eq. (33) or f ′/f . The lat-
ter is required since Ξ contributes at zeroth order in the
slow-roll expansion.

For the former case

G
k1k2k3

⊃ ∆R(k1)∆R(k2)∆R(k3)

A2
s

3

4

k1k2k3

K3

×
∫ ∞
s∗

ds

s
S3(ln s)(Ks)3 sin(Ks), (A7)

where we have replaced 1/f∗ → ∆R as appropriate for ze-
roth order modefunction expressions (see below). While
compact in form, this expression is again numerically dif-
ficult to evaluate at Ks→∞. Instead, we first integrate

this expression twice by parts and bring the result to the
standard form of Eq. (36)

G
k1k2k3

⊃ ∆R(k1)∆R(k2)∆R(k3)

4A2
s

2∑
j=0

T3jI3j(K), (A8)

with the sources

S30 = S31 = S′3,

S32 = S3, (A9)

windows

W30(x) = x sinx,

W31(x) = W32(x) = cosx, (A10)

and triangle weights

T30 = T3, T31 = 3T3, T32 = 2T3, (A11)

where

T3 = −3k1k2k3

K3
. (A12)

The modefunction correction terms involve both cor-
rections to the external modefunctions evaluated at s∗
and nested integrals involving corrections inside the orig-
inal integral in Eq. (A5). The former type is approxi-
mated by the replacement of 1/f∗ → ∆R above. Note
that the out of phase type contribution discussed in
Ref. [9] vanish in this case since the (Ks)3 cos(Ks) win-
dow integrates to zero. The latter type involves integrals
over g(ln s) in Eq. (33). Part of the R modefunction cor-
rection term involves derivatives acting on f in Eq. (A5).
This can also be brought into nested form by

f ′

f
≈ s3

∫
d ln s

g

s3
. (A13)

The resulting terms can be simplified by integration by
parts given that to leading order S3 can be taken to be
constant here. The result is that the new source becomes

gS3 = S′33 = S′34 = S′35, (A14)

with now all terms combined into the form

G
k1k2k3

⊃ ∆R(k1)∆R(k2)∆R(k3)

4A2
s

{ 5∑
j=0

T3jI3j(K)

+[T3BI35(2k3) + perm.]
}
. (A15)

Here the additional windows are

W33(x) = x sinx+ cosx,

W34(x) = 2
sinx

x
− cosx,

W35(x) = 12

(
sinx

x3
− cosx

x2
− sinx

4x

)
, (A16)
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and triangle weights

T33 =
3k1k2k3

K2(K − 2k3)
+ perm.,

T34 = − 3k1k2k3

K2(K − 2k3)2
[7(k1 + k2)− 3k3] + perm.,

T35 =
4k1k2k3

K2(K − 2k3)3

[
5(k1 + k2)2 − 5(k1 + k2)k3 + 2k2

3

]
+perm.

T3B = − 2k1k2k3

(K − 2k3)3
. (A17)

The final T3B term comes from the boundary term from
unnesting the integrals through integration by parts. The
boundary terms in Iij from the modefunction terms can-
cel since

5∑
j=3

T3j + (T2B + perm.) = 0. (A18)

The s∗ boundary term in I32 gives zeroth order slow-
roll result for the P (X,φ) model as

G
k1k2k3

≈ 3

2

k1k2k3

K3

(
1

c2s
− 1− 2

λ

Σ

)
, (A19)

which reproduces a well-known result [52, 60].

2. i = 4: Ṙ∂iR∂iχ

Finally, for completeness we consider the (non-local)

Ṙ∂iR∂iχ operator in Eq. (13) that was dropped in the
main paper. Its contribution can be cast as a source

S40 = S41 =
εH
c2sf

, (A20)

with windows

W40(x) = x sinx,

W41(x) = cosx, (A21)

and triangle weights

T40 =
4(K − 2k1)(K − 2k2)(K − 2k3)

k1k2k3
, (A22)

T41 =
1

k1k2k3

(
K

2

∑
i

k2
i −

3

2

∑
i

k3
i +

2

K2

∑
i6=j

k2
i k

3
j

)
.

Note that in the squeezed limit of k1 = kS � kL = k2 ≈
k3, both weights scale as kS/kL and do not contribute.
Hence they are not required for the establishment of the
slow-roll consistency relation. On the other hand T41

does contribute to the εH terms in the slow-roll bispec-
trum for other triangles.

Wij(x) xf

cosx e−γE

sinx

x
e1−γE

W (x/2) e7/3−γE

W (x) e7/3−γE/2

Wn(x) e2−γE/2

TABLE IV. Freezeout epoch xf for the various GSR windows
where γE ≈ 0.5772 is the Euler-Mascheroni constant, W is
the power spectrum window of Eq. (38) and Wn is the tilt
window of Eq. (62).

Appendix B: Slow-Roll Expansion

With the completion of the GSR expression in §A, we
can expand the full result to first order in the slow-roll
parameters εH , ηH and σ1 assuming they are nearly con-
stant. This expansion trivially reproduces the usual slow-
roll approximation for the i = 0, 1, 4 operators and im-
proves their accuracy by defining the respective epochs of
freezeout near horizon crossing. On the other hand, the
i = 2, 3 operators involve sources that are zeroth order
in slow-roll parameters and thus complicate the slow-roll
expansion [52, 64].

1. GSR Derivation

In the slow-roll limit, all of the sources in the GSR
integrals can be taken to be slowly varying

Sij(ln s) ≈ Sij(ln s∗) + S′ij(ln s− ln s∗), (B1)

where S′ij is taken to be a constant. Thus the integrals
reduce to

Iij = Sij(ln s∗)Wij(x∗) + S′ij

∫ ∞
x∗

dx

x
Wij(x), (B2)

where x∗ = Ks∗. For the windows where limx→0Wij 6=
0, the integral can be re-expressed as the evaluation of
the source Sij

Iij = Sij(ln sf )Wij(x∗) (B3)

at the freezeout epoch sf = xf/K where

lnxf − lnx∗ =

∫ ∞
x∗

dx

x

Wij(x)

Wij(x∗)
. (B4)

In Tab. IV, we give xf for the various GSR windows.

The GSR integrals can be further simplified by approx-
imating the sources to first order in the slow-roll param-
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eters through

aHs

cs
= −(ln a)′ ≈ 1 + εH + σ1,

(aHs)′

aHs
≈ −σ1,

G′ ≈ 2

3
g ≈ −2

f ′

f
≈ 1− ns

≈ (4εH − 2ηH + σ1). (B5)

With these approximations, the bispectrum to first order
in the slow-roll parameters is given by

G
k1k2k3

≈1− ns
8

[
T01 + T02 + 3

(
1

c2s
− 1

)
T2n − 3ΞT3n

]
+
εH + σ1

4
(T11 + T12)−

(
cs
aHs

Ξ

f

)′
f

4
T31

+
εH
4c2s

T41 +
(1− c2s)(1− ns) + 4σ1

8c2s
T21

+
∆R(k1)∆R(k2)∆R(k3)

4A2
s

1

f

cs
aHs

×
[(

1

c2s
− 1

)
T22 − ΞT32

]
, (B6)

where the final source is evaluated at Ks = e−γE and we
have assumed the slow-roll parameters εH , ηH , and σ1 are
constant in dropping terms. The accuracy can be further
improved by evaluating the slow-roll parameters at their
respective freezeout epochs rather than taking them to
be constant. In fact the modefunction correction terms
contribute through these freezeout relations as

T2n = T23 + 2T25 +
7

3
T26

+

[
T2B

(
ln

K

2k3
+

7

3

)
+ perm.

]
,

T3n = T33 + 2T34 +
7

3
T35

+

[
T3B

(
ln

K

2k3
+

7

3

)
+ perm.

]
, (B7)

where we have used the identities Eq. (57), (A18) in elim-
inating terms and the Ti3 terms come from integrating
the x sinx pieces of the Wi3 windows by parts. Note that
the power spectrum in the same approximation is

∆2
R(k) ≈ eG(ln sf )

≈ 1

f2(ln sf )

[
1 +

1

3
(ns − 1)

]
, (B8)

where sf = xf/k = e7/3−γE/2k. Eqn. (B6) reproduces
and generalizes a well-known result for canonical (cs = 1,
Ξ = 0) inflation [49, 60]

G
k1k2k3

=
1

k1k2k3

[
εH

(1

8

∑
i

k3
i +

1

8

∑
i 6=j

kik
2
j

+
1

K

∑
i>j

k2
i k

2
j

)
− ηH

4

∑
i

k3
i

]
. (B9)

Furthermore, for squeezed bispectra

fNL ≡
5

3

A2
s

∆2
R(kL)∆2

R(kS)

G
k3
L

=
5

12
(4εH − 2ηH + σ1) +O

(
kS
kL

)2

(B10)

as expected, while for equilateral bispectra

108

35
f eq

NL ≡
24

7

[
As

∆2
R(k)

]2 G
k3

(B11)

≈ 1

∆R(k)f

cs
aHs

(
1− 1

c2s
+

4

21
Ξ

) ∣∣∣∣∣
s= e−γE

3k

+
2

7

(
cs
aHs

Ξ

f

)′
f +

7c2s + 8

7c2s
εH +

7c2s − 10

7c2s
σ1

+
2(c2s − 10)− 135(c2s − 1) ln(3/2)

14c2s
(ns − 1).

The latter should be compared with the zeroth order
in slow-roll result

108

35
f eq0

NL =

(
1− 1

c2s
+

4

21
Ξ

) ∣∣∣∣∣
s= 1

3k

. (B12)

For example, for Ξ = 0, we obtain using Eq. (B8)

f eq
NL − f

eq0
NL

f eq0
NL

=
8c2s − 17− 64(c2s − 1) ln(3/2)

7(c2s − 1)
(ns − 1)

+
15εH + (14γE − 3)σ1

7(c2s − 1)
. (B13)

Note that as one would expect, at small c2s the correction
is of order the deviation from scale invariance, ns − 1,
unless εH and σ1 are anomalously larger. As c2s → 1,

the zeroth order term is itself suppressed and f eq0
NL drops

below the slow-roll corrections. Here the correction is
large but the equilateral bispectrum itself is small.

2. Examples

We again illustrate our calculations with the DBI ex-
ample, here with no feature (b = 0). In Fig. 6, we show
the exact, GSR and first order corrected analytic result of
Eq. (B13) relative to the zeroth order f eq

NL of Eq. (B12).
Compared with the zeroth order result, the corrections
are of order the tilt ns− 1 throughout and are only frac-
tionally large for cs > 0.8 where the zeroth order term
itself drops below 0.2. The agreement between the exact,
GSR and first order results are is excellent and consistent
with deviations only at the next order in the slow-roll
expansion (ns − 1)2. By taking a second artificially high
ns − 1, we also demonstrate that first order corrections
are always of order the tilt in these cases where the in-
dividual slow-roll parameters are not anomalously larger
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FIG. 6. Slow roll corrections to the zeroth order equilateral
bispectrum result feq0

NL . Agreement between the exact, GSR
and analytic results is everywhere excellent for realistic values
of the tilt ns − 1 = −0.0337. Shown also for comparison is a
case of twice the observed value ns−1 = −0.0674 showing that
corrections are always of order the tilt. They only become
fractionally large as cs → 1 as the zeroth order result becomes
suppressed.

than tilt. For both cases, most of the (ns− 1)2 deviation
between the analytic and exact or GSR results can in fact
be corrected by evaluating Eq. (B11) at the exact freeze-
out epoch specified rather than using the approximate
conversion in Eq. (B13).

We can also compare the results derived here to known
slow-roll results in the literature. In particular, we will
compare to Ref. [64]. Since the expressions are rather
large and cumbersome we will restrict again to the equi-
lateral limit of DBI. Furthermore, the results of Ref. [64]
are evaluated as an expansion about a fixed reference
point. That is, while the dependence on wavenumber
of coefficients in our Eq. (B11) is implicit, their coeffi-
cients are constant so that the resulting dependence on
wavenumber is explicit.

To compare results, we need to expand our expressions
about some reference scale s?. Quantities evaluated at
this time will be denoted with a subscript ?. Working
to linear order in slow-roll parameters and making use of
Eq. (B5), we find

1

f

cs
aHs

(
1

c2s
− 1

)∣∣∣∣
xf

≈
(

1

c2s?
− 1

)
1

f?

[
1− εH? − σ1?

−
(

1− ns?
2

+
2σ1?

1− c2s?

)
× ln (3ks?e

γE )
]
, (B14)

where xf = 3ksf = e−γE . Finally, we make use of the

result,

1

∆R(k)

1

f?
= 1− 2− ln (2ks?e

γE )

2
(1− ns?) (B15)

from Eq. (B8). Combining terms, for DBI inflation we
find

f eq
NL =

5

108c2s?

{
7(c2s? − 1) + 15εH?

+
[
8c2s? − 17− 64(c2s? − 1) ln(3/2)

]
(ns? − 1)

+ [14 ln(3ks?e
γE )− 3]σ1?

}
. (B16)

In the limit where DBI inflation is described by power-
law inflation at late times [10], σ1 = −2εH , ηH = εH ,
and Eq. (B16) reduces to

f eq
NL =

35

108

[(
1− 1

c2s?

)
+

3− 4 ln(3ks?e
γE )

c2s?
εH?

]
,

(B17)

in agreement with Eq. (6.5) of Ref. [64]. We can also
check the example of so-called generalized DBI inflation
[68]. The slow-roll parameters there are defined as

εV =
1

2

(
V ′

V

)2

, ηV =
V ′′

V
, ∆ =

sgn(φ̇T 1/2)

3H

T ′

T 3/2
,

(B18)

and are related to our slow-roll parameters by [64]

εH = csεV , ηH =− cs
2
εV +

cs
2
ηV +

3

4
∆

σ1 = −csεV + csηV −
3

2
∆. (B19)

Note that their η = 2(εH − ηH). Working in the limit
cs � 1, we find

f eq
NL =− 35

108c2s?

[
1 +

ηV ?cs?
7

[3− 14 ln (3ks?e
γE )]

+
3∆?

14
[31 + 14 ln (3ks?e

γE )− 128 ln(3/2)]

− 2εV ?cs?
7

[43− 7 ln (3ks?e
γE )− 128 ln(3/2)]

]
+O(c2s?) (B20)

in agreement with Eq. (6.11) of Ref. [64].

Appendix C: DBI Parameters

In the main text, we choose the DBI parameters to
have a fixed power spectrum amplitude As and tilt ns−1
at ss for a model with no step b = 0. This condition fixes
the parameters {φend, λB , β} of the model and we set V0

to a constant as described in the main text. We relate the
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phenomenological and fundamental parameters through
the slow-roll attractor

H
dφ

d ln a
=
√

2X ≈ −
√
V

3

d lnV

dφ
cs, (C1)

which determines X at φ, and the definition of the sound
speed cs =

√
1− 2X/T . Through this relation, the phe-

nomenological parameters p = {As, ns − 1, cs} are de-
fined given the field position which completes the set of
fundamental parameters π = {φ, λB , β}. Explicitly, we
set

cs(π) =
√

1− 2X/T

≈

[
1 +

V

3T

(
d lnV

dφ

)2
]−1/2

, (C2)

and use the Friedmann equation to set H

3H2(π) =

(
1

cs
− 1

)
T (φ) + V (φ) . (C3)

The amplitude and tilt are then given as

As(π) ≈
(

H

2πdφ/d ln a

)2

,

(ns − 1)(π) ≈ d lnAs
dφ

dφ

d ln a
. (C4)

This gives the phenomenological parameters as a nonlin-
ear function of the fundamental parameters p(π). To set
the sound horizon at φ to equal ss, we choose the appro-
priate φend such that we effectively replace φ with φend

in the fundamental parameter set after the fact.
Of course, we actually want the fundamental param-

eters as a function of the phenomenological parameters
π(p). For cs � 1, these relations are easily inverted

λB ≈
1

4π2As

(
4

ns − 1

)4

,

β ≈− 3

4

ns − 1

cs
,

φ ≈2
√

3

3π

√
V0

As(ns − 1)2
. (C5)

For larger cs, the expressions are not readily invertible
but from the solution at small cs, we can approximate
small changes by linearizing and inverting the response.
Starting from some parameter set p0, we move to a new
set p by iterating

ln(π/π0) =

(
∂ lnp

∂ lnπ

)−1

ln(p/p0), (C6)

until convergence. Here the inverse factor is the Jacobian
matrix inverse. We repeat this procedure until we obtain
all the desired values of the sound speed cs.
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