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We study quantum critical behavior in three dimensiondldatGross-Neveu models containing two four-
component massless Dirac fermions. We focus on two modéisS#i (2) flavor symmetry and either&; or a
U (1) chiral symmetry. Both models could not be studied earlier @usign problems. We use the fermion bag
approach which is free of sign problems and compute criggpbnents at the phase transitions. We estimate
v =0.83(1),n = 0.62(1), 7, = 0.38(1) in the Z» andv = 0.849(8), = 0.633(8), 7, = 0.373(3) in the
U(1) model.

PACS numbers: 71.10.Fd, 02.70.Ss,11.30.Rd,05.30.R006&%), 03.70.+k

Quantum phase transitions between massless and massihe microscopic models play an important role in deterngnin
fermion phases, are of general interest in particle physicthe universality class of phase transitions. Gross-Nevedrm
[1, 2]. Symmetries are expected to play an important role irels with a variety of symmetries have been studied usinglarg
governing their properties since such phase transitionasr N, expansions [27, 28k-expansions [29], renormalization-
sociated with spontaneous breaking of these symmetries. Igroup (RG) flow methods [30-32], and lattice Monte Carlo
2 + 1 dimensions, one expects a rich class of such secondalculations [33-35]. Although much has been understood,
order quantum phase transitions and the physics of graphemee discuss two puzzles in the existing literature and resolv
has recently attracted even condensed matter physicigte to them in this work.
subject [3-9]. Renormalization group arguments suggestth  The first puzzle is that the critical exponents in the contin-
non-relativistic effects and I.olng range interactions d(hq I~ yum Gross-Neveu model with@(4) x Z, symmetry com-
relevant [10], and the transition could belong to the ursaeér  ,;ed with the RG-flow method [31], match those calcu-
ity class of similar phase transitions in three dimensioabl  |3ted with lattice Monte Carlo methods in a model with an

ativistic four-fermion field theories with two massless &ur SU(2) x Z, symmetry [33]. Both models contain two fla-
fermions [11-13]. While some Monte Carlo calculations of,,q,s of Dirac fermions and calculations give~ 1.0 and

the critical exponents in models of graphene have emerged '$ ~ 0.75. Why do models with two different symmetries
cently, the results are neither consistent with each otber n |gaq to the same critical behavior? Are symmetries dynami-
do they match theoretical predictions [14-16]. Thus, ferth cajly enhanced in the lattice model at the critical point? On
work is clearly necessary. the other hand, is it possible that the results of Ref. 33 are
When the number of massless fermions at the phase traificorrect since sign problems were ignored [36, 37]? In this
sition is small, there are no small parameters for a perturbavork we show that another lattice model with the same sym-
tive expansion to be reliable. Hence, Monte Carlo methodgnetries give different critical exponents, suggesting tha
are essential to determine the properties of the quantusepharesults of Ref. 33 may not be reliable.
transitions. However, these methods are known to be notori- The second puzzle concerns a comparison between calcu-
ously difficult in the presence of fermions. In certain casegations of critical exponents in the continuum Thirring nebd
sign problems makes it even impossible to solve the problenwith 17(4) symmetry computed recently using the RG-flow
Compared to the precision with which three dimensionalysin method [38], and those in a lattice Thirring model with an
and XY models have been studied [17, 18], critical exponent${/(2) x U(1) symmetry obtained with Monte Carlo calcu-
in models with similar symmetry breaking patterns but in thejations that do not suffer from sign problems [39-41]. While
presence of a small number of massless fermions at theatritichoth models contain two flavors of Dirac fermions, in the con-
point have remained largely unknown. This work presents théinuum one finds/ ~ 2.4 andn ~ 1.4 while in the lattice one
first precision study of two such quantum phase transitions ifinds v ~ 0.85 andn ~ 0.65. Although this disagreement
the presence of two four-component massless Dirac fermiongan be attributed to the difference in the symmetries, isdoe
in 2+ 1 dimensions. Hence, our study should be of interest tqaise the question if lattice calculations have uncoveneeva
the graphene community. universality class in Thirring models? Here we show that lat

Relativistic four-fermion models have a long history andtice Gross-Neveu models defined in [25] and lattice Thirring
are usually studied in the presence of either scalar interagnodels defined in [39] have the same symmetries and critical
tions (Gross-Neveu models) or vector interactions (Thgri ©€XPonents.
models) [19-24]. Their lattice formulations using stagger While Thirring models could be studied reliably with tradi-
fermions are popular, but due to fermion doubling one flavottional methods due to lack of sign problems, until now lattic
of staggered fermions in three dimensions produces two flacross-Neveu models with one flavor of staggered fermions
vors (N; = 2) of Dirac fermions [25, 26]. Symmetries of could not be solved due to sign problems [36, 37]. In fact
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it was believed that the two models may belong to two dif- 0% 510 15 20 25 30 35 40 25
ferent universality classes. Recently an alternative ogeth
to solve fermion sign problems called the fermion bag ap|G. 2. piot of the chiral susceptibility & = oo for the Z» (top)
proach was introduced [42, 43]. The basic idea behind thigind /(1) (bottom) models. The solid curve in the top graph is a
new method is to collect fermion degrees of freedom intdfit to the constant fo, > 16, while in the bottom graph it is a fit
groups called fermion bags so that integrating over eachygro to the finite size scaling form (5) fat > 10 obtained from chiral
produces positive answers. Although it is not guaranteat th perturbation theory.
all fermion sign problems are solvable with this approath, i
has been shown that sign problems in the lattice Gross-Neveu ] ] )
models with staggered fermions are solvable [36]. In thisV€ findUy, = 2Up = 4Ug = U, while with U(1) chiral sym-
work we use this new method to compute critical exponent&netry we findUy, = 4Us = U, Ur = 0 [36]. In other words,
in two types of lattice Gross-Neveu models with staggered@ce diagonal bonds break thg1) symmetry toZ,. In ad-
fermions invariant under eitherZ, or al(1) chiral symme-  dition to chiral symmetries, models with action (1) have an
try. The models also have an additiosdl (2) flavor symme- SU(2) flavor symmetry which is hidden in the auxiliary field
try which was appreciated only recently. Since they nalyral @PProach and was not appreciated earlier [45]. Indeed, when
describe two flavors of four-component Dirac fermions in theUr = 0 itis easy to verify that the action (1) is invariant under
critical region, these models have many properties similar the following.SU(2) x U (1) symmetry,
graphene including symmetries. They were formulated origi . .
nally with auxiliary fields that live at the center of cubeslan (ze ) — e’V (Ee ) (X0 Xo) = (X0 o) Vie™,
couple to fermions on the corners [25]. After integratingov € Xe 3)
the a_uxili_ary fields_we obtain four-fermi_on models that chu_Jp where the subscripts ando refer to even and odd sites and
fermion fields within a hypercube. Their action can be writte V is anSU(2) matrix. WhenUs # 0 the symmetry is re-
as stricted to# = 7/2 and the action is invariant only under
_ - _ = v v anSU(2) x Z, symmetry. Since four-fermion couplings are
5 ;; X(@) Dey x(v) Z UlenXaXe XXy (1) perturbatively irrelevant in three dimensions, modeldwait-
tion (1) have a massless fermion phase at small couplings
where x(x), x(z) denote two Grassmann valued fermion As the coupling increases, a second order phase transitan t
fields at the lattice site and D is the free massless staggered massive fermion phase accompanied by spontaneous breaking

(zy)

fermion matrix defined by of chiral symmetries (eitheZ, or U (1)) occurs at a critical
1 couplingU,.. The SU(2) flavor symmetry remains unbroken.
Dyy = 3 Z Moo Oztay — Owytal (2)  Our goal is to study the critical exponents at this transitio

o However, before focusing on the transition region, it isfukse

to understand qualitatively the physics of the massive@has

in which « labels the three directions and,, = largeU/

imCq T _ — — . . .
el Go= (0’0’_0)’ ¢ = (1,0,0), ¢ = (1,1,0) are . There is an important difference between spontaneous
_the staggered fe_rmlon phase factors [44]. The fOur'ferm'orﬂjreaking of Z; and U (1) symmetries; the former does not
Interaction term mvo_lves the sum over three types bonds deﬁroduce massless Goldstone bosons while the latter does. It
noted by(zy) (see Fig. 1): (1) link bond& (wherex,y are

: . - is important to distinguish this feature in our results. f#os
nearest neighbor sites), (2) face bofidsvherez, y are sites 1,56 \ve have computed the chiral condensate susceptibil
diagonally across faces of squares), (3) body bdh@shere ity
x,y are sites diagonally across the bodies of cubes). ’

In a general lattice four-fermion model the three couplings
UL, Ur andUp will be arbitrary. However, in our study they
are constrained since the action (1) is obtained by integyat
over auxiliary fields from a model that contains a single cou-as a function of the lattice sizé at U = oo. At infinite
pling. In the Gross-Neveu model withy chiral symmetry, coupling our models can be mapped into a statistical model

X = % Z<Y1X1nyy>v (4)

z,Y



Ue v n Ny Jo fi fa f3 fa Po p1 P2 D3 D4 x2/d.o.f
0.0893(1) 0.83(1) 0.62(1) 0.38(1) 2.54(7) 9.33(5) 27.369.3(1) 48.67(3) 34.4(1) -18.2(7) -51.2(6) 7.4(4) 259@(L 1.8
0.1560(4) 0.82(2) 0.62(2) 0.37(1) 0.13(1) 0.09(1) 0.04M04(1) 0.02(1) 34.0(1) -4.5(3) -L4(3) -1.8(8) -0.5(2) .88

TABLE I. Results of the combined fit of data in the critical i@gto Egs. (7) in theZ, invariant model (top row) an@ (1) invariant model
(bottom row).
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FIG. 3. Plots ofy/L*™" and R;L*""+ as a function ofU/ for L from 12 to 36. The solid lines show the combined fit which gives
U. = 0.0893(1), v = 0.83(1),n = 0.62(1) andn,, = 0.38(1) in the Z; case (top row) and/. = 0.1558(4), v = 0.82(2),n = 0.63(2),
ny = 0.37(1) in theU(1) case (bottom row).

of closed packed dimers and can be updated efficiently usingerturbation theory form [47]

worm algorithms [46]. Results obtained are shown in Fig. 2.

As expected, the chiral condensate susceptibility scaits w 52

the volume showing thatyx) # 0 in the thermodynamic x/LP == (1+ 0.224/(psL)), (5)

limit. Note thatx is invariant underSU (2) flavor symme- 2

try, but not undei/ (1) or Z, chiral symmetries, a non-zero

value indicates the spontaneous breaking of chiral symmaewith $2 = 0.844(1), ps = 0.381(3) and x?/d.o.f = 0.4.

tries. Further, finite size effects are enhanced in thée) In contrast, theZ, model shows very small finite size effects
invariant model due to the presence of massless Goldstonehich indicates the absence of massless modes, and the data
bosons. Results fat > 10 fit well to the leading order chiral for L > 16 fits the constan®.971(1) with ax?/d.o.f = 1.7.

In order to uncover the properties of the quantum critical
point we focus on the chiral susceptibility (4) and the farmi
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correlation function ratio a more accurate set of critical exponents. Using such a fit
we estimate the critical exponents in th& (2) x U(1) sym-
Cr(L/2—1)/Cr(1), (6a)  metric lattice models to be = 0.849(8), n = 0.633(8) and
5 ny = 0.373(3).
Z (Xe Xotda) (6b) Interestingly, the model studied in Ref. 33 is also an
ot SU(2) x Zy symmetric Gross-Neveu model. Itis slightly dif-
ferent from the model studied here since the auxiliary fields
wherez is the origin or any translation of it by a multiple of in the defining model live on sites instead of centers of hy-
two lattice spacings in each direction, afids a unit vector ~ percubes. Integration over the auxiliary fields, which deup
along each of the three directions. Since fermions are lgxactfermions on the six neighboring sites, produces four-fermi
massless, in the vicinity df. we expecty and R, to satisfy ~ couplings of the form given in the action (1) with, = Up =
the following universal finite size scaling relations: 0,Ur = U. However, in addition there is a non-zero next-to-
nearest-neighbor four-fermion coupling along each dioect

wl»—l

4 k which is not present in our work. Since no lattice symmetries
x/L*" = Z f [(U - UC)L%} , (ra) change, it seems very unlikely that these differences ahang
k=0 the universality class of the phase transition. Hence, we be
4 A lieve the critical exponents of the model studied in Ref. 33
RpL*tM = Zp’“ {(U — Uc)Lﬂ , (7b)  should have been identical to our studies here. Unfortiyate

k=0 this is not the case and we think that ignoring the sign prable
in the auxiliary field approach could have distorted theltesu
where we have kept the first five terms in the Taylor series oft would be useful to repeat the calculation with the fermion
the corresponding analytic functions. In order to compliée t bag approach.
critical exponents), v andn,, we perform a single combined  In this work we have been able to accurately compute the
fit of the data in the critical region to Eqgs. (7) with fourteen critical exponents at phase transitions in a clas$ldf2) x Z
parameters. For th&, invariant model the combined fit of andSU(2) x U(1) symmetric four-fermion models involving
the data using lattice sizes ranging frag¥ to 36° givesv =  two massless Dirac fermions in three dimensions. The atitic
0.83(1), n = 0.62(1), ny, = 0.38(1) andU. = 0.0893(1)  exponents of the two models match within errors and a more
with ax?/d.o.f. = 1.8. For the U(1) Gross-Neveu model, a accurate calculation is necessary to distinguish betwesn t
similar combined fit in the same range of lattice sizes givesSince the symmetries are different, we do not see any reason
v = 0.82(2), n = 0.62(2), ny, = 0.37(1), U, = 0.1560(4)  for the two exponents to be the same, however we are unable
with a x?/d.o.f. = 0.88. Plots of our data along with the to rule out this possibility at the moment. As far as we can
fits are shown in Fig. 3. The complete list of the fourteen fittell these critical exponents have not been verified in centi
parameters are listed in Tab. I. From these results it appeauum field theory by the recently developed RG-flow method.
that the critical exponents do not change much when chiraHowever, we note that theexpansion to second order in a
symmetries change frodi, to U(1); the differences are small Gross-Neveu model does agree with our results for the expo-
and lie within error bars. nentsy andn, but not forn,, [29]. Finally, given many sim-
The critical exponents in th6U (2) x U (1) symmetric lat- ilarity between graphene and staggered fermions, it woeld b
tice Gross-Neveu model obtained here, are also consisteiitteresting if the critical behavior in graphene falls ineoof
with the exponents in the lattice Thirring model, which alsothe universality classes studied here.
has an action of the form (1) except thdt, = U,Ur =
Ug = 0 [41]. This is reassuring since the two models have

the same lattice symmetries. Thus, calling one as thedattic ACKNOWLEDGMENTS
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