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Abstract

In 1676 Olaus Rømer presented the first observational evidence for a finite light velocity cem.

He formed his estimate by attributing the periodically varying discrepancy between the observed

and expected occultation times of the Galilean satellite Io by its planetary host Jupiter to the

time it takes light to cross Earth’s orbital diameter. Given a stable celestial clock that can be

observed in gravitational waves the same principle can be used to measure the propagation speed

cgw of gravitational radiation. Space-based “LISA”-like detectors will, and terrestrial LIGO-like

detectors may, observe such clocks and thus be capable of directly measuring the propagation

velocity of gravitational waves. In the case of space-based detectors the clocks will be galactic

close white dwarf binary systems; in the case of terrestrial detectors, the most likely candidate

clock is the periodic gravitational radiation from a rapidly rotating non-axisymmetric neutron

star. Here we evaluate the accuracy that may be expected of such a Rømer-type measurement

of cgw by foreseeable future space-based and terrestrial detectors. For space-based, LISA-like

detectors, periodic sources are plentiful: by the end of the first year of scientific operations a LISA-

like detector will have measured cgw to better than a part in a thousand. Periodic sources may

not be accessible in terrestrial detectors available to us in the foreseeable future; however, if such

a source is detected then with a year of observations we could measure cgw to better than a part

in a million.
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I. INTRODUCTION

Over the course of a Jovian synodic year the distance light must transit between Earth

and Jupiter varies by two astronomical units: approximately 3× 108 km. If we neglect the

time required for light to cross Earth’s orbit, the interval between events that are periodic

at Jupiter will at Earth be observed at times that may vary from the expected by as much

as 103 s. It was this observed variation between the observed and expected occultations of

the Galilean satellite Io that led Olaus Rømer to conclude that light has a finite propagation

speed and to the first real measurement of light’s velocity cem [1, 2]. Galactic compact white

dwarf binary systems, or rapidly rotating non-axisymmetric neutron stars, are similarly

regular clocks whose periodic signal is transmitted to Earth via gravitational radiation. In

the same way that Rømer was able to use observations of the discrepancies in the optically

measured times of Io’s occultations by Jupiter to measure the speed of light, so we may use

gravitational-wave observations by space-based LISA-like detectors [3–7] of compact white

dwarf binary systems, or by terrestrial LIGO-like detectors [8–11] of rapidly rotating neutron

stars, to measure the propagation speed cgw of gravitational waves.

In general relativity theory, gravitational waves and light both propagate on spacetime

null geodesics; correspondingly, there is no difference in their respective (vacuum) propaga-

tion speeds. A direct measurement of the gravitational-wave propagation speed is, thus, a

“go/no-go” test of the theory. Phenomenological alternatives to general relativity can have

gravitational-wave propagation speeds that differ from lightspeed. For example, massive

gravity theories will have a frequency-dependent gravitational-wave propagation speed with

cgw < cem. Multi-metric theories — where the metric associated with gravitational phenom-

ena is different than the metric associated with electromagnetic phenomena — allow for a

gravitational wave propagation speed greater or less than lightspeed.[24]

Measurement of the Rømer delay directly and unambiguously accesses the wave propaga-

tion speed across Earth’s orbital baseline. This stands in contrast to other proposed tests of

general relativity whose results are sometimes discussed in terms of the gravitational-wave

propagation speed, but whose interpretation in this way requires a theoretical model or phe-

nomenological framework to relate the observation to the propagation speed. For example,

Will [12] suggested searching for an anomalous (compared to general relativity’s prediction)

compression of the gravitational-wave signal from an inspiraling binary system. Such a
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compression could be interpreted as a frequency-dependent gravitational-wave propagation

speed resulting from a non-zero “graviton-mass”. In a similar vein, Larson and Hiscock

[13], Cutler et al. [14] proposed measuring the phase difference between the binary’s orbital

phase at some fiducial time as determined optically and by gravitational-wave observations.

The phase difference, relative to that predicted by general relativity, could then be inter-

preted as differences in the gravitational-wave propagation speed at a frequency twice the

binary orbital frequency. What is relevant is that, unlike the measurement described in this

work, none of these other measurements directly accesses the gravitational-wave propagation

speed: i.e., their interpretation in terms of the wave propagation speed requires a theory or

phenomenological framework that relates the observed phenomena to the wave propagation

speed. As shown by Carlip [15] in the context of a recent claim to have measured the prop-

agation speed of the gravitational force [16] through its effect on light travel, change the

theory or framework and the interpretation changes.

In Section II we estimate the precision to which we can measure the gravitational-wave

propagation speed from multi-year observations of periodic gravitational waves. We assume

here that the gravitational-wave frequency and sky location of the source are known a priori.

For such cases, we show that the Fisher matrix estimate of the uncertainty can be expressed

very simply in terms of the source parameters and orbital radius of the Earth’s motion

around the Sun, valid for all ground-based and proposed space-based detectors. Details

specific to the detectors, such as antenna pattern functions, cancel out when the uncertainty

is expressed in terms of the signal-to-noise ratio of the measurement. We also discuss the

complications introduced if we relax the assumption of a priori knowledge of the source

frequency and sky location of the gravitational-wave source. Although the calculation is

more complicated for this case, the Fisher matrix formalism can still be used to estimate

the uncertainty in the gravitational-wave propagation speed as a function of the source

parameters and detector geometry. In Section III we use the general result of Section II to

obtain numerical values for “3σ” fractional uncertainties in cgw for observations in terrestrial

and space-based detectors. We also summarize our conclusions.
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II. ESTIMATING THE MEASUREMENT PRECISION OF THE

GRAVITATIONAL-WAVE PROPAGATION SPEED

As highlighted in Section I our focus here is on the use of periodic sources whose sky lo-

cation and frequency are known a priori. For space-based detectors like LISA the so-called

“verification binaries” [17] — close white dwarf binary systems that should be strong sources

— are all optically localized and have well-determined periods. In the case of ground-based

detectors the relevant sources are expected to be rapidly rotating neutron stars. If these

sources are also observable as pulsars their period and location on the celestial sphere will

be known with high precision through radio observations. While detection of the gravita-

tional radiation from rapidly rotating neutron stars with no electromagnetic counterpart is

certainly possible, compared to the case of a source observed as a pulsar the larger param-

eter space in which the search must be conducted means that a much stronger signal will

be required for a positive detection. Absent some plausible astrophysical mechanism that

selectively generates strong non-axisymmetries in radio-silent rapidly rotating neutron stars,

it is much more likely that the sources we observe will also be recognized as pulsars.

Our analysis of the known source location and frequency case is described in subsections

II A – II B below. We end this section with some brief comments on the unknown source

location and frequency case in subsection II C.

A. Source and detector description

For any monochromatic source we may write the TT gauge gravitational wave strain at

time t and location ~x as

h(t, ~x) = h+(t, ~x)e+ + h×(t, ~x)e× , (1a)

where e+ and e× are orthogonal polarization tensors, fixed in inertial space, and

h+(t, ~x) = H+ cos [2πfgwu+ Φ+] , (1b)

h×(t, ~x) = H× cos [2πfgwu+ Φ×] , (1c)

u = t− k̂ · ~x
cem(1 + ε)

. (1d)
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Here ε is the fractional difference between light speed (cem) and the gravitational-wave

propagation speed (cgw = cem(1 + ε)), k̂ is the wave-propagation direction and H+, H×, Φ+

and Φ× are constants determined by the source orientation with respect to e+ and e×.

For detectors that are small compared to the observed radiation wavelength[25] we may

write the detector response to the incident (h+, h×) as

r(t) = F+(t)h+(t, ~x(t)) + F×(t)h×(t, ~x(t)) , (2)

where ~x(t) is the detector location. The functions F+ and F× are determined by the projec-

tion of the detector’s antenna pattern on the wave polarization tensors. Both terrestrial and

space-based LISA-like detectors are constantly changing their orientation with respect to e+

and e× (in the case of terrestrial detectors owing to Earth’s diurnal motion about its rota-

tion axis, and in the case of space-based detectors owing to the science-craft constellation’s

annual motion about about Sol); correspondingly, F+ and F× are time dependent.

B. Known source location and frequency

We use the Fisher Information Matrix formalism [18, 19] to estimate the precision with

which we can estimate the gravitational-wave propagation speed from multi-year observa-

tions of periodic gravitational waves whose frequency and propagation direction are known

a priori. When the source location and frequency are known a priori the Fisher Information

matrix I has elements

Ijk(~θ) =
2

σ2
n

∫ T

0

∂r

∂θj

∂r

∂θk
dt , (3)

where T is the observation duration, σ2
n is the detector noise power spectral density at the

gravitational wave frequency fgw, and ~θ denotes the parameter vector (ε,H+, H×,Φ+,Φ×).
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The partial derivatives of r with respect to our parameterization are

∂r

∂ε
= −2πfgw

k̂ · ~x
cem(1 + ε)2

{F+H+ sin [2πfgwu+ Φ+] + F×H× sin [2πfgwu+ Φ×]} , (4a)

∂r

∂H+

= F+ cos (2πfgwu+ Φ+) , (4b)

∂r

∂H×
= F× cos (2πfgwu+ Φ×) , (4c)

∂r

∂Φ+

= −F+H+ sin (2πfgwu+ Φ+) , (4d)

∂r

∂Φ×
= −F×H× sin (2πfgwu+ Φ×) . (4e)

For all cases of interest the gravitational-wave detectors follow Earth’s orbit about Sol;

correspondingly,

k̂ · ~x = (Rau cos θ) cos(ω�t− φ) , (5)

where Rau is Earth’s orbital radius (1 au), ω� is the detector angular velocity in its orbital

motion about Sol (2π/yr), θ is the ecliptic latitude, and φ is the azimuthal angle of the source

with respect to Earth’s orbital position at t = 0. (See Figure 1.) (The small displacement

~d of a terrestrial detector away from the Earth’s orbital path about Sol introduces an order

d/Rau ∼ 0.25% correction, which we ignore.)

To evaluate the components of the Fisher matrix we take advantage of the sinusoidal

periodicity of F+, F×, h+ and h× and focus on observations that are integer multiples of a

year duration. Noting that

ω� � 2πfgw � cem/d , (6)

ω� � cem/Rau , (7)

the integrals for the Fisher matrix elements Iεj for T > 1 yr quickly simplify to

Iεε =
(2πfgwRauρ cos θ)2

c2em(1 + ε)4
, (8)

Iεj = 0 for j ∈ {H+, H×,Φ+,Φ×} , (9)

where ρ2 is the (power) signal-to-noise ratio

ρ2 =
1

2σ2
n

∫ T

0

r2(t)dt . (10)
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FIG. 1: The relevant geometric quantities used in the calculation: k̂ is the unit vector pointing

in the direction of wave propagation; θ is the ecliptic latitude (i.e., the angle that −k̂ makes with

the plane of the ecliptic); φ is the azimuthal angle of the source with respect to the Earth’s orbital

position at t = 0. The detector antenna pattern functions F+ and F× from Eq. (2) are defined

with respect to the polarization tensors constructed from û and v̂, which are proportional to the

unit vectors φ̂ and θ̂, respectively.

Correspondingly, at the level of the Cramer-Rao bound there is no co-variance between the

uncertainty in our estimate of ε and any of the other problem parameters. The expected

variance of the estimate for ε is thus

νε =
(
I−1
)
εε

(11)

=
1

Iεε
=

(
cem

2πfgwRau

)2
(1 + ε)4 sec2 θ

ρ2
. (12)

This result is valid for observations in all ground-based detectors and all proposed space-

based detectors, whether Earth- or solar-orbiting. It is also valid for detector arrays where

the data are combined coherently as described in, e.g., [20, 21]. (In the case of detector
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arrays ρ2 is the array power signal-to-noise ratio.) Details specific to the detectors, such as

the antenna pattern functions F+ and F×, cancel out when the uncertainty is expressed in

terms of the signal-to-noise ρ.

C. Unknown source location and/or frequency

If the source frequency, sky location, or both are not known a priori one needs to enlarge

the parameter vector ~θ to include the additional unknowns: e.g., the frequency fgw and/or

the source location on the sky (θ, φ). The Fisher matrix dimensionality thus expands to

include terms involving partial derivatives

∂r

∂fgw
= −2π

(
t− k̂ · ~x

cem(1 + ε)

)
{F+H+ sin [2πfgwu+ Φ+] + F×H× sin [2πfgwu+ Φ×]} ,

(13)

∂r

∂θ
=

2πfgw
cem(1 + ε)

∂(k̂ · ~x)

∂θ
{F+H+ sin [2πfgwu+ Φ+] + F×H× sin [2πfgwu+ Φ×]}

+

{
∂F+

∂θ
H+ cos [2πfgwu+ Φ+] +

∂F×
∂θ

H× cos [2πfgwu+ Φ×]

}
, (14)

∂r

∂φ
=

2πfgw
cem(1 + ε)

∂(k̂ · ~x)

∂φ
{F+H+ sin [2πfgwu+ Φ+] + F×H× sin [2πfgwu+ Φ×]}

+

{
∂F+

∂φ
H+ cos [2πfgwu+ Φ+] +

∂F×
∂φ

H× cos [2πfgwu+ Φ×]

}
, (15)

where

∂(k̂ · ~x)

∂θ
= −Rau sin θ cos(ω�t− φ) , (16)

∂(k̂ · ~x)

∂φ
= +Rau cos θ sin(ω�t− φ) . (17)

Comparing these expressions with the partial derivative ∂r/∂ε from Equation 4a, one can see

that the off-diagonal Fisher matrix elements Iεj for j ∈ {fgw, θ, φ} are non-zero. Correspond-

ingly there will be non-trivial cross-correlations between the measurement uncertainties in

ε and the radiation frequency and source sky-location parameters. The net effect will be an

increase in the uncertainty in ε, whose size will depend on the two dimensionless parameters

fRau/cgw and fL/cem, where L is the antenna arm length. We expect that there will be

regions in parameter space where the increase is of order unity, and other regions where

the increase is much larger (and perhaps infinite denoting a degeneracy). A systematic

investigation of this more complex scenario is the subject of work in progress.
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III. DISCUSSION

As described here, to measure the gravitational-wave propagation speed from the Rømer

delay it is necessary to monitor a periodic source of gravitational waves, whose position

on the sky and radiation frequency is known, for a year or more. For terrestrial detectors

such a source might be a radio pulsar that also radiates gravitationally. For such sources,

Equation 11 may be written as

νε =
(
3.2× 10−7

)2(100 Hz

fgw

)2(
10

ρ

)2

(1 + ε)4 sec2 θ; (18)

i.e., the “3σ” fractional uncertainty in the measurement of the gravitational-wave propaga-

tion speed arising from a one or more year observation of a 100 Hz gravitational-wave source

situated on the ecliptic plane is 10−6(10/ρ). Since a signal-to-noise ρ ' 10 is typically taken

as the threshold for source detection in a ground-based detector or detector network, if a

periodic source is observed, a measurement of cgw to 3σ precision, 300(10/ρ) m s−1, will

follow shortly.

There are no reliable predictions for the gravitational-wave amplitude associated with

rapidly rotating neutron stars. Mass asymmetries — “mountains” — are limited in size

by the tensile strength of the neutron star crust, while the potential for fluid circulation

instabilities (r -modes) to lead to gravitational-wave emission depends on the (temperature

dependent) neutron star surface “ocean” shear and bulk viscosities [22, §7.3]. It may well

be the case that neutron star crusts cannot support a sufficiently large asymmetry to be

observable gravitational-wave sources, or that the neutron star fluid viscosity is always so

great as to stabilize neutron star fluid r -modes. Likewise, it may be that circumstances

can be contrived that lead neutron stars to be strong radiation sources for ground-based

detectors, but that there is no natural mechanism for creating or placing the neutron star

into such states. Thus, while a sensitive measurement of the gravitational-wave speed is

possible with ground-based detectors, carrying it out depends on the observation of a type

of source that may not be available to us.

Strong sources of periodic gravitational waves, in the form of galactic white dwarf binary

systems, are both certain and plentiful for any of the proposed “LISA”-like space-based

gravitational-wave detectors [3]. For such sources, Equation 11 is conveniently written as

νε =
(
3.2× 10−4

)2(10 mHz

fgw

)2(
100

ρ

)2

(1 + ε)4 sec2 θ. (19)
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An amplitude signal-to-noise of 100 in a one-year observation is the minimum expected for a

typical “verification binary” in a space-based detector; correspondingly, the “3σ” fractional

uncertainty in the measurement of the gravitational-wave propagation speed arising from a

one or more year observation of a 10 mHz gravitational-wave source situated on the ecliptic

plane is a quite respectable 10−3(100/ρ).

At present, then, we find ourselves in an odd position. With the observation of a periodic

gravitational-wave source, we know how to make a direct, accurate and unambiguous mea-

sure of the gravitational-wave propagation speed and, from it, a “go/no-go” test of general

relativity theory. On the one hand, for existing or foreseeable future ground-based detec-

tors there is no guarantee that there will, or — indeed — can, exist any source that will

enable the measurement. On the other hand, there are scores of sources, already identified,

that are accessible to a space-based detector that would enable such a measurement but,

despite the strong recommendation of the United States National Research Council [23],

NASA abandoned its committment to the decade-long ESA/NASA partnership that would

have led to the construction of such an observatory and no such project is currently planned

by either agency. We can only hope that the feasibility of accurately and unambiguously

testing general relativity — by means such as described here — will strengthen the case for

reviving a LISA-like gravitational wave observatory in the near future.
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[2] O. Rømer, Philosophical Transactions of the Royal Society 12, 893 (1677).

[3] K. Danzmann, T. A. Prince, P. Binetruy, P. Bender, S. Buchman, J. Centrella, M. Cerdonio,

N. Cornish, M. Cruise, C. J. Cutler, et al., Tech. Rep. ESA/SRE(2011)3, European Space

Agency (2011).

11



[4] J. Baker, M. Benacquista, E. Berti, E. Brinker, S. Buchman, J. Camp, N. Cornish, C. Cutler,

G. de Vine, L. S. Finn, et al., Tech. Rep., NASA Goddard SpaceFlight Center (2011).

[5] J. Baker, M. Benacquista, E. Berti, E. Brinker, S. Buchman, J. Camp, N. Cornish, C. Cutler,

G. de Vine, L. S. Finn, et al., Tech. Rep., NASA Goddard SpaceFlight Center (2011).

[6] J. Baker, M. Benacquista, E. Berti, E. Brinker, S. Buchman, J. Camp, N. Cornish, C. Cutler,

G. de Vine, L. S. Finn, et al., Tech. Rep., NASA Goddard SpaceFlight Center (2011).

[7] J. Baker, M. Benacquista, E. Berti, E. Brinker, S. Buchman, J. Camp, N. Cornish, C. Cutler,

G. de Vine, L. S. Finn, et al., Tech. Rep., NASA Goddard SpaceFlight Center (2011).

[8] G. M. Harry and L. S. Collaboration, Class. Quantum Grav. 27 (2010), ISSN 0264-9381, 8th

Edoardo Amaldi Conference on Gravitational Waves, Columbia Univ, New York, NY, JUN

22-26, 2009.

[9] T. Accadia, F. Acernese, F. Antonucci, P. Astone, G. Ballardin, F. Barone,

M. Barsuglia, A. Basti, T. S. Bauer, M. Bebronne, et al., Class. Quantum Grav.

28, 4002 (2011), URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=

2011CQGra..28k4002A&link_type=ABSTRACT.

[10] K. Somiya, Class. Quantum Grav. 29, 4007 (2012), URL http://adsabs.harvard.edu/

cgi-bin/nph-data_query?bibcode=2012CQGra..29l4007S&link_type=ABSTRACT.

[11] S. Hild, M. Abernathy, F. Acernese, P. Amaro-Seoane, N. Andersson, K. Arun, F. Barone,

B. Barr, M. Barsuglia, M. Beker, et al., Class. Quantum Grav. 28 (2011), ISSN 0264-9381.

[12] C. M. Will, Phys. Rev. D 57, 2061 (1998), gr-qc/9709011.

[13] S. L. Larson and W. A. Hiscock, Phys. Rev. D 61, 104008 (2000), gr-qc/9912102.

[14] C. Cutler, W. A. Hiscock, and S. L. Larson, Phys. Rev. D 67, 24015 (2003),

URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003PhRvD.

.67b4015C&link_type=ABSTRACT.

[15] S. Carlip, Class. Quantum Grav. 21, 3803 (2004), URL http://stacks.iop.org/0264-9381/

21/i=15/a=011?key=crossref.64063a9687d3916505cb27f83df1eea3.

[16] E. B. Fomalont and S. M. Kopeikin, Astrophys. J. 598, 704 (2003), URL

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003ApJ...598.

.704F&link_type=ABSTRACT.

[17] A. Stroeer and A. Vecchio, Classical and Quantum Gravity 23, S809 (2006), URL http:

//stacks.iop.org/0264-9381/23/i=19/a=S19.

12



[18] L. S. Finn, Phys. Rev. D 46, 5236 (1992), ISSN 0556-2821.

[19] M. Vallisneri, Phys. Rev. D 77, 42001 (2008), URL http://adsabs.harvard.edu/cgi-bin/

nph-data_query?bibcode=2008PhRvD..77d2001V&link_type=ABSTRACT.

[20] L. S. Finn, Phys. Rev. D 63, 102001 (2001).

[21] L. S. Finn and A. N. Lommen, Astrophys. J. 718, 1400 (2010), ISSN 0004-637X.

[22] B. S. Sathyaprakash and B. F. Schutz, Living Reviews in Relativity 12, 2 (2009),

URL http://adsabs.harvard.edu/cgi-bin/nph-data\_query?bibcode=2009LRR....12.

...2S\&link\_type=ABSTRACT.

[23] Committee for a Decadal Survey of Astronomy and Astrophysics and National Research

Council (National Academies Press, 2010), ISBN 9780309157995, URL http://www.nap.edu/

openbook.php?record_id=12951.

[24] It might, at first blush, seem that cgw > cem would violate “causality” limits associated with

cem; however, evidence for such causality violations require observations or experiments that

actually probe dynamical gravity through an actual interaction between electromagnetic and

gravitational waves. Absent an effective coupling between dynamical gravity and electromag-

netism, no experimental or observational limit on lightspeed constrains the gravitational-wave

propagation speed. The coupling from a dynamical electromagnetic field energy density ρEM

to gravitational wave energy density is suppressed by a factor of GρEMc
−4ω−2EM, which is ex-

tremely small for all physical environments encompassed by present-day observation.

[25] True for all terrestrial detectors and for wave frequency f . 10 mHz for LISA-like detectors.

13


