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We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two four-
component massless Dirac fermions. We focus on two models withSU(2) flavor symmetry and either aZ2 or a
U(1) chiral symmetry. Both models could not be studied earlier due to sign problems. We use the fermion bag
approach which is free of sign problems and compute criticalexponents at the phase transitions. We estimate
ν = 0.83(1), η = 0.62(1), ηψ = 0.38(1) in theZ2 andν = 0.849(8), η = 0.633(8), ηψ = 0.373(3) in the
U(1) model.
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Quantum phase transitions between massless and massive
fermion phases, are of general interest in particle physics
[1, 2]. Symmetries are expected to play an important role in
governing their properties since such phase transitions are as-
sociated with spontaneous breaking of these symmetries. In
2 + 1 dimensions, one expects a rich class of such second
order quantum phase transitions and the physics of graphene
has recently attracted even condensed matter physicists tothe
subject [3–9]. Renormalization group arguments suggest that
non-relativistic effects and long range interactions could be ir-
relevant [10], and the transition could belong to the universal-
ity class of similar phase transitions in three dimensionalrel-
ativistic four-fermion field theories with two massless Dirac
fermions [11–13]. While some Monte Carlo calculations of
the critical exponents in models of graphene have emerged re-
cently, the results are neither consistent with each other nor
do they match theoretical predictions [14–16]. Thus, further
work is clearly necessary.

When the number of massless fermions at the phase tran-
sition is small, there are no small parameters for a perturba-
tive expansion to be reliable. Hence, Monte Carlo methods
are essential to determine the properties of the quantum phase
transitions. However, these methods are known to be notori-
ously difficult in the presence of fermions. In certain cases
sign problems makes it even impossible to solve the problem.
Compared to the precision with which three dimensional Ising
and XY models have been studied [17, 18], critical exponents
in models with similar symmetry breaking patterns but in the
presence of a small number of massless fermions at the critical
point have remained largely unknown. This work presents the
first precision study of two such quantum phase transitions in
the presence of two four-component massless Dirac fermions
in 2+1 dimensions. Hence, our study should be of interest to
the graphene community.

Relativistic four-fermion models have a long history and
are usually studied in the presence of either scalar interac-
tions (Gross-Neveu models) or vector interactions (Thirring
models) [19–24]. Their lattice formulations using staggered
fermions are popular, but due to fermion doubling one flavor
of staggered fermions in three dimensions produces two fla-
vors (Nf = 2) of Dirac fermions [25, 26]. Symmetries of

the microscopic models play an important role in determining
the universality class of phase transitions. Gross-Neveu mod-
els with a variety of symmetries have been studied using large
Nf expansions [27, 28],ǫ-expansions [29], renormalization-
group (RG) flow methods [30–32], and lattice Monte Carlo
calculations [33–35]. Although much has been understood,
we discuss two puzzles in the existing literature and resolve
them in this work.

The first puzzle is that the critical exponents in the contin-
uum Gross-Neveu model with aU(4) × Z2 symmetry com-
puted with the RG-flow method [31], match those calcu-
lated with lattice Monte Carlo methods in a model with an
SU(2) × Z2 symmetry [33]. Both models contain two fla-
vors of Dirac fermions and calculations giveν ≈ 1.0 and
η ≈ 0.75. Why do models with two different symmetries
lead to the same critical behavior? Are symmetries dynami-
cally enhanced in the lattice model at the critical point? On
the other hand, is it possible that the results of Ref. 33 are
incorrect since sign problems were ignored [36, 37]? In this
work we show that another lattice model with the same sym-
metries give different critical exponents, suggesting that the
results of Ref. 33 may not be reliable.

The second puzzle concerns a comparison between calcu-
lations of critical exponents in the continuum Thirring model
with U(4) symmetry computed recently using the RG-flow
method [38], and those in a lattice Thirring model with an
SU(2) × U(1) symmetry obtained with Monte Carlo calcu-
lations that do not suffer from sign problems [39–41]. While
both models contain two flavors of Dirac fermions, in the con-
tinuum one findsν ≈ 2.4 andη ≈ 1.4 while in the lattice one
finds ν ≈ 0.85 andη ≈ 0.65. Although this disagreement
can be attributed to the difference in the symmetries, it does
raise the question if lattice calculations have uncovered anew
universality class in Thirring models? Here we show that lat-
tice Gross-Neveu models defined in [25] and lattice Thirring
models defined in [39] have the same symmetries and critical
exponents.

While Thirring models could be studied reliably with tradi-
tional methods due to lack of sign problems, until now lattice
Gross-Neveu models with one flavor of staggered fermions
could not be solved due to sign problems [36, 37]. In fact
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FIG. 1. A pictorial representation of the bond couplingsUL (left),
UF (center) andUB (right) discussed in the text. Each bond refers to
the four-fermion interaction term of the formχxχx χyχy .

it was believed that the two models may belong to two dif-
ferent universality classes. Recently an alternative method
to solve fermion sign problems called the fermion bag ap-
proach was introduced [42, 43]. The basic idea behind this
new method is to collect fermion degrees of freedom into
groups called fermion bags so that integrating over each group
produces positive answers. Although it is not guaranteed that
all fermion sign problems are solvable with this approach, it
has been shown that sign problems in the lattice Gross-Neveu
models with staggered fermions are solvable [36]. In this
work we use this new method to compute critical exponents
in two types of lattice Gross-Neveu models with staggered
fermions invariant under either aZ2 or aU(1) chiral symme-
try. The models also have an additionalSU(2) flavor symme-
try which was appreciated only recently. Since they naturally
describe two flavors of four-component Dirac fermions in the
critical region, these models have many properties similarto
graphene including symmetries. They were formulated origi-
nally with auxiliary fields that live at the center of cubes and
couple to fermions on the corners [25]. After integrating over
the auxiliary fields we obtain four-fermion models that couple
fermion fields within a hypercube. Their action can be written
as

S =
∑

x,y

χ(x) Dxy χ(y) −
∑

〈xy〉

U〈xy〉χxχx χyχy (1)

where χ(x), χ(x) denote two Grassmann valued fermion
fields at the lattice sitex andD is the free massless staggered
fermion matrix defined by

Dxy =
1

2

∑

α

ηx,α [δx+α,y − δx,y+α] , (2)

in which α labels the three directions andηx,α =

e(iπζa·x), ζ1 = (0, 0, 0), ζ2 = (1, 0, 0), ζ3 = (1, 1, 0) are
the staggered fermion phase factors [44]. The four-fermion
interaction term involves the sum over three types bonds de-
noted by〈xy〉 (see Fig. 1): (1) link bondsL (wherex, y are
nearest neighbor sites), (2) face bondsF (wherex, y are sites
diagonally across faces of squares), (3) body bondsB (where
x, y are sites diagonally across the bodies of cubes).

In a general lattice four-fermion model the three couplings
UL, UF andUB will be arbitrary. However, in our study they
are constrained since the action (1) is obtained by integrating
over auxiliary fields from a model that contains a single cou-
pling. In the Gross-Neveu model withZ2 chiral symmetry,
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FIG. 2. Plot of the chiral susceptibility atU = ∞ for theZ2 (top)
andU(1) (bottom) models. The solid curve in the top graph is a
fit to the constant forL ≥ 16, while in the bottom graph it is a fit
to the finite size scaling form (5) forL ≥ 10 obtained from chiral
perturbation theory.

we findUL = 2UF = 4UB ≡ U , while withU(1) chiral sym-
metry we findUL = 4UB ≡ U,UF = 0 [36]. In other words,
face diagonal bonds break theU(1) symmetry toZ2. In ad-
dition to chiral symmetries, models with action (1) have an
SU(2) flavor symmetry which is hidden in the auxiliary field
approach and was not appreciated earlier [45]. Indeed, when
UF = 0 it is easy to verify that the action (1) is invariant under
the followingSU(2)× U(1) symmetry,
(

χe
χe

)

→ eiθV

(

χe
χe

)

,
(

χo χo
)

→
(

χo χo
)

V †e−iθ,

(3)
where the subscriptse ando refer to even and odd sites and
V is anSU(2) matrix. WhenUF 6= 0 the symmetry is re-
stricted toθ = π/2 and the action is invariant only under
anSU(2) × Z2 symmetry. Since four-fermion couplings are
perturbatively irrelevant in three dimensions, models with ac-
tion (1) have a massless fermion phase at small couplingsU .
As the coupling increases, a second order phase transition to a
massive fermion phase accompanied by spontaneous breaking
of chiral symmetries (eitherZ2 or U(1)) occurs at a critical
couplingUc. TheSU(2) flavor symmetry remains unbroken.
Our goal is to study the critical exponents at this transition.
However, before focusing on the transition region, it is useful
to understand qualitatively the physics of the massive phase at
largeU .

There is an important difference between spontaneous
breaking ofZ2 andU(1) symmetries; the former does not
produce massless Goldstone bosons while the latter does. It
is important to distinguish this feature in our results. Forthis
purpose we have computed the chiral condensate susceptibil-
ity,

χ =
1

L3

∑

x,y

〈χxχxχyχy〉, (4)

as a function of the lattice sizeL at U = ∞. At infinite
coupling our models can be mapped into a statistical model
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Uc ν η ηψ f0 f1 f2 f3 f4 p0 p1 p2 p3 p4 χ2/d.o.f
0.0893(1) 0.83(1) 0.62(1) 0.38(1) 2.54(7) 9.33(5) 27.3(3)55.3(1) 48.67(3) 34.4(1) -18.2(7) -51.2(6) 7.4(4) 259.2(10) 1.8
0.1560(4) 0.82(2) 0.62(2) 0.37(1) 0.13(1) 0.09(1) 0.02(1)0.004(1) 0.02(1) 34.0(1) -4.5(3) -1.4(3) -1.8(8) -0.5(2) 0.88

TABLE I. Results of the combined fit of data in the critical region to Eqs. (7) in theZ2 invariant model (top row) andU(1) invariant model
(bottom row).
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FIG. 3. Plots ofχ/L2−η andRfL
2+ηψ as a function ofU for L from 12 to 36. The solid lines show the combined fit which gives

Uc = 0.0893(1), ν = 0.83(1), η = 0.62(1) andηψ = 0.38(1) in theZ2 case (top row) andUc = 0.1558(4), ν = 0.82(2), η = 0.63(2),
ηψ = 0.37(1) in theU(1) case (bottom row).

of closed packed dimers and can be updated efficiently using
worm algorithms [46]. Results obtained are shown in Fig. 2.
As expected, the chiral condensate susceptibility scales with
the volume showing that〈χχ〉 6= 0 in the thermodynamic
limit. Note thatχχ is invariant underSU(2) flavor symme-
try, but not underU(1) or Z2 chiral symmetries, a non-zero
value indicates the spontaneous breaking of chiral symme-
tries. Further, finite size effects are enhanced in theU(1)
invariant model due to the presence of massless Goldstone
bosons. Results forL ≥ 10 fit well to the leading order chiral

perturbation theory form [47]

χ/L3 =
Σ2

2

(

1 + 0.224/(ρsL)
)

, (5)

with Σ2 = 0.844(1), ρs = 0.381(3) andχ2/d.o.f = 0.4.
In contrast, theZ2 model shows very small finite size effects
which indicates the absence of massless modes, and the data
for L ≥ 16 fits the constant0.971(1) with aχ2/d.o.f = 1.7.

In order to uncover the properties of the quantum critical
point we focus on the chiral susceptibility (4) and the fermion



4

correlation function ratio

Rf = CF (L/2− 1)/CF (1), (6a)

CF (d) =
1

3

3
∑

α=1

〈χx χx+dα̂〉 (6b)

wherex is the origin or any translation of it by a multiple of
two lattice spacings in each direction, andα̂ is a unit vector
along each of the three directions. Since fermions are exactly
massless, in the vicinity ofUc we expectχ andRf to satisfy
the following universal finite size scaling relations:

χ/L2−η =
4

∑

k=0

fk

[

(U − Uc)L
1

ν

]k

, (7a)

RfL
2+ηψ =

4
∑

k=0

pk

[

(U − Uc)L
1

ν

]k

, (7b)

where we have kept the first five terms in the Taylor series of
the corresponding analytic functions. In order to compute the
critical exponentsη, ν andηψ we perform a single combined
fit of the data in the critical region to Eqs. (7) with fourteen
parameters. For theZ2 invariant model the combined fit of
the data using lattice sizes ranging from123 to 363 givesν =
0.83(1), η = 0.62(1), ηψ = 0.38(1) andUc = 0.0893(1)
with aχ2/d.o.f. = 1.8. For the U(1) Gross-Neveu model, a
similar combined fit in the same range of lattice sizes gives
ν = 0.82(2), η = 0.62(2), ηψ = 0.37(1), Uc = 0.1560(4)
with a χ2/d.o.f. = 0.88. Plots of our data along with the
fits are shown in Fig. 3. The complete list of the fourteen fit
parameters are listed in Tab. I. From these results it appears
that the critical exponents do not change much when chiral
symmetries change fromZ2 toU(1); the differences are small
and lie within error bars.

The critical exponents in theSU(2)×U(1) symmetric lat-
tice Gross-Neveu model obtained here, are also consistent
with the exponents in the lattice Thirring model, which also
has an action of the form (1) except thatUL = U,UF =
UB = 0 [41]. This is reassuring since the two models have
the same lattice symmetries. Thus, calling one as the lattice
Gross-Neveu model and the other as the lattice Thirring model
is just a matter of taste. We can also study otherSU(2)×U(1)
invariant models by choosing a different set of couplings. Re-
cently, the model withUL = UB = U,UF = 0 was also stud-
ied and the critical exponents were again found to be similar
[48]. Thus, it is tempting to combine all data from the three
different studies and perform a single combined fit to extract

a more accurate set of critical exponents. Using such a fit
we estimate the critical exponents in theSU(2)× U(1) sym-
metric lattice models to beν = 0.849(8), η = 0.633(8) and
ηψ = 0.373(3).

Interestingly, the model studied in Ref. 33 is also an
SU(2)×Z2 symmetric Gross-Neveu model. It is slightly dif-
ferent from the model studied here since the auxiliary fields
in the defining model live on sites instead of centers of hy-
percubes. Integration over the auxiliary fields, which couple
fermions on the six neighboring sites, produces four-fermion
couplings of the form given in the action (1) withUL = UB =
0, UF = U . However, in addition there is a non-zero next-to-
nearest-neighbor four-fermion coupling along each direction,
which is not present in our work. Since no lattice symmetries
change, it seems very unlikely that these differences change
the universality class of the phase transition. Hence, we be-
lieve the critical exponents of the model studied in Ref. 33
should have been identical to our studies here. Unfortunately,
this is not the case and we think that ignoring the sign problem
in the auxiliary field approach could have distorted the results.
It would be useful to repeat the calculation with the fermion
bag approach.

In this work we have been able to accurately compute the
critical exponents at phase transitions in a class ofSU(2)×Z2

andSU(2)×U(1) symmetric four-fermion models involving
two massless Dirac fermions in three dimensions. The critical
exponents of the two models match within errors and a more
accurate calculation is necessary to distinguish between them.
Since the symmetries are different, we do not see any reason
for the two exponents to be the same, however we are unable
to rule out this possibility at the moment. As far as we can
tell these critical exponents have not been verified in contin-
uum field theory by the recently developed RG-flow method.
However, we note that theǫ-expansion to second order in a
Gross-Neveu model does agree with our results for the expo-
nentsν andη, but not forηψ [29]. Finally, given many sim-
ilarity between graphene and staggered fermions, it would be
interesting if the critical behavior in graphene falls in one of
the universality classes studied here.
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