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The exterior gravitational field of a slowly-rotating neutron star can be characterized by its multi-
pole moments, the first few being the neutron star mass, moment of inertia, and quadrupole moment
to quadratic order in spin. In principle, all of these quantities depend on the neutron star’s internal
structure, and thus, on unknown nuclear physics at supra-nuclear energy densities, all of which is
usually parameterized through an equation of state. We here find relations between the moment
of inertia, the Love numbers and the quadrupole moment (I-Love-Q relations) that do not depend
sensitively on the neutron star’s internal structure. Such universality may arise for two reasons: (i)
these relations depend most sensitively on the internal structure far from the core, where all realistic
equations of state mostly approach each other; (ii) as the NS compactness increases, the I-Love-Q
trio approaches that of a BH, which does not have an internal-structure dependence. Three im-
portant consequences derive from these I-Love-Q relations. On an observational astrophysics front,
the measurement of a single member of the I-Love-Q trio would automatically provide information
about the other two, even when the latter may not be observationally accessible. On a gravitational
wave front, the I-Love-Q relations break the degeneracy between the quadrupole moment and the
neutron-star spins in binary inspiral waveforms, allowing second-generation ground-based detectors
to determine the (dimensionless) averaged spin to O(10)%, given a sufficiently large signal-to-noise
ratio detection. On a fundamental physics front, the I-Love-Q relations allow for tests of General
Relativity in the neutron-star strong-field that are both theory- and internal structure-independent.
As an example, by combining gravitational-wave and electromagnetic observations, one may con-
strain dynamical Chern-Simons gravity in the future by more than 6 orders of magnitude more
stringently than Solar System and table-top constraints.

PACS numbers: 04.30.Db,97.60.Jd

I. INTRODUCTION

Neutron-star (NS) astrophysics can provide crucial in-
formation about nuclear, gravitational-wave (GW) and
fundamental physics that would be difficult to obtain by
other means. On a nuclear physics front, NS observations
allow us to probe the equation of state (EoS) of nuclear
matter [1] well beyond the densities available in Earth
laboratories. For example, observations of the NS mass-
radius relation and the mass-moment-of-inertia relation
can be used to infer NS EoS within a certain observa-
tional uncertainty [2–7].
On a GW physics front, the detection of GWs emitted

during the late inspiral and merger of NS binaries could
also be used to extract information about the EoS [8–
10]. Binary NSs are, in fact, one of the most promising
GW sources [11–13] for second-generation, ground-based
detectors, such as Adv. LIGO [14], Adv. VIRGO [15]
and KAGRA [16]. Since NSs are tidally deformed in
the late inspiral and merger, violating the test-particle
approximation, NS binary waveforms must include cor-
rections induced by the NS internal structure, for exam-
ple in terms of NS tidal Love number [8–10]. In turn,
this implies that a sufficiently high signal-to-noise ratio
(SNR) detection of such a GW could be used to extract
information about the NS EoS [17–30].
On a fundamental physics front, NSs are ideal to test

General Relativity (GR) since they produce strong gravi-
tational fields [31–33]. Currently, GR has passed all Solar

System tests with flying colors, but these only sample the
weak field regime [34, 35], where gravitational fields are
stationary and weak, and all characteristic velocities are
much smaller than the speed of light. Electromagnetic bi-
nary pulsar observations can test GR in a regime where
the gravitational field is much stronger than in the Solar
System, but still sufficiently non-dynamical that one can
expand in the ratio of the orbital velocity to the speed of
light to leading-order [31].
The exterior gravitational field of NSs, however, is not

just determined by their mass and radius, but also by
higher multipole moments, like the moment of inertia and
the quadrupole moment, and ignorance of the NS EoS
can hinder the extraction of the latter from observations.
On the GW physics front, degeneracies between the NS
spin and the quadrupole moment prevent future detec-
tions from separately measuring these quantities. On the
fundamental physics front, degeneracies between the ef-
fect of the NS EoS and modified gravity corrections on
observables prevent robust tests of GR that are internal-
structure independent.
In this paper, we take the first steps toward resolving

this problem by discovering new relations between the
NS moment of inertia I, the NS Love numbers and the
(spin-induced) NS quadrupole moment Q(rot) (I-Love-Q
relations) that are essentially EoS independent for slowly-
rotating NSs [36]. Physically, the moment of inertia
quantifies how fast a NS can spin given a fixed spin angu-
lar momentum S, the quadrupole moment describes how
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FIG. 1. (Color Online) (Top) Fitting curves (solid curve), given in Eq. (54), and numerical results (points) of the universal I-Love

(left) and Q-Love (right) relations for various EoSs. These quantities are normalized as follows Ī = I/M3
∗ , λ̄

(tid) = λ(tid)/M5
∗

and Q̄ = Q(rot)/[M3
∗ (S/M

2
∗ )

2]. The parameter varied along each curve is the NS central density, or equivalently the NS
compactness, with the latter increasing to the left of the plots. For reference, we also show the corresponding NS mass for the
APR EoS on the top axes and a vertical dashed line when M∗ = 1M⊙. (Bottom) Relative fractional errors between the fitting
curve and numerical results. Observe that these relations are essentially EoS independent, with loss of universality at the 1%
level.

much a NS is deformed away from sphericity, and the
Love number characterizes how easy or difficult it would
be to deform a NS.
The moment of inertia, Love numbers and quadrupole

moment can be computed by numerically solving for the
interior and exterior gravitational field of a NS in a slow-
rotation [37] and a small tidal deformation approxima-
tion [8], to quadratic order in the former and to linear or-
der in the latter. The moment of inertia and quadrupole
moment can be obtained from the asymptotic behavior
of the (t, φ) and (t, t) components of the metric at spa-
tial infinity respectively, which depend on the interior
solution through matching boundary conditions at the
NS surface that ensure metric continuity and differentia-
bility. Although the moment of inertia is a first-order
in spin quantity, the quadrupole moment is generated by
quadratic spin terms. The tidal Love number λ(tid) is de-
fined by the ratio between the tidally-induced quadrupole
moment and the tidal field due to a companion NS, which
can be calculated in a similar fashion.
One would expect that all of these quantities should de-

pend quite sensitively on the NS EoS; after all, a fluffier
star should be more easily deformable than a stiffer star.
We find here, however, that, these quantities seem to sat-
isfy almost universal relations when plotted against each
other that are essentially independent of the NS EoS.
Figure 1 shows the I-Love (left) and Q-Love (right) re-
lations, where I, λ(tid) and Q(rot) are normalized to M3

∗ ,
M5

∗ and M3
∗ (S/M

2
∗ )

2 respectively, with M∗ the NS mass

and S its spin angular momentum. The different curves
represent the relations using different EoSs (APR [38],
SLy [39], Lattimer-Swesty (LS220) [40], Shen [41, 42]
and polytropic EoSs with indices of n = 0.6, 0.8 and
1). The symbols represent numerical solutions, while the
solid curve is a single fitting function. The bottom of
this figure shows the fractional errors between the fitting
function and the numerical results. Observe that these
relations are EoS independent to within O(1)%.
We have found two possible reasons that could explain

such a weak EoS dependence. The first is that the I-Love-
Q trio may depend most sensitively on the NS outer lay-
ers, far from the core, where all realistic EoSs approach
each other. In this interpretation, the I-Love-Q relations
do depend on the EoS, but only in a regime where the
EoSs contributes similarly to the I-Love-Q trio. The sec-
ond reason is based on the fact that the I-Love-Q trio for
NSs approaches the I-Love-Q relations for a BH, as one
increase the NS compactness. For BHs, these relations
are clearly independent of the BH internal-structure (or
lack thereof) due to the the no-hair theorems [43–48],
which lead to well-known expressions for all multipole
moments in terms of just the mass and spin [49, 50]. But
for NSs, such expressions do not exist because there is no
NS no-hair theorem. In spite of this, we still find a NS
universal relation between the moment of inertia (and
thus the spin angular momentum) and the quadrupole
moment, similar to that which arise for BHs due to the
no-hair theorems.
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The universal I-Love-Q relations tell us that there is
an effacing of internal structure in play here, i.e. the
expected internal-structure dependence of the I-Love-Q
relations effaces away. One might think that such an
effect is a consequence of the celebrated effacement prin-
ciple [51] in GR. However, this is not quite right be-
cause the latter states that the motion of compact ob-
jects is independent of their internal structure; the ef-
facement principle says nothing about the multipolar-
decomposition of the object’s gravitational field or of its
tidal deformations. Of course, the effacement principle
holds in GR for BHs, but it is violated for NSs, with
internal-structure corrections to the center of mass ac-
celeration entering first at 5 post-Newtonian (PN) or-
der1 for systems of non-spinning bodies. On the other
hand, the I-Love-Q relations interconnect different mul-
tipole components of the exterior gravitational field of
isolated bodies, saying nothing about their relative mo-
tion.
The I-Love-Q relations have immediate applications

to observational astrophysics, GWs and fundamental
physics, breaking degeneracies that would otherwise pre-
vent us from taking full advantage of NS observations.
On the observational astrophysics front, the measure-
ment of any single member of the I-Love-Q trio would au-
tomatically provide information about the other 2 mem-
bers, even if the latter are not easily accessible from an
observational viewpoint. For example, if one could mea-
sure the moment of inertia of the primary NS of the dou-
ble binary pulsar J0737-3039 [52–54], one could then ob-
tain its quadrupole moment and its tidal Love number
through the I-Love-Q relations without any further mea-
surements. This is particularly important because the
Love number and the quadrupole moment cannot be eas-
ily extracted from binary pulsar observations, since they
have a much weaker effect on observables.
On the GW physics front, the I-Love-Q relations can

break the degeneracy between the NS quadrupole mo-
ment and the NS spins, given a sufficiently large SNR
detection of a NS binary inspiral. The first spin-induced
modification to the waveform, a spin-orbit coupling, en-
ters at 1.5 PN order in the waveform phase [55]. Given
a large SNR detection, one can then extract this phase
term, and thus measure a certain combination of the in-
dividual spins. In order to extract both spins, however,
one needs to also measure the spin-spin correction to the
waveform, which enters at 2PN order. At this same or-
der, however, the quadrupole moment also modifies the
waveform phase, leading to a 100% degeneracy between
Q(rot) and the individual spins.
The Q-Love relation can be used to break this degener-

acy. One can write the quadrupole moment as a function
of the Love number, which enters at 5PN order in the

1 A term of Ath PN order is suppressed relative to the leading-
order term by a factor of O(v2A/c2A), where v is the character-
istic velocity of the system and c is the speed of light.
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FIG. 2. (Color Online) Measurement accuracy of spin pa-
rameters β, χs and χa with Adv. LIGO given a detection at a
luminosity distance of 100 Mpc with SNR ≈ 30. We consider
three different NS binaries, labeled by (i), (ii) and (iii), as
described in the text. Observe that χs can be measured to
approximately O(10)% when we use the Q-Love relation to
break spin degeneracies.

waveform phase [17]. This forces a correlation between
the quadrupole moment piece of the 2PN term and a
5PN term that is weakly correlated with other binary
parameters. Recently, [25, 26] suggested that second-
generation, ground-based detectors could be used to ex-
tract the Love number. Therefore, such measurement of
the tidal Love number, in combination with the Q-Love
relation, determines the NS quadrupole moment, which
then allows for a measurement of the averaged spin pa-
rameter χs ≡ (χ1 + χ2)/2, where χA is the individual
(dimensionless) spin parameter of NS A.
Figure 2 shows the projected measurement accura-

cies of spin parameters χa ≡ (χ1 − χ2)/2, χs and the
1.5PN phase term β as functions of χ1 for 3 differ-
ent systems: (i) (m1,m2) = (1.45, 1.35)M⊙, χ1 = χ2,
(ii) (m1,m2) = (1.45, 1.35)M⊙, χ1 = 2χ2 and (iii)
(m1,m2) = (1.4, 1.35)M⊙, χ1 = χ2, where mA is
the NS mass of the A component. We used second-
generation, ground-based detectors and luminosity dis-
tance of 100Mpc for SNRs ∼ 30. One can measure the
averaged spin χs to O(10)% if one uses the Q-Love rela-
tion. Such a measurement accuracy on χs is inaccessible
without the Q-Love relation.
On a fundamental physics front, independents mea-

surement of any two members of the I-Love-Q trio would
allow for model-independent and EoS-independent tests
of GR. For example, let us assume that one has measured
the moment of inertia of the primary NS of the double
binary pulsar J0737-3039 to 10% accuracy2 [6, 7]. Let
us further assume that GW observations have indepen-

2 Notice that this pulsar has a relatively long spin period for a
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FIG. 3. (Color Online) (Top) I-Love relation in GR (black
thick solid curve), normalized as in Fig. 1, with ∆Ī and

∆λ̄(tid) shown as (black) dashed lines around a fiducial mea-
sured value, shown with a cross. ∆Ī is 10% of the fidu-
cial value, assuming future double binary pulsar observa-
tions [6, 7]. ∆λ̄(tid) is 60% of the fiducial value, assum-
ing a GW binary NS observation. We also plot the I-
Love relation in dynamical CS gravity with a CS parameter
ξcons = 1.1 × 104M4

∗ for various EoSs. This test would con-
strain ξ < ξcons, 6 orders of magnitude more strongly than
current Solar System bounds [56]. For reference, M∗ for the
Shen EoS is shown on the top axis. (Bottom) Relative frac-
tional difference of the CS I-Love relations (light solid curves)
between the realistic EoSs and the n = 1 polytrope. For
reference, we also show this difference for the GR I-Love rela-
tions (thick solid curves). Observe that even in dynamical CS
gravity, the universality of the I-Love relation seems to hold
to O(1) %.

dently measured the NS tidal Love number to roughly
60% from a detection of an equal-mass NS binary with
the same NS mass as the primary in J0737-3039. With
these observations, one can then plot a point in the I-Love
plane with a measurement error box as shown in the top
panel of Fig. 3. Such a figure automatically provides a
consistency (null) test of GR: one can test whether GR
predicts an I-Love curve that goes through such an error
box. Moreover, one can also constrain modified gravity
theories by requiring that the I-Love curves in these the-
ories pass through this error box. We will show here that
such a test is even possible when the GW binary system
has component masses that are up to 10% different from
the pulsar ones.
Such a test, of course, is constraining provided modi-

fied gravity theories predict I-Love-Q relations that are
not degenerate with the GR ones. Figure 3 shows that

millisecond pulsar, 22.7 ms, and thus, the slow-rotation approx-
imation is perfectly valid.

at least for dynamical Chern-Simons (CS) gravity [57]
this is not the case. Dynamical CS gravity is a parity-
violating and quadratic-curvature corrected theory that
has been weakly constrained in the Solar System through
Gravity Probe B observations [56] and table-top exper-
iments [58]. The fiducial I-Love measurements of Fig. 3
would constrain this theory 6 orders of magnitude more
strongly than current tests, down to ξ < 1.1 × 104M4

∗ ,
where ξ1/4 is the characteristic length scale of the the-
ory. Observe also that the universality of the I-Love re-
lation still holds in dynamical CS gravity within several
% accuracy, although this universality does not hold as
well as in GR. Perhaps, this is because NSs in dynamical
CS gravity have scalar hair that depends nontrivially on
the NS’s internal structure [59], and thus, the internal-
structure effacing in dynamical CS gravity may not be as
effective.
The I-Love-Q relations presented here show universal-

ity within the framework (uniform and slow-rotation and
small tidal deformations) we work in. Of course, this
framework is inappropriate to study newly-born NSs,
which are probably differentially rotating and doing so
fast. Older NSs that are uniformly rotating usually spin
slowly, especially those that serve as a source of GWs
for ground-based detectors, as they will have spun down
significantly by the time they enter the GW sensitivity
band [60]. Short-period, millisecond pulsars, on the other
hand, spin at a non-negligible rate, and thus, a slow-
rotation expansion may not be suitable. In that case,
we still expect to find semi-universal I-Love-Q relations
that although independent of the EoS will depend on the
spin period. Such an analysis requires a full numerical
treatment of rapidly rotating NSs [61–64] and is left for
future work.
The rest of this paper deals with the details of this

calculation and it is organized as follows. In Sec. II,
we explain how the spacetime is decomposed, the ap-
proximations used and the stress-energy tensor we used
to describe NSs. In Sec. III, we construct non-rotating,
isolated NS solutions. Taking these solutions as a back-
ground, in Sec. IV we construct slowly-rotating NS so-
lutions to linear order in spin and calculate the NS mo-
ment of inertia. In Sec. V, we construct slowly-rotating
NS solutions to quadratic order in spin, calculate the NS
quadrupole moment and define the rotational Love num-
ber. In Sec. VI, we define the tidal Love number and
construct tidally-corrected NS solutions. In Sec. VII, we
show how the I-Love-Q relations are essentially indepen-
dent of the NS EoS. We also study explanations for these
relations, by considering analytic relations when using
polytropic EoSs in the Newtonian limit. In Sec. VIII,
we explain possible applications of the I-Love-Q rela-
tions to observational astrophysics, GWs and fundamen-
tal physics. In Sec. IX we conclude and point to future
research.
All throughout the paper, we follow mostly the con-

ventions of Misner, Thorne and Wheeler [65]. We use
the Greek letters (α, β, · · · ) to denote spacetime in-
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dices. The metric is denoted by gµν and it has signature
(−,+,+,+). We use geometric units, with G = 1 = c.

II. SPACETIME DECOMPOSITION AND

MATTER REPRESENTATION

In this paper, we consider uniformly rotating NSs that
are slightly deformed either due to rotation or tidal fields.
Such solutions can be numerically constructed pertur-
batively in a slow-rotation and tidal-deformation expan-
sion, taking the non-rotating, isolated solution as a back-
ground. In this section, we explain the metric decompo-
sition employed here and the stress-energy tensor we will
use to describe NSs.

A. Metric Decomposition

We choose Boyer-Lindquist type coordinates (t, r, θ, φ)
and decompose the metric as

ds2 = −eν̄(r)
[

1 + 2ǫ2h̄2(r)αY2m(θ, φ)
]

dt2

+eλ̄(r)
[

1 +
2ǫ2m̄2(r)αY2m(θ, φ)

r − 2M̄(r)

]

dr2

+r2
[

1 + 2ǫ2K̄2(r)αY2m(θ, φ)
]

×
{

d2θ + sin2 θ [dφ− ǫ[Ω∗ − ω̄1(r)P
′
1(cos θ)]dt]

2
}

+O(ǫ3) , (1)

where M̄(r) is defined by

M̄(r) ≡

[

1− e−λ̄(r)
]

r

2
, (2)

Pℓ(cos θ) is the ℓ-th order Legendre polynomial, P ′
1 =

dP1/d(cos θ) and Yℓm(θ, φ) is the spherical harmonic
function. The quantity ǫ here is a book-keeping param-
eter that we will later set to unity and we only intro-
duce to remind ourselves of the order of the approxima-
tion. Terms linear in ǫ are induced only by linear-order
in rotation effects, while tidal-deformation effects enter
at O(ǫ2). We will work here to quadratic order in ǫ.
A slow-rotation expansion is quite appropriate to

model old NSs. Recycled millisecond pulsars, the fastest
NSs observed to date, have angular velocities in the
kHz, but this number is small relative to the NS mass,
i.e. M∗Ω∗ . 0.01, where Ω∗ is the NS angular velocity.
For the fastest millisecond pulsar J1939+2134 [66], with
period 1.5 ms, the dimensionless spin parameter, defined
via χ ≡ S/M2

∗ = IΩ∗/M
2
∗ , is still small χ . 0.3, using a

Newtonian expression for the moment of inertia. Thus, a
slow-rotation expansion is well-justified, especially when
carried out to second order. This approximation, how-
ever, would break down if considering newly-born NSs,
which are likely to be differentially rotating, much hotter
and with much larger magnetic fields. Notice also that

the NSs that will source GWs in the band of ground-
based detectors are expected to have significantly smaller
spins than that. This is because NSs spin-down [60] as
they inspiral and ground-based detectors will only be sen-
sitive to the last 17 minutes of the orbit before coales-
cence.
The free functions in our metric decomposition are ν̄

and λ̄ at O(ǫ0), ω̄1 at O(ǫ) and h̄2, K̄2 and m̄2 at O(ǫ2).
The leading-order correction due to slow rotation enters
at O(ǫ), while that due to tidal deformations enters at
O(ǫ2). For the former, we restrict ourselves to axisym-
metric perturbations; at O(ǫ) only the (ℓ,m) = (1, 0)
mode survives, while at O(ǫ2) only the (ℓ,m) = (0, 0)
and (ℓ,m) = (2, 0) modes survive. For the latter, we are
only interested in the spin and tidal, quadrupolar defor-
mations, and thus we only keep ℓ = 2 modes in Eq. (1),
but allow for all m modes. Henceforth, we set the con-
stant α = 2

√

π/5 so that αY20(θ, φ) = P2(cos θ).
As pointed out by Hartle [37], one needs to be care-

ful about choosing coordinates when deriving and solv-
ing perturbed equations. A perturbative analysis is valid
only if perturbed quantities are much smaller than the
unperturbed one. If one were to carry out calculations
in (t, r, θ, φ) coordinates, such conditions would be vio-
lated in certain situations. For example, in the region
of spacetime outside the unperturbed star but inside the
perturbed star, the ratio of the perturbed pressure (or
density) to that of the unperturbed pressure (or density)
diverges, which violates our perturbative treatment.
In order to overcome this problem, we transform the

radial coordinate via [37]

r(R, θ) = R+ ǫ2ξ2(R)αY2m(θ, φ) +O(ǫ3) , (3)

where ξ2(R) is such that

ρ[r(R, θ, φ)] = ρ(R) = ρ(0)(R) . (4)

In other word, the new radial coordinate R is chosen
such that ρ[r(R, θ, φ)] is identical to the unperturbed den-
sity ρ(0)(r). By construction, the density and pressure in
these new coordinates contain only the unperturbed con-
tributions. Notice that ξ2Y2m is well-defined only inside
the star and we take it to be constant outside. This
means that the exterior metric in (t, r, θ, φ) coordinates
can be obtained simply by replacing R → r in the exte-
rior metric in (t, R, θ, φ) coordinates.
The transformed metric in (t, R, θ, φ) coordinates can

be found in [67] for the axisymmetric case. Henceforth,
we will relabel the metric coefficients via

ν(R) ≡ ν̄(r) = ν̄(R + ǫ2ξ2αY2m) ,

λ(R) ≡ λ̄(r) = λ̄(R + ǫ2ξ2αY2m) ,

ω1(R) ≡ ω̄1(r) = ω̄1(R + ǫ2ξ2αY2m) ,

h2(R) ≡ h̄2(r) = h̄2(R+ ǫ2ξ2αY2m) ,

m2(R) ≡ m̄2(r) = m̄2(R+ ǫ2ξ2αY2m) ,

K2(R) ≡ K̄2(r) = K̄2(R+ ǫ2ξ2αY2m) ,

M(R) ≡ M̄(r) = M̄(R+ ǫ2ξ2αY2m) . (5)
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B. Matter Representation

We here consider NSs that are uniformly rotating, and
thus, we model them as a perfect fluid. Uniform rotation
should be a reasonable approximation unless one consid-
ers newly-born NSs. The stress energy-momentum tensor
of the matter field Tmat

µν is then given by

Tmat

µν = (ρ+ p)uµuν + p gµν , (6)

where the four-velocity uµ is given by

uµ = (u0, 0, 0, ǫΩ∗u
0) , (7)

and Ω∗ is the constant angular velocity of the NS. By
using the normalization condition uµu

µ = −1, we obtain
the time component of the four-velocity u0 as

u0 = e−ν/2 + ǫ2
e−3ν/2

2
[ω2

1P
′
1
2R2 sin2 θ

−eν(2h2 + ν′ξ2)αY2m] +O(ǫ4) . (8)

We here consider 4 realistic EoSs: APR [38], SLy [39,
68], Lattimer-Swesty with nuclear incompressibility of
220MeV (LS220) [40, 69] and Shen [41, 42, 69], the latter
two with temperature of 0.1MeV and an electron fraction
determined by the neutrino-less, beta-equilibrium condi-
tion. All of the EoS described above are “realistic” in
that they allow NSs with masses larger than 1.93M⊙, the
lower bound of the recently found massive pulsar J1614-
2230 [70]. For comparison purposes, we also consider
polytropic EoSs, i.e. EoSs of the form

p = Kρ1+1/n , (9)

where K is an amplitude constant and n is the constant
polytropic index. One can approximate the NS EoS with
polytropes in the range n ≈ 0.5 − 1 [17, 71]. No single
polytrope, however, is believed to be an accurate repre-
sentation of a realistic EoS.
The APR EoS is constructed by using the variational

chain summation methods, which is expected to include
all leading many-body correlation effects. The APR EoS
uses Hamiltonians that include a three-nucleon interac-
tion, which predicts that a transition exists from NS mat-
ter to a phase with neutral pion condensation at a baryon
number density of ∼ 0.2 fm−3. The SLy EoS is calculated
from a non-relativistic mean field theory approach, with
a new set of Skyrme-type effective nucleon-nucleon inter-
actions, suitable for describing very neutron rich matter.
Unlike the APR EoS that describes only the NS’s liquid
core, the SLy EoS is a “unified EoS” in the sense that
it is supposed to describe also the NS crust. The LS220
EoS is constructed from a finite-temperature compress-
ible liquid-droplet model with a Skyrme nuclear force.
Such an EoS is derived within the single heavy nucleus
approximation and the assumption of nuclear statisti-
cal equilibrium. The Shen EoS uses a relativistic mean-
field theory model and assumes nuclear statistical equilib-
rium. Nuclear incompressibility of the Shen EoS occurs
at 281MeV.

III. SLOWLY ROTATING, ISOLATED

NEUTRON STARS: O(χ0)

In this section, we construct non-rotating, isolated NS
solutions, which will later be used as background solu-
tions to construct slowly-rotating, tidally-deformed NS
solutions in Secs. IV, V and VI.

A. Einstein Equations and Exterior Solutions

The (t, t) and (R,R) components of the Einstein Equa-
tions yield

dM

dR
= 4πR2ρ , (10)

dν

dR
= 2

4πR3p+M

R(R− 2M)
, (11)

respectively. Combining the R-component of the equa-
tion of motion ∇µTmat

µR = 0 and Eq. (11), one obtains the

Tolman-Oppenheimer-Volkoff (TOV) equation:

dp

dR
= − (4πR3p+M)(ρ+ p)

R(R− 2M)
. (12)

Equations (10), (11) and (12) together with the equation
of state p = p(ρ) close the system of differential equa-
tions.
The exterior solutions to the above equations can be

obtained by setting ρ = 0 = p. One finds [37]

νext(R) = −λext(R) = ln

(

1− 2M∗

R

)

. (13)

We use the superscripts “ext” to refer to exterior quan-
tities.

B. Interior Solutions

First, we solve Eqs. (10) and (12) together with the
equation of state with initial conditions

ρ(rǫ) = ρc +O(r2ǫ ) , (14)

p(rǫ) = pc +O(r2ǫ ) , (15)

M(rǫ) =
4π

3
ρcr

3
ǫ +O(r5ǫ ) , (16)

where ρc and pc are the central density and pressure re-
spectively, and rǫ corresponds to the core radius which
we take to be rǫ = 100 cm ≪ R∗. We have checked
that all of our results are independent of the choice of rǫ
provided this is a very small number relative to the NS
radius. We solve Eqs. (10) and (12) outwards from r = rǫ
until p vanishes. The NS radius R∗ and the NS mass M∗

are then defined by p(R∗) = 0 and M∗ = M(R∗) re-
spectively. For later convenience, we introduce the NS
compactness

C ≡ M∗

R∗

. (17)
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FIG. 4. (Color Online) The NS mass-radius relation for a few
realistic EoSs. The black, horizontal, dashed line at 1.93M⊙

corresponds to the lower bound on the mass of the recently
found massive pulsar J1614-2230 [70]. Observe that all real-
istic EoSs lead to mass-radius curves that exceed this lower
bound.

Notice that The central pressure pc = p(ρc) is determined
from the EoS, once ρc is chosen. The central density ρc
is then a free parameter that effectively determines the
mass and radius of the NS.
With this solutions, we can then solve Eq. (11). One

approach is to use the boundary condition [see Eq. (13)]

eν(R∗) = 1− 2M∗

R∗

(18)

at the NS surface as an initial condition and then in-
tegrate inwards toward the core. Another approach is
to use the fact that Eq. (11) is shift invariant, as done
e.g. in [67]. All throughout this paper, numerical solu-
tions to the initial value problem are obtained with an
adaptive 4th-order Runge-Kutta method [72].
Figure 4 shows the mass-radius relation for various

EoSs. We have checked that the mass-radius relation for
the SLy EoS agrees with that shown in [68]. As antici-
pated, all EoSs lead to NSs with maximum mass larger
than 1.93 M⊙ (the black dashed horizontal line), which is
the lower bound for the mass of J1614-2230 [70]. We do
not show the mass-radius relation for the polytropic EoSs
because the I-Love-Q relations that we present in Sec. VII
only depend on the NS compactness and do not depend
on the mass-radius relation. Figure 5 shows the interior
profile of the NS density (top) and pressure (bottom) as
functions of the radial coordinate for a compactness of
C = 0.17, which corresponds to a NS with M∗ = 1.4M⊙

and R∗ ≈ 12.1 km for the APR EoS.
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0.4

0.6
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FIG. 5. (Color Online) The NS density (top) and pressure
(bottom) profile for various EoSs as functions of the radial
coordinate. We fix C = 0.17 which corresponds to M∗ =
1.4M⊙ for the APR EoS. We do not show profiles of n = 2.5
and n = 3 polytropic EoSs since the maximum compactness
with such EoSs is smaller than 0.17.

IV. SLOWLY ROTATING, ISOLATED

NEUTRON STARS: O(χ1)

Let us now focus on constructing slowly-rotating, iso-
lated NS solutions. In this section, we only consider ax-
isymmetric perturbations and construct NSs to linear or-
der in spin. We will first discuss the differential equation
that needs to be solved, and then we will solve them in
the exterior region modulo an integration constant. After
this, we discuss the asymptotic behavior of the solution at
the NS center, which can then be used as an initial condi-
tion to solve the equations in the interior region. Finally,
we determine the integration constant by matching the
interior and exterior solutions at the NS surface.

A. Einstein Equations and Exterior Solutions

At linear order in ǫ, the only non-vanishing component
of the Einstein Equations is the (t, φ) one:

d2ω1

dR2
+ 4

1− πR2(ρ+ p)eλ

R

dω1

dR
− 16π(ρ+ p)eλω1 = 0 .

(19)
Solving this equation in the exterior (i.e. setting p = 0 =
ρ), one finds [37]

ωext
1 = Ω∗ −

2S

R3
= Ω∗

(

1− 2I

R3

)

, (20)

where we have defined the moment of inertia by

I ≡ S

Ω∗

. (21)
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This quantity characterizes how fast a body can spin
given a fixed spin angular momentum S. Notice that
the exterior solution depends on two constants Ω∗ and
S. The former must be specified a priori , just like ρc,
and it describes how fast the NS is rotating. The latter
is determined by matching this exterior solution to an
interior solution at the NS surface.

B. Interior Solutions

Before we can solve for the interior solution, we
first need initial conditions at the NS center. Taylor-
expanding Eq. (19) about the NS center, we find that
the interior solution must asymptotically behave as

ω1(R) = ωc +
8π

5
(ρc + pc)ωcR

2 +O(R3) (R → 0+) .

(22)
This solution contains a single constant, ωc, because we
have eliminated another constant by requiring regularity
of the solution at the NS center. The constant ωc deter-
mines the NS spin angular momentum S, or equivalently,
the NS moment of inertia I; in particular, I increases as
ωc increases.
We numerically solve Eq. (19) with the initial condi-

tion in Eq. (22) via an adaptive 4th-order Runge-Kutta
method [72]. In solving this equation, one can take ad-
vantage of its homogeneity, its scale-invariance, as done
e.g. in [67, 73]. Once the interior solution has been found,
we match it to the exterior one in Eq. (20) at the NS sur-
face R = R∗. The matching ensures that the solution is
continuous and differentiable at the NS surface:

ωint
1 (R∗) = ωext

1 (R∗), ω′
1
int(R∗) = ω′

1
ext(R∗) , (23)

where we use the superscript “int” to refer to interior
quantities. Through these conditions, we determine S
(or equivalently I) and ωc as a function of Ω∗. In prac-
tice, due to the scale invariance of Eq. (19), the exterior
solution can be divided by Ω∗ and thus it only depends
on the single constant I. Similarly, the interior solution
can be obtained for ωint

1 /Ω∗ as a function of a single con-
stant ω̄c = ωc/Ω∗. Therefore, the conditions in Eq. (23)
uniquely determine I and ωc. This then determines the
full solution, and thus also S, up to the overall constant
of proportionality Ω∗.
The moment of inertia can be expressed entirely as

a function of the interior solution. From Eqs. (10)–

(19), (20) and (23), I takes the form [37, 74]

I =
8π

3

1

Ω∗

∫ R∗

0

e−(νint+λint)/2R5(ρ+ p)ωint
1

R− 2M(R)
dR . (24)

In the Newtonian limit (superscript “N”), Eq. (24) re-
duces to [37]

IN =
8π

3

∫ R∗

0

R4ρ(R)dR , (25)

For later convenience, we define the dimensionless mo-
ment of inertia Ī

Ī ≡ I

M3
∗

. (26)

Figure 6 shows Ī as a function of the NS mass M∗

and compactness C. We have verified that the moment
of inertia I obtained here agrees exactly with previous
results in the literature [75]. Observe that the different
Ī curves for realistic EoSs approach each other as C in-
creases. Moreover, observe that all these curves approach
the value of Ī for a BH as C → 0.5, shown with a solid
cross in Fig. 6. Of course, none of the NS sequences con-
sidered here will ever lead to a BH solution for any finite
choice of central density.

V. SLOWLY ROTATING, ISOLATED NEUTRON

STARS: O(χ2)

Let us now look at slowly-rotating NS solutions at
quadratic order in spin. Following Sec. IV, we first dis-
cuss the differential equations that describe the solution
and then we solve them in the exterior region. We then
discuss the asymptotic behaviors of the solutions at the
NS center, obtain the interior solutions numerically, and
match it to the exterior solution at the NS surface.

A. Einstein Equations and Exterior Solutions

At quadratic order in spin, the θ-component of the
equation of motion ∇µTmat

µθ = 0, valid only inside the
star, yields

ξ2 = −R2e−λ(3h2 + e−νR2ω2
1)

3(M + 4πpR3)
. (27)

The (θ, θ)− (φ, φ), (θ, φ) and (R,R) components of the Einstein Equations give respectively,

m2 = −Re−λh2 +
1

6
R4e−(ν+λ)

[

Re−λdω1

dR
+ 16πRω2

1(ρ+ p)

]

, (28)

dK2

dR
= −dh2

dR
+

R− 3M − 4πpR3

R2
eλh2 +

R−M + 4πpR3

R3
e2λm2 , (29)
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FIG. 6. (Color Online) Dimensionless moment of inertia Ī , defined in Eq. (26), as functions of M∗ (left) and C (right) for
various EoSs. The horizontal dashed lines at Ī = 21.1 correspond to M∗ = 1M⊙ for the APR EoS; NSs below this line have
higher M∗ and C. The solid cross indicates the value of Ī for a BH. Observe that the Ī curves for realistic EoSs approach each
other as C increases, and moreover they approach the BH limit ĪBH = 4 as C → 0.5.

dh2

dR
= −R−M + 4πpR3

R
eλ

dK2

dR
+

3− 4π(ρ+ p)R2

R
eλh2 +

2

R
eλK2 +

1 + 8πpR2

R2
e2λm2 +

R3

12
e−ν

(

dω1

dR

)2

−4π(ρ+ p)R4ω2
1

3R
e−ν+λ . (30)

By imposing asymptotic flatness at spatial infinity, one finds the exterior solutions [37]

hext
2 =

1

M∗R3

(

1 +
M∗

R

)

S2 +AQ2
2

(

R

M∗

− 1

)

=
1

M∗R3

(

1 +
M∗

R

)

S2 − 3AR2

M∗(R − 2M∗)

[

1− 3
M∗

R
+

4

3

M2
∗

R2
+

2

3

M3
∗

R3
+

R

2M∗

f(R)2 ln f(R)

]

, (31)

Kext
2 = − 1

M∗R3

(

1 +
2M∗

R

)

S2 +
2AM∗

√

R(R− 2M∗)
Q1

2

(

R

M∗

− 1

)

−AQ2
2

(

R

M∗

− 1

)

= − 1

M∗R3

(

1 +
2M∗

R

)

S2 +
3AR

M∗

[

1 +
M∗

R
− 2

3

M2
∗

R2
+

R

2M∗

(

1− 2M2
∗

R2

)

ln f(R)

]

, (32)

mext
2 = − 1

M∗R2

(

1− 7
M∗

R
+ 10

M2
∗

R2

)

S2 +
3AR2

M∗

[

1− 3
M∗

R
+

4

3

M2
∗

R2
+

2

3

M3
∗

R3
+

R

2M∗

f(R)2 ln f(R)

]

, (33)

with f(R) ≡ 1− 2M∗/R, Q2
2 and Q1

2 the associated Leg-
endre functions of the second kind and A an integration
constant that is to be determined by matching with the
interior solution at the NS surface.
The spin-induced quadrupole moment Q(rot) can be

read off from the coefficient of the P2(cos θ)/R
3 term in

the Newtonian potential [76]:

Q(rot) = − S2

M∗

− 8

5
AM3

∗ . (34)

Notice that the quadrupole moment depends both on the
magnitude of the spin angular momentum S and the in-
tegration constant A, determined after matching the in-
terior and exterior linear- and quadratic-order in spin so-
lutions at the NS surface. The quadrupole moment rep-

resents the quadrupolar deformation of a body away from
sphericity, with Q(rot) < 0 corresponding to an oblate de-
formation. Notice also that the first term of Eq. (34) is
identical to the relation one obtains for BH, which means
that A → 0 in the GR test-particle limit.

B. Interior Solutions

Let us begin by Taylor-expanding Eqs. (27)–(30) about
the NS center and solving the expanded equations to ob-
tain

h2(R) = BR2 +O(R4) , (35)

K2(R) = −BR2 +O(R4) , (36)
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FIG. 7. (Color Online) Dimensionless quadrupole moment Q̄, defined in Eq. (40), as functions of M∗ (left) and C (right) for
various EoSs. The horizontal dashed lines at Q̄ = 9.89 correspond to a NS with M∗ = 1M⊙; curves below this line have higher
M∗ and C. Observe that the Q̄ curves for realistic EoSs approach each other as C increases, and moreover, they approach the
BH limit Q̄BH = 1 as C → 0.5.

m2(R) = −BR3 +O(R5) , (37)

ξ2(R) = −3B + e−νcω2
c

4π(ρc + 3pc)
R+O(R3), (R → 0+) ,

(38)

where B is a constant that determines the NS quadrupole
moment. As before, the constant νc is defined as νc ≡
ν(rǫ).
We numerically solve the evolution Eqs. (29) and (30)

with the initial conditions of Eqs. (35) and (36), using
an adaptive 4th-order Runge-Kutta algorithm [72]. As
before, when solving these equations we must impose the
following boundary conditions, such that h2 and K2 are
continuous at the NS surface:

hint
2 (R∗) = hext

2 (R∗), K int
2 (R∗) = Kext

2 (R∗) . (39)

These matching conditions determine the constants A in
Eqs. (31) and (32) and B in Eqs. (35) and (36).
In practice, we follow [37, 67] and first solve the interior

solution as a sum of a particular solution, with some
test-value for B, and the product of an undetermined
constant and the homogeneous solution. We then fix this
undetermined constant, together with A, by requiring
that the interior and exterior solutions match at the NS
surface. We have checked the results obtained through
this method by solving the equations using the Riccati
method [77–79].
Figure 7 shows the dimensionless rotationally-induced

quadrupole moment Q̄ as functions of M∗ and C, where
Q̄ is defined by

Q̄ ≡ −Q(rot)

M3
∗χ

2
, (40)

where we recall that the dimensionless spin parameter
χ is defined by χ ≡ S/M2

∗ . This Q̄ is the same as the

dimensionless quadrupole moment a in [80]. As in the Ī
case, the Q̄ curves for realistic EoSs approach each other
as C increases. Moreover, these curves also approach the
Q̄ value for a BH as the compactness approaches 0.5. As
before, however, the NS sequence does not go to a BH
solution for any finite choice of central density.

C. Rotational Love Number

With the quadratic isolated NS solutions at hand, we
can now introduce the rotational Love number [81]. In
general, Love numbers represent the deformability of a
NS away from sphericity. The rotational Love number,
in particular, refers to the deformability of a NS due to
its spin.
Love numbers are defined in a buffer zone, the region

R ≫ R ≫ R∗, where R is the radius of curvature of
the source of the perturbation. For example, the (t, t)
component of the metric can be expanded in the buffer
zone as [8, 81–85]

1− gtt
2

= −M∗

R
− 4π

5

Q(rot)

R3

∑

m

Y2m(Ω̂)Y ∗
2m(n̂) +O

(R4
∗

R4

)

+
4π

15
E(rot)R2

∑

m

Y2m(Ω̂)Y ∗
2m(n̂) +O

(

R3

R3

)

= −M∗

R
− Q(rot)

R3
P2(Ω̂ · n̂) +O

(R4
∗

R4

)

+
1

3
E(rot)R2P2(Ω̂ · n̂) +O

(

R3

R3

)

. (41)

The quantity E(rot) is related to the trace of the
rotationally-induced, electric, quadrupole tidal tensor,
i.e. the quadrupolar contribution of the centrifugal po-
tential. In the Newtonian limit, this quantity reduces to
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E(rot) = Ω2
∗ [81]. As usual, Y2m(Ω̂) are the ℓ = 2 spheri-

cal harmonics in the Ω̂ direction, where n̂ is the principal
axis of the perturbation, which in this case corresponds
to the unit vector of the spin angular momentum Ŝ.
The ℓ = 2 rotational Love number λ(rot) is defined

by [81, 86]

λ(rot) ≡ −Q(rot)

E(rot)
= −Q(rot)

Ω2
∗

, (42)

where the second equality uses the Newtonian expression
for E(rot). As defined here, λ(rot) has unit of (mass)5 or
(length)5 (recall that we use geometric units throughout
this paper, where c = 1 = G), and thus, there are 2
natural ways of normalizing it [81, 86];

k
(rot)
2 ≡ 3

2

λ(rot)

R5
∗

, (43)

λ̄(rot) ≡ λ(rot)

M5
∗

=
2

3
k
(rot)
2 C−5 . (44)

By using Eqs. (24), (26) and (40), one can rewrite λ̄(rot)

as

λ̄(rot) = Ī2Q̄ . (45)

In this paper, we refer to k
(rot)
2 as the ℓ = 2 rotational

apsidal constant, while we refer to λ̄(rot) as the ℓ = 2
dimensionless rotational Love number.

VI. TIDALLY-DEFORMED NS SOLUTIONS

Up until now we have concentrated on isolated NSs
in the slow-rotation approximation. We will now switch
gears and consider NSs in a binary system. We focus on
one of the binary components, the primary, and study
how it is tidally deformed by its companion, assuming
the primary is not spinning. One can construct tidally-
deformed NS solutions in a manner similar to the con-
struction of slowly-rotating solutions. In both cases, the
deformation (either due to rotation or tidal effects) is
treated as a small deformation away from sphericity.

A. Einstein Equations and Exterior Solutions

The leading-order effect of tidal perturbations enters
at O(ǫ2). This is because this effect is generated by an
electric tidal perturbation, which must be of even par-
ity. Moreover, in this section we are interested in non-
rotating tidally deformed NSs, so we can set ω1 = 0 in
Eqs. (28)–(30). By eliminating m2 and K2 from these 3
equations, one obtains a master equation for h2 [8]:

0 =
d2h2

dR2
+

{

2

R
+

[

2M

R
+ 4πR(p− ρ)

]

eλ
}

dh2

dR

−
{

6eλ

R2
− 4π

[

5ρ+ 9p+ (ρ+ p)
dρ

dp

]

eλ +

(

dν

dR

)2
}

h2 .

(46)

The observable related to tidally-deformed NS will
eventually be a tidal Love number, and thus, we will
need to asymptotically expand the exterior solution in
the buffer zone. This time, however, the radius of cur-
vature that defines the buffer zone is related to the tidal
field generated by the companion. This radius is ap-
proximately equal to the orbital separation of the binary.
Therefore, when solving Eq. (46) in the exterior region,
one cannot impose asymptotic flatness to eliminate one
of the constants of integration. Keeping this in mind, the
solution to the above equation is [8]

hext
2 = c1

(

R

M∗

)2 (

1− 2M∗

R

)

×
[

−2M∗(R −M∗)(3R
2 − 6M∗R− 2M2

∗ )

R2(R − 2M∗)2

+3 ln

(

R

R− 2M∗

)]

+ c2

(

R

M∗

)2 (

1− 2M∗

R

)

,

(47)

where c1 and c2 are integration constants.

B. Interior Solutions and the Tidal Love Number

The interior solution to Eq. (46) can be obtained by
solving this equation numerically with the initial condi-
tion in Eq. (35) and its derivative. We obtain this nu-
merical solution in the same way as we obtained h2 for
slowly-rotating NSs. As before, the interior solution will
depend on the integration constant B, which, in princi-
ple, is determined by matching this solution to the exte-
rior solution in Eq. (47) at the NS surface:

hint
2 (R∗) = hext

2 (R∗), h′
2
int(R∗) = h′

2
ext(R∗) . (48)

Notice that by using Eq. (48), we can re-express c1 and
c2 in terms of h2(R∗), h

′
2(R∗) and the NS compactness

C.
With the interior solution in hand, let us now define

the tidal Love number. As in the case of the rotational
Love number, the tidal one characterizes the deforma-
bility of a NS away from sphericity, but this time due
to the presence of a tidal field induced by a companion.
In the buffer zone, the (t, t) component of the metric
takes the form of Eq. (41), but with Q(rot) → Q(tid) and
E(rot) → E(tid), where Q(tid) and E(tid) correspond to the
tidally-induced quadrupole moment and the tidal poten-
tial, induced by the companion. We then define the tidal
Love number λ(tid) by

λ(tid) ≡ −Q(tid)

E(tid)
, (49)
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and its dimensionless versions k
(tid)
2 and λ̄(tid) by

k
(tid)
2 ≡ 3

2

λ(tid)

R5
∗

, (50)

λ̄(tid) ≡ λ(tid)

M5
∗

=
2

3
k
(tid)
2 C−5 . (51)

Following [17], we here refer to λ(tid) as the tidal Love

number3 and we refer to k
(tid)
2 and λ̄(tid) as the tidal

apsidal constant and dimensionless tidal Love number,
respectively.
The prescription of the tidal Love number is completed

by finding the value of E(tid), which is determined by the
asymptotic behavior of h2 in the buffer zone. Taylor-
expanding this quantity in the buffer zone, one finds [8]

hext
2 =

16

5
c1
M3

∗

R3
+ c2

R2

M2
∗

+O
(

M4
∗

R4
,
R

M∗

)

. (52)

As shown in Eq. (41), the term in the asymptotic expan-
sion of gtt (or h2) in the buffer zone that is proportional
to R−3 gives us the tidal quadrupole moment, while the
term proportional to R2 gives us the tidally-induced elec-
tric quadrupole tidal tensor. Thus, we find that c1 is
related to Q(tid), while c2 is related to E(tid).
The tidal apsidal constant can then be found by taking

the ratio of c1 and c2 [8]:

k
(tid)
2 =

8

5
C5 c1

c2
=

8

5
C5(1− 2C)2[2 + 2C(y − 1)− y]

× {2C[6− 3y + 3C(5y − 8)]

+4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]

+3(1− 2C)2[2− y + 2C(y − 1)] ln(1− 2C)
}−1

,

(53)

with y ≡ R∗h
′
2(R∗)/h2(R∗). In the second equality, we

have rewritten c1,2 in terms of h2, its derivative and the
NS compactness.
We see then that the tidal apsidal constant only de-

pends on y, which simplifies the way one must solve
Eq. (46). First, we notice that Eq. (46) is a homoge-
neous equation for h2, and thus, the integration constant
B in Eq. (35) only changes the solution h2 by a constant
factor. Since y ∝ h′

2/h2 does not depend on this overall
factor, it suffices to solve Eq. (46) with an arbitrary test
value for B, if one is only interested in the tidal apsidal
constant. We have calculated the tidal apsidal constant,
as well as the tidal Love number for a sequence of stars
with varying M∗ and C. We have found that our results
agree exactly with Figs. 1 and 2 of [19].
Figure 8 shows the dimensionless Love number λ̄(tid)

as functions of M∗ and C. Observe that the λ̄(tid) curves

3 In some references, λ(tid) is called the tidal deformability and

the word “tidal Love number” is reserved for k
(tid)
2 .

for realistic EoSs approach each other as C increases, and
moreover, they approach the BH limit as C → 0.5. Once
more, as before, the BH limit cannot be taken from the
sequence of NS considered, as there is no finite central
density that would lead to BH formation.

VII. I-LOVE-Q RELATIONS

Now that the moment of inertia, quadrupole moment
and Love numbers have been calculated, let us present
the universal I-Love-Q relations. We first show numerical
results and a fitting curve through these. Then, we obtain
analytic I-Love-Q relations for the n = 0 and 1 polytropic
EoSs in the Newtonian limit.

A. Numerical Results

Figure 9 shows universal relations between dimension-
less quantities, Ī, Q̄, λ̄(tid) and λ̄(rot) for various EoSs.
Notice that these (barred) 4 quantities are essentially in-

dependent of the NS spin, to second order in the slow-
rotation approximation4. The parameter varied along
each curve is the NS central density, or equivalently the
NS compactness. Therefore, for the polytropic EoS the
I-Love-Q relations are independent of the polytropic am-
plitude coefficient K in Eq. (9). The bottom part of each
panel shows the relative fractional difference between
each of the curves and curve corresponding to the n = 1
polytropic EoS. For reference, the top axes show the NS
mass with the APR EoS. The vertical dashed lines corre-
spond to M∗ = 1M⊙ for the APR EoS and points to the
left of these lines correspond to more massive NSs with
higher compactness. Observe that, for realistic EoSs with
M∗ > 1M⊙, the fractional relative differences are O(1)%.
Observe also that the polytropic I-Love-Q relations de-
viate from those with realistic EoSs as one increases n,
ie. as the NS becomes more centrally-concentrated. We
see this as evidence that the I-Love-Q trio is most sensi-
tive to the NS outer layers, where realistic EoSs mostly
agree with each other. Curiously, the fractional relative
difference between the n = 1 and n = 0 polytrope (con-
stant density NS star) is also of O(1)%, but this case will
be studied analytically in Sec. VII B.
Observe that, in general, the dependence of the I-Love-

Q relations on any EoS becomes weaker as the NS com-
pactness C increases, ie. from right to left in any of the
panels of Fig. 9. This may be evidence that at least part
of the universality observed is due to the NS sequence
approaching a BH as C → 0.5, where the latter has no

4 Formally, the barred quantities depend on the mass M∗, which
is not the observed mass. The two are related by Mons =
M∗

(

1 + χ2δM
)

. Rapidly rotating NS calculations indicate that
δM = O(0.3), and thus, for χ < 0.1, such spin dependence in-
troduces corrections of O(0.003).
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FIG. 8. (Color Online) Dimensionless tidal Love number λ̄(tid) as functions of M∗ (left) and C (right) for various EoSs. The

horizontal dashed lines at λ̄(tid) = 2.66× 103 corresponds to a star with M∗ = 1 M⊙; the region below this line corresponds to
stars with larger mass and compactness. Observe that the λ̄(tid) curves for realistic EoSs approach each other as C increases,

and moreover, approaches the BH limit λ̄
(tid)
BH = 0 as C → 0.5.

yi xi ai bi ci di ei

Ī λ̄(tid) 1.47 0.0817 0.0149 2.87× 10−4 −3.64× 10−5

Ī Q̄ 1.35 0.697 -0.143 9.94× 10−2 −1.24× 10−2

Q̄ λ̄(tid) 0.194 0.0936 0.0474 −4.21× 10−3 1.23 × 10−4

TABLE I. Estimated numerical coefficients for the fitting for-
mula of the I-Love, I-Q and Q-Love relations given in Eq. (54).

internal-structure dependence by the no-hair theorems.
As C → 0.5, the asymptotic values of Ī, λ̄(tid) and Q̄ for
a BH are Ī → 4 [87], λ̄(tid) → 0 [10] [see also Eq. (53)]
and Q̄ → 1 [49, 50, 80] respectively. In each panel of
Fig. 9, we show the BH limit of either Ī = 4, Q̄ = 1
or λ̄(rot) = 16 as a horizontal dashed line. Observe that
the I-Love-Q relations asymptote to such BH values as C
increases. However, one cannot quite reach this limit, as
one can never construct a BH solution by increasing the
central density of a NS solution by a finite amount. We
think that this is why the relative fractional differences
shown in the bottom panels of Fig. 9 do not decrease to
zero as one increases the central density.
Unlike the other relations, the λ̄(rot)–λ̄(tid) relation

(bottom, right panel of Fig. 9) depends very weakly on
the EoS even when the NS compactness is relatively small
(as one approaches the Newtonian limit). In fact, one
can show that the relation λ̄(rot) = λ̄(tid) holds exactly
in the Newtonian limit for any EoS, as we will discuss in
Sec. VII B 1.
Given the universality of the I-Love-Q relations, one

can fit them all with a single curve:

ln yi = ai + bi lnxi + ci(ln xi)
2 + di(lnxi)

3 + ei(ln xi)
4 ,

(54)
where the coefficients are summarized in Table I. Fig-
ures 1 and 10 show the fitting curves for the I-Love, Q-

Love and I-Q relations, together with the relative frac-
tional difference between the fitting curves and all other
EoS curves. For the polytropic EoSs, we do not show the
results when n = 0, 2, 2.5 and 3 since such EoSs do not
model NSs well; instead, we add results when n = 0.6
and 0.8. As one can see, the fitting curves are accurate
to within O(1)% accuracy.

B. Analytical Explanations

The universal I-Love-Q relations presented in the pre-
vious subsection are quite intriguing, and thus, they beg
for an analytic explanation. We will attempt one here, by
investigating these relations for certain EoSs that allow
for an analytical treatment. In particular, we will study
the n = 0 and n = 1 polytropic EoSs in the Newtonian
limit, for which the moment of inertia, the quadrupole
moment and the Love numbers can be computed fully
analytically. We can then derive the I-Love-Q relations
analytically as well to try to obtain an analytical expla-
nation for these relations.

1. Newtonian λ for Generic EoSs

In Newtonian theory, the curl of the equation of hy-
drostatic equilibrium, ∇p = ρ∇Ψ where Ψ is the total
gravitational potential, with the Newtonian force van-
ishes, ie. ∇ρ×∇Ψ = 0. Thus, surfaces of constant ρ and
Ψ coincide. One can express such surfaces in terms of a
radial parameter a as [81]

r(a, θ, φ) = a



1 +
∑

ℓ,m

fℓYℓm(Ω̂)Yℓm(n̂)



 ,



14

10
1

10
2

10
3

I
APR
SLy
LS220
Shen
Polytrope (n=1)
Polytrope (n=0)
Polytrope (n=2)
Polytrope (n=2.5)
Polytrope (n=3)
Newtonian (n=0,1)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

λ(tid)

10
-3

10
-2

10
-1

|I-
I(n

=
1)

|/I
(n

=
1)

0.110.120.180.300.500.781.21.72.2

M
*
 (APR) [M

o.]

BH

10
0

10
1

10
2

Q

APR
SLy

LS220
Shen
Polytrope (n=1)

Polytrope (n=0)

Polytrope (n=2)

Polytrope (n=2.5)

Polytrope (n=3)

Newtonian (n=0,1)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

λ(tid)

10
-3

10
-2

10
-1

|Q
-Q

(n
=

1)
|/Q

(n
=

1)

0.110.120.180.300.500.781.21.72.2

M
*
 (APR) [M

o.]

BH

10
1

10
2

10
3

I

APR
SLy
LS220
Shen
Polytrope (n=1)
Polytrope (n=0)
Polytrope (n=2)
Polytrope (n=2.5)
Polytrope (n=3)
Newtonian (n=0,1)

10
0

10
1

10
2

Q

10
-2

10
-1

|I-
I(n

=
1)

|/I
(n

=
1)

0.110.161.0

M
*
 (APR) [M

o.]

BH
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

λ(r
ot

)

APR
SLy
LS220
Shen
Polytrope (n=1)
Polytrope (n=0)
Polytrope (n=2)
Polytrope (n=2.5)
Polytrope (n=3)
Newtonian

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

λ(tid)

10
-3

10
-2

10
-1

|λ
(r

ot
) -λ

(r
ot

),
 (

n=
1)

|/λ
(r

ot
),

 (
n=

1)

0.110.120.180.300.500.781.21.72.2

M
*
 (APR) [M

o.]

BH

FIG. 9. (Color Online) I-Love (top left), Q-Love (top right), I-Q (bottom left) and Love-Love (bottom right) relations for
various EoSs. Black thin solid lines represent the Newtonian limit for the polytropic EoSs with n = 0 and n = 1. The
horizontal lines at Ī = 4, Q̄ = 1, λ̄(tid) = 0 and λ̄(rot) = 16 correspond to the (non-rotating) BH limiting values. Observe
that as one increases the NS compactness (toward the left of each panel), the I-Love-Q relations approach the BH limit. The

(barred) quantities Ī , Q̄, λ̄(tid) and λ̄(rot) do not depend on the NS spin to second-order in the slow-rotation approximation.
The parameter varied along each curve is the NS central density, or equivalently the NS compactness, both increasing to the
left of the plots. For reference, the vertical dashed lines correspond to M = 1M⊙ for the APR EoS. The top axis of each panel
shows the corresponding NS mass for the APR EoS. The bottom part of each panel shows the relative fractional differences
between the relations, using the n = 1 polytropic curve as a reference.

= a

[

1 +
5

4π

∑

ℓ

fℓPℓ(Ω̂ · n̂)
]

, (55)

where fℓ is the dimensionless distortion function of the
constant a. This function is related to the ℓ = 2 tidal
apsidal constant k

(tid)
2

,N by

k
(tid)
2

,N =
3− η2(a∗)

2[2 + η2(a∗)]
, (56)

where a = a∗ denotes the surface of the star and

η2(a) ≡
d ln f2
d ln a

. (57)

This function can be obtained by solving the Clairaut-
Radau equation [81, 88]

a
dη2
da

+ 6D(η2 + 1) + η2(η2 − 1)− 6 = 0 , (58)

with the boundary condition η2(0) = 0, where D(a) ≡
ρ(a)/ρ̄(a) with ρ̄ representing the mean density of the
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and numerical results.

star.
In the Newtonian limit, both rotational and tidal ap-

sidal constants can be calculated from Eq. (58) with the
same boundary condition [81], and hence,

λ̄(tid),N = λ̄(rot),N . (59)

This shows that the rotationally-induced and tidally-
induced NS deformabilities are exactly the same in the
Newtonian limit. In GR, non-linear effects modify this
relation and break the equality. Equation (59) is shown
as a black, thin, solid line in the bottom, right panel of
Fig. 9. Notice that all the curves approach this New-
tonian result as one decreases the compactness, as ex-
pected.
One can also calculate the ℓ = 2 tidal apsidal constant

k
(tid)
2

,N by taking the Newtonian limit (R ≫ M(R), ρ ≫
p) of Eq. (53) [8], where Eq. (46) in the Newtonian limit
is given by

d2h2

dR2
+

2

R

dh2

dR
+

(

4πρ
dρ

dp
− 6

R2

)

h2 = 0 . (60)

2. Polytropic I-Love-Q relations: n = 0

Now, let us investigate the I-Love-Q relations in the
Newtonian limit for specific EoSs. First, we focus on the
polytropic EoS with n = 0, which corresponds to the
incompressible EoS with

ρ = ρc Θ(R∗ −R) =
3

4π

M∗

R3
∗

Θ(R∗ − R) , (61)

where Θ(R∗−R) is the Heaviside function, which is unity
inside the star and zero outside. By substituting Eq. (61)
into Eq. (25), one obtains

IN =
2

5
M∗R2

∗ , ĪN =
2

5

1

C2
. (62)

Not surprisingly, this is the Newtonian moment of inertia
for a sphere of constant density.
Next, we solve Eq. (60) to obtain λ(tid),N. As pointed

out in [9], one must be careful when solving Eq. (60)
for the incompressible EoS. This is because ρ can be ex-
pressed as a step-function with a discontinuity at the
NS surface. Thus, dρ/dp in Eq. (60) gives a delta-
function centered at the NS surface. To be more pre-
cise, by using dρ/dR = −ρcδ(R∗ − R), p(R∗) = 0,
M∗ = (4π/3)R3

∗ρc and the hydrostatic equilibrium equa-
tion [or the Newtonian limit of Eq. (12)] at the NS sur-
face, dp(R∗)/dR = −M∗ρ(R∗)/R2

∗, the coefficient of
h2 in Eq. (60) that is proportional to dρ/dp becomes
4πρdρ/dp = 4πρ(dρ/dR)(dp/dR)−1 = (3/R∗)δ(R∗ − R)
near the surface. By taking such term into account, one

can obtain the correct k
(tid)
2

,N by first solving Eq. (60)
with dρ/dp = 0 and then shifting yN by -3 [9]. By taking
all of this into account, one obtains yN = −1, and thus,

k
(tid)
2

,N = 3/4 [9]. This agrees with the classic result

in [88]. By using Eq. (51), λ̄(tid),N becomes

λ̄(tid),N =
1

2

1

C5
. (63)

Let us now move on to the rotationally-induced
quadruple moment. Rotating configurations of con-
stant density stars can be described by Maclaurin
spheroids [89]. The quadrupole moment in Newtonian
theory is given by [90]

Q(rot),N = 2π

∫ π

0

∫ r∗(θ)

0

ρ(r, θ)r4P2(cos θ) sin θ dr dθ .

(64)
The surface of the star r = r∗(θ) is in turn given by

r∗(θ) =

(

sin2 θ

b2
+

cos2 θ

c2

)−1/2

, (65)

where b and c are the semi-major and semi-minor axes,
respectively. By substituting Eq. (65) and ρ = ρc into
Eq. (64), one obtains

Q(rot),N = −4π

15
ρcb

2c(b2 − c2) . (66)

From the equation of hydrostatic equilibrium,

dv

dt
= −1

ρ
∇p−∇Ψ , (67)

where boldfaced quantities refer to three-dimensional Eu-
clidean vectors, with v = Ω × r and Ω the NS angular
velocity vector, one obtains [89]

Ω∗ =

{

2πρc

[√
1− e2(3 − 2e2)

e3
sin−1 e− 3(1− e2)

e2

]}1/2
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=

√

8π

15
ρc e+O(e3) , (68)

where Ω∗ = |Ω| and e is the eccentricity defined by

e ≡
√

1− c2

b2
. (69)

Using Eqs. (68) and (69), we can eliminate c from
Eq. (66) and substitute b = R∗ +O(Ω2

∗) to obtain

Q(rot),N = −1

2
R5

∗Ω
2
∗ +O(Ω4

∗) . (70)

Keeping only the leading term, one obtains [90]

Q̄N =
25

8

1

C
. (71)

The dimensionless rotational Love number λ̄(rot),N can
be calculated as

λ̄(rot),N = (ĪN)2Q̄N =
1

2

1

C5
, (72)

which agrees with λ̄(tid),N given in Eq. (63). This then
verifies Eq. (59).
From Eqs. (62), (63) and (71), one obtains the I-Love-

Q relations in the Newtonian limit for the incompressible
EoS:

ĪN = C
(n=0)

Ī λ̄

[

λ̄(rot),N
]2/5

, ĪN = C
(n=0)

ĪQ̄

[

Q̄N
]2

,

Q̄N = C
(n=0)

Q̄λ̄

[

λ̄(rot),N
]1/5

, (73)

with

C
(n=0)

Īλ̄
=

27/5

5
≈ 0.528 , (74)

C
(n=0)

ĪQ̄
=

128

3125
≈ 0.0410 , (75)

C
(n=0)

Q̄λ̄
=

25

214/5
≈ 3.59 . (76)

Of course, universality would be established if the con-
stants CA are independent of the EoS, with A any pair
in the I-Love-Q trio. We will compute the same relations
for the n = 1 polytrope next, and thus, we will verify the
degree of universality quantitatively.

3. Polytropic I-Love-Q relations: n = 1

Let us now concentrate on the n = 1 polytrope and
look first at the moment of inertia. Equation (12) in
the Newtonian limit gives the equation of hydrostatic
equilibrium:

dp

dR
= −ρM

R2
. (77)

From Eqs. (10), (77) and p = Kρ2, one can solve this
equation to obtain

ρ =
1

4

M∗

R2
∗

1

R
sin

(

πR

R∗

)

. (78)

One can then calculate IN (and ĪN) by substituting the
above equation in Eq. (25) to find

IN =
2(π2 − 6)

3π2
M∗R2

∗ , ĪN =
2(π2 − 6)

3π2

1

C2
. (79)

Let us now consider the tidal apsidal constant. The
solution to Eq. (60) can be written in terms of Bessel
functions, as hN

2 ∝ (R/R∗)J5/2(πR/R∗) [8, 9]. With
this, we find that the apsidal constant is

k
(tid)
2

,N = −1

2
+

15

2π2
. (80)

This constant agrees with the numerical results of [88].
The dimensionless tidal Love number, λ̄(tid),N, is then

λ̄(tid),N =
15− π2

3π2

1

C5
. (81)

Finally, let us look at the rotationally-induced
quadrupole moment. From Eq. (59), one easily finds that

Q̄N =
λ̄(tid),N

(ĪN)2
=

3π2(15− π2)

4(π2 − 6)2
1

C
. (82)

We now have all the necessary ingredients to compute
the I-Love-Q relations in the Newtonian limit for an n =
1 polytrope. From Eqs. (79), (81) and (82), one finds

ĪN = C
(n=1)

Īλ̄

[

λ̄(tid),N
]2/5

, ĪN = C
(n=1)

ĪQ̄

[

Q̄N
]2

,

Q̄N = C
(n=1)

Q̄λ̄

[

λ̄(tid),N
]1/5

, (83)

with

C
(n=1)

Ī λ̄
=

2(π2 − 6)

33/5π6/5(15− π2)2/5
≈ 0.527 , (84)

C
(n=1)

ĪQ̄
=

32(π2 − 6)5

27π6(π2 − 15)2
≈ 0.0406 , (85)

C
(n=1)

Q̄λ̄
=

36/5π12/5(15− π2)4/5

4(π2 − 6)2
≈ 3.60 . (86)

Observe that the numbers shown in Eqs. (84)–(86) are
almost identical to those in Eqs. (74)–(76).
The I-Love-Q relations for the n = 0 and n = 1 poly-

tropic EoS in the Newtonian limit are shown as black
thin solid lines in Fig. 9. Notice that the relations for
the n = 0 and n = 1 polytropic EoSs in GR approach
the Newtonian ones as the compactness decreases. No-
tice, however, that we have here analytically shown that
the I-Love-Q relations are very similar for the n = 0 and
n = 1 polytropic EoSs only. This does not mean that the
dependence of the I-Love-Q relations on the EoSs is weak
in the Newtonian limit for all EoSs. Indeed, Fig. 9 shows
that these relations for some EoSs, such as APR and SLy,
do not approach the Newtonian limit of the n = 0 and 1
polytrope.
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4. Analytical Reasoning

The universality of the I-Love-Q relations rests on two
ingredients. The first ingredient is that the functional
form of the relations must be the same for different EoSs.
For the n = 0 and n = 1 polytropes in the Newtonian
limit, this is verified by comparing Eqs. (73) to (83),

and noting that regardless of the EoS, ĪN ∝
[

λ̄(tid),N
]2/5

,

ĪN ∝
[

Q̄N
]2

and Q̄N ∝
[

λ̄(tid),N
]1/5

. This fact is perhaps
expected, since all multipole moments must be propor-
tional to the product of a dimensionless constant and the
compactness to some power. The power is determined
by the Newtonian dimensional structure of the particu-
lar multipole moment, e.g. I ∝ R2

∗ and thus Ī ∝ C−2.
This power will be the same regardless of the EoS, and
thus the power exponent in the I-Love-Q relations will
also be EoS independent.
The second ingredient, and perhaps the most difficult

to understand, is the requirement that the constants of
proportional (ie. the CA’s) be the same regardless of the
EoS. For the n = 0 and n = 1 polytropes in the Newto-
nian limit, this is again verified by noting that the coef-
ficients in Eqs. (74)–(76) are almost identical to those in
Eqs. (84)–(86); their ratios are

C
(n=0)

Īλ̄

C
(n=1)

Īλ̄

=
22/533/5π6/5(15− π2)2/5

5π2 − 30
≈ 1.002 , (87)

C
(n=0)

ĪQ̄

C
(n=1)

ĪQ̄

=
108π6(π2 − 15)2

3125(π2 − 6)5
≈ 1.008 , (88)

C
(n=0)

Q̄λ̄

C
(n=1)

Q̄λ̄

=
25(π2 − 6)2

24/536/5π12/5(15− π2)4/5
≈ 0.997 . (89)

In principle, there is no reason to expect that these
coefficients should be equal to each other regardless of
the EoS. Rather, one expects them to depend on the NS
internal structure. One possible explanation is to argue
that these coefficients depend on integrals of the energy
density that are more heavily weighted toward the NS’s
outer layers, i.e. the structure of the NS in its outer layers
is what is mostly determining these coefficients. But it is
precisely in the outer layers that nuclear physics uncer-
tainties are lowest. Therefore, the EoSs in this regime are
more similar to each other than in the core, thus leading
to some degree of universality.
We have found some evidence to support this interpre-

tation, shown in Fig. 9. Focus on the I-Love-Q relations
for the polytropic EoSs with n = 2, 2.5 and 3, which
greatly modify the internal structure in the NS’s outer
layers, far from the core. In fact, these polytropes lead
to essentially no energy density near the NS surface, with
most of it concentrated near the core. We see that, in-
deed, when we choose an EoS that affects the NS struc-
ture far from the core, we significantly lose universality in
the I-Love-Q relations, as one can see from the n = 2, 2.5
and 3 curves in the bottom part of each panel in Fig. 9.
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FIG. 11. (Color Online) (ρ/ρc)(R/R∗)
4 (top) and

ρ(dρ/dp)/(ρ2c/pc) (bottom) as functions of R/R∗ for C = 0.17
with various EoSs. The former corresponds to the integrand
(modulo normalization constants) of IN [Eq. (24)] andQ(rot),N

[Eq. (64)] in the Newtonian limit, while the latter corresponds
to the EoS-dependent coefficient in Eq. (60), which gives

λ(tid),N. Sudden changes in the bottom panel correspond to
nuclear phase transitions. Observe that the dominant contri-
bution of (ρ/ρc)(R/R∗)

4 and ρ(dρ/dp)/(ρ2c/pc) for realistic
EoSs come from the NS outer layer.

Further evidence can be found by investigating a few of
the terms that control the behavior of the moment of in-
ertia, the quadrupole moment and the tidal Love number
as a function of C. First, in the Newtonian limit, both IN

[Eq. (24)] and Q(rot),N [Eq. (64)] can be written in inte-
gral form, where the radial dependence of the integrand is
proportional to ρ(R)R4. The top panel of Fig. 11 shows
(ρ/ρc)(R/R∗)

4 as a function of R/R∗ for C = 0.17 with
various EoSs. I and Q(rot) are proportional to the area
under the curves in this panel. Observe that the curves
are similar, even for different realistic EoSs, and the dom-
inant contribution comes from the NS outer layer, some-
where between R/R∗ ≈ 0.7− 0.9. This may explain the
similar behavior of the I-C and Q-C curves with different
realistic EoSs in the high-compactness regime (see Figs. 6
and 7), as well as the universal I-Q behavior. Observe
also that as one increase the polytropic index n, the NS
becomes more centrally-condensed, and I and Q are not
dominated just by the NS outer layers.
Similarly, we can study the behavior of the structure-

dependent term that determines the tidal Love num-
ber in the Newtonian limit. Equation (60) shows that
there is only one such term and it is proportional to
ρdρ/dp = ρ(dρ/dR)(dp/dR)−1. The bottom panel of
Fig. 11 plots ρ(dρ/dp)/(ρ2c/pc) as a function of R/R∗

for C = 0.17 with various EoSs. Sudden changes in the
slope corresponds to nuclear phase transitions. Similar
to the top panel, the behavior of ρdρ/dp is similar among
realistic EoSs and the dominant contribution comes from
the NS outer layers. This partially explains the similar
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behavior observed in the Love-C curves with different re-
alistic EoSs in the high-compactness regime (see Fig. 8),
as well as the universal Q-Love and I-Love relations.
Another possible explanation for the universality of the

I-Love-Q relations involves the behavior of this trio as
one approaches the BH limit. The no-hair theorems [43–
48] of GR state that the exterior multipolar structure of
an isolated, stationary, axisymmetric BH solution in GR
is completely determined by its mass and its spin angu-
lar momentum. Therefore, the quadrupole moment, for
example, is completely determined by the spin angular
momentum through Eq. (34) with A = 0 [49, 50]. For
NSs, such a result does not exist, but one might still ex-
pect the I-Q relation to become less structure dependent
as one approaches the BH limit (C → 0.5). Indeed, Fig. 9
shows that the loss of universality (the relative fractional
difference shown in the bottom part of each panel) de-
creases logarithmically as the mass increases from 0.3M⊙

to 1.4M⊙.
Of course, one can never increase the compactness

enough by a finite amount to turn a NS into a BH, ie. the
NS sequence of varying compactness does not terminate
in a BH for finite central density. Still, it is interesting to
see that as C increases, the I-Love-Q relations are indeed
approaching the BH limit, as explicitly shown in Fig. 9.
Moreover, universality in the I-Q curve suggests a univer-
sal relation between the NS spin and the NS quadrupole
moment that is almost independent of the internal struc-
ture. Such a relation is similar to the no-hair relations
for BHs [49, 50].
Before proceeding, let us point out that this effacing

of internal structure is not the same as what is discussed
in the effacement principle [51] in GR. The latter states
that the equations of motion of compact objects of any
size and structure depend only on integral parameters,
like the mass and spin, and it is independent of its actual
shape and internal structure. Of course, this principle
holds in GR but only for BHs because of the no-hair the-
orems. The effacement principle is violated for NSs, but
the violation is small, with corrections to the accelera-
tion entering at 5PN order for a binary of non-spinning
compact objects. Since the effacement principle deals
with the motion of a body only, and not on the multipo-
lar structure of its exterior gravitational field, the efface-
ment we find here is not a consequence of the standard
effacement principle.

VIII. APPLICATIONS

The I-Love-Q relations have 3 immediate applications
to observational astrophysics, GWs and fundamental
physics. Let us look at each application in turn.

A. Observational Astrophysics

On an astrophysical front, a measurement of any sin-
gle member of the I-Love-Q trio automatically provides
information about the other two, even when measuring
the other two directly might not be possible with current
observations. For example, one might be able to measure
Ī within 10% accuracy by measuring the orbits of binary
pulsars sufficiently accurately, so as to extract the spin-
orbit coupling effect in the advance rate of the periastron
of the double binary pulsar J0737-3039 [6, 7]. If such
measurement is accomplished, one can then automati-
cally obtain the quadrupole moment and tidal Love num-
ber of the primary pulsar by using the I-Love-Q relations.
Similarly, if an equal-mass NS binary within 300Mpc is
about to coalesce, one might be able to determine the
λ̄(tid) of the constituents with second-generation, ground-
based GW interferometers [17–19, 25, 26]. Then, from
the I-Love-Q relations, one may obtain the moment of in-
ertia and quadrupole moment of the binary constituents,
which again, would be very difficult to measure with
GWs.
Let us stress that the I-Love-Q relations cannot be used

to measure the equation of state, but rather to infer two
members in the I-Love-Q trio when the third is mea-
sured. The main result in this paper is, in fact, that
the I-Love-Q relations seem to be rather insensitive to
the EOS. Inferring the quadrupole moment and the Love
number would provide important information about the
properties of NSs. The quadrupole moment would tell us
how much a NS can be quadrupolarly deformed (squeezed
at the poles), while the Love number would tell us how
much it can be deformed, for example, in the presence of
a companion.
A small caveat should be presented here. The I-Love-

Q relations hold for the dimensionless (barred) moment
of inertia, quadrupole moment and Love number, which
are normalized by the NS mass and spin. In particu-
lar, the observed NS mass differs from the mass used
to normalize the I-Love-Q relations by factors of O(χ2),
ie. Mobs = M∗

(

1 + χ2δM
)

, where δM = O(0.3) [86, 91].
For stars spinning with χ . 0.1, this induces differences
between Mobs and M∗ of O(10−3), which would spoil
the I-Love-Q universality. However, this non-universality
is much smaller than the accuracy to which M∗ can be
observationally determined, and thus, it does not spoil
the use of the I-Love-Q relations in observational astro-
physics.
Of course, these application assumes that the univer-

sality of the I-Love-Q relations holds, which rests on the
assumptions of uniform and slow-rotation, small tidal
perturbations and that GR is the correct theory. There-
fore, this technique cannot be applied to, for example,
newly-born NSs that are differentially and rapidly ro-
tating. NSs that source GWs in the sensitivity band of
ground based detectors, however, are expected to be old,
and thus uniformly rotating with large spin periods (they
should have spun down by the time they are visible by
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GW detectors [60]), so that the slow-rotation approxi-
mation is well-justified. The primary NS in the double
binary pulsar has a period of 22 ms, which implies a
χ ∼ 0.018, small enough that the slow-rotation approxi-
mation is again well-justified.
Millisecond binary pulsars with short-periods, ie. peri-

ods below 1 ms, would be spinning too fast for the above
relations to be directly applicable. However, we expect
I-Love-Q type universality with respect to the EoS to
still hold in this case, except that now the coefficients
in Table I will also depend somewhat on the spin angu-
lar frequency (or the spin period). One can correct the
universal I-Love-Q relations for non-negligible spins by
considering rapidly rotating NSs [61–64], but we leave
this to future work.

B. Gravitational Wave Astrophysics

Another application of the I-Love-Q relations is to GW
astrophysics, as a means to break the degeneracy between
individual spins and the quadrupole moments of NSs in
the GWs emitted during binary NS inspirals. Let us
first discuss gravitational waveforms of spinning, tidally-
deformed NS binaries, and then, carry out a back-of-the-
envelope parameter estimation study using Fisher theory.
The latter will allow us to determine the degree to which

degeneracies are broken through the I-Love-Q relations
and the projected accuracy to which individual NS spins
could be measured given a GW detection.

1. Waveforms

The sky-averaged gravitational waveform (in the
Fourier domain) generated by a compact NS binary in
a quasi-circular orbit with masses m1 and m2 and at dis-
tance DL is given by [92] h̃(f) = A(f) exp[iΨ(f)], with5

A(f) =
1√

30π2/3

M5/6

DL
f−7/6 , (90)

Ψ(f) = Ψtp(f) + ΨQ̄(f) + Ψλ̄(f) . (91)

Here, f is the GW frequency, M = mη3/5 is the chirp
mass, η = m1m2/m

2 is the symmetric mass ratio and
m = m1 + m2 is the total mass. The quantity Ψtp(f)
is the gravitational waveform phase in the test-particle
limit while ΨQ̄ and Ψλ̄ represent terms that deviate from
this limit, where the former corresponds to a quadrupole
moment deformation, while the latter depends on the
tidal Love number.
The test-particle term, to 3.5 PN order, is given by [93–

95]

Ψtp(f) = 2πftc − φc −
π

4
+

3

128
(πMf)−5/3

{

1 +

(

3715

756
+

55

9
η

)

x− (16π − 4β)x3/2

+

(

15293365

508032
+

27145

504
η +

3085

72
η2 − 10σ

)

x2 +

(

38645

756
π − 65

9
πη − γ

)

(1 + 3 log v)x5/2

+

[

11583231236531

4694215680
− 640π2

3
− 6848

21
γE −

(

15737765635

3048192
− 2255

12
π2

)

η +
76055

1728
η2 − 127825

1296
η3

−6848

21
log(4v) + α

]

x3 +

(

77096675

254016
+

1014115

3024
η − 36865

378
η2
)

πx7/2

}

, (92)

where x ≡ v2 = (πmf)2/3 and (tc, φc) correspond to the
time and phase at coalescence, respectively, with γE the
Euler constant. The spin parameters β and σ [55, 94, 96],
γ [94] and α [95] are given by6

β =

(

113

12
− 19

3
η

)

(

L̂ · χs

)

+
113

12
δm(χs · χa) , (93)

σ =
719

48
δm

(

L̂ · χs

)(

L̂ · χa

)

− 233

48
δm(χs · χa)

5 A(f) needs to be multiplied by
√
3/2 when calculating the Fisher

matrix for LISA and DECIGO/BBO.
6 σ includes the quadrupole-monopole interaction in the test-
particle limit.

+

(

719

96
+

1

24
η

)

(

L̂ · χs

)2

+

(

719

96
− 30η

)

(

L̂ · χa

)2

−
(

233

96
+

7

24
η

)

χ2
s −

(

233

96
− 10η

)

χ2
a , (94)

γ =

(

732985

2268
− 24260

81
η − 340

9
η2
)

(

L̂ · χs

)

+

(

732985

2268
+

140

9
η

)

δm

(

L̂ · χa

)

, (95)

α =
2270π

3

[(

1− 227

156
η

)

(

L̂ · χs

)

+ δm

(

L̂ · χa

)

]

,

(96)

where L̂ is the unit orbital angular momentum, δm ≡
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(m1 −m2)/m is the dimensionless mass difference, χs ≡
(χ1 + χ2)/2 and χa ≡ (χ1 − χ2)/2 with χi ≡ Si/m

2
i

denoting the dimensionless spin vector of the i-th body.
Notice that we are here referring to the individual NS
spin vectors by Si

The quadrupole moment contribution correction to the
test-particle limit in the GW phase enters at 2PN order
and it is given by [80, 96]

ΨQ̄(f) =
3

128

x−5/2

η

{

−50

[(

m2
1

m2
χ2
1 +

m2
2

m2
χ2
2

)

(Q̄s − 1)

+

(

m2
1

m2
χ2
1 −

m2
2

m2
χ2
2

)

Q̄a

]

x2

}

, (97)

where

Q̄s ≡
Q̄1 + Q̄2

2
, Q̄a ≡ Q̄1 − Q̄2

2
. (98)

Q̄s is strongly correlated with σ, which enters at the same
PN order as Q̄s.
The leading-order contribution of Ψλ̄(f) to the GW

phase enters at 5PN order through [17]

Ψ5PN
λ̄ (f) = − 3

128

x−5/2

η
24

[

(1 + 7η − 31η2)λ̄s

+(1 + 9η − 11η2)λ̄aδm
]

x5 , (99)

where

λ̄s ≡
λ̄
(tid)
1 + λ̄

(tid)
2

2
, λ̄a ≡ λ̄

(tid)
1 − λ̄

(tid)
2

2
. (100)

Higher PN contributions to Ψλ̄(f) can be found in [23,
24, 26]. When carrying out parameter estimation studies,
as explained below, we will use Ψλ̄(f) as given in [26],
which includes up to 2.5PN order corrections relative to
Ψ5PN

λ̄
7.

2. Parameter Estimation

For stationary and Gaussian detector noise, the mea-
surement accuracy of parameters θa can be estimated as

∆θa =

√

(Γ−1)aa

N
, (101)

where N is the number of effective interferometers and

Γab ≡ 4 Re

∫ fmax

fmin

∂ah̃(f)∂bh̃(f)

Sn(f)
df (102)

7 Tidal effects on the gravitational waveform phase have been cal-
culated to 1.5PN order relative to the leading 5PN contribution,
in addition to tail effects at 2.5PN order. Ref. [26] estimated
that currently unknown terms should be subdominant, at least
for an equal-mass binary.

is the Fisher matrix, where the partial derivatives are
with respect to the parameters θa. The noise spectral
density Sn(f) is given in Refs. [97–99] for Adv. LIGO,
ET and DECIGO/BBO, respectively. We take the lower
cutoff frequencies fmin to be 10Hz for Adv. LIGO, 1Hz
for ET and the frequency 1yr before coalescence for DE-
CIGO/BBO. For Adv. LIGO and ET, we take the higher
cutoff frequency to be that of the innermost stable cir-
cular orbit (ISCO), fmax = fISCO = 1/(63/2πm), while
we set fmax = 100Hz for DECIGO/BBO. N is the num-
ber of effective interferometers, which we take to be 5 for
2nd-generation ground-based detectors (corresponding to
2 Adv. LIGO, Adv. VIRGO, KAGRA and INLIGO), 2
for ET (like LISA [100]) and 8 for DECIGO/BBO [99].
We focus here on GWs emitted during the quasi-

circular inspiral of NSs with aligned spins, since this is a
realistic astrophysical scenario [101]. Given that the NS
masses are expected to be approximately the same, we
will not include Q̄a and λ̄a in the parameter vector, as
this must be close to zero. We will consider the case of
slightly unequal NS masses. We choose two parameter-
izations of the waveform. Parameterization A uses the
parameter set [26]

{θiA} = (lnM, ln η, β,DL, tc, φc, λ̄s) (103)

with the priors |η| < 0.25 and |β| < 0.8. We do not in-
clude σ in this set because the NS spins at the time of
coalescence are expected to be small [60]8. Parametriza-
tion B uses the parameter set

{θiB} = (lnM, δm, χs, χa, DL, tc, φc, Q̄s(λ̄s), λ̄s) , (104)

with the priors |δm| < 1/3, |χs| < 0.1 and |χa| < 0.1.
Moreover, we use the Q-Love relation to express Q̄s in
terms of λ̄s, and thus, partially break the degeneracy
between Q̄s and χs.
Figure 2 shows the measurement accuracies of spin pa-

rameters using second-generation, ground-based detec-
tors. We assume that the detected GW was emitted by
a source at DL = 100Mpc with SNR ∼ 30. We con-
sider 3 different systems: (i) (m1,m2) = (1.45, 1.35)M⊙,
χ1 = χ2, (ii) (m1,m2) = (1.45, 1.35)M⊙, χ1 = 2χ2 and
(iii) (m1,m2) = (1.4, 1.35)M⊙, χ1 = χ2. Observe, that
the averaged spin χs can be measured to O(10)%. Such
an accuracy on χs is inaccessible without the Q-Love re-
lation.
We can understand this enhanced accuracy in the ex-

traction of χs as follows. First, notice that, for an
equal-mass and spin-aligned binary, β ∼ O(10)χs [see
e.g. Eq. (93)]. Given that the measurement accuracy of
β is ∆β = O(0.1), this implies a measurement accuracy
of χs of ∆χs ≈ 0.01, which corresponds to ∆ lnχs ≈ 0.1

8 Damour et al. [26] estimated that at the time of coalescence,
|β| < 0.2 and |σ| < 10−4. We use a conservative prior |β| < 0.8
which corresponds to |χ| < 0.1.
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for χs ≈ 0.1. The measurement accuracy of χs for system
(ii) increases as χ1 → 0.1, as shown in Fig. 2. This is be-

cause ∂h̃/∂δm ≈ 0 ≈ ∂h̃/∂χa as χ1 ≈ 0.1 and the priors
lead to δm, χa and other parameters being effectively un-
correlated. In such a case, however, the assumptions that
underlie the Fisher approximation may be violated [102],
and hence, one requires a Bayesian analysis [97] to con-
firm these results. Finally, we have checked that the Q-
Love relation does not improve the measurement accu-
racy of λ̄s.
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FIG. 12. (Color Online) Separatrix between systems with
Ψλ̄a

> 1 (above the curves) and Ψλ̄a

< 1 (below the curves)
as a function of ∆m ≡ |m1 −m2| and m̄ ≡ (m1 +m2)/2, and
for different realistic EoSs. For systems below the curves, we
can safely neglect λ̄a in parameter estimation, provided the
SNR ≈ O(10). ΨQ̄a

is smaller than Ψλ̄a

for |χ| < 0.1.

Up until now, we have considered equal-mass NS bina-
ries, but realistic systems may not have identical masses.
If the NS masses are not equal, one must then take into
account the parameters Q̄a and λ̄a, whose inclusion could
in principle degrade the accuracy to which other parame-
ters are extracted. Let us then study the range of masses
for which neglecting Q̄a and λ̄a is a good approximation.
A rough estimate of this range can be obtained by in-
vestigating the systems for which the accumulated GW
phase induced by terms proportional to Q̄a and λ̄a is less
than one radian. Let us then define the latter by ΨQ̄a

and Ψλ̄a

respectively, where

ΨQ̄a

(f) = −75

64

1

η

[(

m2
1

m2
χ2
1 −

m2
2

m2
χ2
2

)

Q̄a

]

x−1/2 ,

Ψ5PN
λ̄a

(f) = − 9

16

1

η
(1 + 9η − 11η2)λ̄aδmx5/2 , (105)

to leading PN order.
Figure 12 shows the range of masses for which Ψλ̄a

= 1
for various realistic EoSs. Systems above these lines
would lead to Ψλ̄a

> 1, while those below this line lead to
Ψλ̄a

< 1. In particular, for systems that satisfy the lat-

ter inequality, we can in principle neglect λ̄a if the SNR
is O(10). This figure implies that for second-generation,

λ̄(tid) = 400.0 M∗ = 1.3382M⊙

EoS M∗ R∗ Q̄ fspin R∗ Ī λ̄(tid)

(M⊙) (km) (Hz) (km)

APR 1.40 12.2 5.52 194 12.2 13.3 520

SLy 1.32 11.6 5.54 206 11.6 12.2 375

LS220 1.38 13.5 5.56 198 13.6 13.1 506

Shen 1.55 14.6 5.54 176 15.0 15.9 1012

TABLE II. NS parameters for λ̄(tid) = 400.0 and M∗ =
1.3382M⊙. fspin corresponds to the NS spin frequency with
χ = 0.1.

ground-based detectors, the parameter estimation study
presented above is probably valid, even for unequal-mass
systems provided, for example, that m̄ = 1.4M⊙ and
∆m . O(0.1)M⊙, where m̄s ≡ (m1 + m2)/2 is the av-
eraged mass of the binary and ∆m ≡ |m1 − m2| is the
mass difference. This same conclusion also applies to ne-
glecting Q̄a, provided |χ| < 0.1.

C. Fundamental Physics

The independent measurement of any 2 members of
the I-Love-Q trio would allow us to perform model-
independent and EoS-independent tests of GR. For ex-
ample, if one can measure Ī and λ̄(tid) independently, one
can plot a point in the I-Love plane with an error box.
If the I-Love relation in GR crosses the error box, then
GR is consistent with the observations. Otherwise, one
would have found model-independent evidence for some
type of departure from GR. Moreover, one can constrain
non-GR theories by requiring that the I-Love relation in
that theory crosses the error box.
The accuracy of such a test depends, of course, in how

accurately two elements in the I-Love-Q set can be mea-
sured. One way to measure Ī would be to look for a
spin-orbit correction to the rate of advance of the peri-
astron of a binary system. Future double binary pulsar
observations may measure Ī with an accuracy of roughly
10% [6, 7]. Probably, the best way to measure λ̄(tid) and
Q̄ would be to use GW observations.
In what follows, we first discuss the possibility of mea-

suring Q̄ and λ̄(tid) simultaneously, given GW observa-
tions. Then, we discuss how well GR tests can be carried
out by combining GW observations with binary pulsar
observations. For concreteness, we apply all of this to
a specific modified gravity theory (dynamical CS grav-
ity [57]).

1. Redundancy Tests with GW Observations Only

Let us estimate how accurately future ground-based
detectors may determine λ̄(tid) and Q̄ simultaneously.
The measurability of λ̄(tid) has been discussed extensively
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in [17–26], while the effect of the quadrupole moment on
compact binary GWs has been estimated in [60, 80, 103],
but so far no study has been performed to study their si-
multaneous extraction. Let us consider an equal-mass
NS binary with λ̄(tid) = 400, which corresponds to NSs
with M∗ = 1.4M⊙ with the APR EoS (other parameters
are shown in Table II).
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FIG. 13. (Color Online) Measurement accuracies for Q̄s

(top) and λ̄s (bottom) given a GW detection, emitted by
a (1.4, 1.4) M⊙, spin-aligned NS/NS binary system with
Adv. LIGO, ET and DECIGO/BBO. We assume λ̄s = 400,
χ2 = 0, DL = 100Mpc and the APR EoS, with priors
|δ| ≤ 1/3, |χ1| ≤ 0.1 and |χ2| ≤ 0.1. Although it may be
difficult to measure Q̄s, it should be possible to measure λ̄s

with ground-based detectors.

Figure 13 shows the measurement accuracy of Q̄s and
λ̄s with second-generation, ground-based detectors, ET
and DECIGO/BBO. We assume an equal-mass, spin-
aligned NS/NS binary with (1.4, 1.4)M⊙, χ1 < 0.1 and
χ2 = 0 at DL = 100Mpc, and we also assume that the
APR EoS is the correct one. The measurement accuracy
of ∆Q̄s with second-generation, ground-based detectors
is ∆ ln Q̄s ≈ 30, which would increase to ∆ ln Q̄s ≈ 2
using future detectors, such as ET or DECIGO/BBO.
These results imply that it may be difficult to measure
∆Q̄s due to its strong degeneracies with spin parame-
ters. Notice, however, that even though one may not
be able to detect Q̄s, one can still place an upper and
lower bound on Q̄s. Such a bound would be sufficient to
perform model-independent GR tests. The measurement
accuracy of λ̄s with second-generation, ground-based de-
tectors is ∆λ̄s ≈ 0.8, which would increase by roughly an
order of magnitude using ET. Although the error bars
are large with current detectors, it may be possible to
measure λ̄s with future GW observations.
Given the above measurement errors, we can now simu-

late a GR test. Figure 14 presents the Q-Love relation for
realistic EoS, together with a fiducial GW measurement

of the pair (Q̄, λ̄(tid)) and its estimated errors. Notice
that the error in Q̄ is larger than the value about which
the error is centered. This implies that a GW measure-
ment would not be able to measure Q̄, but it would be
able to say the region of allowed Q̄ that is consistent
with the GW detection. Therefore, such a GW detection
would automatically constitute a model-independent test
of GR; for GR to be consistent with these measurements,
the GR Q-Love curve must cross the GW error box in
(Q̄, λ̄(tid)).
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FIG. 14. (Color Online) The Q-Love relations for realistic
EoSs with proposed measurement errors. We assume that
we determine Q̄ and λ̄(tid) simultaneously by detecting GWs
from an equal-mass, spin-aligned NS/NS binary with χ1 =

0.1, χ2 = 0 and λ̄(tid) = 400 at DL = 100Mpc with ET.
The fiducial values of (λ̄(tid), Q̄) are shown as a big black
cross. Although the measurement error of Q̄ is greater than
its fiducial value, one can still perform model-independent
and EoS-independent tests of gravity by requiring that the
Q-Love curve must pass through the error box.

The above test is quite robust. First, although we
employ a uniform and slow-rotation approximation, the
NS/NS binaries that ground-based detectors will observe
will have spun down by the time they enter the detector’s
sensitivity band, and thus, the slow-rotation approxima-
tion should be excellent. Second, the error box of Fig. 14
depends on how accurately (λ̄s, Q̄s) can be measured,
which in turn depends on whether (λ̄a, Q̄a) need to be
included in the parameter set. This would be the case if
the binary system detected were not an equal-mass one.
As shown in Fig. 12, however, there is a wide range of
mass ratios for which these parameters can be neglected,
even outside of the equal-mass point; thus, the discussion
presented above should be robust.

2. Joint Tests with GW and Electromagnetic Observations

Since Q̄ is a quantity that is difficult to measure with
GW observations, let us consider model-independent and
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EoS-independent tests of GR with the I-Love relation
that uses a combination of GW and double binary pul-
sar observations. Let us then assume that Ī has been
measured to 10% by future double binary pulsar (J0737-
3039) observations [6, 7], and that λ̄(tid) has been mea-
sured to 60% with future GW observations. The latter
assumes an ET detection of an equal-mass, non-spinning
NS/NS binary at 3Gpc, with the individual NS masses
exactly equal to that of the primary pulsar in J0737-3039,
M∗ = 1.3382M⊙, assuming the Shen EoS9. All of this is
shown in Fig. 3, together with the fiducial measurement
of (Ī , λ̄(tid)) as a big black cross. As shown in that fig-
ure, one can constrain modified theories of gravity, such
as dynamical CS gravity, by requiring that the I-Love
curve crosses the error box.
The test described above has one major problem: the

NS mass mpulsar of the primary pulsar in J0737-3039
and the individual NS masses in the binary system that
generated the detected GW will all in principle be dif-
ferent from each other. As explained in Sec. VIII B 2,
the accuracy to which λ̄s can be measured assumed that
Q̄a and λ̄a could be neglected, which holds for a cer-
tain range of mass differences ∆m, shown in Fig. 12.
In general, the typical maximum mass difference would
need to be ∆m = O(0.1)M⊙, assuming observations with
SNR ≈ 10. Given current event rate estimates, one ex-
pects to detect NS/NS binaries with such similar masses,
and thus, this is not in principle a problem. The test
above, however, also requires that mpulsar ≈ m̄, since af-
ter all the I-Love-Q relations assume one is investigating
NSs with the same mass.
Let us then estimate how much the I-Love-Q rela-

tions would change if mpulsar 6= m̄GW. The top panel of
Fig. 15 shows the I-Love relation with mpulsar/m̄GW =
0.9, 1.0 and 1.1 for realistic EoSs, while the bottom
panel shows the relative fractional difference between
the I-Love curves for different EoSs and the APR EoS
as a reference. The relative fractional difference when
mpulsar/m̄GW = 0.9 (not shown in this figure) is similar
to that of mpulsar/m̄GW = 1.1. One sees that the depen-
dence on the EoS becomes stronger as the mass difference
mpulsar and m̄GW increases. However, this dependence is
still weak if the mass difference is sufficiently small (or
order 0.1M⊙), and most importantly, the loss of univer-
sality (the difference between curves with different EoS)
is much, much smaller than the observational error in
measuring either the moment of inertia or the Love num-
ber. Therefore, one can perform the GR test described
above, even when mpulsar 6= m̄GW.

9 Adv. LIGO is expected to detect NS/NS binaries out to DL ≈
300Mpc with the detection rate of O(10)/yr [13]. Therefore, if
we consider ET detecting GW signals from a NS/NS binary at
3Gpc, the expected detection rate would be O(10)/yr × 103 ∼
O(104)/yr. With this detection rate, we may detect an equal-
mass NS/NS binary, with the individual masses very close to
that of the primary pulsar of J0737-3039, M∗ = 1.3382M⊙
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FIG. 15. (Color Online) (Top) I-Love relation of NSs with
mass ratios of mpulsar/m̄GW = 1 (solid), 1.1 (dashed) and 0.9
(dotted-dashed) for realistic EoSs. (Bottom) Relative frac-
tional difference with the APR curve as the reference. Ob-
serve that the loss of universality when mpulsar/m̄GW = 0.9 is
similar to that when mpulsar/m̄GW = 1.1. Observe also that
the loss of universality is small relative to the observational
error in measuring the moment of inertia or the tidal Love
number.

Of course, the test described here assumes that the uni-
form and slow-rotation approximation used to derive the
I-Love-Q relation holds for binary pulsars. This is indeed
the case, provided the period is sufficiently long, such
that each binary component is spinning slowly. However,
the approximation might break down for (currently un-
observed) sub-millisecond pulsars, ie. those with periods
shorter than 1 ms. For such systems, the I-Love-Q rela-
tions will also now depend on the spin frequency. A cur-
sory analysis, however, suggests that the spin-frequency
effect breaks universality at the 10% level [61–64]. There-
fore, the difference in I-Love-Q relations for different
EoSs will be rather small, and in particular smaller than
the errors in the first binary pulsar measurements of the
moment of inertia.
Binary pulsar observations may measure Ī within 10%

accuracy, but this amazing measurement will be difficult
to accomplish in the near future [7]. This is because the
effect of the moment of inertia (or equivalently, the spin-
orbit coupling) in the motion of the binary is of O(10−5)
relative to the leading-order contribution. This means
that one needs to measure at least 3 post-Keplerian pa-
rameters to this accuracy, in order to determine the two
masses and the moment of inertia. Of course, such a
measurement is a big challenge, although not out of the
question, as binary pulsar observations improve within
the next ten years.
Alternatively, one could use the NS compactness C

instead of Ī to perform model-independent GR tests.
Currently, C has been measured to O(10)% accuracy
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with low-mass X-ray binary observations [2–5]. Figure 16
shows the λ̄(tid)–C relation for realistic EoSs and for the
n = 1 polytrope. We also show in this figure a fidu-
cial measurement of (C, λ̄(tid)) (big black cross), as well
as projected measurement accuracies (dashed lines). For
the latter, we assume ∆C = 0.05 from electromagnetic
observations of a NS with M∗ = 1.4M⊙ and a roughly
70% measurement of λ̄(tid) from GW detection (equal-
mass, non-spinning NS/NS binary with the individual
NS mass of M∗ = 1.4M⊙ at DL = 100Mpc) with second-
generation, ground-based detectors10. Although the de-
pendence on the EoS is relatively large compared to the
universality of the I-Love-Q relations, the measurement
errors are larger than the uncertainties due to the EoS.
This shows that one might be able to use the Love-C
relation to perform model-independent tests of gravity.

0.15 0.16 0.17 0.18 0.19
C (=M

*
/R

*
)

0

500

λ(t
id

)

APR
SLy
LS220
Shen
Polytrope (n=1)

FIG. 16. (Color Online) Love-C relations with realistic EoSs
and the n = 1 polytrope (solid lines), a fiducial measurement

of (λ̄(tid), C) (black cross) and projected measurement uncer-
tainties (dashed black lines). We assume ∆C = 0.05 for a NS

with mass 1.4M⊙, and a measurement of λ̄(tid) with a roughly
70% error. Observe that the Love-C relation loses some of the
universality shown in the I-Love-Q relations. However, the er-
ror introduced due to EoS dependence is much smaller than
the measurement error in the compactness or the tidal Love
number.

3. Example: Dynamical CS Gravity

We now apply the results obtained above to see how
testing a specific theory of gravity would go about. As
an example, we choose dynamical CS gravity [57, 104],
which is well-motivated from the Standard Model, su-
perstring theory [105, 106], loop quantum gravity [107–
109] and inflation [110]. Dynamical CS gravity is a

10 The measurement error of ∆λ̄(tid) ≈ 0.7 is slightly better than
that shown in Fig. 14. This is because we assumed parameter
set A [Eq. (103)] instead of B [Eq (104)].

parity-violating, quadratic-curvature theory, where the
Einstein-Hilbert action is modified through the Pon-
tryagin density (the contraction of the Riemann ten-
sor and its dual), coupled to a dynamical scalar field.
This theory has a characteristic length ξ1/4, which has
been constrained by Solar System experiments, using
Gravity Probe B [111] and LAGEOS [112], to ξ1/4 <
O(108)km [56]. Dynamical CS gravity should be treated
as an effective theory, and thus, one should work to
leading-order in a small coupling expansion, ie. to lead-
ing order in the dimensionless coupling constant ζ ≡
ξM2

∗/R6
∗ [67].

NSs in dynamical CS gravity have been studied before.
Reference [67] found that it would be difficult to mean-
ingfully constrain this theory with binary pulsar observa-
tions in the standard fashion. This is because the largest
CS correction appears in the rate of change of periastron
advance at 1PN order, and thus it is suppressed by the ra-
tio of the binary’s mass to its separation (for J0737-3039,
this is of O(10−6)). The CS correction to the NS moment
of inertia was calculated in [56, 73], while the CS correc-
tion to the NS quadrupole moment was obtained in [67].
In the small coupling approximation, the CS corrections
to Ī and Q̄ scale linearly with ζ. The leading-order CS
correction to tidal effects enters through the gravitomag-
netic tidal tensor (because of the parity) [59], and hence
λ̄(tid) is not affected at leading-order.
Figure 3 shows the I-Love relation in dynamical CS

gravity with a fixed value of the coupling constant ξ =
1.1 × 104M4

∗ . Observe that the dependence on the EoS
is stronger than that of the GR I-Love relation. We
believe that this is because a compact object in dy-
namical CS gravity depends on the scalar-dipole charge,
which encodes information on the internal structure of
the body [67]. Given this reasoning, we expect that the
I-Love-Q relations should be more sensitive to the NSs’
internal structure in dynamical CS gravity than in GR.
The bottom panel of Fig. 3 shows that there is indeed a
loss of universality, but the latter is still preserved to a
few % level.
With this in hand, let us estimate the projected bound

that one could place on dynamical CS gravity using the
I-Love relation. With ξ = 1.1× 104M4

∗ , the I-Love curve
in dynamical CS gravity barely crosses the error box.
Since the larger ξ, the higher the CS curves, such an I-
Love observation would automatically constrain ξ < 1.1×
104M4

∗ , which corresponds to ζ = 0.0581. Converting
back to dimensional quantities, such a test would impose
the constraint

ξ1/4 < O(50)km . (106)

NS observations would then allow us to probe the theory
within NS length scales, like the NS radius. Notice that
the above bound is stronger than Solar System [56] and
table-top [58] ones by more than six orders of magnitude.
Notice, however, that this bound is slightly weaker than
the proposed projected bound with GW observations of
BH/BH binaries [113]. This is because the “radius” of a
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BH is smaller than that of a typical NS, and thus, with
the former, we can probe shorter length scales. Notice
also that the bound given above is dominated by the
measurement error on the NS moment of inertia. This is
reasonable because the tidal Love number is unaffected
in dynamical CS gravity to the order of approximation
considered here.
The measurement accuracy shown in Fig. 3 is obtained

by assuming that the Shen EoS is the correct one, which
gives the weakest bound on the theory among the realistic
EoSs considered in this paper. This is because, with the
NS masses fixed to M∗ = 1.3382M⊙, the Shen EoS gives
the largest λ̄(tid) (see Table II). Figure 3 shows that
the deviation away from GR becomes larger for smaller
λ̄(tid). This is because the compactness becomes larger
for smaller λ̄(tid) (or smaller Ī and Q̄) which allows us
to probe stronger gravity. These studies suggest that the
I-Love-Q relations can be very powerful in testing GR in
the strong-field regime.

IX. FUTURE DIRECTIONS

We have derived relations between the moment of in-
ertia, the quadrupole moment and the Love numbers,
I-Love-Q relation, that are essentially independent of the
EoS for uniformly and slowly-rotating NSs. These re-
lations open the door to exciting applications in astro-
physics, GW theory and fundamental physics. We have
here carried out a preliminary study of a few applica-
tions, but our paper enables a lot more work. One ex-
ample is a more detailed study of the measurement ac-
curacy of binary parameters given a GW observation.
We here carried out a Fisher analysis, but this is known
to be inaccurate for signals with low SNR [102], as ini-
tially expected with second-generation, ground-based de-
tectors. Such an analysis could be improved on through
a Bayesian study [97, 102]. Another example is to repeat
the analysis that uses the I-Love-Q relations to test GR
to include systems with different mass ratios. This ex-
tension is particularly important, given that millisecond
binary pulsars will probably not have exactly the same
mass as the NSs observed through GWs emitted in the
late inspiral. Our results suggest that the conclusions
regarding tests of GR should be robust even when the
masses differ by 10%, but a more detailed analysis would
be desirable.
The analysis presented here has a few caveats that

should be re-iterated here for completeness, although we
have discussed this to some extent already in the Intro-
duction. The framework in which the I-Love-Q relations
have been found to be essentially EoS independent is one
that employs a uniform rotation, slow-rotation and small
tidal deformation approximation. Newly-born NSs are
expected to be differentially rotating at very short pe-
riods, where the slow-rotation approximation would not
be appropriate. Moreover, such NSs are expected to be
much hotter than those in millisecond binary pulsars and

those that emit GWs in the band of ground-based detec-
tors. Temperature could introduce further deviations in
the universality relations described here.
Of these limitations, the slow-rotation approximation

is perhaps the most severe, although such an approxi-
mation is reasonable for NSs in millisecond pulsars with
periods comparable or larger than 1 ms. We expect the
EoS universality found here to persist even when includ-
ing fast rotation, except that now there will be differ-
ent universal relations for stars with different spin peri-
ods. The variation, however, should not exceed 10% [61–
64]. A possible extension of this work would be to refine
the universal relations to allow for rapidly spinning NSs.
This could be achieved by numerically solving for rapidly
rotating NSs and then extracting its multipole moments,
as recently discussed in [61–64]. Let us reiterate, how-
ever, that for almost all NS that have been astrophys-
ically observed, the spin period is sufficiently long that
the slow-rotation expansion is an excellent approxima-
tion. From an academic point of view, however, it is
also worth studying how differential rotation [114] would
change the I-Love-Q relations and their universality.
Another possible extension of our work would be to

consider more generic NSs with anisotropic pressure [115]
and large internal magnetic fields. Recent work has
suggested that in fact the NS interior might be super-
conducting and super-fluid (see e.g. Refs. [116, 117] and
references therein). The inclusion of these effects will cer-
tainly affect the EoS, but it is not clear that this will mod-
ify the I-Love-Q relations presented here. This would be
particularly so if the I-Love-Q relations are truly only sen-
sitive to the EoS far from the core, where super-fluidity
and super-conductivity play a small role.
Although we have investigated how the I-Love-Q rela-

tions change in dynamical CS gravity, it would be worth-
while to study such relations in other modified theories,
such as scalar-tensor ones [118] and Einstein-Æther the-
ory [119]. Given any modified theory, one could investi-
gate how the I-Love-Q relations change, whether univer-
sality still holds, and how strong one can constrain other
theories with future observations.
An interesting avenue to pursue would be to study

whether universal relations exist between higher-order,
multipole moments of the exterior gravitational field of
isolated NSs. For BHs, the no-hair theorems guaran-
tee that BH multipole moments can be written entirely
in terms of the BH mass and spin angular momentum
(assuming the charge is zero), leading to a unique rela-
tion that, of course, is independent of internal structure
(BHs lack any). For NSs, such a relation does not exist,
since the no-hair theorem does not apply. In this paper,
however, we have found an interesting relation between
the quadrupole and the dipole moment of the exterior
gravitational field of an isolated NS that seems almost
independent of the NS’s internal structure. One might
then naturally wonder whether similar relations hold for
higher-order multipole moments, which may lead to a NS

no-hair conjecture, ie. that NS multipole moments can be
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effectively expressed only in terms of the NS mass M∗,
the NS angular velocity Ω∗ and the NS moment of inertia
I.

Finally, one could also investigate whether there are
other universal relations between other NS quantities.
Recent work has shown that there is indeed a relation
between the f- and w-modes of NS oscillations [120–122].
One cannot help from asking whether these relations may
also be related to the moment of inertia, quadrupole mo-
ment or Love number, thus yielding an I-Love-Q-f-w set
of universal relations11. If so, one could also investigate
whether these new quantities provide further insight into
the fundamental reason for the existence of these univer-
sal relations.
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