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Abstract

The size of the smallest dark matter collapsed structures, or protohalos, is set by the temperature

at which dark matter particles fall out of kinetic equilibrium. The process of kinetic decoupling

involves elastic scattering of dark matter off of Standard Model particles in the early universe, and

the relevant cross section is thus closely related to the cross section for dark matter scattering off

of nuclei (direct detection) but also, via crossing symmetries, for dark matter pair production at

colliders and for pair-annihilation. In this study, we employ an effective field theoretic approach to

calculate constraints on the kinetic decoupling temperature, and thus on the size of the smallest

protohalos, from a variety of direct, indirect and collider probes of particle dark matter.
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I. INTRODUCTION

In the paradigm of weakly interacting massive particles (WIMPs) as dark matter candi-

dates, the abundance of dark matter observed in the Universe stems from thermal decoupling

of the dark matter particles in the early universe. This process involves the pair-annihilation

and pair-creation of WIMPs going out of chemical equilibrium, with the resulting number

density freezing out and remaining approximately constant per comoving volume to the

present age. WIMP models possess the right range of masses and pair-annihilation/creation

cross sections to produce a thermal relic density in the same ballpark as the observed dark

matter density, a feat often dubbed the “WIMP miracle” [1].

After chemical decoupling, WIMPs do not cease to interact with the surrounding thermal

bath. It is simply their number density which is no longer affected by particle-number-

changing processes. WIMPs (χ) continue to scatter off of (Standard Model) particles in the

thermal bath (f), thus remaining in kinetic equilibrium with the thermal bath, up until the

relevant elastic processes (χf ↔ χf) go out of equilibrium, i.e. the rate for such processes

falls below the Hubble expansion rate. At that point, WIMPs completely decouple from the

thermal bath, free-streaming and slowing down as the Universe keeps expanding. To a first

approximation, this is the age when the first gravitationally collapsed dark matter structures

form, with typical size on the same order as an Hubble length at that epoch. WIMP kinetic

decoupling thus sets the small-scale cut-off to the dark matter power spectrum (for a recent

review see e.g. Ref. [2]).

Given a WIMP model, it is thus in principle a well-posed question to ask what the small-

scale cutoff to dark matter halos (which we hereafter refer to with the symbol Mcut) is.

The cut-off scale is an important quantity in cosmology: if large enough, it could affect

significantly how many “visible” small-scale structures, such as dwarf galaxies, form, per-

haps being relevant to the question of the “missing satellite problem” [3] or to other issues

associated with small scales in cold dark matter cosmologies [4]. In principle, the small-scale

cutoff sets the size of the most numerous dark matter “mini-halos”, or protohalos, which

might be detectable today either with direct [5] or indirect [6] dark matter search exper-

iments. Finally, the cutoff scale is highly relevant to the question of the so-called “boost

factor”, as it literally sets the integration cutoff in the calculation of this factor (in practice,

the enhancement to the annihilation rate from a given dark matter halo from sub-structure
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within the halo).

The calculation of the kinetic decoupling temperature Tkd, and thus of the small-scale

cutoff Mcut has been carried out in a variety of model-dependent contexts, including super-

symmetry [7–9], universal extra-dimensions [9, 10], and models with Sommerfeld enhance-

ment [11, 12]. It has become clear that WIMP models accommodate a broad variety of

kinetic decoupling temperatures, with resulting cutoff scales ranging from 103 M� to much

less than 10−6 M� even only within the limited framework of the minimal supersymemtric

extension of the Standard Model [9], where the symbol M� indicates the mass of the Sun.

Particle physics details of the WIMP model affect in a highly model-dependent way the ki-

netic decoupling, producing a wide array of outcomes, but for many particle physics models

there is still a decent correlation between certain experimentally accessible quantities such

as the direct detection scattering cross section, as explored in Ref. [13], and Mcut.

A possible model-independent route to evaluating ranges for the expected small-scale

cutoff is to consider an effective theory description of interactions between Standard Model

and dark matter particles, as pursued, recently, in Ref. [14, 15]. For example, assuming

the dark matter is a spin 1/2 fermion, it is simple to write down the complete set of low-

est dimensional operators that mediate such interactions. In turn, by assuming that only

one single operator is dominating the relevant dark matter interactions, crossing symmetry

allows to draw stringent constraints on the allowed effective energy scale associated with

the operator, for example from direct dark matter detection or from collider searches. As a

result we can robustly set upper limits to the size of the small-scale cutoff, for each class of

operators, as a function of the relevant operator’s effective energy scale. This upper limit

is quite significant, as cosmologically relevant effects occur only for sufficiently large such

cutoffs.

While rather sophisticated codes now exist to reliably calculate Tkd (see e.g. [2]), two

potentially important ingredients have been only marginally studied thus far:

(i) scattering off of quarks only, for example in “lepto-phobic” theories with suppressed

couplings to leptons (this was first partly addressed in Ref. [14]), and

(ii) the role of scattering off of pions, for the same class of theories, for kinetic decoupling

temperatures below the QCD confinement phase transition.

In addition, a third aspect that remains entirely unexplored to date is (iii) the relevance

of loop-mediated scattering off of leptons, again notably in leptophobic theories.
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In the present study, in addition to the general program of setting upper limits to the

small-scale cutoff in the context of the mentioned effective theory description of interactions

between Standard Model and dark matter particles, we address in detail the three novel

issues listed above. We show that for leptophobic theories there exists an interesting interplay

between loop-mediated scattering off of leptons and scattering off of pions, and that the two

effects are generically comparable. We find that for WIMP models that can be described

to a good approximation by an effective operator belonging to the class we consider here,

there are stringent upper limits on the cut-off scale to the matter power spectrum, typically

on the order of 10−3 M�. This scale hints at the fact that WIMP effective theories are not

likely to have any impact on small-scale structure issues in cold dark matter cosmology. On

the other hand, since the predicted protohalos are typically very small, sizable boost factors

from substructure enhancements are a rather generic prediction of effective theories of dark

matter.

The reminder of this paper is organized as follows: we outline the class of effective

operators we consider in the following section II; we then discuss how we calculate the

kinetic decoupling and how we estimate the size of the small-scale halo size cutoff in section

III; section IV presents all of our results; and the final section V summarizes our findings

and concludes.

II. CLASSIFICATION OF EFFECTIVE OPERATORS

The effective operator framework has been explored as a method for comparing exper-

imental bounds coming from various types of experiments on dark matter couplings to

Standard Model fields [16, 17]. Within this framework, one writes down higher-dimensional

operators which couple dark matter to quarks, leptons, or Standard Model bosons, requiring

that (i) the operator contain at least two dark matter particles to ensure stability, and that

(ii) Standard Model gauge symmetries are respected. One operator from the list of possible

operators is then assumed to be the dominant one for the physics being investigated, and

its effects are explored assuming the other operators are suppressed and, thus, do not con-

tribute to the observables in question. Each operator of interest is investigated separately in

this way, and any interference effects from having multiple operators active simultaneously

are assumed to be small. Generally these interference effects are equivalent to changing the
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assumed chirality structure of the operator in question, e.g. interfering a vector and an axial

operator with equal suppression scales is equivalent to considering an operator which only

couples to one chirality.

The basic assumption of this parametrization of dark matter interactions is that dark

matter is the only new field light enough to be kinematically relevant, and these operators are

suppressed by a mass scale which is related to the expected mass of the additional particles

which mediate the interactions in some more complete model underlying the effective theory.

Within the region of parameter space where this assumption is valid, a given complete model

can be mapped into the space of these operators by integrating out the additional heavy

fields. This assumption is a fairly weak one for elastic scattering of dark matter off of

Standard Model particles, where the momentum exchange is typically on the order of the

MeV, but is a fairly strong assumption for LHC searches, where the center of mass energy

of the created dark matter pair can be quite large compared to the dark matter mass. We

therefore encourage caution when considering the collider bounds on these operators, but

expect that the results for kinetic decoupling and the bounds arising from direct detection

should be robust.

We also calculate the thermal relic density of WIMPs under the assumption that the same

operator dominates dark matter interactions with Standard Model particles in the early as

well as in the late universe. Of course, this is a rather strong assumption, as it entails

for example the absence of processes such as coannihilation, the presence of thresholds or

resonances that could exist at finite temperature but not in the late universe, and the

absence of temperature-suppressed operators that might dominate the chemical freeze-out

while being irrelevant at the later kinetic freeze-out. We note, however, that this assumption

is largely equivalent to other assumptions discussed above, where it is presumed that dark

matter is the only kinematically relevant new particle in the theory and that one operator

is dominant in all of the observables being searched for.

We consider here a subset of all possible operators which conserve parity in addition to
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the Standard Model gauge symmetries. The operators of interest are

OS =
mf

Λ3
S

χ̄χf̄f (1)

OP =
mf

Λ3
P

χ̄γ5χf̄γ5f (2)

OV =
1

Λ2
V

χ̄γµχf̄γµf (3)

OA =
1

Λ2
V

χ̄γµγ5χf̄γµγ
5f (4)

OT =
mf

Λ3
T

χ̄σµνχf̄σµνf, (5)

where ΛI is the suppression scale for operator OI . Note that the operators which are

chirality-violating are assumed to be proportional to the fermion mass to preserve SU(2)L

and avoid inducing large effects in low-energy flavor observables. The first four operator

normalizations are standard within the effective dark matter literature, but previous searches

for contact operators have not included the mass suppression for the tensor operator to

better make contact with direct detection bounds. We choose to consider the theoretically

better motivated normalization of the tensor operator which does include a quark mass

suppression, as the operator is chirality-violating and thus would require an insertion of

the Higgs field to respect the SM gauge symmetries. Previous analyses have considered the

operator without a quark mass dependence to make better contact with direct detection

searches, as the unsuppressed tensor induces a coupling to the spin of the quarks composing

the nucleon minus the spin of the antiquarks in the nucleon, but it is not clear how a tensor

operator with that normalization would be alligned with the mass basis of the quarks so

well as to avoid inducing unacceptably large corrections to flavor observables. The choice

to include the quark mass suppression of the tensor operator leaves us without collider and

direct detection bounds to compare to, and therefore we will only plot the early universe

curves for these operators.

For each operator, we specify which Standard Model fermions the dark matter particle

couples to. Generically, leptons are the most significant contributors to keeping the dark

matter in kinetic equilibrium with the Standard Model thermal bath, while many of the key

experimental searches constrain primarily the couplings to quarks. We choose here to con-

sider explicitly three cases, wherein the dark matter couples only to leptons, only to quarks,

or to both with equal suppression scales. For cases including quark couplings we plot the

strongest available experimental bounds from LHC searches and direct detection searches,
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and in cases including lepton couplings we will additionally plot LEP search bounds. In the

special case of the lepton-only vector operator we will in addition plot the direct detection

bounds induced at one-loop order, as discussed in Ref. [17, 18].

III. THE FORMATION OF PROTOHALOS

A. Temperature of kinetic decoupling

To calculate the temperature of kinetic decoupling, we use the numerical routine described

in Ref. [2], which has been integrated into the DarkSUSY code [19]. An effective WIMP

temperature parameter is defined in the following form:

Tχ ≡
2

3

〈
p2

2mχ

〉
=

1

3mχnχ

∫
d3p

(2π)3
p2f(p). (6)

In the equation above mχ is the WIMP mass and nχ is its number density. To determine the

time evolution of this parameter, we consider the Boltzmann equation for a flat Friedmann-

Robertson-Walker metric:

E(∂t −Hp · ∇p)f = C[f ]. (7)

Here f is the WIMP phase space density, E and p are the comoving energy and 3-momentum

respecitively, and H is the Hubble parameter. C[f ] is the collision term for a scattering pro-

cess between a non-relativistic WIMP and a relativistic Standard Model scattering partner.

This was shown in Ref. [2] to be of the form

C[f ] = c(T )m2
χ

[
mχT∇2

p + p · ∇p + 3
]
f(p), (8)

where

c(T ) =
∑
i

gSM

6(2π)3m4
χT

∫
dk k5ω−1 g±

(
1∓ g±

)
|M|

2

t=0
s=m2

χ+2mχω+m2
`

. (9)

In Equation (9), the sum is taken over all possible Standard Model scattering partners,

gSM is the number of associated spin degrees of freedom, ω is the energy of the Standard

Model particle and k its momentum, and g± is the distribution for Fermi or Bose statistics,

g±(ω) = (eω/T ± 1)−1. In all expressions above, the upper sign is for fermions and the lower

is for bosons. |M|
2

represents the scattering amplitude squared, summed over final and

averaged over initial spin states. Detailed calculations of |M|
2

for all relevant cases for our

results are included in the appendices.
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As kinetic decoupling can take place either before or after the QCD phase transition at

Tc ≈ 170 MeV, we need to consider carefully the effects of quark confinement on the above

sum. At temperatures before 4Tc, we follow the convention of Ref. [2], where the WIMPs

scatter off leptons and, to be conservative, the three lightest quarks. After 4Tc, we no longer

consider scattering off quarks. We however extend the treatment of Ref. [2] by including

scattering of the dark matter off pions after the QCD phase transitions for the cases in which

this process occurs at leading order, i.e. for the scalar, Eq. (1), and vector, Eq. (3), operator

cases. Also, it is important to note in the above expression for c(T ), the scattering amplitude

is evaluated in the t = 0 limit, where t is the squared difference between the incoming and

outgoing 4-momenta of a scattering particle. This limit is reasonable because the average

momentum transfer in a scattering event between a relativistic particle and a heavy WIMP

should be quite small. However, for the pseudoscalar case, Eq. (2), the scattering amplitude

vanishes for forward scattering, so we need to consider the scattering amplitude when the

momentum transfer is not zero. Ref. [14] introduced a method to average over all possible

values of t, in which c(T ) now takes the form:

c(T ) =
∑
i

gSM

6(2π)3m4
χT

∫
dk k5ω−1 g±

(
1∓ g±

) 1

(4k2)2

∫ 0

−4k2
dt(−t) |M|

2

s=m2
χ+2mχω+m2

`
.

(10)

Returning now to Tχ in Eq. (6), to find the differential equation which describes its

evolution, we multiply Eq. 7 by p2/E and integrate over p to find

(∂t + 5H)Tχ = 2mχc(T ) (T − Tχ) . (11)

The behavior of Tχ has two limiting cases: at high temperatures when Tχ = T and at low

temperatures when Tχ changes only because of the expansion of the universe, i.e. Tχ ∝ a−2,

and the kinetic decoupling temperature is when there is a rapid change between these two

behaviors. As described in Ref. [2], a code has been developed to numerically integrate

Eq. (11) and find this transition temperature, and we use this routine to calculate Tkd.

B. Protohalo Size

There are two mechanisms which independently set a limit on the smallest possible pro-

tohalo mass, Mcut: (i) the free streaming of WIMPs after kinetic decoupling and (ii) the
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coupling of the WIMP fluid to acoustic oscillations in the SM particle heat bath. In deter-

mining our limit on the protohalo mass, we use the outcome of these two processes giving

the largest (hence dominant) Mcut.

1. Viscosity and Free Streaming

At kinetic decoupling, the decoupling of the WIMP fluid from the SM particle fluid leads

to viscosity between the two fluids that cause density perturbations in the WIMP fluid to be

damped out [7]. After Tkd, the WIMPs free stream from areas of high to low density, causing

further damping of the perturbations. The net result of these processes is an exponential

damping of the perturbations with a characteristic comoving wavenumber [20, 21]:

kfs ≈
(
m

Tkd

)1/2
aeq/akd

ln(4aeq/akd)

aeq

a0

Heq. (12)

In the Equation above the “eq” subscript signifies that the quantity should be evaluated

at matter-radiation equality. To find the resulting mass cutoff from these effects, one just

calculates the mass contained in a sphere of radius π/kfs, i.e. [2]:

Mfs ≈
4π

3
ρχ

(
π

kfs

)3

= 2.9× 10−6M�

 1 + ln
(
g

1/4
eff Tkd/30 MeV

)
/18.56

(mχ/100 GeV)1/2 g
1/4
eff (Tkd/50 MeV)1/2

3

. (13)

In the above equation geff is the number of effective degrees of freedom in the early universe

evaluated at Tkd.

2. Acoustic Oscillations

It has also been noted that the density perturbations in the WIMP fluid, coupled to the

SM particle fluid before Tkd, should oscillate with the acoustic oscillations in the heat bath.

At kinetic decoupling, modes of oscillation with k values large enough that they have entered

the horizon are damped out, while modes with k values corresponding to scales larger than

the horizon size grow logarithmically [22, 23]. Therefore, the characteristic damping scale is

just the size of the horizon at kinetic decoupling (kao ≈ πHkd), and there is another cutoff

mass from this process of the form [2]:

Mao ≈
4π

3

ρχ
H3

∣∣∣∣
T=Tkd

= 3.4× 10−6M�

(
Tkdg

1/4
eff

50 MeV

)−3

. (14)
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IV. RESULTS

As discussed above, for each effective operator in Eq. (1-5) we consider three cases as far

as the relevant Standard Model particle class the dark matter couples to:

1. Universal couplings to all SM fermions;

2. Couplings to leptons only;

3. Couplings to quarks only.

Each case presents distinct behaviors in the early as well as in the late universe, and leads

to different constraints and conclusions for the effective cutoff scale. Leptonic couplings,

when present, tend to dominate the process of kinetic decoupling, as a simple result of the

fact that at the relevant temperatures leptons (especially electron/positron and neutrinos)

are in a relativistic state and the number densities are not Boltzmann-suppressed. On the

other hand, quark couplings lead to stronger bounds from colliders and direct detection. If

lepton couplings are absent then the contributions of quark couplings to kinetic decoupling

must be treated with care due to the QCD confinement phase transition. Before the phase

transition there is a thermal bath of quarks and the calculation of the scattering rate pro-

ceeds analogously with that for the leptonic couplings, but after the phase transition pions

are the dominant hadrons and the matrix element of the quark bilinear in the pion must

be evaluated. In addition, loop-induced scattering off of leptons arises generically even for

vanishing direct couplings to leptons. This effect, which has never been considered in this

context before, competes with scattering off of pions, and becomes more and more relevant

as pions become less and less abundant at decreasing temperatures due to Boltzmann sup-

pression. We will discuss each operator’s coupling to pions individually in presenting our

results.

For each case we also present all relevant bounds on effective dark matter interactions from

collider searches both at the LHC [24, 25] and at LEP [17]. These constraints are subject to

the concerns described in section II regarding the possibility of probing additional particles

at colliders due to the large center of mass energies involved. For all operators which lead

to appreciable direct detection cross sections we also plot the current leading bounds from

those experiments. For spin-independent scattering the current leading bounds come from
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the Xenon 100 experiment [26], while for spin-dependent scattering they are set by the

SIMPLE [27] and PICASSO [28] experiments.

For all plots we also present relic density constraints. The line on the plots corresponds

to when Ωχh
2 = 0.1189, the best fit value quoted by the Planck collboration [29] when

combining their CMB results, WMAP polarization results, high-` CMB data from ground

telescopes and baryon acoustic oscillation measurements. For all operators except the tensor

case (which has no simple, tree-level UV completion) we use the micrOMEGAs code [30, 31]

to calculate the relic density. This was checked analytically to correspond with setting the

annihilation cross section to the appropriate value 〈σv〉 ≈ 3×10−26 cm3/s, and this analytical

requirement was used to calculate the relic density requirement for the tensor operator case.

A. Scalar Operator

The scalar-type coupling of dark matter to SM fermions contributes to direct detection in

the case of quark couplings, and has been constrained by collider searches for both quark and

lepton couplings. The collider constraints are relatively weak in this case, however, because

of the mass-suppression of this chirality-violating operator. While pair annihilation, direct

detection, and scattering responsible for kinetic decoupling all have access to the heavier

SM fermion generations, the initial state, for collider studies, is dominated by the lighter

states, and therefore collider bounds are weakened relative to the other dark matter probes.

For the case of universal coupling to SM fermions through the scalar operator the results

are presented in figure 1a. We note that for dark matter above approximately 10 GeV in

mass the bounds from direct detection, which are strongest in that region, indicate that

the kinetic decoupling temperature must be on the order of 1 GeV. The resulting cutoff

scale for the smallest protohalos is on the order of the Earth mass (about 10−6 M�) for

WIMP masses above 10 GeV. The relic density matches the observed dark matter only for

masses above 200 GeV. Models that possess the right thermal relic density have extremely

suppressed cutoff scales, smaller than 10−9 M� (see the right panel of figure 1a).

For the case of lepton-only couplings, the only relevant bound on this operator is from

LEP, and the resulting bound is weak enough to not significantly constrain the process of

kinetic decoupling. The corresponding results are shown in figure 1b, which indicates that

kinetic decoupling temperatures below 10 MeV are possible in this case, resulting in small-
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FIG. 1: Plots of contours of constant Tkd (left) and Mcut (right) for the case of a scalar operator

interaction between WIMPs and SM particles. Shaded regions and the dashed curve represent

regions of parameter space excluded by collider and direct detection results, while the solid gray

curve represents the correct dark matter relic density.
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(a) DM scatters off all SM fermions before the QCD phase transition and leptons and pions after.
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(b) DM scatters off leptons only.
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(c) DM scatters off quarks before the QCD phase transition and pions after.
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scale cutoffs exceeding the Earth mass. We estimate in this case that the largest possible

cutoff mass scale is of about Mcut ∼ 10−3 M�. We also note that the LEP limits do not

impact the cutoff scales ΛS needed to produce the correct thermal relic density. For WIMP

masses of about 10 GeV we find that models that have the correct thermal relic density

produce a small scale cutoff of 10−5 M�, while those with a mass of 100 GeV of about

10−7 M� and those with a mass of 1 TeV of approximately 10−9 M�.

Finally, for quark-only couplings the matrix element 〈π|q̄q|π〉, implicitly summed over

quark flavors, is needed to evaluate the coupling to pions after the QCD phase transition.

This has been evaluated previously in the context of contributions to direct detection by

[32] using soft-pion techniques to be

〈πa|q̄q|πa〉 =
m2
π

2
〈πa|~π · ~π|πa〉, (15)

where ~π is a pion iso-vector, Eq. (B2). We have implemented this scattering amplitude for

interactions after the QCD phase transition with pions, which are the dominant components

of the thermal bath at the relevant temperatures. The results for quark-only couplings are

shown in figure 1c. Direct detection forces in this case the size of the smallest protohalos to

values well below 10−9 M� for dark matter particle masses larger than 20 GeV. Models with

the correct relic density must have masses above 200 GeV, and small scale cutoff smaller

than 10−11 M� in this case.

B. Vector Operator

Vector operators are generically better constrained by collider searches than scalar opera-

tors are, but are also very tightly constrained by direct dark matter detection. For universal

couplings, direct detection is again the dominant constraint for dark matter masses above

about 10 GeV, and those constraints again force us to conclude that the kinetic decoupling

temperature must be of order 1 GeV. We show our results in figure 2. We do not find

any sub-TeV WIMP models with a viable thermal relic density, if this operator is the only

important contributor to chemical freeze-out. For masses above 100 GeV, we find that the

cutoff scale is always smaller than approximately 10−9 M�.

Our results for vector interactions only with leptons are shown in figure 3a. We have

plotted bounds from LEP and from direct detection, which arise at one-loop level by effec-
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FIG. 2: Plots of contours of constant Tkd (left) and Mcut (right) for the case of a vector operator

interaction between WIMPs and SM fermions in which WIMPs couple with the same strength to

all SM fermions. Shaded areas signify the regions of parameter space excluded by LHC and direct

detection results, and the dashed line corresponds to a limit on the parameters from an analysis of

LEP data. The solid gray curve represents the correct relic density.

tively inducing a mixing between the integrated-out heavy vector boson and the SM photon.

This mechanism was first discussed by Fox et. al. [17], and the bounds we plot are updates

of those they derived from the first release of Xenon 100 data to take in to account the full

2012 data set. Even with a loop suppression, direct detection is still the dominant bound

on dark matter models with masses above about 8 GeV, and the decoupling temperature is

required to be of order 100 MeV. The resulting smallest possible protohalos are smaller than

about 10−5 M� for WIMP masses below 100 GeV, and are generically of order 10−7 M� or

smaller for masses above 100 GeV.

Considering couplings to quarks only below the QCD phase transition, we now must

evaluate 〈πa|q̄γµq|πa〉. This also was shown in [32], using the conservation of the vector

current, to be

〈πa|q̄γµq|πa〉 = (au − ad) 〈πa|~π × ∂µ~π|πa〉, (16)

where aq is the coupling to quarks of type q. This clearly vanishes for the coupling structure

we have chosen of universal couplings to all quark flavors.

For a vector interaction coupling only to quarks, the induced direct detection amplitude

in the former case can be effectively inverted to give an induced, loop-level coupling to

leptons, which can be important as leptons are generically greater contributors to kinetic
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FIG. 3: Plots of contours of constant Tkd (left) and Mcut (right) for the case of a vector

operator interaction between WIMPs and SM particles in which WIMPs couple directly to only

leptons or quarks. Shaded regions represent regions of parameter space excluded by collider and

direct detection results, while the solid gray curve represents the correct relic density.
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(a) As in figure 2, but for DM scattering off leptons only.
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(b) As in figure 2, but for DM coupling directly only to quarks and to leptons via a loop process.
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(c) As in figure 2, but for DM coupling directly to quarks and to either leptons via a loop process

(dotted lines) or to pions (dashed lines).
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decoupling than quarks. Since kinetic decoupling is dominated by scatterings at low dark

matter velocities, the loop induced coupling to leptons from quarks can be considered as a

simple rescaling of the suppression scale involved, and can be calculated in the “leading-log”

approximation as discussed in Ref. [18]. The formula for this rescaling in the case where we

consider identical couplings to all quark flavors is

Λ` =

√
3π

2α

Λq√∑
d,s,b ln (mq/Λq)− 2

∑
u,c,t ln (mq/Λq)

, (17)

where α is the electromagnetic fine structure constant and all running quantities are evalu-

ated at the renormalization scale of Λq, the scale of the effective operator. While this does

not minimize the logarithms involved, it does allow us to neglect renormalization running

and mixing of different operators, such that it is well-defined to assume one operator is dom-

inant. We enforce perturbativity of this loop expansion by truncating our results when the

induced coupling to leptons is not weaker than the initial coupling to quarks. The results

for this coupling structure are presented in figure 3b. We find, as in fig. 2, that no models

with sub-TeV masses have the right thermal relic density, and that the predicted cutoff for

masses above 10 GeV is always smaller than 10−7 M�, while it is smaller than 10−9 M� for

masses above 100 GeV.

To explore the relative importance of pion scattering to that of loop-induced lepton

scattering, we also consider a quarks-only vector-like operator which couples with opposite

sign to up- and down-type quarks. This doesn’t change the bounds from colliders or the

scattering amplitudes above the QCD phase transition, but it allows for pion scattering below

the QCD phase transition and alters the bounds from direct detection and the loop-induced

coupling to leptons by changing the relative sign of the up- and down-type contributions in

Eq. (17). We have presented the results for this coupling structure in figure 3c. This plot

only shows results for including the coupling to pions or the loop coupling to leptons, but

including both contributions leads to a curve that lies along the curve of larger suppression

scale: e.g. for Tkd = 100 MeV the curve with both effects included would lie along the

pion only curve. From this plot, we observe that following the QCD phase transition, pion

scattering is the dominant process in setting Tkd, but as T decreases, the loop coupling to

leptons becomes more important as the pions become non-relativistic and their interaction

rate with dark matter is Boltzmann suppressed. We thus note that the relative importance

of scattering off of pions versus loop-mediated scattering off of leptons below the QCD phase
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transition is generically comparable, with one process dominating over the other depending

upon the kinetic decoupling temperature: for large decoupling temperatures, hence closer to

the QCD confinement phase transition, scattering off of pions dominates, while lepton loop-

induced scattering dominates as the number density of pions declines at lower temperatures.

C. Pseudoscalar Operator

Pseudoscalar operators present a unique complication among all parity-conserving oper-

ators, in that the scattering amplitude vanishes in the limit t→ 0 even when the center-of-

mass velocity is large. This necessitates a summation over angles which can be neglected in

the case of the other operators, as described in section III A.

Pseudoscalar operators lead to strongly suppressed direct detection scattering, so the only

relevant bounds are from collider searches. Here, when the coupling is universal, the largest

possible value for Mcut is 10−6M� when mχ ≥ 20 MeV, as shown in figure 4a. Models with

the correct relic density have masses of a few GeV and higher and increasingly suppressed

cutoff scales as a function of mass: from 10−5M� at 5 GeV to 10−7M� at 20 GeV, and

downward to 10−9M� and smaller for any mass larger than 200 GeV.

With lepton only couplings constrained by just LEP data, Mcut is again much less con-

strained, as the next figure, 4b, shows. Focusing again on models with the correct relic

density, we find kinetic decoupling temperatures from slightly more than 10 MeV at WIMP

masses in the GeV range, up to 1 GeV for 400 GeV WIMPs. The inferred cutoff mass scale

ranges from 10−5M� at 6 GeV to 10−7M� at 30 GeV, to 10−9M� and smaller for any mass

larger than 200 GeV, again for models with the correct thermal relic density.

For quark-only pseudoscalar couplings there exists a minimum value of Tkd, irrespective of

how strongly the dark matter couples, which is the QCD phase transition temperature. After

the phase transition the only hadronic state available with cosmologically-relevant number

densities are the pions. Since QCD is a parity-conserving theory, we can require that the

parity behavior of the quark bilinear match that of the pion state which the dark matter

would couple to. However, with only two pions it is impossible to construct any pseudoscalar

invariant. This indicates that elastic scattering off of two pions is completely forbidden by

the symmetries of the theory for this operator. Other scattering processes are possible,

however. Inelastic scatterings, whether changing the number of particles or changing, for
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FIG. 4: Plots of contours of constant Tkd (left) and Mcut (right) for the case of a pseudoscalar

operator interaction between WIMPs and SM particles. Shaded regions and the dashed curve

represent regions of parameter space excluded by collider results, while the solid gray curve

represents the correct relic density.
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(a) DM couples to all SM fermions.
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(b) DM couples only to leptons.

example, a pion into a sigma meson, are allowed by the symmetries of the problem. These

nonetheless do not contribute efficiently to the continued thermalization of the dark matter

kinematics, because the thermal bath is not energetic enough to produce the more exotic

(i.e. higher-mass) QCD states or to provide sufficient energy to produce additional pions

in scattering. Thus, the leading contribution is a one-loop-suppressed process requiring two

insertions of the operator, which is very strongly suppressed.
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D. Axial-Vector Operator

Axial-vector couplings are constrained at levels comparable to vector couplings by col-

liders, but lead to spin-dependent rather than -independent scattering in direct detection,

so the collider bounds are generically stronger than the direct detection bounds for these

interactions. Universal couplings to SM fermions are presented in figure 5a. We find that

with universal couplings existing bounds generically require Tkd to be above 10 MeV, and

the cutoff is smaller than 10−5 M� for any mass above 20 GeV. This class of operators

produces the right thermal relic density for WIMPs above 100 GeV, leading in all cases to

cutoff masses smaller than 10−5 M�

For couplings to leptons only there are no appreciable direct detection bounds, as any

loop-induced scattering akin to that in the vector case would have to proceed through Z-

boson exchange, and the additional suppression of t/M2
Z makes such contributions negligible.

Thus, only LEP bounds are shown along with our results in figure 5b. The figure indicates

that cutoff scales as small as about 10−3 M� are in principle possible for very light WIMPs.

The thermal relic density and LEP bounds put the dark matter mass in the 100 GeV and up

range, with cutoff scales at most of 10−4 M�, as before suppressed with increasing WIMP

mass.

For the same reason that there are no bounds from direct detection on leptonic axial-

vector couplings, there is no induced lepton coupling in the case of a quark-only interaction.

Additionally, elastic scattering of dark matter off of pions vanishes in this model, as there is

no axial invariant which can be constructed from the kinematics of two pions. Once again,

inelastic scattering, whether producing or destroying an additional pion or scattering a pion

into a different QCD state, is possible, but the low temperature below the QCD phase

transition makes these possibilities contribute negligibly to the kinetic decoupling. Thus

axial interactions with quarks only also have a minimum Tkd = Tc, analogously with the

case of pseudoscalar couplings.

E. Tensor Operator

The tensor operator normalization which we consider preserves the SM gauge group

where other normalizations do not, but is not particularly well studied because it does
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FIG. 5: Plots of contours of constant Tkd (left) and Mcut (right) for the case of a axial-vector

operator interaction between WIMPs and SM particles. Shaded regions represent regions represent

regions excluded by collider results and the non-solid curves represent regions of parameter space

excluded by collider and direct detection results. The solid gray curve curve represents the correct

relic density.
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(a) DM couples to all SM fermions.
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(b) DM couples only to leptons.

not correspond to the QCD matrix element which is probed in direct detection. Thus,

we cannot present bounds from direct detection on this operator. Additionally, current

collider searches have been normalized to correspond to direct detection, so we can’t compare

directly to those results either. The closest approximation to collider searches which could

be considered would be the constraints on the other chirality-suppressed operators, in this

paper the scalar and pseudoscalar cases. For the direct detection comparison the theoretical

picture is a bit more muddled, as the quark mass which appears in this operator should
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FIG. 6: Plots of contours of constant Tkd (left) and Mcut (right) for the case of a tensor

operator interaction between WIMPs and SM particles, where the solid gray curve represents the

correct relic density.
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(a) DM couples to all SM fermions.
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(b) DM couples only to leptons.

be taken to be related to the yukawa coupling, which will be affected by renormalization

running in the strong phase of QCD, and is therefore nontrivial to factor out of the operator

and find a meaningful bound. Since neither comparison technique yields a perfect mapping,

we will only discuss the early-universe behavior of the operator.

The results for universal couplings are given in figure 6a, while those for leptons only are

in figure 6b. As a tensor mediated interaction cannot be implemented in CalcHEP, we do

not use micrOMEGAs to calculate the relic density, but rather require the velocity averaged

cross section to equal the canonical value for s-wave annihilation that gives the correct relic
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density, i.e

〈σvrel〉 =
∑
f

9

2π

m2
fm

2
χ

Λ6
T

(
1−

m2
f

m2
χ

)1/2

≈ 3× 10−26 cm3

s
, (18)

where the sum is over all kinematically accessible fermion annihilation products. Once again,

after QCD confines in the early universe there is no pion configuration which has the Lorentz

transformation properties of a tensor, and thus quark couplings become irrelevant below Tc.

Fig. 6a indicates that for good thermal relics, the expected kinetic decoupling tempera-

tures are of 10 MeV in the few GeV mass range, up to 100 MeV for a 30 GeV WIMP, and

to 1 GeV for a 300 GeV WIMP. The resulting small-scale cutoff masses are of 10−5 M� for

a 10 GeV WIMP mass, decreasing to below 10−9 M� for masses above 200 GeV. For the

exclusively leptonic coupling tensor case, we find a qualitatively similar behavior, with good

thermal relics producing slightly lower kinetic decoupling temperatures, and slightly larger

cutoff scales.

V. DISCUSSION AND CONCLUSIONS

In this study, we addressed the question of establishing the small-scale cutoff of the

cosmological matter power spectrum in a variety of particle dark matter models where WIMP

coupling to Standard Model fermions is described by effective operators. We included cases

where the dark matter separately couples exclusively to leptons, exclusively to quarks, or

universally to both leptons and quarks. We also used collider searches and dark matter

direct detection to set model-independent limits on the largest experimentally viable value

of the small-scale cutoff resulting from kinetic decoupling for each class of operators, and

we calculated the dark matter thermal relic abundance on the same parameter space.

The largest possible cutoffs are found for theories where the dark matter exclusively

couples to leptons, as a result of the absence of limits from hadron colliders. For the case

of coupling to quarks, in some cases direct dark matter searches squeeze the maximal cutoff

scale for protohalos to very small values, in some instances much smaller than the Earth

mass. Insisting on setups that produce a thermal relic density in accordance with the

observed dark matter density we universally find increasingly suppressed small scale cutoffs

with increasing dark matter particle masses.

For theories with quark-only couplings, if the kinetic decoupling falls below the QCD
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confinement phase transition, two effects exhibit an interesting interplay: scattering off

of the lightest available hadronic bound states (pions) and loop-mediated scattering off of

leptons, this latter process never having been considered before. We showed that depending

on the operator’s effective energy scale one or the other effect can dominate the kinetic

decoupling process.

While there exist many instances of dark matter models where the effective operator

description we adopted here does not apply, the present study has wide applicability to

a broad range of WIMP models. In addition, our findings provide a model-independent

framework where the relevant range for the small-scale cutoff to the matter power spectrum

can effectively be predicted. Finally, this study highlights the complementarity of collider

and direct detection of dark matter with questions pertaining to the cosmology of dark

matter and the formation of structure in the universe.
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Appendix A: Standard Model Fermion Scattering Matrix Elements

1. Scalar

For the effective operator describing the scalar interaction between a SM fermion f and

a Dirac fermion χ

OS =
mf

Λ3
S

χ̄χf̄f , (A1)

the matrix element for the scattering process between f and χ squared and summed over

initial spin states and averaged over final spin states is of the form

1

4

∑
Spin States

|M|2 = 4
m2
f

Λ6
S

(
p · p′ +m2

χ

) (
k · k′ +m2

f

)
, (A2)
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where p and p′ are the incoming and outgoing 4-momentum of the χ particle respectively

and f and f ′ are the same for the SM fermion. Setting t = 0, this becomes

1

4

∑
Spin States

|M| = 16
m4
fm

2
χ

Λ6
S

. (A3)

2. Psuedoscalar

We now consider the effective operator describing pseudoscalar interactions,

OP =
mf

Λ3
P

χ̄γ5χf̄γ5f . (A4)

For a scattering process when the interaction is described by this operator, we find

1

4

∑
Spin States

|M|2 = 4
m2
f

Λ6
P

(
m2
χ − p · p′

) (
m2
f − f · f ′

)
=
m2
f

Λ6
P

t2 . (A5)

3. Vector

Now considering the operator

OV =
1

Λ2
V

χ̄γµχf̄γµf , (A6)

1

4

∑
Spin States

|M|2 =
8

Λ4
V

[
(p · k) (p′ · k′) + (p · k′) (p′ · k)− (p · p′)m2

f − (k · k′)m2
χ + 2m2

χm
2
f

]
.

(A7)

As before, we consider only forward scattering, so t = 0. Working in the frame where the

dark matter particle is stationary, s = m2
χ + 2mχω +m2

f and the matrix element becomes:

1

4

∑
Spin States

|M|2 = 16
m2
χ

Λ4
V

ω2 . (A8)

4. Pseudovector

The axial vector operator is of the form

OA =
1

Λ2
V

χ̄γµγ5χf̄γµγ
5f , (A9)

1

4

∑
Spin States

|M|2 =
8

Λ4
A

[
(p · k) (p′ · k′) + (p · k′) (p′ · k) + (p · p′)m2

f + (k · k′)m2
χ + 2m2

χm
2
f

]
.

(A10)
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Once again, taking the two limits t = 0 and s = m2
χ + 2mχω +m2

f , this becomes

1

4

∑
Spin States

|M|2 = 16
m2
χ

Λ4
A

(
ω2 + 2m2

f

)
. (A11)

As mf ≈ 0 for relativistic fermions, this is essentially the same as the result for the vector

operator.

5. Tensor

Finally, the tensor operator takes the form

OT =
mf

Λ3
T

χ̄σµνχf̄σµνf (A12)

where σµν = (i/2)[γµ, γν ].

1

4

∑
Spin States

|M|2 = 32
m2
f

Λ6
T

(
2 (p′ · k) (p · k′)− (p · p′) (k · k′) + 2 (p · k) (p′ · k′) + 3m2

χm
2
f

)
,

(A13)

and then when t = 0 and s = m2
χ + 2mχω +m2

f , this becomes

1

4

∑
Spin States

|M|2 = 64
m2
fm

2
χ

Λ6
T

(
2ω2 +m2

f

)
. (A14)

Appendix B: Pion Scattering Matrix Elements

1. Scalar

For the scalar pion coupling we have a Lagrangian term [32]

L ⊃ m2
π

2Λ3
S

χ̄χ~π · ~π , (B1)

where

~π =


1√
2

(π+ + π−)

i√
2

(π+ − π−)

π0

 . (B2)

Simplifying the dot product, this gives

L ⊃ m2
π

2Λ3
χ̄χ
(
π0π0 + 2π+π−

)
. (B3)

25



Note that this leads to a Feynman rule which is identical for all pion charges, and the

scattering amplitude which we calculate is

iM =
m2
π

Λ3
S

χ̄χ . (B4)

Squaring and averaging over initial spins, then choosing the zero relative velocity limit, gives

the final result
1

2

∑
Spin States

|M|2 =
4m4

πm
2
χ

Λ6
S

. (B5)

2. Vector

The coupling from the vector operator has the form [32]

L ⊃ 2i

Λ2
V

χ̄γµχ (~π × ∂µ~π)3 (B6)

when we introduce a negative sign in front of the operator in Eq. A6 for down type quark

interactions, as otherwise this term is zero. The relevant component of the cross product is

π1∂
µπ2 − π2∂

µπ1, which can be rewritten in terms of the physical fields to give

L ⊃ 2i

Λ2
V

χ̄γµχ
(
π+∂µπ− − π−∂µπ+

)
. (B7)

Thus, this operator does not couple to neutral pions, and the scattering amplitude off of a

charged pion is equal to

iM =
2

Λ2
V

χ̄γµχ (k + k′)
µ
. (B8)

Squaring and averaging over incoming spins, we have

1

2

∑
Spin States

|M|2 =
8

Λ4
V

(
(k + k′)

2 (
m2
χ − p · p′

)
+ 2p · (k + k′) p′ · (k + k′)

)
. (B9)

Simplifying this in terms of Mandelstam variables we find

1

2

∑
Spin States

|M|2 =
4

Λ4
V

(
4m2

πt− t2 + s2 + u2 − 2su
)
, (B10)

and working in the limit where t→ 0, this becomes

1

2

∑
Spin States

|M|2 =
64m2

χω
2

Λ4
V

. (B11)
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