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Motivated by the prohibitive computational cost of producing adiabatic extreme mass ratio in-
spirals, we explain how a judicious use of resonant orbits can dramatically expedite both that cal-
culation and the generation of snapshot gravitational waves from geodesic sources. In the course of
our argument, we clarify the resolution of a lingering debate on the appropriate adiabatic averaging
prescription in favor of torus averaging over time averaging.
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I. INTRODUCTION

Stellar mass compact objects inspiraling into super-
massive black holes (SMBHs) will be important astro-
physical sources of gravitational waves (GWs) for future
space-based detectors. Accurate GW templates for such
extreme mass-ratio inspirals (EMRIs) require detailed
knowledge of the motion of the source, so there has been
a community effort to calculate EMRI trajectories. If
we neglect the gravitational self-force of the small ob-
ject, its orbit is a Kerr geodesic that, up to parameters
specifying the initial position, is characterized by three
constant orbital parameters: an energy E, an azimuthal
angular momentum Lz, and the Carter constant Q. De-
termining the inspiral is tantamount to calculating how
the self-force causes both the positional parameters and
the orbital parameters to evolve in time.

Despite ongoing efforts, direct evaluation of the self-
force in the Kerr case is still not possible. Accordingly,
there have been parallel efforts to approximate its ef-
fects. The focus of this paper is the adiabatic approx-
imation, which captures the slow secular evolution of
E,Lz, Q by solving a system of ordinary differential equa-
tions (ODEs) of the form

dE

dt
= FE (E,Lz, Q) (1a)

dLz
dt

= FLz (E,Lz, Q) (1b)

dQ

dt
= FQ (E,Lz, Q) . (1c)

For now, it suffices to know that the righthand sides
(RHSs) of equations (1) are so costly to evaluate that
these equations will have to be integrated using a nu-
merical grid. More specifically, the ELzQ velocity field
will be pre-computed only on a dense mesh of points in
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FIG. 1: Above is a heuristic depiction of two possible nu-
merical grids that could be used to generate adiabatic ap-
proximations (dashed curves) to true inspirals (solid curves)
in the orbital parameter space. The dots represent a set of
resonant grid points and the plus signs a set of non-resonant
grid points. The resulting adiabatic curves are the same in
either case but significantly less costly to produce with the
resonant grid. A true inspiral may evolve in a way that is not
well-approximated adiabatically as it approaches a low-order
resonance, as on the left. That divergence, if it occurs, hap-
pens regardless of whether the resonant point is used as part
of the numerical grid.

ELzQ-space. Real-time integration of (1) will then rely
on derivative values interpolated off of that grid.

In this paper, we advocate building such grids us-
ing only points corresponding to resonant geodesics, for
which the frequencies of the radial and polar motions
are rationally related. As we will see, intermediate cal-
culations that comprise the bulk of the computational
expense can be recycled among several Fourier modes on
resonant grid points but must be recomputed for every
mode in the non-resonant case. We estimate that, com-
pared to using non-resonant grid points, our prescription
could reduce the computational cost of an EMRI grid by
an order of magnitude or more. The resonant-grid pre-
scription will also facilitate faster computation of GW
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snapshots from geodesic sources.

We represent our proposal schematically in Figure 1.
First, the RHSs of equations (1) are evaluated directly
on a grid of either resonant points (dots) or non-resonant
points (plus signs). At any other point, the RHS values
can be interpolated from the values at the grid points.
The adiabatic equations (1) are continuous and smooth,
so regardless of which grid is used, integrating them pro-
duces the same adiabatic solutions (dashed curves). The
only difference is that the resulting adiabatic curves cost
significantly less to generate with the resonant grid.

Ref. [1] and more recently, Ref. [2] have noted that such
adiabatic approximations may fail to capture important
features of the true inspiral (solid curves) near low-order1

resonances. Heuristically speaking, those authors argue
that while an adiabatic solution may remain fairly faith-
ful to an inspiral that steers clear of resonant points (up-
per right of the figure), those approximations may fare
much worse for an inspiral that transits near a resonant
point (middle left of the figure). To pre-empt possible
confusion, we remark that there is no inconsistency be-
tween this observation and our proposal. The decision to
include any particular ELzQ point, resonant or not, in
the numerical grid is unrelated to whether the resulting
adiabatic curves will faithfully reflect EMRI motion near
that same point. The ironic coincidence is that the points
where the adiabatic approximation is most likely to fare
poorly2 are also the optimal grid points for generating
adiabatic curves.

The rest of this paper is organized as follows. In Sec-
tion II, we review some relevant features of resonant Kerr
orbits in both physical space and phase space. In Sec-
tion III, we summarize how one arrives at the adiabatic
equations of motion and clarify why an averaging pre-
scription required to derive those equations must be a
torus average rather than a time average. While aver-
aging procedures in the EMRI problem have been dis-
cussed in this and other contexts [1, 3–7], the rationale
for using torus versus time averages in the adiabatic ap-
proximation has not previously been made explicit in the
literature. Partly to help make the averaging argument
and partly because we will focus on frequency-domain ap-
proaches to solving the adiabatic equations, Section III
also provides some necessary mathematical background
on Fourier analysis in both the non-resonant and reso-
nant cases. With a clear view of the adiabatic program
now in hand, Section IV presents the main result of the
paper, namely a concrete prescription for computational
savings that frequency-domain EMRI codes can lever-
age by using resonances. Finally, Section V speculates
about how a more unorthodox use of resonances could

1 A resonance is low-order if the numerator and denominator of
the rational frequency ratio are both small integers.

2 To balance the argument, Ref. [1] also offers plausible reasons
why the adiabatic approximation may still be valid near reso-
nances.

offer additional efficiencies provided it can be practically
implemented.

II. RESONANT KERR ORBITS

The paramount role of resonant orbits was the central
theme of an earlier series of papers [8–10]. (We use the
terms “resonant”, “closed”, and “periodic” interchange-
ably.) A spectrum of closed orbits, which manifests as a
spectrum of multi-leaf clovers, entirely structures black
hole dynamics. Although completely closed orbits must
return to their initial values3 of (r, θ, ϕ) simultaneously,
only the r-θ periodicity detailed in Ref. [9] is relevant to
the present work. The rational number associated with
the r-θ frequencies determines the multi-leaf clover ge-
ometry. What’s more, that rational obediently stacks
in energy monotonically: lower rationals correspond to
lower energies than do higher rationals. Such orbits con-
stitute a measure zero set but are nonetheless dense in
the phase space. Every non-resonant orbit is arbitrarily
close to some resonant orbit.

We first consider resonant orbits in physical space and
then again in phase space. Since we will be concerned
with functions that do not depend explicitly on either
the azimuthal angle or on coordinate time, it will suffice
for us to restrict attention to geodesic motion in two co-
ordinates (r, θ) in physical space and to the projection
of the motion into a 4D submanifold of the phase space
spanned by (r, θ) and their conjugate momenta.

A. Resonant Orbits in Physical Space

The black hole is completely characterized by its
mass M and spin a. The geodesic of the lighter com-
panion is characterized by four dimensionless constants
µ,E,Lz, Q. In Boyer-Lindquist coordinates and dimen-
sionless units, which is equivalent to setting M = µ = 1,
the radial and polar Kerr equations of motion can be
written as

ṙ = ±
√
R (r) (2)

θ̇ = ±
√

Θ (θ) , (3)

where

R (r) ≡ −
(
1− E2

)
r4 + 2r3 (4)

−
[
a2
(
1− E2

)
+ L2

z

]
r2 + 2 (aE − Lz)2

r −Q∆

Θ (θ) ≡ Q− cos2 (θ)

{
a2
(
1− E2

)
+

L2
z

sin2 θ

}
(5)

and

∆ ≡ r2 − 2r + a2 . (6)

3 ϕ need only return to its initial position mod 2π.
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An overdot denotes differentiation with respect to
Mino time [11], λ, related to proper time τ by

dτ

dλ
= Σ ≡ r2 + a2 cos2 θ . (7)

The advantage of using Mino time is that the r and θ
equations of motion decouple. To make connections with
observations, we will often care about how certain quan-
tities evolve with respect to coordinate time t. However,
coordinate time turns out to be mathematically cumber-
some, so throughout this paper, we perform all inter-
mediate calculations related to such quantities by first
changing variables to Mino time.

Solving equations (4) and (5) for the radial and polar
turning points, we find that the radial coordinate varies
between a periastron rp and an apastron ra and that the
polar coordinate similarly varies between some minimum
value θmin and maximum value θmax = π − θmin. All
turning points depend only on the constants E,Lz, Q.
We introduce the simplifying notation

~E ≡ (E,Lz, Q) (8)

for those 3 orbital parameters and reserve the symbol E
to refer to any one of E,Lz, Q individually.

The radial and polar coordinates are each periodic with
respective Mino periods

Λr = 2

∫ ra

rp

dr√
R(r)

(9a)

Λθ = 4

∫ π/2

θmin

dθ√
Θ(θ)

(9b)

and corresponding frequencies

Ωr =
2π

Λr
(10a)

Ωθ =
2π

Λθ
. (10b)

The radial and polar velocities are also periodic with the
same corresponding periods and frequencies. If the fre-
quency ratio

1 + qrθ ≡
Ωθ
Ωr

(11)

is a rational number, an r-θ projection of the resulting
orbit closes after a finite time.

Note from equations (4), (5) and (9) that the frequen-

cies and qrθ depend only on the constants ~E . qrθ is also
a topological invariant and thus coordinate independent.
A qrθ for which the relatively prime numerator and de-
nominator are both low-valued integers will be referred
to as “low-order”. We arbitrarily call low-order resonant
orbits those for which the numerator and denominator of
qrθ are each less than 10.

Projections of periodic orbits into the r-θ plane pro-
duce Lissajous figures. The top panel of Figure 2 shows
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FIG. 2: Top: A low-order periodic orbit with qrθ = 1
2
, a = 0.9,

E = 0.954788, Lz = 2.65115 and Q = 0.944969, projected
on the r-θ plane (we plot r-cos θ to make the figure more
viewable) with initial conditions r0 = ra = 17.8148 and θ0 =
θmin = 1.22079. Bottom: A non-resonant orbit with qrθ ≈
125,857
250,000

, a = 0.9, E = 0.956, Lz = 2.65115 and Q = 0.944969,
with initial conditions r0 = ra = 18.4568 and θ0 = θmin =
1.22076.

the Lissajous figure of a periodic orbit with a low-order
qrθ, while the bottom panel shows the analogous projec-
tion of a neighboring orbit with an irrational qrθ.

The figures produced by projecting into the r-θ plane
are less topologically insightful than the figures in an or-
bital plane, loosely defined in the Kerr system as the
plane perpendicular to the orbital angular momentum
[9]. In the orbital plane, the rational qrθ has power-
ful topological information and can be interpreted as
qrθ = w + v/z, where the integer w represents the num-
ber of nearly circular whirls near periastron, the integer
z is the number of elliptical leaves in the multi-leaf clover
pattern, and the integer v is the order in which the leaves
are hit [8, 9]. To illustrate, the same two orbits of Figure
2 are plotted in the orbital plane in Figure 3. The orbit
in the top panel of Figure 3 has qrθ = 1/2 and therefore
corresponds to a 2-leaf clover, as is now evident. The bot-
tom panel non-resonant orbit is close to a resonant orbit
with qrθ ≈ 125,857

250,000 which would correspond to a 250, 000-

leaf clover that skips 125, 857 leaves in the pattern each
time. Notice that 125,857

250,000 = 1
2 + 857

250,000 so that the orbit

is really a tight precession of the 2-leaf clover through an

angle of
(

857
250,000

)
2π ≈ 0.02154 radians per radial cycle.
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FIG. 3: Top: The same orbits from Figure 2, projected into
the orbital plane.

While they do fix the turning points, the constants ~E
do not uniquely fix the orbit [12]. An orbit that hits
apastron at θmin is not identical to the orbit that hits
apastron at a different value of θ, as shown in Fig. 4.
Since qrθ depends only on constants, a qrθ = 1/2 orbit
is always a 2-leaf clover in the orbital plane [9]. How-
ever, orbits with different r-θ initial conditions (r0, θ0)
are rotated relative to each other in the orbital plane.

As Fig. 4 shows, the resulting orbits are genuinely dis-
tinct in 3D. Presumably, they could have distinct grav-
itational wave emissions. Interestingly, though, perihe-
lion precession happens on a faster time scale than plane
precession. It is therefore reasonable to suspect that all
orbits with the same qrθ generate similar waveforms and
that the different plane precessions induce modest dif-
ferences in the modulations of the amplitude [13]. We

remain agnostic on the relative importance of r-θ initial
values on the waveform generated and instead focus on
efficient calculation of adiabatic inspirals.

B. Resonant Orbits in Phase Space – Phase Space
Tori

In the 4D space spanned by (r, pr, θ, pθ), all orbits (res-
onant or non-resonant) lie on 2D tori that can be con-
structed as the Cartesian product of two closed curves.
We obtain one of those closed curves if we project an orbit
into the r-pr plane. The area of the curve is the familiar
action Jr used in action-angle coordinates. Analogously,
the projection of the same orbit into the θ-pθ plane yields
another closed curve with area Jθ. We now consider that
pair of curves as a locus of points on a 2D surface with
the topology of the 2-torus S1×S1 ≡ T2. Every set of or-

bital parameters ~E defines one such torus that we denote
T2
~E .

The use of Mino time as an evolution parameter fur-
nishes one (but certainly not the only) coordinate sys-
tem for T2

~E , according to the following construction. As

already mentioned, the motions r(λ) and θ(λ) are each
individually periodic in Mino time, with periods Λr and
Λθ (and frequencies Ωr and Ωθ), respectively. Scaling
the evolution parameter λ on each of the r-pr and θ-
pθ curves by Ωr and Ωθ, respectively, leads to a natural
definition of angle variables χr ≡ Ωrλ and χθ ≡ Ωθλ.
We choose a specific trajectory (r(λ), pr(λ), θ(λ), pθ(λ))
in order to assign χr and χθ values, respectively, along
the r-pr and θ-pθ curves, but the trajectory is only a de-
vice that we discard once the torus coordinate system is
in place. The points at 0 and 2π in each of χr , χθ are
identified, so the torus can be represented as a 2π-by-2π
square with opposite sides identified as in Fig. 5. We will
make a simplifying choice that (ra, θmin) corresponds to
the origin4 of the torus. Then, a reflection in the line
χr = π corresponds to keeping r fixed and reversing the
sign of pr, and analogously for reflections in χθ = π.
Note that each quadrant of the toroidal square therefore
contains the same (r, θ) pairs but with all possible sign
combinations for the momenta (++,+−,−+,−−).

Note that each χr corresponds to an ordered pair5

4 Many references, including [1, 3, 11, 14], instead tacitly choose
the point (r = rp, pr = 0, θ = θmin, pθ = 0) as the origin of
the torus coordinates. We say “tacitly” because they refer to
the individual orbit with those initial conditions as a fiducial
geodesic to use in their analyses. Another interpretation of that
choice is that they are working not with one geodesic but with
one torus and that they have instead chosen a fiducial origin for
a χr -χθ coordinate system on that torus.

5 Some references describe the mapping of functions of the form
F (r, θ) to corresponding functions F (χr , χθ ). In fact, no function
that enters an adiabatic EMRI calculation depends on r and θ
alone. The notation F (r, θ) in those references is used because,
once restricted to a torus, the value of each coordinate determines
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FIG. 4: The above figures are all qrθ = 1
2

orbits with a = 0.9 and orbital parameters Lz = 2.65115, Q = 0.944969 and
E = 0.954788. The three figures in each row have the same initial coordinates. The column on the left shows an r-cos θ
projection of the orbit, the middle column is a projection in the orbital plane, and the right column is the 3D orbit. All three
rows have r0 = ra = 17.8148. The first row has θ0 = θmin = 1.22079 and is the same orbit shown in the top panel of Figs. 2
and 3, the middle row has θ0 = 1.39579, and the bottom row has θ0 = π

2
.

(r, pr) and each χθ corresponds to an ordered pair (θ, pθ).
We discuss alternative coordinate systems for T2

~E in Ap-

pendix A and elsewhere in this article but will use only
the (χr , χθ) coordinates for calculations.

On the compact (χr , χθ) square defined above,
geodesic trajectories are lines of slope Ωθ/Ωr = 1 + qrθ.

its conjugate momentum up to a sign. Still, the values of those
signs affect the value of the function. We believe a notation such
as F (r, pr, θ, pθ) for these pre-torus phase space functions is more
appropriate.

With respect to Mino time, those orbits are given para-
metrically by

χr(λ) = Ωrλ+ χr0 (12a)

χθ(λ) = Ωθλ+ χθ0 . (12b)

Two different initial positions ~χ0 and ~χ′o produce dis-
tinct orbits unless there exist real numbers x and y that
simultaneously satisfy

y − χθ0
x− χr0

=
Ωθ
Ωr

, (13)
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FIG. 5: The above picture shows a resonant torus mapped to
a square with the path of two resonant orbits traced out. The
solid line shows the path of a resonant orbit with χr0 = χθ0 =
0 and the orbit traced out by the dotted line has χr0 = 0 and
χθ0 = 0.7894. The resonant torus and both resonant orbits

have Ωθ
Ωr

= 1 + qrθ = p
z

= 3
2
.

and

χ′r0 = x mod 2π (14)

χ′θ0 = y mod 2π .

If these conditions are met, then the two different initial
positions produce time-translated versions of the same
orbit.

When Ωθ/Ωr is irrational, we will call both the torus
and any orbits on that torus non-resonant. Orbits on
non-resonant tori never close and instead sample the en-
tire torus ergodically: an orbit starting from any ini-
tial condition will pass arbitrarily close to every point
in the torus after some finite (but possibly very long)
time. Therefore, non-resonant orbits with different ~χ0 ≡
(χr0 , χθ0) are arbitrarily close to time translations of ev-
ery other non-resonant orbit with the same ~χ0. We will
alternately refer to such orbits as aperiodic or biperiodic.

When the frequency ratio Ωθ/Ωr is a rational number
p
z , we will call both the underlying torus and orbits on
that torus resonant. Orbits that live on resonant tori
inherit the rational frequency ratio and thus always trace
out closed curves. Since no single resonant orbit ergodi-
cally fills the torus, even after infinite time, two resonant

orbits with the same ~E but different (χr0 , χθ0) are not
necessarily time translations of each other. The set of

all resonant orbits with the same ~E does fill the entire

torus. Because they return to their initial conditions af-
ter a finite time, we will alternately refer to these orbits
as periodic or singly periodic.

Figure 5 shows two resonant orbits on the resonant
torus defined by E = 0.954788, Lz = 2.65115, Q =
0.944969. Each is thus a qrθ = 1

2 orbit, or 2-leaf clover
in the orbital plane. These are the same two orbits il-
lustrated in physical space in the top two rows of Fig-
ure 4. The two orbits are distinguished by their initial
position ~χ0 on the torus. The solid line orbit, which
starts at χr0 = 0, χθ0 = 0, corresponds to the physical
space orbit with initial conditions r0 = ra = 17.81477
and θ0 = θmin = 1.220793. The dotted line orbit with
initial conditions χr0 = 0 and χθ0 = 0.7854 has physi-
cal space initial conditions of r0 = ra = 17.81477 and
θ0 = 1.39579. Notice that any two adjacent line seg-
ments belonging to a single orbit are separated in χr by
2π
p and in χθ by 2π

z but are not traced out sequentially

for general p
z .

In the same way that the rational numbers have zero
measure on the line, the set of resonant tori has zero
measure in the 4D phase space. To date, most of the
literature on the adiabatic EMRI problem has ignored
resonant geodesics precisely for this reason. Nevertheless,
as we will see, the judicious exploitation of this measure
zero set leads to significant computational efficiencies in
adiabatic EMRI calculations.

III. AVERAGING IN THE ADIABATIC
APPROXIMATION

Given the background on geodesic dynamics, we now
turn to the adiabatic approximation of EMRIs, an ap-
proximation that has seen substantial debate in the lit-
erature. As we elucidate below, most of that debate con-
flates the question of what kind of averaging procedure to
use in the equations of motion (1) with other related but
logically independent questions about the adiabatic ap-
proximation. In this section, we clarify why phase space
averaging (as opposed to time averaging) is the correct
averaging procedure, a conclusion first reached in Ref.
[2]. We also establish the results we will need in Section
IV to exploit resonant orbits for computational savings.

A. The adiabatic equations of motion

Let ~X denote the Boyer-Lindquist coordinates of the
inspiraling object along with its canonical radial and po-
lar momenta. In the absence of radiation reaction, the
equations of motion are

d ~X

dt
= ~G( ~X, ~E) (15a)

d~E
dt

= 0 , (15b)
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where the RHSs ~G of the positional equations are some
form of the equations for geodesic motion, e.g. Hamil-
ton’s equations for free-particle Kerr motion. Radiation
reaction adds to the RHSs new functions

d ~X

dt
= ~G( ~X, ~E) + ~F ( ~X, ~E) (16a)

d~E
dt

= 0 + ~f( ~X, ~E) (16b)

that are determined by the full gravitational self-force on
the particle. Those unknown functions can be expanded
in a perturbation series in powers of a natural small pa-
rameter: the system’s mass ratio ε ≡ µ/M � 1. Further-
more, at each order in ε, the functions above decompose
into a sum of dissipative and conservative pieces:

~F = ε
[
~F

(1)
diss + ~F (1)

cons

]
+ ε2

[
~F

(2)
diss + ~F (2)

cons

]
+O

(
ε3
) (17a)

~f = ε
[
~f

(1)
diss + ~f (1)

cons

]
+ ε2

[
~f

(2)
diss + ~f (2)

cons

]
+O

(
ε3
)

.

(17b)

See [7] and references therein for a fuller account.
We expect a natural separation of timescales in this

system. The “fast” positional variables ~X will change
substantially on a short timescale equal to an orbital pe-

riod Torb ∼ M , while the “slow” orbital parameters ~E
only change substantially on the much longer timescale

Trad ∼ M/ε. Due to the coupling of the ~X and ~E
equations, both ~X(t) and ~E(t) should exhibit oscillations
around a secularly trending central value, but the oscilla-

tions in ~E should be O(ε). In such a system, a first-order
averaging procedure seeks an approximate and hopefully
more tractable set of equations for the slow variables from
which the dependence on the fast variables (and thus the
source of the small oscillations) is removed [15–17].

Averaging must therefore decouple the ~E equations

from the ~X equations in (16) in order to isolate the sec-
ular trend in the former.6 One can even adopt the point
of view that the desideratum of a preliminary averag-
ing procedure is to decouple the equations for the slow
and the fast variables from each other as much as pos-
sible. We represent those averaged, decoupled equations
for the orbital parameters (equivalent to equation (1)) as

d~Esecular

dt
=

〈
d~E
dt

〉
=
〈
~f
(
~X, ~E

)〉
= ~F

(
~E
)

.

(18)

6 Note that the converse is not possible, since the fast variables are
coupled to the slow ones at zeroth order, where the slow variables
appear as constant parameters.

Throughout this paper, we will represent averages of all
sorts with angle brackets 〈〉 and use subscripts on the
brackets to denote the type of average implied. Note
that in (18), we have used 〈· · ·〉 to denote an average
without yet specifying which variables that average is to
be taken over.

B. Flux balance and its relationship to averaging

Although we now have the general form of the adi-
abatic equations, we cannot write them explicitly be-
cause we still do not know how to evaluate the self-force.
Mino showed [1, 11] that, under the assumption of non-
resonance, the infinite time-averaged values7 of the func-
tions FE and FLz equal the sum of the infinite time-
averaged fluxes of the corresponding orbital parameters
at radial infinity and the central black hole horizon in
GWs emitted by the system8. While there is no con-
served Q-current to associate with a GW Q-flux, Mino
likewise showed that there are analogous infinite time-
averaged quantities at infinity and the horizon that sum
to the infinite time-averaged value of FQ. Though not
strictly physically accurate, we will henceforth refer to
those quantities as fluxes of Q for ease. Subsequent work
[3, 18, 19] has led to explicit formulae for these Q-fluxes.

Fortunately, we do know how to calculate the afore-
mentioned time-averaged fluxes at infinity and the hori-
zon via the computationally mature Teukolsky formal-
ism. Various Teukolsky-based (TB) codes can compute
the required fluxes from equatorial orbits [20], spherical
orbits9 (constant r) [22], and now generic orbits of arbi-
trary inclination and eccentricity [14, 19, 23].

These developments have led to the following two-stage
implementation of the adiabatic approximation. The first
stage, usually called the radiative approximation10, keeps
only the lowest-order contributions from the dissipative
self-force (since the conservative contributions will aver-
age to zero). The second stage, called the flux-balance
method, uses the time-averaged nonlocal fluxes (com-

7 The quantities of physical interest are averages over coordinate
time t.

8 Mino’s proof suggests that this equivalence is only true for
non-resonant geodesics and possibly a small subset of resonant
geodesics.

9 Many authors refer to orbits of constant radial coordinate r as
“circular” even when they are nonequatorial. We prefer the term
“spherical” for such orbits (as used in [21]) and reserve the term
circular for constant r equatorial orbits.

10 There is some dispute about whether the neglected secular effects
of the averaged conservative piece of the self-force manifest them-
selves at the same order in the small expansion parameter µ/M
as the dissipative pieces [4–7]. That dispute does not concern
us here. Whatever its limitations, the radiative approximation,
is here to stay for at least the foreseeable future, if for no other
reason than that it is the only relativistically correct approxima-
tion to the inspiral motion accessible to numerical calculation in
the status quo.
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putable) as proxies for the averaged local contributions
of the dissipative self-force (not currently computable).
The RHSs of equation (18) end up with nonlocal fluxes
inside the brackets and an interpretation of those brack-
ets as infinite time-averages.

There is a problem, however, with this prescription,
which intertwines two logically distinct facets of the adi-
abatic approximation to EMRIs:

1. Is it mathematically appropriate to interpret the
angle brackets in equation (18) as a time-average,
or is some other sort of average required?

2. Given the answer to 1, can we evaluate the RHS
of (18), either directly or by finding a numerically
equivalent proxy?

After all, the fact that we can compute a time-averaged
proxy does not imply that we should be time averaging
in the first place.

The form of equation (18) suggests two ways to average
the RHS in order to remove the dependence on the po-

sitional variables: for fixed ~E , we can either phase space
average over the torus, or we can evaluate the RHS along
a specific orbit on that torus and then average over time.
In Section III E, we offer a definitive argument in favor
of torus averaging instead of time averaging.

To arrive at that conclusion, we must first distinguish
between torus functions and time functions. Torus func-
tions assign a value to every point on a phase space torus,
while time functions assign a value to points along an
individual orbit that are labeled by the value of an evo-
lution parameter (i.e. a time variable). Our conclusions
about adiabatic averaging will be based on differences
in how Fourier analysis is done on these two domains
— a 2-dimensional compact position space for the torus-
functions and a 1-dimensional noncompact time axis for
the time-functions. Moreover, numerically accurate flux
calculations require frequency-domain TB codes that sep-
arately compute fluxes from individual Fourier modes,
and the aforementioned different domains also impact the
details of the modewise flux calculation.

Before delving into those details, we must mention an
important point. Average values, whether in the torus
or time sense, are coordinate dependent, and in certain
applications it matters which coordinates the average is
taken over. The angle brackets in equation (18), for in-
stance, will turn out to denote a torus average not over ~χ
but over a different set of torus coordinates ~γ ≡ (γr, γθ)
described in Appendix A. However, torus averages with
respect to ~χ are much easier to compute than those over
~γ, in much the same way as Mino time averages are easier
to compute than are coordinate time averages. Luckily,
for every torus function U(~γ) and every time function
u(t), we can always construct different functions V (~χ)
and v(λ) such that

〈U〉~γ = 〈V 〉~χ (19)

〈u〉t = 〈v〉λ . (20)

The relationship between U and V (or between u and v)
is highlighted in Appendix A 1. Sections III C and III D
present the necessary Fourier analysis details.

We will always avail ourselves of the simplification in
equation (19). Accordingly, throughout the rest of the
paper, we focus exclusively on torus averages over ~χ and
time averages over Mino time λ with the understanding
that they may merely be computation-friendly proxies for
averages of different but related functions over different
torus or time coordinates.

C. Torus averaging and Fourier analysis of
torus-functions

We will call a torus function f(~χ; ~E) any rule that as-
signs a complex number to every point on a phase space

torus. Note that ~E specifies both the torus function and
the phase-space torus that serves as its domain. Usually,
we will be discussing properties of torus functions evalu-

ated at some definite value of ~E . We thus omit the ex-
plicit dependence on the orbital parameters ~E for brevity,
except where it might lead to confusion.

We assume that every such torus-function is continu-

ous and differentiable in all its arguments (including ~E).
We also require it to be single-valued on the torus, which
implies 2π periodicity in each of the angle variables:

f(χr , χθ) = f(χr + 2π, χθ) = f(χr , χθ + 2π) . (21)

Like any function that is independently periodic in
two independent variables, a torus-function has a dou-
ble Fourier series representation

f(~χ) =
∑
k,n

Akne
−inχr e−ikχθ (22)

with the Akn’s given as usual by

Akn =
1

(2π)
2

∫ 2π

0

dχr

∫ 2π

0

dχθ f(χr , χθ)e+inχr e+ikχθ .

(23)

In order to distinguish them from another set of double-
indexed quantities we introduce later, we will refer to the
Akn’s as spatial Fourier coefficients or torus Fourier
coefficients.

We now define, in the usual way, the following useful
quantities. The torus average of f is

〈f(~χ)〉~χ ≡
1

(2π)
2

∫ 2π

0

dχr

∫ 2π

0

dχθ f(χr , χθ)

= A00 .

(24)

The torus averaged Fourier power of f is

P~χ ≡
1

(2π)
2

∫ 2π

0

dχr

∫ 2π

0

dχθ |f(χr , χθ)|2 . (25)
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By Parseval’s theorem, the torus-averaged power must
also equal

P~χ =
∑
k,n

|Akn|2 . (26)

The 2D power spectrum of f is the contribution to the
torus-averaged Fourier power from each pair of spatial
frequencies or wavenumbers (κr, κθ). Note that because
the period in each of the χr and χθ directions is 2π, the
corresponding fundamental spatial frequencies are κr =
κθ = 1, so we see power only at integer lattice points
(k, n) in the 2D wavenumber space.

All statements above are standard results from the
Fourier analysis of functions on a compact 2D spatial
domain. They apply equally well on resonant and non-
resonant tori.

D. Time averaging and Fourier analysis of
time-functions

We can evaluate any torus function along a curve
(12) on its associated torus that corresponds to an or-
bit. Since each orbit is specified by its initial position
~χ0 on the torus, each torus function naturally induces
a 2-parameter family of time functions, one for each
(χr0 , χθ0) pair. Time functions, then, are grouped into

5-parameter families – 3 parameters ~E to specify a torus,
and 2 parameters ~χ0 to specify an orbit on that torus.

We denote one member of such a family as

f
(
~χ(λ); ~χ0; ~E

)
. We will sometimes omit the explicit ~χ0

and ~E-dependence of a time function and simply write
f(λ), again except where clarity would suffer. Through-
out this paper, we adopt the notational convention that a
time function and the torus function from which it is de-
rived are denoted by the same symbol (f , in the examples
so far).

For time functions, non-resonant and resonant tori
must be treated separately.

1. Non-resonant tori

When Ωθ/Ωr is irrational, every k, n pair leads to a
distinct frequency

Ωkn ≡ nΩr + kΩθ , k, n ∈ Z . (27)

Such a biperiodic time-function is not periodic: it is
bounded on (−∞,∞), but there is no finite time inter-
val over which the function exactly repeats itself. Still,
every biperiodic function has a unique discrete Fourier
representation [24]

f(λ; ~χ0) =
∑
k,n

Akn;λe
−i(nΩr+kΩθ)λ . (28)

Note that the harmonics are not equally spaced in fre-
quency. The temporal Fourier coefficients Ank;λ (which
we have named suggestively) are given by the limit

Akn;λ = lim
Λ→∞

1

Λ

∫ b+Λ/2

b−Λ/2

dλ f(λ; ~χ0)ei(nΩr+kΩθ)λ ,

(29)

which exists and is independent of b [24] (henceforth, we
set b = 0 for convenience). Equivalently, we could say
that the Fourier transform of f(λ; ~χ0) consists of a series

f̃(Ω) =
∑
k,n

Akn;λ δ (Ω− (nΩr + kΩθ)) (30)

of delta-function impulses unequally spaced in frequency.
Paralleling the Fourier discussion of torus functions,

we now define the time-averaged value, time-averaged
Fourier power, and the 1D power spectrum of a time
function associated with a non-resonant orbit. Biperi-
odic functions offer no single period over which to time-
average in a natural way. Given the existence11 of ex-
pressions like (29), averaging over all time seems like a
sensible choice. The theory of almost-periodic functions
states that such an infinite time-average indeed exists
[25], so we define

〈f(λ; ~χ0)〉λ = lim
Λ→∞

1

Λ

∫ ∞
−∞

dλ f(λ; ~χ0) . (31)

We will refer to 〈f〉λ simply as the time-average of f
rather than as the infinite time-average value, as it is
sometimes called. Comparing equations (29) and (31),
the time-average equals

〈f(λ; ~χ0)〉λ ≡ A00;λ . (32)

We define the time-averaged Fourier power of f(λ) as
a special case of (31) by

Pλ ≡ lim
Λ→∞

1

Λ

∫ Λ
2

−Λ
2

dλ|f(λ; ~χ0)|2 . (33)

Parseval’s theorem also applies to biperiodic time-
functions [25], so

Pλ =
∑
k,n

|Akn;λ|2 . (34)

11 Technically, the logical presentation of Fourier coefficients and
time-averages for biperiodic (or more general multiperiodic)
functions goes in the reverse order. First, the existence of the
infinite time-average in (29) is established for a biperiodic func-
tion f(λ). The existence of the Fourier coefficients in (29) then
follows from the existence of the average value and the fact that
f(λ)ei(nΩr+kΩθ)λ is also biperiodic. We have chosen this order
to parallel the presentations in Sections III C and III D 2.
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That fact allows us to define a 1D power spectrum for
f(λ) as the contribution to the time-averaged power from

each temporal frequency Ω. The graph of |Akn;λ|2 over
the 1D Ω-space would show power only at the discrete
and unequally spaced set of frequencies (27).

The question now is how to evaluate these time av-
erages in practice. Though equation (29) defines the
Akn;λ’s, such integrals over infinite intervals divided by
infinite quantities do not lend themselves to simple eval-
uation, either analytically or numerically12.

To compute the temporal Fourier coefficients of
f(λ; ~χ0), we must instead proceed circuitously. Con-
sider the spatial Fourier representation (22) of the torus-
function f(~χ) evaluated along the orbit (12), which yields

f(λ;χr0 , χθ0) =
∑
k,n

Akne
−i(nχr0+kχθ0 )e−i(nΩr+kΩθ)λ .

(35)

By uniqueness13 of the Fourier representation of f(λ; ~χ0),
and comparing equations (28) and (35), we conclude that
the temporal Fourier coefficients of f(λ; ~χ0) and the spa-
tial Fourier coefficients of f(~χ) are related14 by

Akn;λ ≡ Akne−i(nχr0+kχθ0 ) . (36)

We note that each temporal coefficient differs from the
corresponding spatial coefficient in (23) only by a com-
plex phase determined by the initial conditions ~χ0 of the
orbit. Consequently, their magnitudes are identical, re-
gardless of the initial position of the orbit:

|Akn;λ| = |Akn| , ∀~χ0 ∈ T2
ELzQ . (37)

This fact is consistent with the ergodic property of these
orbits. Every orbit eventually comes arbitrarily close to
every point on the torus, so shifting initial conditions
leads to a new orbit that is arbitrarily close to a time

12 To evaluate equation (29) numerically, larger and larger values of
Λ would be required before converging to some accuracy. This is
computationally impractical because such a process will in gen-
eral converge extremely slowly. Thus, as the size of the integra-
tion interval grows, so will the required number of evaluations of
the integrand, a particularly problematic development if the in-
tegrand is expensive to calculate. Moreover, the prefactor of 1/Λ
can eventually become so small that there is loss of significance
in the final answer, thus compromising accuracy.

13 The set of complex exponential functions e−iΩλ for all Ω are a ba-
sis for absolutely integrable functions on the space λ ∈ (−∞,∞).
f(λ; ~χ0) inherits absolute integrability from the associated torus
function f(~χ), which has a spatial double Fourier series represen-
tation and thus is absolutely integrable by assumption. Equation
(28) is therefore a projection onto the complex exponential basis,
and projections onto basis sets are unique.

14 We denoted the knth temporal Fourier coefficient by Akn;λ in
anticipation of its close relationship to the knth spatial Fourier
coefficient Akn of the associated torus function and added the λ
subscript to remind us of when we are dealing with spatial vs.
temporal Fourier coefficients.

translation of the original orbit. And, of course, time
translations only affect the complex phase of temporal
Fourier coefficients.

If we know the torus function f(~χ), its spatial Fourier
coefficients Akn can be computed by any number of ef-
ficient numerical routines, without any of the difficulties
that beset computation of the Akn;λ’s via direct evalu-
ation of the definition (28). This fact, combined with
equation (36), leads to the only practical recipe for com-
puting the Akn;λ’s of the orbit with initial position ~χ0,
namely to compute instead the Akn’s and then use equa-
tion (36). Ref. [26] introduced just such a technique in
the specific context of functions of Kerr geodesics.

All the other quantities mentioned in this section are
likewise determined from their torus function counter-
parts. From equations (32) and (36), A00;λ = A00. We
thus conclude that on a non-resonant torus, the time av-
erage of f(λ) equals the torus average of its associated
torus-function f(~χ). Moreover, since this is true for ev-
ery time function on that torus, the time average of such
a function is independent of the initial condition ~χ0:

〈f(λ; ~χ0)〉λ = 〈f(~χ)〉~χ , ∀~χ0 ∈ T2
ELzQ . (38)

Likewise, equations (37) and (26) imply that, on a
non-resonant torus, the time-averaged Fourier power of
f(λ; ~χ0) equals the torus-averaged Fourier power of f(~χ)
for every ~χ0:

Pλ ≡ P~χ ∀~χ0 ∈ T2
ELzQ . (39)

Equations (26), (37) and (39) together imply equation
(34)15. By extension, the 1D power spectrum of f(λ)
can be derived from the 2D power spectrum of f(~χ) by
mapping wavenumber pairs to frequencies using eq. (27).

All of the above relationships between torus-function
quantities and those of any biperiodic time function in-
duced via (35) are well-established and well-known in the
literature on almost-periodic functions [24, 25] and on in-
tegrable Hamiltonian systems [15]. Many of these facts,
however, are used but not so clearly delineated in this
way in the literature relating to EMRI calculations. We
have gone through the trouble of including them here not
only for completeness and clarity but also to emphasize
that we can only execute the above recipes if we know
the corresponding torus function f(~χ).

This leads us to a crucial observation. If all we know
is f(λ), either as some closed-form expression in terms
of λ or as a numerical time-series, there is no practical
scheme for computing its temporal Fourier coefficients
Akn;λ, even though those coefficients are perfectly well-
defined. In addition to the initial conditions ~χ0 associ-
ated with f(λ), we must also know the torus-function
f(~χ) (or at least its spatial Fourier coefficients Akn) in

15 This proves Parseval’s theorem for biperiodic functions.
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order to compute the Akn;λ’s. We summarize the impli-
cations of this fact for flux balancing in section III E.

All of the equivalences noted between torus-function
quantities and their time-function counterparts followed
from the assumption of non-resonance. On resonant tori,
all of these equivalences break down, as we now show.

2. Resonant tori

Unlike time functions evaluated along non-resonant or-
bits, time functions on resonant orbits are singly periodic,
with (possibly very long) period ΛP and corresponding
fundamental frequency ΩP = 2π/ΛP . The single peri-
odicity of time functions of resonant orbits means that
all frequency-domain quantities have straightforward and
familiar definitions.

Any time function evaluated on a resonant orbit has a
Fourier series representation

f (λ; ~χ0) =
∑
j

Cj;λe
−ijΩPλ (40)

whose coefficients16 are single-index objects

Cj;λ =
1

ΛP

∫ ΛP /2

−ΛP /2

dλ f (λ; ~χ0) e+ijΩPλ . (41)

Like the Akn;λ’s, each Cj;λ varies with the initial con-
dition ~χ0. Unlike the Akn;λ’s, the Fourier transform of
f(λ; ~χ0) is a sequence

f̃(Ω) =
∑
j

Cj;λ δ (Ω− jΩP ) (42)

of equally spaced delta-function impulses in frequency
space.

In the resonant case, we define the time average of f(λ)
straightforwardly as

〈f(λ; ~χ0)〉λ ≡
1

ΛP

∫ ΛP
2

−ΛP
2

dλ f(λ; ~χ0) = C0;λ . (43)

Likewise, we define the time-averaged power as

Pλ(~χ0) ≡ 1

ΛP

∫ ΛP
2

−ΛP
2

dλ |f(λ; ~χ0)|2 . (44)

By Parseval’s theorem, the time-averaged power is also
given by

Pλ(~χ0) =
∑
j

|Cj;λ|2 . (45)

16 Periodicity of f(λ) implies that the integral in equation (41)
has the same value taken over any interval of length ΛP . We
choose the symmetric interval [−ΛP /2,ΛP /2] solely for aesthetic
reasons.

To flush out how the Cj;λ’s relate to the spatial Akn’s
and to the initial condition ~χ0, we begin, as in the non-
resonant case, by inducing a time function (35) from a
torus function. In the resonant case, the frequency ra-
tio Ωθ/Ωr is a rational number p/z, where p and z are
relatively prime and p > z. (In terms of integers in the
definition qrθ = w+ v

z , p = (w+1)z+v.) The individual r
and θ frequencies and periods are therefore related to the
fundamental frequency and total period of the periodic
orbit by

Ωr = zΩP (46a)

Ωθ = pΩP (46b)

and

Λr =
ΛP
z

(47a)

Λθ =
ΛP
p

. (47b)

As a result, all kn combinations for which

nz + kp = j (48)

lead to identical frequencies

nΩr + kΩθ = nzΩP + kpΩP = jΩP (49)

in the arguments of the exponential functions on the RHS
of equation (35).

The selection rule (48) maps every kn pair to some
j. By the uniqueness of Fourier representations, we con-
clude from equations (35) and (40) that

Cj;λ(~χ0) =
∑
k,n:

nz+kp=j

Akne
−i(nχr0+kχθ0 ) . (50)

Note that equation (50) is really only a summation over a
single index since the value of k in any term is determined
by the value of n and the (fixed) value of j.

It is tempting to rewrite each term on the RHS of
equation (50) as Akn;λ, mimicking the notation for the
non-resonant temporal Fourier coefficients. We refrain
from doing so because we seek a clear distinction between
spatial and temporal Fourier coefficients, and temporal
double-index coefficients are not defined in the resonant
case [25, 27]. Fourier representations are unique, so the
familiar single-index representation (40) is the only such
projection of f(λ) onto a set of mutually orthogonal basis
functions. If we were to write an expression like (28) on a
resonant orbit, the different harmonics on the RHS would
not all be orthogonal, and we would not have a bona fide
Fourier expansion in hand until we collapsed all terms
corresponding to the same frequency into a single term.

Equation (36) implied that, on non-resonant orbits,
several quantities one can compute for a time-function
f(λ; ~χ0) turn out to be independent of ~χ0: the magni-
tudes of its Fourier coefficients, its time-averaged value,
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its time-averaged Fourier power, and its power spectrum.
In contrast, equation (50) implies that, on resonant or-
bits, each of those quantities does depend on the initial
condition ~χ0. Each Cj;λ is a sum of spatial Akn’s with
~χ0-dependent phases rather than just one such term (cf.
equation (36)), so both the magnitudes

|Cj;λ| (~χ0) =

∣∣∣∣∣∣∣∣
∑
k,n:

nz+kp=j

Akne
−i(nχr0+kχθ0 )

∣∣∣∣∣∣∣∣ (51)

and time-averaged value

〈f(λ; ~χ0)〉λ = C0;λ(~χ0)

=
∑
k,n:

nz+kp=0

Akne
−i(nχr0+kχθ0 )

= A00 +
∑

n 6=0,k 6=0:
nz+kp=0

Akne
−i(nχr0+kχθ0 )

(52)

retain ~χ0-dependence. The squared magnitudes

|Cj (χro , χθo)|2 =
∑
kn:

j=nz+kp

Akne
−i(nχro+kχθo )

∑
k′n′:

j=n′z+k′p

A∗k′n′e
i(n′χro+k′χθo) (53)

=
∑

k=k′,n=n′:
j=nz+kp

|Akn|2 +
∑

k 6=k′,n6=n′:
j=nz+kp,
j=n′z+k′p

AknA
∗
k′n′e

−i(n−n′)χro e−i(k−k
′)χθo .

also depend on ~χ0 through cross terms, and the time-
averaged power and power spectra inherit this depen-
dence via (45). Figure 6 illustrates this point for the test
function r cos θ.

Via its ~χ0-dependence, equation (52) defines a torus
function in the variables χr0 , χθ0 . Complex exponentials
have a zero average value, so averaging that torus func-
tion over all χr0 , χθ0 kills every term in the summation on
the RHS of (52), leaving only A00. But A00 is the torus
averaged value of the associated torus function f(~χ). We
conclude that the torus-average over all initial condi-
tions of the time average of a time function equals the
torus-average of the underlying torus-function. An iden-
tical argument applies if we torus average the squared-
magnitudes (53) of the coefficients over all ~χ0 and, by
extension, if we likewise torus-average the time-averaged
power (44).

The upshot is that the parallels between torus func-
tions and time functions obtained in the non-resonant
case break down in the resonant case:

〈f(λ; ~χ0)〉λ 6= 〈f(χr , χθ)〉~χ (54)

Pλ(~χ0) 6= P~χ . (55)

However, torus averages over initial conditions and torus
averages of time averaged are equal for both a function
f and its Fourier power:

〈〈f(λ; ~χ0)〉λ〉~χ = 〈f(χr , χθ)〉~χ (56)

〈Pλ(~χ0)〉~χ = P~χ . (57)

To clarify, equations (54) and (55) state that the time
average of a time function and the torus average of its as-
sociated torus-function are not identically equal as they
are in the non-resonant case. That does not, of course,
preclude the possibility that the two could be circumstan-
tially equal for some particular choice of initial condition
~χ0. In fact, for real-valued functions f , the mean-value
theorem guarantees that 〈f(λ; ~χ0)〉λ = 〈f(~χ)〉~χ for at

least one ~χmvt
0 ∈ T2

~E . In general, f will be complex-

valued, and we have no such guarantee. The time-
averaged Fourier power, however, is strictly real, so there
is at least one ~χmvt

0 such that Pλ(~χmvt
0 ) = P~χ. We ex-

plore some implications of this fact for adiabatic EMRI
calculations in Section V.
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FIG. 6: Top: The Fourier power spectrum of the function
r cos θ for a qrθ = 1

2
periodic orbit for two different sets of ini-

tial coordinates,
(
r0 = ra, θ0 = π

2

)
and (r0 = ra, θ0 = θmin),

but the same sets of orbital parameters, a = 0.9, E =
0.954788, Lz = 2.65115 and Q = 0.944969. Bottom: The
magnitudes of some spatial Fourier coefficients for the same
orbits in the top panel.

E. Why torus averaging is correct

To summarize, time averaging is equivalent to torus av-
eraging for non-resonant orbits. Furthermore, torus av-
eraging is the only practical recipe for computing Fourier
coefficients and so torus averaging is the explicit compu-
tation instituted in practice.

However, time averaging is inequivalent to torus av-
eraging for resonant orbits. Thus torus averaging wins
out for two reasons. First, torus averaging along a
resonant torus crucially washes away any ~χ0 positional
dependence, while time averaging does not. The ~χ0-
dependence violates the spirit of averaging, namely to
remove all dependence on the fast variables. Second, and
more seriously, though the time-averaged equations are

continuous in ~χ0 for fixed ~E , they are in general discon-

tinuous in ~E for fixed ~χ0. The situation will resemble
that of Thomae’s modified Dirichlet function

DM (x) =


0 if x is irrational
1
z if x = p/z, with p and z coprime

1 if x = 0

,

(58)
which is continuous at the irrationals, discontinuous on
the rationals, and nowhere differentiable17 [29]. Prag-
matically speaking, even if a set of ODEs with such
pathologically discontinuous and non-differentiable equa-
tions had a solution, it is unclear how one would numer-
ically integrate them. Furthermore, the continuity fur-
nished by torus-averaged fluxes is absolutely essential for
the proper construction of a grid through which adia-
batic trajectories are to be interpolated, as discussed in
the introduction.

In short, torus-averaged equations are well-behaved,
while time-averaged equations lose the continuity and dif-
ferentiability that guarantee the resulting equations are
well-posed and have unique solutions, the very basis of
every standard numerical integration scheme.

The arguments made in favor of torus averaging ap-
ply to the radiative approximation, based on an aver-
age of the dissipative piece of the local self-force on the
inspiraling particle. But when it comes to flux-balance
as a specific implementation of the radiative approxima-
tion, this now leaves a logical gap. As acknowledged in
[1, 11], the flux-balance arguments that allow the nonlo-
cal fluxes of conserved quantities to be used as proxies
for the local dissipative self-force have been derived on
a time-averaged basis and under the assumption of non-
resonance. Since time and torus averages agree for non-
resonant orbits/tori, the time-averaged nonlocal fluxes
are still good proxies for the torus-averaged local dissi-
pative self-force in the non-resonant case.

What has never been made explicit is whether flux-
balance is also valid in the resonant case, on either a
time averaged or torus-averaged basis. We resolve this
issue now: time averaged flux-balancing may not be true
on resonant orbits in general, but that will be irrelevant
since it will be true on a torus-averaged basis. Mino
showed that, under the assumption of non-resonance, the

time-averaged fluxes of ~E at infinity and the horizon fur-
nish proxies for the time averaged RHSs of equations
(18). But then, by the arguments we have heavily ex-
ploited, the corresponding torus-averaged versions must

17 Such a function certainly seems unphysical. It violates the hy-
potheses of continuity and differentiability in all arguments re-
quired by the theorems bounding the error in a solution to time-
averaged equations with almost-periodic dependence on time
[17]. More pathologically, it violates the hypotheses for the well-
posedness of an initial value problem and for the existence of
solutions to systems of ODEs [28]. Such a function would not be
Riemann integrable, and it is unclear whether a system of such
functions would even be Lebesgue integrable.
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also be equal. And since torus averages are insensitive to
the resonance or non-resonance of the underlying torus

and are continuous in ~E , the flux-balance prescription
is valid in a torus-averaged sense for all orbits. If the
torus-averaged fluxes were not good proxies for the torus-
averaged local equations only at resonances, a discrete set

of measure zero, then they could not be continuous in ~E .
But we have shown torus averages are everywhere con-
tinuous. De facto, then, Mino’s argument establishes the
validity of torus-averaged flux-balancing generally.

It would thus seem that both flux-balancing as a
general procedure and its specific implementation in a
frequency-domain application of the Teukolsky formalism
treat non-resonant and resonant tori equally, as stated in
[7]. Flux-balancing is, in fact, thusly impartial, but in-
terestingly, the Teukolsky formalism is not. As we will
show below, a TB torus-averaged flux calculation can
achieve computational savings of an order of magnitude
or more on low-order resonant tori that are simply not
available on non-resonant tori. These efficiencies follow
from a simple observation about the Fourier integrals a
TB code must evaluate and are independent of the spe-
cific implementation in code of the Teukolsky formalism.
Thus, rather than disfavoring resonances, as has been
commonly assumed, the Teukolsky formalism actually
shows favoritism for resonances, and properly leveraged,
that favoritism can substantially accelerate adiabatic in-
spiral calculations.

IV. COMPUTATIONAL SAVINGS ALONG
RESONANCES

We now explain computational efficiencies that exploit
resonant tori. Although specific to the Teukolsky formal-
ism, the computational expedience can be understood
without all details of that formalism. We simply assert
some features and formulae from a TB flux calculation
that we require to make our argument. For reference, Ap-
pendix B gives a somewhat more detailed overview of the
Teukolsky formalism and offers at least skeletal deriva-
tions of the formulae listed below. For a fuller treatment
of the Teukolsky formalism, which is beyond the scope of
this work, we direct the reader to the references listed in
Appendix B.

As a reminder, our argument is specific to frequency-
domain Teukolsky calculations and corresponding codes.
In the context of the EMRI problem, such codes com-
pute a combined multipole and Fourier decomposition of
the metric perturbations at infinity and the black hole
horizon due to a geodesic source.

A. The fluxes of E,Lz, Q

The fluxes of the conserved quantities ~E are usually
reported as quantities averaged over coordinate time t

on non-resonant orbits18. By the arguments of Section
III D 1 and Appendix A, this is equivalent to the torus-
averages of the fluxes on all tori over the torus coordi-
nates ~γ. We therefore report those same expressions here
as torus-averaged fluxes. For E and Lz, those expressions
are [3, 14]〈

dE

dt

〉H/∞
~γ

=
∑
lmkn

α
∞/H
lmkn

4πω2
mkn

∣∣∣Z∞/Hlmkn

∣∣∣2 (59a)

〈
dLz
dt

〉H/∞
~γ

=
∑
lmkn

α
∞/H
lmknm

4πω3
mkn

∣∣∣Z∞/Hlmkn

∣∣∣2 . (59b)

Based on Mino’s argument in [11], Refs. [18, 30] worked
out the corresponding expression for the time-averaged
Q flux for non-resonant orbits, which we also report as
the torus-averaged flux〈

dQ

dt

〉H/∞
~γ

= −2
〈
a2E cos2 θ

〉
~γ

〈
dE

dt

〉H/∞
~γ

+ 2
〈
cot2 θ

〉
~γ

〈
dLz
dt

〉H/∞
~γ

−
∑
lmkn

kωθ
2πω3

mkn

α
∞/H
lmkn

∣∣∣Z∞/Hlmkn

∣∣∣2 .

(59c)

The prefactors in the first two lines of (59c) are com-
puted only once for the entire torus. Thus, substituting
equations (59a) and (59b) into the RHS of (59c) and
combining like terms with those in the summation of the
last line, the flux for Q has the same general form as the
fluxes of E and Lz have. Our savings arguments will be
based on that form, so although we will speak about E
and Lz for concreteness, those arguments will apply to Q
as well. Appendices B and C summarize the derivations
of these expressions.

Before proceeding with those arguments, we clarify the
notation in equations (59). First, the apparent discrep-
ancy between the ordering of the H/∞ superscripts on
the left- and righthand sides of the equations is not a ty-
pographical error. On the LHS, the superscript denotes
fluxes at the black hole horizon and radial infinity, re-
spectively. The somewhat backward notational choice to
have the fluxes at infinity depend on a quantity labeled
ZHlmkn and the horizon fluxes on Z∞lmkn is, at this point,
ingrained in the literature. To maintain a modicum of
notational uniformity, we have labeled the weighting fac-
tors αH/∞ with the same backward superscript conven-
tion. The exact form of those weighting factors will not
concern us. What matters for our purposes is that every
factor αHlmkn for the fluxes at infinity is equal to 1 and
that every factor α∞lmkn for the fluxes at the horizon is

18 See Appendix C for the time-averaged fluxes from resonant or-
bits.
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real and depends on k, n only through ωkn. All the ar-
guments to follow apply equally to fluxes at infinity and
at the horizon. We borrow the notation ? from Ref. [14]
to denote either of H/∞.

Continuing, the indices l,m are standard multipole in-
dices19, with l ≥ 2,−l ≤ m ≤ l. Our argument will focus
on the Fourier analysis of each l,m term individually, so
that, unless explicitly stated otherwise, l,m are taken to
be fixed everywhere in this section, while k, n each run
from −∞ to ∞. The frequencies

ωmkn ≡ mωϕ + ωkn = mωϕ + nωr + kωθ (60)

are the combined harmonics ωkn of the r and θ funda-
mental frequencies (the coordinate time version of equa-
tion (27)) and the fundamental azimuthal frequency ωϕ.
Note that the integer m is both a multipole index and
the relative contribution of ωϕ to each frequency ωmkn.
Other than attaching itself as a label to frequencies in
this way, however, m will not appear as a Fourier index
in any sense below.

Finally, Appendix C explains why we have written the
fluxes as average values over the ~γ torus coordinates men-
tioned in Section III B and in Appendix A. We note here
simply that if we seek adiabatic solutions in the form
~E(t) (as opposed to ~E(λ)), then the angle brackets in
(18) should also be averages over ~γ, so that (59) have

the correct form to be proxies for ~F(~E). The representa-
tions of the LHSs of the flux equations as averages over
~γ is otherwise irrelevant, since in light of (19), we will
always seek equivalent and easier to compute ~χ-averaged
quantities.

B. Z?lmkn as Fourier coefficients of a torus function

With these preliminaries out of the way, we are ready
to list the features of the RHSs of (59) that we will need
for our savings arguments both in this section and in
Section V. For our principal argument, what matters is
that for fixed l,m values, each Z?lmkn takes the form of a
Fourier coefficient of some torus function,

Z?lmkn =∫ 2π

0

dχr

∫ 2π

0

dχθ e
i(nχr+kχθ )f?lm;ω=ωmkn

(χr , χθ) .

(61)

This form of the Z?lmkn’s associated with a geodesic
source of arbitrary eccentricity and inclination is detailed
in several references (see, for instance, [3, 14, 18, 19, 26,
30]) and summarized in Appendix B.

19 The values l = 0, 1 are not relevant in GW calculations, for which
the lowest non-vanishing moment is the l = 2 quadrupole.

Equation (61) parallels the form of equation (23) from
Section III C, but there is one critical difference. For
fixed l,m, the function f?lm;ω(χr , χθ) further depends on
a continuous parameter ω that must be set to ωmkn when
evaluating Z?lmkn for a given multipole mode. Postponing
for the moment any details of the function f?lm;ω(χr , χθ)
or its derivation, we remark that this dependence on the
coordinate time harmonic frequencies of the source as an
external parameter persists despite the fact that equation
(61) is a spatial Fourier integral.

Thus, for fixed l,m, the Z?lmkn are not the Fourier co-
efficients of a single function but rather isolated Fourier
coefficients of several different functions20. On a non-
resonant torus, every k, n pair leads to a different value of
ωmkn, and every coefficient computed has a distinct func-
tion f?lm;ω(χr , χθ) in the integrand. On a resonant torus

with associated frequency ratio ωθ/ωr = Ωθ/Ωr = p/z,
all k, n pairs that satisfy the selection rule (48) for the
same j lead to identical values of Ωmkn, and some coef-
ficients with different values of k, n will share the same
integrand function f?lm;ω(χr , χθ). The practical implica-
tions of this asymmetry for a TB flux calculation consti-
tute the basis of our savings argument.

In anticipation of later arguments, we also note that
for each fixed value of the pair l,m, the resulting doubly
infinite sum over k, n in (59) has the appearance of a
torus-averaged Fourier power in the sense of Section III C
with the identification

|Akn|2 = prefactor × |Z?lmkn|2

Akn =
√

prefactor× Z?lmkn .
(62)

The prefactors in front of |Z?lmkn|
2

turn out to be real-
valued and non-negative for all values of the indices, so it
is valid to subsume them into some new coefficients Akn.

C. Recycling computations between Fourier modes

The complex-valued quantities Z?lmkn are the backbone
of a frequency-domain Teukolsky calculation, and a code
that implements such a calculation spends by far the
lion’s share of its CPU budget on computing them. To
explain how resonances can be leveraged to optimize that
budget, we must look a bit more closely at the integrand
functions f?lm;ω(χr , χθ).

The main ingredients in f?lm;ω(χr , χθ) are two sepa-
rate functions that have the same sort of ω dependence
described above: a radial Teukolsky function R?lm;ω(r)

and a spin-weighted spheroidal harmonic −2S
aω
lm (θ). We

imagine re-expressing the former as a torus function of
χr alone and the latter as a torus function of χθ alone

20 This is part of the reason why we cannot compute all the Z?lmkn
coefficients for a given l,m at once with, for instance, a 2-
dimensional Fast Fourier Transform (FFT).
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but will continue to write them as functions of r and θ, as
they are in the rest of the literature. f?lm;ω(χr , χθ) con-
sists of a somewhat messy assortment of terms and fac-
tors involving these two functions, several of their deriva-
tives, the coordinates and velocities of the particle (both
of these are absorbed into the torus coordinates χr , χθ),
and other elementary functions.

Each of R?lm;ω and −2S
aω
lm (θ) satisfies an ODE that de-

pends on l,m and ω in a nontrivial and partly implicit
way (see Appendix B). No simple closed-form solutions
to these equations exist that make the functional depen-
dence of the solutions on those parameters explicit. As
a result, for every distinct set of values (l,m, ω), those
ODEs must be solved from scratch to obtain the numeri-
cal representations of R?lm;ω and −2S

aω
lm needed to evalu-

ate the integrand. Particularly in the case of R?lm;ω, this
operation is computationally costly.

Schematically, then, one calculates each Z?lmkn for fixed
l,m via the following steps:

1. Determine the frequency ω = ωmkn

2. Obtain a representation of −2S
aω
lm

3. Obtain a representation of R?lm;ω for ? = H,∞ (this
step requires first determining an eigenvalue of the

−2S
aω
lm ODE)

4. Evaluate f?lm;ω(~χi) at whatever abscissae ~χi are re-
quired by the specific numerical integration algo-
rithm chosen

5. Compute whatever weights wi the integration al-
gorithm may require for those function values and
tabulate the integral (61) as

∑
i wif

?
lm;ω(~χi) .

On a non-resonant torus, each k, n pair produces a dif-
ferent answer to step 1 and requires the execution from
scratch of all the remaining steps as well. On a reso-
nant torus, in contrast, the k, n pairs can be grouped by
a common value of j in the selection rule (48). Steps
1–3 need only be performed once for an entire j-group.
Depending on the integration algorithm selected, steps
4 and 5 may also only need to be performed once or a
small number of times per j-group, with a total number
of reusable function evaluations set by the Z?lmkn in the
group requiring the greatest number of sample points to
attain some target accuracy. We will make the reason-
able assumption that steps 1 and 5, even if done several
times per j-group, are a small fraction of the total cost of
evaluating all the coefficients in that group, and we will
take the cost of steps 2-4 as an estimate of the total cost
of computing any single coefficient.

Consider now evaluating all the Z?lmkn on a low-order
resonant torus with ωθ/ωr = Ωθ/Ωr = p/z = 1 + qrθ and
on a neighboring non-resonant torus with nearly identical
orbital parameters. By the continuity of the Z?lmkn with

respect to ~E , coefficient values will be nearly identical on
those two tori. The integer values of nmax, kmax deter-
mined should also be identical or nearly identical on the

two tori (we assume for simplicity that they are identi-
cal). Let N2 and N1 denote, respectively, the number of
separate times steps 2–4 above must be executed on the
non-resonant torus and resonant torus. To make a more
apples to apples comparison, one can instead let N2 rep-
resent the total number of distinct executions of steps 2–4
on the resonant torus if the resonance of that torus is not
acknowledged from the outset. Roughly speaking, gen-
erating all the Z?lmkn with |n| ≤ nmax, |k| ≤ kmax on the
non-resonant torus will require N2/N1 times more com-
putation than it will on the neighboring resonant torus.
Symmetries in the underlying equations imply that the
value of Z?l(−m)(−k)(−n) is uniquely determined by the

value of Z?lmnk. Thus, in practice, one of the indices n
and k can be restricted to run over only nonnegative val-
ues, and the value of N2/N1 should take that fact into
account.

Figure 7 estimates the savings factor N2/N1 for reso-
nant tori with various values of qrθ and for several rep-
resentative hypothetical values of nmax and kmax consis-
tent with the reported performance of the TB code for
arbitrary eccentricities and inclinations described in Ref.
[14]21. For simplicity, we have taken nmax = kmax.

We can see the following trends in the histograms.
First, for a given kmax, nmax, if we fix the value of p and
increase z or vice versa, the savings factor drops. Thus,
the savings factor is largest when both p and z are as
low as possible. The greatest savings (over an order of
magnitude) accrue when z = 1. Second, the larger the
values of kmax, nmax, i.e. the more slowly converging the
expressions for the fluxes, the greater the savings fac-
tor for a given p/z. Generally speaking, the most slowly
converging fluxes are for orbits with moderate to high
eccentricities [14, 19], which typically have higher associ-
ated values of qrθ since they are closer to the separatrix
between plunging and non-plunging motion [9]. Thus,
for instance, a rough approximation of the true savings
factor in the top two panels of Figure 7 would be given
by a roughly horizontal or slightly downward sloping line
connecting the histogram bar with the lowest qrθ at the
lowest nmax with the highest qrθ at the highest nmax.
A good rough predictor for the expected savings would
thus be the z value of a torus, yielding a savings factor
of ∼ 30 for z = 1 and ∼ 7 for z = 6. The lowest sav-
ings factor on that graph of ∼ 3 (corresponding to the
not-so-low-order resonance with p/z = 25/6) is nothing
to sneeze at, and more typically the savings factor from
acknowledging resonance would appear to be around an
order of magnitude on average.

While a detailed audit of comparative cost would have

21 We estimate nmax and kmax based on the code in [14] rather
than the similar code in [23] only because the truncation rules
used in [14] are more amenable to direct cost comparison with
our proposal. Both codes seem to need to compute a total num-
ber of modes of similar order of magnitude to achieve high flux
accuracy, and both are apt to profit from our proposal.
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FIG. 7: The three histograms show the average number
of Z?lmnk coefficients that pertain to a single frequency on
a resonant torus, a number that corresponds to the sav-
ings factor N2/N1. We show the savings factor for a vari-
ety of qrθ geodesics and a variety of nmax and kmax. Top:
qrθ = Integers. Middle: qrθ is a variety of values all with
the same denominator, z = 6. Bottom: qrθ is a variety of
non-integer values all with p = 11 but different z.

to be done on a code-specific basis, the potential payoff of
these observations makes a case for testing our proposal
in existing codes.

D. Numerical EMRI grids

Even if we stipulate that fluxes can be computed
more efficiently on low-order resonant tori than on non-
resonant tori, is this fact necessarily useful? After all,

points in ~E-space corresponding to resonant tori, let alone
low-order ones, are already a measure zero set, so to con-

struct the inspiral curve ~E(t), wouldn’t the RHSs of the
adiabatic ODEs have to be evaluated in general (and,
formally, infinitely more often) on non-resonant tori than
on resonant ones? Interestingly, while the answer to that
question is “yes”, the actual calculation of TB fluxes itself
need only ever be done on resonant tori, and at least pre-
dominantly (and possibly exclusively) on low-order ones,
at least for the foreseeable future.

The reason has to do with the absolute computational
cost of those fluxes, even on resonant tori. Simply insert-
ing a TB frequency-domain flux routine into the RHS
of, say, a standard Runge-Kutta ODE solver to gener-
ate inspiral curves in real-time is untenable, even with
a large number of processors at one’s disposal to paral-
lelize the TB calculation. Instead, solution of the adia-
batic ODEs will proceed as follows. For each value of the
black hole parameters, one would build a numerical grid

of flux values on some dense mesh of points in ~E-space
and then interpolate off of that grid to obtain the fluxes

for arbitrary values of ~E . Once handed such a grid, those
interpolated flux values would go into a standard ODE
solver which could presumably generate inspiral curves
very efficiently. The main expense to consider, then, is
the construction of the grid.

Our proposal is that such a grid should be built using
exclusively resonant grid points. More specifically, we
propose a hierarchical population of such a grid, begin-
ning with the low-order resonant points and then increas-
ing the order of the resonance (or just increasing z, if our
loose conjecture about horizontal lines in the top pan-
els of Figure 7 proves to be correct) until some requisite
grid density is obtained to minimize interpolation error.
Those grid density requirements may force the evaluation
of fluxes on some higher-order resonances, but no reso-
nant grid point (whether low- or high-order) will ever be
more expensive to populate with Fourier flux data than
a nearby non-resonant grid point will be. The worst-case
scenario near certain locations in the space would be to
break even by using a resonant versus a non-resonant
grid point. Our hierarchical approach would seem to at
least lower if not minimize the total computational cost
of such a grid.

We remark on two features of our proposal. First,
the savings factor discussed depends only on the deci-
sion to use resonant tori for TB calculations and no
other implementation-specific features of that calcula-
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tion. Thus, those savings will multiply any additional
savings that may stem from other algorithmic improve-
ments in any such implementation or from the availability
of more or faster processors to perform the TB calcula-
tions.

Second, its efficacy has nothing to do with interesting
physical effects that may occur in the neighborhood of
resonant orbital parameter values during a real inspiral
[2]. The flux-balance method, and in fact the adiabatic
approximation in general, may fail to capture these ef-
fects. Any such failure is immaterial to our argument,
which rests not on physical properties of resonant tori but
rather mathematical ones they have in specific relation to
frequency-domain TB calculations. In other words, de-
spite the fact that the adiabatic approximation might be
least faithful to reality in and around resonances, leverag-
ing resonances is nonetheless the most efficient means of
attaining an adiabatic approximation for those regimes
where it is likely to be faithful.

E. Gravitational waveform snapshots

As already argued, we are free to interpret the coef-
ficients Z?lmkn either as spatial Fourier coefficients of a
torus function of ~χ or of a different torus function of
~γ. As shown in Appendix B, the t-function versions of
the Z?lmkn coefficients are used to build the Weyl scalar
ψ4 at radial infinity, from which the two polarizations of
the waveform h are constructed. These waveform “snap-
shots” from geodesic sources [14] are useful for exploring
how a known orbital motion impacts GW signals, and
though they will quickly go out of phase with a true in-
spiral signal, they are still likely to play a pivotal role in
hierarchical searches for GWs from EMRIs.

More specifically, with the ~γ-coefficients Z?lmkn in
hand, h can be reconstructed from the associated t-
coefficients. By analogy to equation (36), we get

Z?lmkn;t ≡ Z?lmkne−i(nγr0+kγθ0 ) , (63)

in the non-resonant case, and by analogy to equation (50)
get

Z?lmj;t(~γ0) =
∑
k,n:

nz+kp=j

Z?lmkne
−i(nγr0+kγθ0 ) (64)

in the resonant case if we know the initial conditions.
Since the waveforms (or, rather, their Fourier represen-
tations) depend on the Z?lmkn coefficients, then like the
fluxes, they will also probably need to be interpolated
from a grid that stores the Z?lmkn values themselves in-
stead of or in addition to the fluxes. The same arguments
made above for the fluxes thus cross-apply to waveform
snapshots.

V. SPECULATIONS ON FURTHER SAVINGS

In this section, we sketch a speculative but tantaliz-
ing possibility for further efficiencies in adiabatic EMRI
grid construction beyond those discussed in Section IV.
The idea centers around calculating time-averaged rather
than torus-averaged fluxes on resonant tori. At first
glance, that suggestion seems to fly in the face of ear-
lier arguments that the RHSs of the adiabatic equations
should be torus-averaged fluxes and that torus averages
and time averages are not identical on resonant tori. The
apparent incongruity disappears, however, in light of two
facts:

1. On any resonant torus, the mean value theorem
guarantees that torus-averaged fluxes equal time-
averaged fluxes on certain special orbits.

2. For low-order resonances, those time-averaged
fluxes are more accurate and cheaper to compute.

The additional savings are beyond the cost benefit of
incorporating the proposal of Section IV.

We substantiate these claims below in turn. We cau-
tion the reader that, in contrast to the savings of Section
IV, those discussed in this section may prove more elusive
in practice because determining the special orbits men-
tioned in step 1 above could prove so difficult as not to be
net-beneficial. We discuss such limitations and suggest
fruitful avenues of numerical investigation to help further
reduce the cost of generating adiabatic inspirals.

A. Using time-averages to compute torus-averages

The time-averaged fluxes from a single resonant orbit
do not appear elsewhere in the literature. As we explain
in Appendix C, the arguments of Section III D 2 imply
that those fluxes are (note, these are single-index objects
in j) 〈

dE

dt

〉?
t

=
∑
lmj

α?lmj
4πω2

mj

∣∣Z?lmj;λ∣∣2 (65)

〈
dLz
dt

〉?
t

=
∑
lmj

α?lmjm

4πω3
mj

∣∣Z?lmj;λ∣∣2 . (66)

It remains to be shown whether the following would

translate to
〈
dQ
dt

〉
t
. We restrict attention in this section

to E and Lz fluxes for the sake of exposition.
As before, we assume fixed l,m in everything below.

In the fluxes, the frequencies

ωmj ≡ mωϕ + jωP , (67)

the real-valued weight factors α?lmj , and the temporal
Fourier coefficients

Z?lmj;λ =
1

ΛP

∫ ΛP

0

dλ eijΩPλf?lmj;λ (~χ(λ; ~χ0)) (68)
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all become single-index quantities by the arguments of
Section III D 2. We recall from equation (62) that the
torus-averaged fluxes have the form of a torus-averaged
power of some unspecified torus-function. Likewise, for
fixed values of l,m, the time-averaged fluxes (65) and (66)
have the appearance of a time-averaged Fourier power in
the sense of Section III D 2 with the identification

|Cj;λ|2 = prefactor ×
∣∣Z?lmj;λ∣∣2

Cj;λ =
√

prefactor× Z?lmj;λ .
(69)

Each time-averaged flux, like any time-averaged
Fourier power, is real-valued. Therefore, by equations
(69) and (57) and the mean-value argument made at
the end of Section III D 2, there exist initial positions
~χmvt,?

0;E , ~χmvt,?
0;Lz

on the torus such that〈
dE

dt

〉?
t

(
~χmvt,?

0;E

)
=

〈
dE

dt

〉?
~γ

(70)〈
dLz
dt

〉?
t

(
~χmvt,?

0;Lz

)
=

〈
dLz
dt

〉?
~γ

. (71)

Actually, there must be at least two continuous 1-
parameter families of special initial values ~χmvt,?

0;E (one for

each of ? = H,∞) and two such families for ~χmvt,?
0;Lz

: any
two initial conditions that lie on the same orbit simply
time-translate that orbit, and time-translation does not
change time-averaged function values or time-averaged
powers.

None of the values ~χmvt,?
0;E and ~χmvt,?

0;Lz
need agree. Thus,

if we sought to determine the torus-averaged fluxes in-
directly by instead evaluating time-averaged fluxes, we
might need to evaluate each coefficient Z?lmj;λ as many

as four22 times, once for each of the initial conditions
~χmvt,?

0;E and ~χmvt,?
0;Lz

.
We can, however, also apply the mean-value argu-

ment individually to each real-valued
∣∣∣Z?lmj;λ∣∣∣2. In this

case, we would obtain a sequence of special initial condi-

tions ~χmvt,?
0;j that cause each

∣∣∣Z?lmj;λ∣∣∣2 to attain its torus-

averaged value over all possible initial conditions. The
different ~χmvt,?

0;j would not necessarily agree for different

values of j. Since the prefactors in (69) are indepen-

dent of initial position, each ~χmvt,?
0;j would simultaneously

set the jth term in the power spectrum of every flux to
its torus-averaged value. Evaluating the time-averaged
fluxes for any of the individual initial conditions ~χmvt,?

0;j
would not produce a torus-averaged flux. However, since
the average of a sum of terms must equal the sum of
the individual averages of those terms, the sum of the
resulting |Cj;λ|2 (each evaluated at a possibly different

22 Or, rather, six times, since each ~χmvt,?
0;Q would likely also be dif-

ferent from ~χmvt,?
0;E and ~χmvt,?

0;Lz
.

~χmvt,?
0;j ) would yield the torus-averaged value of all fluxes

simultaneously. Recalling that each integrand in (68) is
different anyway, there is no further waste in evaluating
each one using a different initial condition ~χmvt,?

0;j .
It is important to note that we have simply made an

existence argument for ~χmvt,?
0;E , ~χmvt,?

0;Lz
and every ~χmvt,?

0;j .
What those values actually are would vary from problem
to problem, and finding them for the Teukolsky prob-
lem may not be practical. The integrands in (68) are
not especially analytically transparent, so it may be that
they can only be determined by evaluating those inte-
grands for several initial conditions ~χ0, which would de-
feat the purpose of invoking the mean-value theorem in
the first place. Still, we believe the potential added sav-
ings from knowing the ~χmvt,?

0;j merits exploring whether
the Teukolsky calculation harbors some structure or sym-
metries that would allow those initial conditions to be
determined with little or no added expense. We turn to
those additional potential savings now.

B. Relative cost of time-averaged vs.
torus-averaged functions on low-order resonant tori

Assume that we have in hand the ~χmvt,?
0;j for each j and

agree to evaluate the coefficients Z?lmj;λ using those spe-
cial initial conditions. The added efficiency is twofold:
each Cj;λ should potentially be less expensive to com-
pute than any given Akn (by reducing a double integral
to a single integral), and fewer such Cj;λ’s than Akn’s
will have to be computed in order to achieve a given tar-
get accuracy in the torus-averaged fluxes (by reducing
a double sum to a single sum). In fact, the more effi-
cient calculation might even increase the resulting flux
accuracy. We justify those claims in turn below.

1. Cost of a coefficient

For ease of illustration, we will estimate the relative
computational costs of a single Cj;λ and of any single
Akn for which k, n satisfy the selection rule (48). To
make the comparison more stark, we remap the integral
(68) to the interval [0, 2π] via a linear change of variable

χP ≡ ΩPλ (72)

to obtain

Z?lmj;λ =
1

2π

∫ 2π

0

dχP e
ijχP f?lmj;λ (~χ(χP ; ~χ0)) . (73)

The relative cost of the single integral (73) and its
double-index counterpart (61) will depend on the specific
numerical integration algorithms used to evaluate them
and are difficult to estimate. However, we can sketch a
crude argument that the single integral should be more
cost efficient by considering the Fast Fourier transform
(FFT) as the algorithm.
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Consider first the 1D integral (73), which we can inter-
pret as the jth Fourier coefficient of a periodic function
on [0, 2π]. For a periodic function, an FFT will return all
the Fourier coefficients from C−N1

through CN1
by sam-

pling the integrand at 2N1+1 equally spaced abscissae23.
So to capture Cj , we would need 2 |j|+ 1 evaluations of
the integrand. However, the highest index coefficients
computed via an FFT are heavily afflicted by aliasing
error, while the lowest index coefficients computed are
relatively free of such error. To minimize aliasing effects,
we imagine increasing the number of sample points (and
thus of coefficients computed) by some integer safety fac-
tor24 S so that Cj will be one of lowest index coefficients
returned by the FFT and thus fairly free of aliasing er-
ror. The total number of integrand evaluations under
this scheme for computing Cj would thus be S(2 |j|+ 1).

Now imagine evaluating the double integral (61) using
a 2D FFT, which we (even more crudely) envision simply
as nested 1D FFTs. Assuming the same safety factor
S throughout, we would need S (2 |n|+ 1)S (2 |k|+ 1) =
S2(2 |n|+1)(2 |k|+1) function evaluations. Re-expressing
j in terms of n and k via the selection rule and using the
number of integrand evaluations as a metric of numerical
expense, the ratio of the cost of Akn to the cost of Cj
would be

cost of Akn
cost of Cj

= S (2 |n|+ 1)(2 |k|+ 1)

2 |nz + kp|+ 1
. (74)

Generally speaking, for small values of both p and z, the
denominator in the cost ratio is smaller than the numer-
ator since n and k more often than not have opposite
signs for a given j. It is conceivable that a single Akn
could turn out less costly to evaluate than Cj , but the
likelihood of that would become higher as both p and z
became large, for which case a resonant torus would be
barely distinguishable from a non-resonant torus in terms
of all the aspects discussed in this paper.

The argument above artificially increases the true cost
of evaluating both integrals and is not intended even to be
fully convincing, let alone a proof. Rather, it is a heuristic
illustration of a rule of thumb in numerical integration
that, with similarly behaved integrands, 1D integrals are
less costly to compute than 2D integrals.

2. Number of coefficients

In contrast to the relative cost of computing a coeffi-
cient, we can say more definitively that the total number
of single-index coefficients needed to achieve some spec-
ified accuracy in the torus-averaged fluxes will be less

23 To make the formulae that follow more intelligible, we are sep-
arately counting the value at 2π, even though it is the same as
the value at 0

24 Ref. [31] recommends a factor of at least 4 for most applications.

than the number of double-index coefficients needed to
obtain the same accuracy.

Suppose achieving a certain flux accuracy for a given
l,m pair requires computing all Akn with indices up to
nmax and kmax. Denote the total number of torus co-
efficients computed by N~χ. The Z? coefficients satisfy

|Z?lmω|
2

=
∣∣∣Z?l(−m)(−ω)

∣∣∣2 [32], so one of n and k need only

run over non-negative values to obtain all the coefficients
with |n| ≤ nmax, |k| ≤ kmax. The total number of coeffi-
cients actually computed is therefore (having k run only
non-negative)

N~χ = (2nmax + 1) (kmax + 1)− nmax . (75)

For comparison, we determine the number Nλ of Cj
coefficients (evaluated at ~χmvt,?

0;j ) that we would have to
calculate so that, in light of the arguments of subsection
V A, every |Akn|2 above would automatically be included

in the sum of all |Cj |2. As we showed in subsection V A,
the maximum j index that needs to be included in the
single-index series that will thusly catch every k, n pair
is

jmax = znmax + pkmax . (76)

The symmetry of Z? implies that j need not run both
positive and negative, and the number of Cj ’s we would
need to calculate to ensure at least the same level of flux
convergence as that attained with the Akn coefficients is

Nλ = znmax + pkmax + 1 . (77)

Comparing equations (75) and (77), we see that we need
a factor of

Nsavings =
N~χ
Nλ

(78)

=
(2kmax + 1) (nmax + 1)− kmax

znmax + pkmax + 1

fewer coefficients. The reduction in the number of co-
efficients therefore depends on the order of the periodic
orbit as well as on nmax and kmax. The lower the values
of p and z, the greater the reduction factor.

Figure 7 showed the average number of kn modes on
a resonant torus per distinct frequency. It also gives a
general sense of how Nsavings varies with kmax and nmax.
The agreement between the two is not exact because,
when computing all j coefficients up to the maximum
jmax, some additional frequencies will be included that do
not correspond to any of the included kn frequencies with
|k| ≤ kmax, |n| ≤ nmax. Therefore, Figure 7 overestimates
Nsavings but only slightly and gives a better estimate for
the larger values of kmax, nmax. For example, for qrθ = 1

6 ,
equation (78) gives Nsavings ≈ 7.84 for nmax = kmax = 50
and Nsavings ≈ 12.45 for nmax = kmax = 80, both of
which agree with the values in the histogram of Figure 7
within a few percent. On the basis of Figure 7, we can
therefore conclude that focusing on temporal rather than
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spatial Fourier coefficients and invoking the above mean-
value arguments could reduce by a factor of an order
of magnitude or so the total number of Z? coefficients
required to obtain accurate torus-averaged fluxes.

VI. CONCLUSION

Computation of adiabatic inspirals with a grid of reso-
nant orbits could be an order of magnitude more efficient
than the same computation with a non-resonant grid.
If our speculations are verified and double sums can be
collapsed to single sums (and double integrals to single
integrals), there may be substantial additional savings
since fewer and simpler coefficients will be required. To
date, no accurate adiabatic EMRIs have been computed.
Such a dramatic boost in speed would bring EMRIs more
within computational reach.
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Appendix A: Torus coordinates and time coordinates

1. Mino time vs. coordinate time Fourier
coefficients

SupposeAkn;t is a Fourier coefficient of some biperiodic
coordinate time function f(t),

Akn;t = lim
T→∞

1

T

∫ T
2

−T2
dt ei(kωθ+nωr)tf(t) . (A1)

Then Akn;t is also the knth Fourier coefficient of a dif-
ferent biperiodic Mino time function g(λ),

Akn;t = lim
Λ→∞

1

Λ

∫ Λ
2

−Λ
2

dλ ei(kΩθ+nΩr)λg(λ)

≡ Akn;λ .

(A2)

We prove equation (A2) by constructing the function g
from f explicitly. We will need the fact (see Ref. [26] for
details) that dt/dλ depends on r and θ and is thus biperi-
odic when evaluated on a trajectory r(λ), θ(λ). dt/dλ
also has a nonzero average value Γ defined by

Γ ≡ lim
Λ→∞

1

Λ

∫ Λ/2

−Λ/2

dλ
dt

dλ
. (A3)

Consequently, the function t(λ) takes the form

t(λ) = Γλ+ ∆t(λ) (A4)

where ∆t(λ) is biperiodic in λ and has zero average value.

We can now construct g(λ). Since ∆t(λ) is biperiodic,
it is also bounded. Thus, if we define T ≡ t(Λ), then in
the limit T → ∞, we get T → ΓΛ. We can now change
variables in the integral in (A1):

lim
T→∞

1

T

∫ T
2

−T2
dt ei(kωθ+nωr)tf(t) = lim

ΓΛ→∞

1

ΓΛ

∫ ΓΛ
2

−ΓΛ
2

dλ ei(kωθ+nωr)(Γλ+∆t(λ)) dt

dλ
(λ)f (t(λ))

= lim
Λ→∞

1

Λ

∫ Λ
2

−Λ
2

dλ ei(kΩθ+nΩr)λei(kωθ+nωr)∆t(λ) dt

dλ
(λ)f (t(λ)) .

(A5)

In the second line above, we have absorbed25 the Γ into
the Λ and used the fact that the coordinate-time and

25 All we need is for the denominator of the prefactor and the size
of the integration interval to agree. Since there is no preferred
size for that interval (the function f is not periodic) and we are
taking the infinite limit, we are free to call the size of that interval
ΓΛ or Λ.

Mino-time frequencies will be related [26] by

ωr =
1

Γ
Ωr (A6a)

ωθ =
1

Γ
Ωθ , (A6b)

to convert to Mino frequencies in the argument of the
exponential.

Comparing (A2) to (A5), we see that due to the de-
pendence on k and n in the argument of the exponential
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(the coordinate time frequencies ωθ and ωr appear here
simply as parameters), there is actually a different func-
tion

gkn(λ) = ei(kωθ+nωr)∆t(λ) dt

dλ
(λ)f (t(λ)) (A7)

for each Akn;λ. In other words, the Akn;t are Fourier
coefficients of a single function f while each Akn;λ is the
knth Fourier coefficient of a different function gkn(λ).
But that poses no problem — we only sought to show that
every t-Fourier coefficient is also the λ-Fourier coefficient
of some function of λ. The pragmatic importance of
this fact has to do with the evaluation of coefficients of
torus functions, which, though stated in slightly different
language, is the crux of the original argument in Ref. [26]
and which we discuss in Section A 2.

Analogous reasoning to the above in the resonant case
with

ωθ
ωr

=
Ωθ
Ωr

=
p

z
(A8)

and p, z relatively prime shows that each coefficient Cj;t
of f(t) can likewise be considered a Mino time coefficient
Cj;λ of some different function

gj(λ) = eijωP∆t(λ) dt

dλ
(λ)f (t(λ)) . (A9)

The difference is that now each of ∆t(λ), dt/dλ(λ) and
f (t(λ)) is a singly periodic function of λ with period

ΛP = zΛr = pΛθ =
2π

ωP
. (A10)

Temporal Fourier coefficients can be calculated in the res-
onant case without first having to convert to Mino time.
We will nonetheless express and evaluate coefficients Cj;t
as coefficients Cj;λ in order to parallel the non-resonant
case.

2. λ-based vs. t-based torus coordinates

Figure 5 represents T2
~E as a compact 2π-by-2π square

in the χr , χθ angle coordinates defined in Section II B.
Kerr geodesics trace out lines on this torus-square at con-
stant velocity. With respect to any other time parameter,
geodesic curves continue to be lines on the torus-square,
but their parametric representations are not in general
linear in time, nor are their velocities on the torus con-
stant.

For any choice of time parameter, however, there is
always some set of coordinates on the torus such that
geodesic motion on that torus is linear in that time pa-
rameter and has constant velocity26. For instance, with

26 Darboux’s theorem guarantees that there is a way to write Hamil-

respect to coordinate time t, there will be coordinates
~γ ≡ (γr, γθ) such that

γr(t) = ωrt+ γr0 (A11a)

γθ(t) = ωθt+ γθ0 . (A11b)

Note that in any set of angle coordinates in which the
trajectory velocities are constant with respect to some
time parameter, orbit trajectories will all be lines with
the same slope 1 + qrθ. Such coordinate systems are
nevertheless distinct: identical ordered pairs in two such
coordinate systems will not, in general, correspond to the
same point on the torus.

Though not unique, the χr-χθ coordinate system on
T2
~E is nevertheless uniquely useful. Since each of γr, γθ

would be a combination of χr and χθ , each point on the
projected r-pr curve of an orbit would be labeled by a
pair of values (γr, γθ) rather than by a single value χr ,
and likewise for the projected θ-pθ curve. This mixing of
radial and polar motions in each torus coordinate makes
most calculations harder than they need to be, and the
impetus behind χr-χθ coordinates is precisely the conve-
nience that flows from torus coordinates that separately
shadow radial and polar motion.

Still, we sometimes are interested in values of quan-
tities averaged over the ~γ coordinates. Luckily, by the
correspondence between temporal Fourier coefficients of
biperiodic functions and spatial Fourier coefficients of
torus functions, equations (A2) and (A7) further estab-
lish that if Akn;~γ is the knth coefficient of the torus
function f(~γ) associated with f(t), then it is also the
knth coefficient Akn;~χ of the torus function gkn(~χ) cor-
responding to gkn(λ). This is important for evaluat-
ing torus coefficients in practice: it is usually very dif-
ficult to go from a function f (r(t), pr(t), θ(t), pθ(t)) to a
form f(~γ) explicitly while it is straightforward to go from
g (r(λ), pr(λ), θ(λ), pθ(λ)) to g(~χ).

Appendix B: A synopsis of the Teukolsky formalism

Here we summarize some relevant aspects of the
Teukolsky formalism as applied to the EMRI problem.
More details of this application can be found in numer-
ous references, including [14, 18–20, 22, 30, 33]. Our goal
in this aapendix is to justify the expressions for the co-

efficients Z
H/∞
lmkn and Z

H/∞
lmj;λ in equations (61) and (68),

respectively.

ton’s equations with respect to any evolution parameter. If the
system is integrable, there will then exist a transformation to
angle variables on the torus that increase linearly with respect
to that evolution parameter [15].
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1. The Weyl scalar, ψ4

In 1972 Teukolsky derived the master equation [34, 35],
a separable partial differential equation (PDE) whose so-
lution describes the propagation in the Kerr spacetime
of small perturbations to fields of different spin-weights
s: scalar, electromagnetic and gravitational. Each so-
lution to the master equation is a separable function
which can be written as a multipole expansion. There
are two computational approaches to solving the mas-
ter equation for each multipole mode: the time-domain
approach, which solves the resulting PDE directly, and
the frequency-domain approach, which further Fourier
expands the solutions. For the purposes of extracting flux
information from gravitational perturbations, frequency-
domain codes are the accuracy standard and the ones to
which our savings proposal applies. We thus restrict our
attention to the frequency-domain approaches to solving
the master equation.

The combined multipole-Fourier expanded perturba-
tions take the form

sψ (t, r, θ, ϕ) =∑
lm

∫ ∞
−∞

dωRlmω (r) sS
aω
lm (θ) e−iωt+imϕ , (B1)

where ω denotes the coordinate-time frequency of the
perturbations at the field point due to the source. Each

sψ is a function of the field point (t, r, θ, ϕ) at which
we wish to evaluate the perturbation. The s marker in
equation (B1) is a “spin-weight parameter” [34] which de-
notes the perturbation type. For gravitational radiation,
s = −2, and −2ψ = ψ4ρ

−4 where

ρ = − (r − ia cos θ)
−1

. (B2)

The functions Rlmω(r) and −2S
aω
lm(θ) (described in the

next subsections) each depend on the parameter ω as
a consequence of the separation of variables procedure.
When the source is a geodesic, ω turns out to be a dis-
crete variable composed of harmonics of the radial, polar
and azimuthal frequencies of that geodesic. That discrete
dependence can be expressed differently for non-resonant
orbits,

ω = ωmkn = mωϕ + kωr + nωθ (B3a)

and for resonant orbits,

ω = ωmj = mωϕ + jωP . (B3b)

Once ω becomes a discrete variable, we can replace the
integral over all possible ω in equation (B1) with a sum
over either m, k, n or m, j for non-resonant and resonant
sources, respectively.

Because everything in this paper deals with gravita-
tional spin-weighting, we henceforth omit all the −2 sub-
scripts. The net result is that equation (B1) becomes

ψ4 (t, r, θ, ϕ) = ρ4
∑
lmnk

Rlmωmkn (r)Saωmknlm (θ) e−iωmknt+imϕ ,

(B4a)

for a non-resonant source and

ψ4 (t, r, θ, ϕ) = ρ4
∑
lmj

Rlmωmj (r)S
aωmj
lm (θ) e−iωmjt+imϕ

(B4b)

for a resonant source.

2. The Spheroidal Harmonics

The functions Saωlm (θ) with a spin-weight of s = −2 are
the gravitational (tensor) spheriodal harmonics, a gener-
alization of the likewise spin-weighted spherical harmon-
ics. These functions satisfy [35][

(aω)
2

cos2 θ + 4aω cos θ −
(
m2 − 4m cos θ + 4

sin2 θ

)
+ Clm

]
Saωlm (θ)

+
1

sin θ

d

dθ

(
sin θ

dSaωlm (θ)

dθ

)
= 0 . (B5)

Clm are the eigenvalues for which equation (B5) has
solutions. Solving for Saωlm(θ) for given l,m, ω re-
quires simultaneously determining an eigenvalue Clm and
the associated spheroidal harmonic. These eigenvalue-
eigenfunction pairs can be computed in several different
ways (see Refs. [19, 22, 23]).

The spheroidal harmonics satisfy several orthogonality
relations. The one we will need in this paper is that, for
fixed m and ω,∫ π

0

Saωlm (θ) S̄aωl′m (θ) sin θdθ =
1

2π
δll′ , (B6)

where the overbar denotes complex conjugation. We have
chosen a normalization of 1

2π , as in Ref. [14].

3. The radial Teukolsky functions

Solving for the radial functions Rlmω (r) is more diffi-
cult. Rlmω (r) satisfy the inhomogeneous radial Teukol-
sky equation [35]

Tlmω (r) = ∆2 d

dr

(
1

∆

dRlmω (r)

dr

)
− Vlmω (r)Rlmω (r) .

(B7)

The potential Vlmω (r) depends in part on the eigenvalue
Clm of Saωlm(θ), so equation (B5) must be solved before
the homogeneous or inhomogeneous version of equation
(B7) can be.
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The source term Tlmω is built by, among other things,
evaluating Saωlm(θ) and two homogeneous solutions27

R
in/up
lmω (r) to (B7) along the geodesic source. Two general

methods are described for constructing R
in/up
lmω (r). One

approach integrates the homogeneous Teukolsky equa-
tion (or, equivalently, the better numerically behaved
Sasaki-Nakamura equation [36]) outward from the hori-

zon. The other expands R
in/up
lmω (r) in terms of hyperge-

ometric functions (see [23] and references therein) and

evaluates R
in/up
lmω (r) directly at certain points, possibly

extrapolating its values to nearby points with series ex-
pansions. Both approaches are fairly computationally
costly. For detailed explanations on these different ap-
proaches and how various numerical problems are cir-
cumvented, see [23, 36–40]. We elaborate a bit more on
the structure of the source term below.

4. The quantities Z
H/∞
lmω

With the homogeneous radial solutions in hand,
the inhomogeneous Teukolsky equations can be solved
using the method of variation of parameters28 [41].
The radial functions Rlmω (r) can be written as
[14, 26, 34, 35, 42, 43]

Rlmω(r) = ZHlmω(r)Rup
lmω(r) + Z∞lmω(r)Rin

lmω(r) , (B8)

where ZHlmω (r) and Z∞lmω (r) are defined as

ZHlmω(r) =

∫ r

r+

dr′
Rin
lmω(r′)Tlmω(r′)

c

Z∞lmω(r) =

∫ ∞
r

dr′
Rup
lmω(r′)Tlmω(r′)

c
.

(B9)

The constant c is related to the Wronskian of Rin
lmω (r)

and Rup
lmω (r). r+ is the larger root of ∆ and is the radial

coordinate of the black hole horizon (the smaller root is
denoted r−).

Because we are only interested in the radiation going
into the black hole and being carried away to infinity,
we are only concerned about the asymptotic behavior
of Rlmω (r) as r → r+ and r → ∞. In fact, the ho-
mogeneous basis solutions have been chosen to have the
simplifying feature that

Z∞lmω(r → r+) = Z∞lmω

ZHlmω(r → r+) = 0

Z∞lmω(r →∞) = 0

ZHlmω(r →∞) = ZHlmω .

(B10)

27 Other basis solutions to the homogeneous equation exist, e.g.

the out/down basis R
out/down
lmω (r). For a summary, see [3] and

references therein.
28 Most references use the method of Green functions, but variation

of parameters works as well.

Note that we have used the same notation for the func-

tions Z
H/∞
lmω (r) and for the constants Z

H/∞
lmω representing

their asymptotic values at ∞ and r+, respectively. As
mentioned in Section IV A, the literature seems stuck
with the rather backward notational convention that
ZHlmω is nonvanishing at ∞ while Z∞lmω is nonvanishing
at r+.

The radial functions as r → ∞ and r → r+ thus be-
come

R∞lmω = Rlmω(r →∞)

= ZHlmωR
up
lmω(r →∞)

= ZHlmωr
3eiωr

∗

(B11a)

RHlmω = Rlmω(r → r+)

= Z∞lmωR
in
lmω(r → r+)

= Z∞lmω∆2e−ikr
∗

,

(B11b)

where and k ≡ ω−ma/(2r+) and r∗ is the Kerr tortoise
coordinate defined by

r∗(r) = r +
2r+

r+ − r−
ln
r − r+

2
− 2r−
r+ − r−

ln
r − r−

2

dr∗

dr
=
r2 + a2

∆
.

(B12)

The coefficients Z
H/∞
lmω are found from

Z
H/∞
lmω =

∫ ∞
r+

dr′
R

in/up
lmω (r′)Tlmω(r′)

c
. (B13)

The source function Tlmω (r) in (B13) is an integral of
the form

Tlmω(r) =∫ ∞
−∞

dt

∫
dΩBmω(t, r, θ, ϕ)Saωlme

iωte−imϕ . (B14)

The source term is derived in [44], but we have written it
borrowing the notation Bmω from [14]. All that matters
for our purposes is that Bmω is built out of a series of
operations on the null tetrad components of the energy-
momentum tensor of the orbiting particle and thus con-
tains delta functions and derivatives of delta functions
centered on the source geodesic. Thus, the dΩ integral
can be evaluated, resulting in every θ and ϕ in (B14) be-
ing replaced with the source trajectories θs(t), ϕs(t) (the
subscript s here denotes “source” as opposed to a spin-
weight as earlier in this Appendix).

Delta functions δ (r − rs(t)) and derivatives thereof
still remain in (B14), along with the integration over t.
When we plug (B14) into equation (B13), we can switch
the order of integration for r′ and t and use those re-
maining delta functions in r (we rename r′ to r now, for
simplicity) to replace every r with rs(t). The net result
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is that Z
H/∞
lmω takes the form

Z
H/∞
lmω =

∫ ∞
−∞

dt eiωte−imϕs(t)IH/∞lmω (rs (t) , θs (t)) .

(B15)

The functions IH/∞lmω depend on r and θ both directly and
via a combination of elementary functions, the spheroidal
harmonics, the homogeneous radial Teukolsky functions,
and various derivatives thereof. Explicit expressions can
be found in several sources (see, for instance, [14, 23]).

We will now use this form for Z
H/∞
lmω to define the co-

efficients Z
H/∞
lmkn and Z

H/∞
lmj;λ to which the efficiency argu-

ments of Sections IV and V apply, respectively.

5. The quantities Z
H/∞
lmkn

We now show that, when the source is a non-resonant

orbit, the ω-dependence of Z
H/∞
lmω takes the form

Z
H/∞
lmω =

∑
kn

Z
H/∞
lmkn;λδ (ω − ωmkn) , (B16)

where ωmkn are the coordinate-time harmonic frequen-
cies defined in equation (B3a). Note that even though
equation (B16) has the form of the Fourier transform of
an almost-periodic function with respect to coordinate
time t, we are free to interpret the coefficients of the
delta functions either as Fourier coefficients of a coordi-
nate time function or as Fourier coefficients of a (differ-
ent) Mino time function.

For the reasons stated in Appendix A, we opt for the
latter and begin by rewriting (B15) as an integral over
Mino time. Treating all source coordinates as functions
of λ and using equation (A4), we get

Z
H/∞
lmω =∫ ∞
−∞

dλ eiω(Γλ+∆t(λ))e−imϕs(λ)IH/∞lmω (rs(λ), θs(λ)) .

(B17)

We now use the fact (see Ref. [26]) that, like dt/dλ,
dϕ/dλ depends on r and θ and is thus biperiodic when
evaluated on a trajectory r(λ), θ(λ). dϕ/dλ has a nonzero
average value Ωϕ defined by

Ωϕ ≡ lim
Λ→∞

1

Λ

∫ Λ/2

−Λ/2

dλ
dϕ

dλ
. (B18)

Consequently, the function ϕs(λ) takes the form

ϕs(λ) = Ωϕλ+ ∆ϕs(λ) (B19)

where ∆ϕs(λ) is biperiodic in λ and has zero average
value. Like its radial and polar counterparts, Ωϕ is re-
lated to the coordinate-time frequency ωϕ via

ωϕ =
1

Γ
Ωϕ . (B20)

More generally, coordinate-time and Mino-time frequen-
cies are related by

ω =
1

Γ
Ω . (B21)

In light of equations (B19)–(B21), equation (B17) be-
comes

Z
H/∞
lmω =∫ ∞

−∞
dλ eiΩλe−imΩϕλeiω∆t(λ)e−im∆ϕs(λ)IH/∞lmω (rs(λ), θs(λ)) .

(B22)

Note that the coordinate-time frequency ω still appears

as a parameter in both IH/∞lmω and in the argument of

eiω∆t(λ).
Like ∆t(λ) and ∆ϕ(λ), the functions IH/∞lmω are biperi-

odic in λ. We define the biperiodic function

f
H/∞
lmω (λ) ≡ eiω∆t(λ)e−im∆ϕs(λ)IH/∞lmω (rs(λ), θs(λ))

(B23)
and Fourier expand it as

f
H/∞
lmω (λ) ≡

∑
k,n

Z
H/∞
lmω;kn;λe

−i(kΩθ+nΩr)λ . (B24)

Inserting (B24) into equation (B22) yields

Z
H/∞
lmω =

∑
k,n

Z
H/∞
lmω;kn;λ

∫ ∞
−∞

dλ eiΩλe−i(mΩϕ+kΩθ+nΩr)λ

=
∑
k,n

Z
H/∞
lmω;kn;λ2πδ(ω − ωmkn)

=
∑
k,n

Z
H/∞
lmω=ωmkn;kn;λ2πδ(ω − ωmkn) .

(B25)

The multipole index m and the Fourier indices k, n all
do double duty by helping to specify the value of the

parameter ω in Z
H/∞
lmω=ωmkn;kn;λ. Consequently, each

Z
H/∞
lmω=ωmkn;kn;λ is fully specified by the four integers

l,m, k, n and we can define

Z
H/∞
lmkn;λ ≡ 2πZ

H/∞
lmω=ωmkn;kn;λ . (B26)

We will absorb the factor of 2π into the function f
H/∞
lmω

in the integral defining Z
H/∞
lmkn;λ.

Since each Z
H/∞
lmkn;λ is a temporal Fourier coefficient,

then by the arguments of Section III D 1, we determine it
by instead computing the corresponding spatial Fourier
coefficient

Z
H/∞
lmkn ≡
1

(2π)2

∫ 2π

0

dχr

∫ 2π

0

dχθ e
ikχθ einχr f

H/∞
lmω=ωmkn

(χr , χθ)

(B27)
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of the associated torus function in the ~χ torus coordi-

nates. Despite our earlier notation, the function IH/∞lmω
actually depends not only on r and θ but also on their
conjugate momenta (since it depends on the r and θ ve-
locities via the energy-momentum tensor of the particle).

f
H/∞
lmω inherits this dependence, and it is thus appropri-

ate to write it as a function of the torus coordinates ~χ
that need not have any special symmetries on the torus.

As we show in Appendix C, the averaged fluxes re-
quired to evaluate the RHS of the adiabatic equations

for ~E depend on the Z
H/∞
lmkn defined in (B27). Thus, equa-

tion (B27) verifies equation (61), on which the savings
arguments of Section IV B are based.

6. The quantities Z
H/∞
lmj;λ

We now show that when the source is a resonant orbit,

the ω-dependence of Z
H/∞
lmω instead takes the form

Z
H/∞
lmω =

∑
j

Z
H/∞
lmj;λδ (ω − ωmj) , (B28)

where ωmj are now the coordinate-time harmonic fre-
quencies defined in equation (B3b). As before, we are
free to interpret the coefficients of the delta functions
either as Fourier coefficients of a coordinate time func-
tion or as Fourier coefficients of a (different) Mino time
function and take the computationally tractable latter
option.

Equations (B17)–(B23) carry over to the resonant case
with the difference that each of ∆t(λ),∆ϕ(λ), r(λ), θ(λ)

and thus IH/∞lmω is now singly periodic with period ΛP .

Thus f
H/∞
lmω can be Fourier expanded in harmonics of a

single fundamental frequency ΩP ,

f
H/∞
lmω (λ; ~χ0) ≡

∑
j

Z
H/∞
lmω;j;λ(~χ0)e−ijΩPλ (B29)

with

Z
H/∞
lmω;j;λ(~χ0) =

1

ΛP

∫ ΛP

0

dλ eijΩPλf
H/∞
lmω (λ; ~χ0) .

(B30)

The functions f
H/∞
lmω (λ; ~χ0) are induced from some torus

function, so by the arguments of Section III D 2, both

they and the coefficients Z
H/∞
lmω;j;λ(~χ0) depend on initial

positions, which we can represent compactly as a depen-
dence on initial position ~χ0 on the phase space torus.

Inserting (B29) into the resonant version of equation
(B22) yields

Z
H/∞
lmω =

∑
j

Z
H/∞
lmω;j;λ

∫ ∞
−∞

dλ eiΩλe−i(mΩϕ+jΩP )λ

=
∑
j

Z
H/∞
lmω;j;λ2πδ(ω − ωmj)

=
∑
j

Z
H/∞
lmω=ωmj ;j;λ

2πδ(ω − ωmj) .

(B31)

The relevant quantities, then, are those in equation (B30)

with the parameter ω in f
H/∞
lmω set to ωmj .

Paralleling the non-resonant case, each Z
H/∞
lmω=ωmj ;j;λ

is

fully specified by the three integers l,m, j. By absorbing

the factor of 2π into the functions f
H/∞
lmω in the integrand

of (B30), we can define the notationally more compact
coefficients

Z
H/∞
lmj;λ ≡ 2πZ

H/∞
lmω=ωmj ;j;λ

. (B32)

By the construction above, each such Z
H/∞
lmj;λ is given by

Z
H/∞
lmj;λ =

1

ΛP

∫ ΛP

0

dλ eijΩPλf
H/∞
lmω=ωmj

(λ; ~χ0) . (B33)

As we show in Appendix C, the time-averaged fluxes

for ~E from resonant orbits depend on the Z
H/∞
lmj;λ defined

in (B33). Thus, equation (B33) verifies equation (68), on
which the more speculative savings arguments of Section
V are based.

Appendix C: Fluxes from the Teukolsky formalism

In this appendix, we review how the apparatus of Ap-
pendix B yields fluxes of conserved quantities. Several
authors [3, 14, 19, 20, 22, 23] implement this Fourier-
domain formalism in TB codes to calculate the radiative
~E fluxes at radial infinity and the horizon to determine
how the inspiral evolves. We show how expressions for
time-averaged (as opposed to torus-averaged) fluxes dif-
fer between non-resonant and resonant orbits.

1. Overview of flux calculation

We will not refer to the Q flux, but restrict our dis-
cussion to E and Lz. To determine the evolution of an
inspiral in orbital parameter space, we use the the E and
Lz fluxes at radial infinity and the horizon as proxies for
the local self-force. This subsection gives an overview of
the calculation for finding these fluxes.

From the Weyl scalar ψ4, the gravitational waveform
and the E, Lz and Q radiation fluxes can be calculated.
Specifically, we can calculate the polarizations h+ and
h× of the metric perturbations at infinity (i.e. the GWs)
via

ψ4 =
1

2

∂2

∂t2
(h+ + ih×) . (C1)

After integrating equation (C1) twice to get h++ih× (the
integration constants are set to zero), we can calculate an
effective GW stress-energy tensor at infinity [45] as

T∞αβ =
1

16π

〈
∂h+

∂xα
∂h+

∂xβ
+
∂h×
∂xα

∂h×
∂xβ

〉
several

wavelengths

. (C2)
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The average over several wavelengths signifies the follow-
ing [46]. The stress-energy tensor of GWs contributes
to curvature in the analogous way that the stress-energy
tensor of matter does. However, since GWs are fluctua-
tions in the metric itself, we cannot define their stress-
energy tensor at a field point because, with only infor-
mation at one point, we cannot distinguish between the
curvature of the background spacetime and the contribu-
tions to that curvature from fluctuations on the space-
time. To distinguish between the background and the ef-
fect of the fluctuations, there needs to be either a length
or frequency scale separation between the two. In our
case, as r →∞, the background curvature scale is much
greater than the wavelength of the fluctuations. There-
fore, we average over several gravitational wavelengths in
order to smooth out the fluctuations and determine only
the secular contribution of such GWs to the curvature.

While the background curvature scale is much greater
than the GW wavelength, GW detectors look not for spa-
tial fluctuations to the metric but rather temporal ones.
Therefore, in the spirit of applicability to actual exper-
iments, it is more useful to distinguish between a back-
ground frequency (i.e. a reciprocal of a curvature scale
in the timelike direction) and the much larger frequency
of the fluctuations. Therefore, rather then average over
several wavelengths, we average over several periods to
isolate the net effect of the GWs [46].

The energy and angular momentum fluxes carried to
radial infinity by GWs are related to the components of
T∞αβ by,

T∞tt =
dE

dtdA
(C3)

T∞tϕ =
dLz
dtdA

.

The E and Lz fluxes are calculated by integrating equa-
tion (C3) over a 2-sphere of radius r on a constant t
spacelike hypersurface(

dE

dt

)∞
=

∫
T∞tt r

2dΩ (C4)(
dLz
dt

)∞
=

∫
T∞tϕ r

2dΩ .

The time-averaged fluxes from a given geodesic can then

be calculated by〈
dE

dt

〉∞
t

= lim
T→∞

1

T

∫ T
2

−T2

(
dE

dt

)∞
dt (C5)

〈
dLz
dt

〉∞
t

= lim
T→∞

1

T

∫ T
2

−T2

(
dLz
dt

)∞
dt .

Alternatively, we can calculate the torus-averaged
fluxes by taking the average of the time-averages for all
geodesics with a given set of orbital parameters over all
possible initial conditions,〈

dE

dt

〉∞
~γ

=
1

(2π)
2

∫ 2π

0

dγro

∫ 2π

0

dγθo

〈
dE

dt

〉∞
t

(C6)〈
Lz
dt

〉∞
~γ

=
1

(2π)
2

∫ 2π

0

dγro

∫ 2π

0

dγθo

〈
dLz
dt

〉∞
t

.

An analogous procedure can be performed to calculate
the fluxes at the horizon [38, 47].

2. Fluxes from ψ4

Combining equations (B4) with (B11) we find that

ψ∞4 = ρ−4
∑
lmkn

ZHlmkn;λr
3eiωmknr

∗
Saωmknlm (θ) e−iωmknt+imϕ

(C7a)

for non-resonant orbits, and

ψ∞4 = ρ−4
∑
lmj

ZHlmj;λr
3eiωmjr

∗
S
aωmj
lm (θ) e−iωmjt+imϕ .

(C7b)

Similar expressions can be found for ψH4 , but for brevity,
we will only proceed with the detailed computations for
r →∞. Also, we only work out the details for the E flux,
but the Lz flux follows exactly the same prescription.

Following the prescription laid out in section C 1 we
find that

(
dE

dt

)∞
=

1

4π

〈∑
lmω

∑
l′m′ω′

1

ωω′
ZHlmω;λZ̄

H
l′m′ω′;λe

i(ω−ω′)r∗e−i(ω−ω
′)t
∫ π

0

sin θSaωlm(θ)S̄aω
′

l′m′ (θ) dθ

∫ 2π

0

dϕei(m−m
′)ϕ

〉
several
periods

,

(C8)

where ω, ω′ denote the discrete variables that are two- indexed for resonant orbits and three-indexed for non-
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resonant orbits. Performing the ϕ integration in equation
(C8) yields 2πδmm′ . We thus set m = m′ everywhere.

For non-resonant orbits, equation (C8) becomes

(
dE

dt

)∞
=

1

2

〈∑
lmkn

∑
l′k′n′

1

ωmknωmk′n′
ZHlmkn;λZ̄

H
l′mk′n′;λe

−i{(n−n′)ωr+(k−k′)ωθ}(t−r∗)
∫ π

0

dθ sin θSaωmknlm S̄
aωmk′n′
l′m

〉
several
periods

.

(C9)

We are interested in an infinite time-average of equation
(C9). Therefore, we can drop the average over several
periods because the time-averaging process will smooth
out the fluxes so that the period averaging will have no
further effect once we have time-averaged. The time-
average of a function corresponds to the constant term
in a Fourier expansion, so the argument of the exponen-
tial in t will need to be zero. Therefore, performing the
infinite time-average yields the added conditions k = k′

and n = n′. This equates the frequencies everywhere,
including in the spheroidal harmonics. We can therefore
now perform the θ integration using (B6) and get l = l′.
The result is that the infinite time average in the non-
resonant case is〈

dE

dt

〉∞
t

=
∑
lmkn

1

4πω2
mkn

∣∣ZHlmkn;λ

∣∣2 . (C10)

In Section III D 1, we saw that infinite time averages
over non-resonant orbits are the same as torus averages
over non-resonant tori with respect to the correspond-
ing torus coordinates. The time average over t on the
LHS of (C10) thus corresponds to a torus average over

the ~γ torus coordinates. We also saw that
∣∣∣ZHlmkn;λ

∣∣∣2 =∣∣ZHlmkn∣∣2, where the ZHlmkn are spatial Fourier coefficients

(for fixed l,m) with respect to the ~χ torus coordinates.
Therefore, the torus averaged energy flux is〈

dE

dt

〉∞
~γ

=
∑
lmkn

1

4πω2
mkn

∣∣ZHlmkn∣∣2 . (C11)

This expression is true for all tori, as torus averages are
insensitive to whether the orbits on that torus are reso-
nant or non-resonant.

Analogous arguments lead to the angular momentum
flux at infinity. Similar arguments to those above then
lead to the corresponding fluxes at the horizon. The up-
shot is that all the torus-averaged fluxes are given by

〈
dE

dt

〉H/∞
~γ

=
∑
lmkn

α
H/∞
lmkn

4πω2
mkn

∣∣∣ZH/∞lmkn

∣∣∣2 (C12)

〈
dLz
dt

〉H/∞
~γ

=
∑
lmkn

α
H/∞
lmknm

4πω3
mkn

∣∣∣ZH/∞lmkn

∣∣∣2 ,

where α∞lmkn ≡ 1 and the details of αHlmkn can be found
in reference [38]. We note that there is no residual de-
pendence on the initial conditions ~χ0.

We return to equation (C9) and evaluate it for a reso-
nant orbit,

(
dE

dt

)∞
=

1

2

〈∑
lmj

∑
l′j′

1

ωmjωmj′
ZHlmj;λZ

∗H
lmj′;λe

−i(j−j′)ωP (t−r∗)
∫ π

0

dθ sin θS
aωmj
lm S̄

aωmj′

l′m

〉
several
periods

. (C13)

As was the case with the non-resonant infinite time aver-
age, we can drop the averaging over several periods. Ad-
ditionally, the resonant time-average picks out the con-
stant term in the Fourier expansion, which results when
j = j′. Therefore,〈

dE

dt

〉∞
t

=
∑
lmj

1

4πω2
mj

∣∣ZHlmj;λ∣∣2 . (C14)

The rest of the E and Lz time-averaged fluxes can be

found similarly and are,〈
dE

dt

〉H/∞
t

=
∑
lmj

α
H/∞
lmj

4πω2
mj

∣∣∣ZH/∞lmj;λ

∣∣∣2 (C15)

〈
dLz
dt

〉H/∞
t

=
∑
lmj

α
H/∞
lmj m

4πω3
mj

∣∣∣ZH/∞lmj;λ

∣∣∣2 .

We remark that unlike the torus-averaged fluxes, the
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time-averaged fluxes of resonant orbits clearly depend
on the initial conditions of the orbit, since as we saw

in Section B 6,
∣∣∣ZH/∞lmj;λ

∣∣∣2 is not the same for all initial

conditions.
Alternatively, we can write the time-averaged fluxes of

equation (C15) explicitly in terms of the torus coefficients

Z
H/∞
lmkn . From section III D 2 we know that

Z
H/∞
lmj;λ =

∑
kn:

pn+zk=j

Z
H/∞
lmkne

−inχr0 e−ikχθ0 . (C16)

Therefore, we can rewrite equation (C15) as

〈
dE

dt

〉H/∞
t

=
∑
lmkn

∑
k′n′:

zn+pk=
zn′+pk′

α
H/∞
lmkn

4πω2
mkn

Z
H/∞
lmknZ

∗H/∞
lmk′n′e

−i{(n−n′)χro+(k−k′)χθo} (C17)

〈
dLz
dt

〉H/∞
t

=
∑
lmkn

∑
k′n′:

zn+pk=
zn′+pk′

α
H/∞
lmknm

4πω3
mkn

Z
H/∞
lmknZ

∗H/∞
lmk′n′e

−i{(n−n′)χro+(k−k′)χθo} .

The explicit initial condition dependence is now ev-
ident. Notice that if we average the time-averaged flux
expressions of equation (C17) over all possible initial con-
ditions, we reproduce the torus-averaged fluxes of equa-
tion (C11)〈

dE

dt

〉H/∞
γ

=
1

(2π)
2

∫ 2π

0

dχro

∫ 2π

0

dχθo

〈
dE

dt

〉H/∞
t

(C18)

=
∑
lmkn

α
H/∞
lmkn

4πω2
mkn

∣∣∣ZH/∞lmkn

∣∣∣2 .
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