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Abstract
We explore the possibility that SU(3)C was not an exact symmetry at all times in the early universe, using minimal extensions of the standard

model that contain a color triplet scalar field and perhaps other fields. We show that, for a range of temperatures, there can exist a phase in
which the free energy is minimized when the color triplet scalar has a non-vanishing vacuum expectation value, spontaneously breaking color.
At very high temperatures and at lower temperatures color symmetry is restored. The breaking of color in this phase is accompanied by the
spontaneous breaking ofB−L if the color triplet scalar Yukawa couples to quarks and/or leptons. We discuss the requirements on the minimal
extensions needed for consistency of this scenario with present collider bounds on new colored scalar particles.

I. INTRODUCTION

The discovery of a boson with mass around125 GeV at
the Large Hadron Collider (LHC) whose properties are so
far roughly consistent with those expected for the Standard
Model (SM) Higgs boson[1, 2] adds new credibility to the
paradigm of scalar field-driven spontaneous symmetry break-
ing in the early universe. In the Standard Model Higgs mech-
anism paradigm, the electroweak SU(2)L×U(1)Y symmetry
breaks to electromagnetic U(1)EM symmetry in a single step
at a temperature,T ∼ O(100) GeV. Monte Carlo studies indi-
cate that if only SM fields are present, the electroweak phase
transition (EWPT) at these temperatures would be cross over
for a Higgs boson with mass indicated by the LHC observa-
tion [3–6]. In this case, one would expect little else in the
way of other cosmological implications or related experimen-
tal signatures, such as the production of relic gravity waves
were the EWPT to have been first order.

It is interesting, then, to ask whether electroweak symmetry
breaking (EWSB) needs to have followed the simple trajec-
tory implied by the SM. For many years, theorists have ex-
plored the possibility that the presence of additional scalar
fields might change the character of the EWPT, making it
strongly first order as required for electroweak baryogenesis
or the generation of potentially observable relic gravity waves
(for a recent review and references, see Ref. [7]). In most of
these studies, electroweak symmetry breaking (EWSB) still
proceeds through a single step, though a few studies of mul-
tistep transitions have appeared in the literature[8–11].In all
cases, the focus has been on EWSB while avoiding the loss
of SU(3)C that is known to be a good symmetry today. In
the minimal supersymmetric Standard Model (MSSM), for
example, the avoidance of color-breaking (CoB) and charge-
breaking (ChB) vacua imposes severe constraints on the pa-
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rameters of the scalar potential when one invokes the scalar
superpartners of the right-handed top quarks to obtain a strong
first order EWPT. In this case, the universe transitions to
a color-conserving EW vacuum is that metastable, and for
a sufficiently light Higgs boson, remains there as the rate
for tunneling to a deeper CoB/ChB vacuum is adequately
suppressed[12]. It has been proposed in Ref. [13] that the
energy of a color-conserving EW false vacuum may be re-
sponsible for the cosmic acceleration.

It is possible, however, that the early universe underwent
an epoch when SU(3)C was spontaneously broken but later
restored. To our knowledge, there exist no theoretical argu-
ments or experimental observations that would preclude this
possibility. If realized, it would mean that today’s symmetries
need not have been present at all times in the early universe,
contrary to the conventional picture in which symmetries are
only lost and not restored as the universe cools.

We are not the first to consider the possibility that part of
the the zero temperature unbroken gauge group of the stan-
dard model or other gauge theory might have been broken in
the early universe. Weinberg first observed that in the context
of an O(n)×O(n) gauge theory, one may encounter a transi-
tion to a state of lower symmetry O(n)×O(n)→ O(n)×O(n-1)
with increasingT [14]. Langacker and Pi subsequently ap-
plied this idea to show how breaking of U(1)EM and its sub-
sequent restoration could provide a solution to the monopole
problem in grand unified theories (GUTs) [15]. The authors
of Refs. [16, 17] proposed an alternate solution for an SU(5)
GUT that relied on non-restoration of the symmetry at high-T
in the presence of a suitable scalar representation of the gauge
group. Similar ideas were explored for spontaneous breaking
of CP-invariance in Refs. [18, 19]. For the specific case of
SU(3)C , the authors of Ref. [20] studied the possibility that
a CoB phase preceded the color-conserving EW phase in the
MSSM and found that without the introduction of additional
interactions, a universe that cooled into a CoB phase would
always remain there.

In this note, we demonstrate how SU(3)C-breaking fol-
lowed by its restoration might arise, using minimal extensions
of the SM scalar sector. We further show that this scenario
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may be realized without the occurrence of a metastable CoB
vacuum atT = 0. We also outline some of the phenomeno-
logical consequences and constraints, focusing on two repre-
sentative cases corresponding to the SM plus:

(a) a single multiplet of sub-TeV colored scalarsC

(b) a single multiplet of colored scalarsC, as well as a
gauge singletS

In both cases, the basic mechanism for achieving the novel
pattern of symmetry breaking where color is broken in an in-
termediate phase involves a negative mass-squared term for
the colored scalar in the scalar potential. A positive contri-
bution to itsT = 0 physical mass squared,m2

C , is generated
by quartic terms of the formC†Cϕ†ϕ, whereϕ denotes one
of the other scalars in the theory such as the Higgs doublet
H or S. Provided the product of the associated quartic cou-
pling and square of the vacuum expectation value (vev) ofϕ
is sufficiently large atT = 0, the positive contribution tom2

C

overwhelms the negative bare mass squared term, leaving at
least a local minimum where color is unbroken atT = 0. If
the vev ofϕ falls sufficiently rapidly asT increases, an inter-
mediate phase where the minimum of the free energy breaks
SU(3)C can exist.

For case (a)ϕ is the Higgs doublet and we find that in order
to maintain perturbative couplings, the colored scalarC can-
not be too heavy. Constraints from LHC new particle searches
then imply that its couplings to first and second generation SM
fermions must be suppressed. Case (b), whereinϕ is the sin-
glet, allows one to avoid this requirement by pushing the mass
of C above present LHC bounds while maintaining perturba-
tivity. This is possible because the vev ofS can be larger than
the Higgs vev, allowing it to give the dominant positive contri-
bution to them2

C . As we discuss below, for this case the region
of parameter space that achieves a CoB phase for a range of
temperatures is restricted not so much by present phenomeno-
logical constraints but by the behavior of the scalar potential
as a function ofT . Nevertheless, both cases illustrate the more
general possibility of the novel symmetry-breaking pattern of
interest here and the considerations that determine its viabil-
ity1. At the end of this note, we comment on other variants
that may lead to a similar symmetry-breaking pattern.

Before proceeding, we emphasize that the exploratory na-
ture of our study. As with any analysis of the phase history of
the universe in perturbation theory, one should take the precise
numerical results with an appropriate grain of salt. In the case
of the non-restoration of SU(5) gauge symmetry note above,
for example, the work of Ref. [21] indicated that inclusion
of higher-order contributions to the effective potential could
modify conclusions based on one-loop result2. On the other
hand, comparison of lattice results in the standard model and

1 In analyzing these cases, we have not imposed any requirements on the
character of the phase transitions. Instead, we simply concentrate on the
possible existence of a CoB phase that is subsequently restored.

2 For a study of the impact of two-loop effects with colored scalars on char-
acter of an EWPT, see Ref. [22]

MSSM with perturbative computations suggest that the latter
can faithfully reproduce the parametric dependence of phase
transition dynamics even if perturbative results for the criti-
cal temperatures, latent heat,etc. are not numerically accurate
(for a detailed discussion, see Ref. [23]). Thus, we suspect
the viability of a period of color-breaking and restorationin
the minimal models discussed here – as well as the general
behavior of this possibility as a function of the various inter-
actions – should hold after inclusion of higher-order contribu-
tions or completion of non-perturbative computations.

Our discussion of this paradigm is organized as follows. In
Section II case (a) is analyzed in detail, while in Section III
we treat case (b). We summarize in Section IV.

II. TWO FIELD SCENARIO

To set the notation, we first consider case (a) withC being
an SU(3)C triplet. In order to avoid the possibility of stable
color triplet scalar degrees of freedom the fieldC must be
charged under SU(2)L × U(1)Y to permit couplings to SM
fermions. For example theC could be an SU(2)L doublet with
hyperchargeY = 7/6. Then it has the following Yukawa type
interactions with the quarks,

LY = CūRguLLL + CQ̄LgQeeR + h.c. . (1)

Here we have suppressed the color, weak isospin and flavor
indices. The Yukawa coupling matricesgue andgQe could
be such that the dominant decay mode of the colored scalar
C is to a top quark and an anti tau lepton, thereby alleviating
present LHC constraints on new colored scalars. Assigning
a baron number1/3 to C the tree level lagrangian conserves
baryon number3.

To make the analysis of the phase structure of the theory as
simple as possible we consider instead the illustrative situation
whereC is an electroweak singlet but color triplet. Then it has
no renormalizable interactions with quarks and leptons, and
the most general gauge invariant renormalizable potentialis4

V = −µ2

H(H†H)− µ2

C(C
†C) +

λH

2
(H†H)2

+
λC

2
(C†C)2 + λHC(H

†H)(C†C) . (2)

We take all the parametersµ2

H , µ2

C , andλH,C,HC positive.
TheT = 0 vacuum structure follows from the minimization

conditions:

∂V/∂φ† = 0 for φ = H, C . (3)

Four possible stationary points emerge, with the correspond-
ing vacuum energies labeledEa, with a = {0, H, C, HC}:

3 Non perturbative quantum effects violate this symmetry because it is
anomalous.

4 If theC were also a weak doublet, other terms likeH†τaHC†τaC would
appear in the scalar potential.
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(I) H = C = 0 with energyE0 = 0. This is always a lo-
cal maximum since very small fluctuations in the fields
about this point contribute negatively to the potential
energy.

(II) Break SU(2)L but not SU(3)C: 〈H〉 = (0, vH)T and
〈C〉 = 0. Solving Eq. (3) gives

v2H =
µ2

H

λH

(4)

with vacuum energy density

EH = − µ4

H

2λH

(5)

(III) Break SU(3)C but not SU(2)L × U(1)Y : 〈H〉 = 0 and
〈C〉 = (0, 0, vC)

T, where, without loss of generality,
we have taken the third component ofC to acquire a
vev. Then SU(3)C is spontaneously broken to an SU(2)
color subgroup so that in the broken phase there are
still three massless gluons but five that get mass by the
Higgs mechanism. The solution of Eq. (3) then implies

v2C =
µ2

C

λC

(6)

with energy at the stationary point

EC = − µ4

C

2λC

. (7)

(IV) Break both SU(3)C and SU(2)L × U(1)Y : 〈H〉 =
(0, vH)T, and〈C〉 = (0, 0, vC)

T, with

v2H =
λCµ

2

H − λHCµ
2

C

λHλC − λ2

HC

, v2C =
λHµ2

C − λHCµ
2

H

λHλC − λ2

HC

, (8)

leading to an energy density

EHC = −1

2

λCµ
4

H + λHµ4

C − 2λHCµ
2

Hµ2

C

λHλC − λ2

HC

. (9)

The absolute minimum must correspond to stationary point
II, implying first that the eigenvaluesm2

H andm2

C of the mass-
squared matrix, which follows from second derivatives of the
potential, must be positive atC = 0 andvH = µH/

√
λH :

m2

h = 2µ2

H = 2λHv2H > 0 (10)

m2

C = −µ2

C + λHCv
2

H > 0 (11)

The requirement in Eq. (10) is trivially satisfied while Eq. (11)
constrains the parameters in the potential to satisfy,

λHCv
2

H > µ2

C . (12)

Eq. (11) places the upper bound onmC as a function ofλHC ,

mC <
(

√

λHC

)

vH ≃ (174 GeV)
√

λHC . (13)

If the color triplet complex scalar has generic decay modes
to light quarks and leptons, LHC data implies that its mass
must be greater than about500 GeV. Eq. (13) then implies
that λHC is greater than about9, taking us into the strong
coupling regime.

In addition, stationary points III or IV may also be min-
ima, with positivity conditions. For purposes of illustration,
we consider the positivity conditions for III, denoting thecor-
responding scalar masses at this point asm̃H andm̃C :

m̃2

H = −µ2

H + λHC v2C = −λHv2H + λHCv
2

C > 0 (14)

m̃2

C = 2µ2

C = 2λCv
2

C > 0 . (15)

Again, the (15) is trivially satisfied, while (14) implies that

m2

H < 2λHCv
2

C =
2λHCµ

2

C

λC

=
2λHC(λHCv

2

H −m2

C)

λC

.

(16)

A. Symmetry breaking at finite T

We now determine the conditions under which extremum
II is the absolute minimum atT = 0 but either extrema III
or IV evolves to an absolute minimum asT is raised. To that
end, we first determine the temperaturesT ∗ above which ex-
trema disappear along theH andC directions. For purposes
of both simplicity and intuition, our analytic work is basedon
the high-T effective theory, wherein the effects of temperature
are to replace the coefficients of the quadratic terms in the free
energy by their Debye masses.

µ2

H(T ) = µ2

H − T 2

(

λH

4
+

λHC

4
+

3g22
16

+
y2t
4

)

(17)

µ2

C(T ) = µ2

C − T 2

(

λC

3
+

λHC

6
+

g2
3

3

)

. (18)

We have omitted the small hyperchargecontribution toµ2

H(T )
and replaced the top quark mass with the Higgs vev using the
relationmt = ytvH . Symmetry will be restored along theH
andC directions forT > T ∗

H andT ∗
C , respectively:

(T ∗
H)

2
=

λHv2H
(

λH

4
+ λHC

4
+

3g2

2

16
+

y2

t

4

) (19)

(T ∗
C)

2
=

µ2

C
(

λC

3
+ λHC

6
+

g2

3

3

) . (20)

To obtain the pattern of symmetry breaking in which we
are interested, we must have: (a) atT = 0 the stationary
point of lowest energy has SU(2)L × (1)Y spontaneously bro-
ken and (b)T ∗

H < T ∗
C so that there is range of tempera-

ture whereµH(T )2 is negative andµ2

C(T ) is positive. For
temperatures in this range color is spontaneously broken but
SU(2)L × U(1)Y is not.
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The condition on the temperaturesT ∗
H,C and Eq. (12) leads

to

λHv2H
(λH + λHC + 3g2

2
/4 + y2t )

<
3µ2

C

(λC + λHC/2 + g2
3
)

<
6λHCv

2

H

(2λC + λHC + 2g2
3
)
, (21)

or

2λC + λHC + 2g2
3

λH + λHC + 3g2
2
/4 + y2t

<
6λHC

λH

. (22)

SettingλH ≃ 1/4 as implied by the observed Higgs mass
Eq. (22) then implies

2λC + λHC + 2g2
3

1 + λHC + 3g2
2
+ 4y2t

<
∼ 6λHC . (23)

In short,λHC cannot be arbitrarily small.
Now consider the requirement that at zero temperature the

energy of the stationary point with only the Higgs getting a
vacuum expectation value must be less than the stationary
point with only the colored scalar getting an expectation value.
This gives,

|EH | > |EC |

or
m4

H

2
&

(2λHCm
2

H −m2

C)
2

2λC

. (24)

Thus, for a given colored scalar massmC andλHC , the col-
ored scalar quartic self-couplingλC also cannot be arbitrarily
small.

To illustrate the range of (λC , λHC , andmC ) that sat-
isfy the requirements (22)-(24), we plot in Fig. 1 the results
of a scan overλC andmC for two representative values of
λHC . In doing so, we have employed the full one-loop ef-
fective potential that includes the Coleman-Weinberg terms at
T = 0 and the finite-T contributions without adopting the
high-temperature expansion. We have analyzed the evolution
of the extrema in a way that maintains gauge-invariance, fol-
lowing the approach outlined in Ref. [23]. The yellow ar-
eas correspond to regions where the EW phase is absolutely
stable, and the CoB is a saddle point. In the blue area, the
EW phase is still absolutely stable, but the CoB becomes
metastable (no longer a saddle point). Outside these two re-
gions (white), the EW vacuum is metastable with the CoB
phase absolutely stable. For values of the parameters in-
side the yellow hatched region the universe first cools into
a CoB minimum, followed by a transition to the EW, color-
preserving vacuum at lower temperatures. On the other hand,
inside the blue hatched region it is possible that the universe
tunnels from the metastable CoB vacuum to the stable EW
phase if the tunneling rate is sufficiently large.

For purposes of illustration, we focus on the yellow shaded
region, wherein color-breaking occurs at moderately high
temperatures and not atT = 0. We find that for fixedλHC , we
must look to fairly highλC to find phase transitions involving
a CoB phase in the early universe. AsmC is parametrically in-
creased, the requiredλC to obtain a CoB transition is reduced.

As expected from our general discussion above,mC must be
relatively light, whileλC is relatively large and may even be-
come non-perturbative. By increasingλHC the upper limit on
mC increases, as we expect from Eq. (13). From Eq. (24), we
also anticipate that as one increasesλHC , the lower limit on
λC increases as well, a trend we see by comparing the left and
right panels of Fig. 1. In short, it is not possible to makemC

arbitrarily large without entering the realm of non-perturbative
quartic couplings.

It is conceivable that a heavier colored scalar with non-
perturbative couplings can lead to the pattern of symmetry-
breaking we are interested in, though we cannot say so with
confidence based on our perturbative analysis. FormC on the
order of a few times the weak scale, one must confront the
present LHC limits on the existence of colored scalars, which
are generally precluded formC

<
∼ 600 − 900 GeV, assum-

ing they are pair produced (strongly) and decay semileptoni-
cally (e.g., first- and second-generation leptoquarks [24–26]).
An exception occurs when the scalar couples strongly only to
third generation fermions, as the corresponding mass limits
are considerably weaker (e.g. see Refs. [27, 28] for third gen-
eration leptoquarks). We defer the corresponding phenomeno-
logical analysis to a future study.

III. ADDING A SINGLET

To avoid a light colored scalar or non-perturbative cou-
plings, we augment the field content by a real scalar singlet
S whose non-zero vevvS at T = 0 generates an additional
contribution to colored scalar massmC . Since the singlet vev
is not connected with the weak scale, it can be as large as
needed to increasemC without strong coupling. The most
general extension of the potential in Eq. (2) is obtained by
adding the potential

∆V = −µ2

S

2
S2 +

λS

4
S4 + λHC(H

†H)(C†C)

+
λHS

2
(H†H)S2 +

λCS

2
(C†C)S2

+
eS
3
S3 + eCC

†CS + eHH†HS . (25)

Again we take theµ2’s and theλ’s positive. The analysis
of the vacuum structure at zero and finite temperature is con-
siderably more complicated due the addition of a new scalar
degree of freedom. We now highlight key points, while im-
posing a few simplifying assumptions.

In the color unbroken phase, with bothvS andvH non-zero
at zero temperature, the mass of the colored scalar is given by

m2

C = −µ2

C + λHCv
2

H +
λCS

2
v2S + eCvS . (26)

By puttingeC = eS = eH = 0 (corresponding to a discrete
Z2 : S → −S symmetry), it is straightforward to obtain ex-
pressions for the singlet and Higgs vevs in terms of the model

4



60 80 100 120 140 160

0.0

0.5

1.0

1.5

2.0

2.5

3.0

mC

Λ
C

ΛHC=0.9

100 110 120 130 140 150 160 170

0.0

0.5

1.0

1.5

2.0

2.5

3.0

mC

Λ
C

ΛHC=1.0

FIG. 1: Regions in parameter space where color is broken and possibly subsequently restored in the early universe. Colorshading indicates the
vacuum structure at zero temperature:yellow representing the region where SU(3)C breaking phase is tachyonic, andblue indicating regions
where SU(3)C breaking phase is metastable. In thewhite regions, the standard electroweak phase is metastable, andSU(3)C breaking phase
is stable. For(mC , λC) inside the yellow hatched area, the universe first cools intoa color-breaking phase, followed by a transition to the
color-preserving EW phase. For the blue hatched region, theuniverse may remain in the color-breaking phase. Left panelis for λHC = 0.9,
and right panel is forλHC = 1.0.

parameters:

v2S =
µ2

HλHS − µ2

SλH

λ2

HS/2− λHλS

(27)

v2H =
µ2

SλHS/2− µ2

HλS

λ2

HS/2− λHλS

. (28)

We can simplify the analysis further by decoupling the
Higgs doublet from the other scalars by settingλHS =
λHC = 0. Then the problem of studying the vacuum structure
resembles that of section II, where the fields were justH and
C, but in this case, with the singletS now playing the role
of H . SincevS is not constrained by weak interaction phe-
nomenology it may be much larger thanvH , allowingmC to
be greater than∼ 1 TeV [via Eq. (26) ] without the coupling
λCS becoming nonperturbatively large.

The presence of the additional couplings in Eq. (25) will
modify the finite-T masses of the scalar fields. Again, for
simplicity, we first set the cubic couplings to zero. One then
has (restoring dependence onλHS andλHC )

µ2

H(T ) = µ2

H − T 2

(

λH

4
+

λHC

4
+

λHS

24
+

3g2
2

16
+

y2t
4

)

(29)

µ2

C(T ) = µ2

C − T 2

(

λC

3
+

λHC

6
+

λCS

24
+

g23
3

)

(30)

µ2

S(T ) = µ2

S − T 2

(

λS

8
+

λHS

12
+

λCS

8

)

. (31)
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FIG. 2: The free energy for the color-breaking (CoB) and SM elec-
troweak (EW) phases in theZ2-symmetric limit, as a function of
temperature T. Within this class of parameter choice, the desired pat-
tern of parameter breaking does not happen.

From these results, we observe that it is generally difficultto
obtain the pattern of symmetry-breaking that we seek. In gen-
eral, there can exist several vacua atT = 0, some of which
will break SU(3)C but not SU(2)L , others breaking SU(2)L
and not SU(3)C, and still others breaking both (vS may be
non-zero for one or more of these cases). On the one hand,
the color-preserving EW vacuum must have the lowest energy
at T = 0. In order that a CoB vacuum be the state of low-
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FIG. 3: The free energy for the color-breaking (CoB) and SM elec-
troweak (EW) phases as a function of T for non-zeroZ2 breakinge
parameters. For the choice of parameters labelled above thefigure,
the critical temperature isTcrit ≃ 1550 GeV

est energy at some finiteT , the energy of the color-preserving
vacua must rise more quickly that that of the CoB vacuum, as
T is parametrically increased. On the other hand, we see that
µ2

C,H(T ) will typically decrease compared toµ2

S(T ) partly
because of its dependence on the gauge couplings. Conse-
quently, as EW symmetry is restored, the color-preserving
vacua withvs 6= 0 is more likely to emerge as the state of
lowest energy than a CoB vacuum.

This situation is illustrated in Fig. 2, where we show the
temperature evolution of the CoB and EW extrema for a rep-
resentative choice of parameters. While the EW vacuum is
the absolute minimum atT = 0, we observe that one asT
increases SU(3)C is restored long before EW symmetry is re-
stored, so that there is never a period when color is broken.

The inclusion of non-zero cubic terms in the potential (25)–
thereby explicitly breaking theZ2 symmetry–can modify this
situation by raising the critical temperatureT ∗

C relative to that
of the EW and singlet vacua (For an analogous study of the
impact of tree-level cubic terms, seee.g. Ref. [10]). This
happens forλCS positive as we have chosen it to be. In this
case, the energy of the EW minimum becomes larger than that
of the CoB minimum forTcrit. For a range of temperatures
satisfyingTcrit < T < T ∗

C , the CoB extremum becomes the
state of lowest energy, while forT > T ∗

C , SU(3)C symmetry
is restored.

This situation is illustrated in Fig. 3. Here, we show
the temperature-evolution of the free energy for the phases
involved in the transition for two illustrative parameter
choices. The corresponding scalar masses are(mC ,mS) ≃
(1660, 730) GeV. Since we have set the terms that couple the
Higgs doublet to the fieldsS andC to zero in this example,
we can increase the values ofmC andmS by scaling up the
dimensionful parametersµ2

S andµ2

C , eS andeC . The evo-
lution of the EW and CoB minima are indicated by the blue
and red curves, respectively. In both cases, we have verified
that at zero temperature, the color-breaking phase is a saddle
point, so that one encounters no possibility that the EW min-
imum is metastable. The pattern of symmetry-breaking can
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FIG. 4: The free energy for the CoB and EW phases as a function of
T for the same choice of parameters as in Fig. 3, but with coupling
constant,top panel: λCS = 0.08 andbottom panel: λCS = 0.12
RaisingλCS has the effect of loweringTcrit and lengthening (in tem-
perature) the duration of spontaneous color-breaking in the early uni-
verse.

be seen by following the curves from right (high-T ) to left
(low-T ). At high-T , the symmetric phase, corresponding to
V = 0, is the absolute minimum. BelowT ∗

C the CoB mini-
mum takes on negative energy and a transition occurs to the
CoB phase. Below the intersection point of the blue and red
curves (T = Tcrit), the EW minimum has lower energy and a
transition to this phase occurs.

A comprehensive study of the parameter space for this
multi-field scenario goes beyond the scope of the present
work, where we seek to illustrate the basic mechanism.
Nonetheless, we have studied the dependence of this pattern
on some of the parameters in the potential. Consider changing
the value ofλCS . The plots in Fig. 4 show the impact of in-
creasing or decreasing this coupling by20%. Over this range
Tcrit increases asλCS does. Note also that the color break-
ing phase exists over a wider range of temperatures asλCS is
increased.

With the inclusion of new scalars that are considerably
heavier than the electroweak scale, one has to contend with
the hierarchy problem in this scenario. We note that the small-
ness of cubic parameterseH , eC , eS compared to the larger
mass scales is stable against radiative corrections thanksto
the associatedZ2 symmetry. However, to maintain a light
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Higgs, the Higgs mass must be fine-tuned to a certain degree.
In our case we have implemented this tuning by decoupling
the fields. Moreover, even a modest coupling between the
Higgs and the new fields completely changes the pattern of
symmetry breaking. For example if we leave the parameters
the same as in Fig. 3, but takeλHC = λHS = 0.00012 the
T = 0 vacuum no longer has electroweak symmetry break-
ing (i.e. only the singlet has a vev). On the other hand at
λHC = λHS = 0.0001 the pattern of symmetry breaking is
similar to what is shown in Fig. 3.

We have also studied the dependence of the pattern of sym-
metry breaking on the cubic couplingseC andeS that are es-
sential for the viability of case (b). We find that decreasing
the magnitude ofeS (for eS > 0) tends to lower theT = 0
energy of the CoB extremum, and for sufficiently smalleS the
state of minimum energy breaks color. Thus, for a given set of
values for the remaining parameters, we expect a lower bound
on eS . Conversely, increasing|eC | for eC < 0 decreases the
energy splitting between theT = 0 EW minimum and the
CoB extremum, so we anticipate that in general there will be
an upper bound on|eC | for eC < 0 for a given set of the other
parameters.

IV. DISCUSSION

We have shown that in extensions of the SM with an ad-
ditional color triplet scalar or color triplet scalar and singlet
scalar it is possible to have a cosmological history where there
is a region of temperature with color spontaneously broken.
At temperatures both above and below this region region color
is restored. In the case of just adding a color triplet to the SM
it is not possible (in regions of parameter space where pertur-
bation theory is valid) for the additional color triplet scalars to
be at the TeV scale. Rather, they are necessarily lighter, and
unless one evokes a particular flavor structure in their coupling
to fermions such models are ruled out by constraints from the
LHC. However by adding another singlet scalar we were able
to obtain a region in temperature where color is broken and
where the additional colored scalars are sufficiently heavyto
avoid LHC constraints. This is the minimal extension of the
SM with the novel color breaking cosmological history we
are interested in that has the color triplet scalars at the TeV
scale (or heavier). In this model we found regions of param-
eter space with a high temperature color breaking phase but

where at zero temperature the color breaking stationary points
are not local minima. However, tuning is required to keep the
Higgs doublet light compared to the singlet. It would be in-
teresting if a scenario for color breaking at high temperature
could be found without fine tuning.

Apart from intrinsic interest in understanding the cosmo-
logical evolution of our universe the existence of such a color
breaking phase may open up new avenues for generating the
baryon excess of the universe. Neglecting Majorana right
handed neutrino masses the standard model has a globalB−L
symmetry. If the new colored scalar is a triplet (under color)
and has the right hypercharge to couple to a quark-lepton
fermion bilinear then the color breaking phase also breaks the
globalB − L symmetry. As a result, it is possible that a net
B−L charge could have been created either dynamically dur-
ing the color-breaking or color-restoring phase transitions, or
through out-of-equilibrium decays of the colored scalars dur-
ing the CoB phase. In principle, thisB − L asymmetry need
not have been washed out by weak sphalerons.

Finally we would like to mention that adding other degrees
of freedom may enlarge the region of parameter space of the
scalar potential where the unusual color breaking phase in the
early universe occurs. For example if the singlet scalar cou-
ples to additional fermions then at finite temperature these
fermions contribute to the singlet scalar mass squared posi-
tively reducing the magnitude of its vacuum expectation value
at high temperature compared with the case that the fermions
are absent. This could assist the formation of the color break-
ing phase.
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