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Multi-hadron operators are crucial for reliably extracting the masses of excited states lying above
multi-hadron thresholds in lattice QCD Monte Carlo calculations. The construction of multi-hadron
operators with significant coupling to the lowest-lying multi-hadron states of interest involves com-
bining single hadron operators of various momenta. The design and implementation of large sets
of spatially-extended single-hadron operators of definite momentum and their combinations into
two-hadron operators are described. The single hadron operators are all assemblages of gauge-
covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible rep-
resentations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests
of these operators on 243 × 128 and 323 × 256 anisotropic lattices using a stochastic method of
treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field
smearing are presented. The method provides reliable estimates of all needed correlations, even
those that are particularly difficult to compute, such as ηη → ηη in the scalar channel, which in-
volves the subtraction of a large vacuum expectation value. A new glueball operator is introduced,
and the evaluation of the mixing of this glueball operator with a quark-antiquark operator, ππ, and
ηη operators is shown to be feasible.

PACS numbers: 12.38.Gc, 11.15.Ha, 12.39.Mk

I. INTRODUCTION

Markov-chain Monte Carlo estimates of quantum chro-
modynamics (QCD) path integrals defined on a space-
time lattice are a promising means of calculating the mass
spectrum of excited-state hadron resonances. Because of
the way in which stationary-state energies are extracted
from the temporal correlations of suitable quantum field
operators in such calculations, the energy of a particu-
lar state of interest can only be determined after con-
tributions from all lower-lying and nearby states in the
same symmetry channel are carefully considered. Multi-
hadron states populate the spectrum below most of the
resonances of interest. To reliably determine the ener-
gies of such states, the use of appropriate multi-hadron
operators is crucial. Multi-hadron operators with signif-
icant coupling to the low-lying states of interest can be
obtained by combining single-hadron operators of various
momenta. The construction and testing of single-hadron
operators of definite momentum and their combinations
into two-hadron operators are the subject of this work.

Our approach to constructing single baryon operators
of zero momentum was previously described in Ref. [1].
A slightly different method was reported in Ref. [2].
Our first study of the nucleon and ∆ excitations in the
quenched approximation was presented in Ref. [3], and
nucleon results for two flavors of dynamical quarks ap-
peared in Ref. [4]. A survey of excited-state energies in
small volume for the isovector mesons and kaons using
Nf = 2+1 dynamical quarks was given in Ref. [5], along

with results for the Λ,Σ,Ξ baryons. To extend our efforts
into larger volumes and towards u, d quark masses yield-
ing lighter pions, the issue of multi-hadron states was ad-
dressed in Ref. [6]. A new stochastic method of treating
the low-lying modes of quark propagation which exploits
Laplacian Heaviside quark-field smearing was presented
in that work, although the method was briefly introduced
with preliminary testing in Refs. [5, 7, 8]. Other recent
progress in calculating excited-state energies in lattice
QCD can be found in Refs. [9–24].

In this work, the approach of Ref. [1] is extended to me-
son operators of zero momentum and to both meson and
baryon operators having definite nonzero momentum. A
new glueball operator is also introduced and tested. To
simplify our spectrum calculations as much as possible
and to increase the statistical precision of our results, we
make use of single-hadron operators that transform irre-
ducibly under all symmetries of a three-dimensional cubic
lattice with periodic boundary conditions. Our method
of constructing such operators is described in detail in
this paper. Spectrum results obtained using these op-
erators will be presented in later reports, although we
present some testing of these operators here. Our op-
erator design utilizes group-theoretical projections. The
point and space groups we use are well known, and the
properties of their irreducible representations are widely
available in the literature. However, we collect together
and present in this paper some of the specific group the-
ory details needed for our operator construction for the
convenience of the reader and as a record of our conven-
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tions and notation.
The Monte Carlo method commonly employed in QCD

computations applies only to space-time lattices of finite
extent. Hence, our goal is to obtain the stationary-state
energies of QCD in a cubic box using periodic boundary
conditions. In such a cubic box, we no longer have full
rotational symmetry, even in the continuous space-time
limit. The stationary states cannot be labelled by the
usual spin-J quantum numbers. Instead, the stationary
states in a box with periodic boundary conditions must
be labelled by the irreducible representations (irreps) of
the cubic space group, even in the continuum limit.
This paper is organized as follows. Our approach

to building single-hadron operators of definite momen-
tum is described in Sec. II. We construct operators
that transform irreducibly under all symmetries of a
three-dimensional cubic lattice. Monte Carlo calcula-
tions are required to test our operator construction, and
we present the implementation details of such compu-
tations in Sec. III. Tests of our single-hadron opera-
tors using the stochastic LapH method on 243 × 128 and
323×256 anisotropic lattices with pion masses mπ ≈ 390
and 240 MeV are then presented in Sec. IV. How we
combine these operators to form two-hadron operators is
described in Sec. V, and initial tests are presented. In
Sec. VI, a new glueball operator is introduced and we
demonstrate the feasibility of evaluating the mixing of
this glueball operator with a quark-antiquark operator,
an ηη operator, and multiple two-pion operators. Con-
cluding remarks are given in Sec. VII, along with our
plans for future work.

II. SINGLE-HADRON OPERATORS OF
DEFINITE MOMENTUM

We extract the finite-volume stationary-state ener-
gies of QCD from matrices of temporal correlations
Cij(tF − t0) = 〈0|T Oi(tF )Oj(t0) |0〉, where T denotes

time-ordering, the source operators Oj(t0) create the
states of interest at an initial time t0, and the sink opera-
tors Oi(tF ) annihilate the states of interest at a later time
tF . The correlation functions Cij(t) can be expressed in

terms of “path” integrals over quark fields ψ, ψ and gluon
fields U involving the QCD action having the form

S[ψ, ψ, U ] = ψK[U ]ψ + SG[U ], (1)

where K[U ] is known as the Dirac matrix and SG[U ] is
the gauge-field action. We use an anisotropic space-time
lattice in which the temporal spacing at is smaller than
the spacing as in the three spatial dimensions. Each
time slice is a three-dimensional cubic lattice. We as-
sume periodic boundary conditions in all three spatial
directions. In order to estimate the path integrals using
the Monte Carlo method, it is necessary to work in the
imaginary time formalism. This also has the advantage
of converting oscillatory factors in real time into decay-
ing exponentials. Our Euclidean space-time conventions,

including the Euclidean Dirac γ-matrices, are given in
Ref. [1]. In the four-vector xµ describing a given lat-
tice site, the µ = 4 component specifies the position in
time, and the µ = 1, 2, 3 components specify the position
along the Cartesian x, y, z spatial directions. As usual in
lattice gauge theory, the gluon field is introduced using
the parallel transporter Uµ(x) given by the path-ordered
exponential of the gauge field along a link in the µ di-
rection connecting neighboring sites of the lattice. The
Dirac spinor field ψA

aα(x) annihilates a quark and creates
an antiquark at lattice site x, where A refers to the quark
flavor, a refers to color, and α is the Dirac spin index,

and the field ψ
A

aα(x) annihilates an antiquark and creates
a quark. Unlike in Minkowski space-time, ψ and ψ must
be treated as independent fields. When used in path in-
tegrals, the link variables are SU(3) matrices and ψ, ψ
are complex Grassmann fields.
Our hadron operators are constructed using spatially-

smoothed link variables Ũj(x) and spatially-smeared

quark fields ψ̃(x). The spatial links are smeared using
the stout-link procedure described in Ref. [25]. Note that
only spatial staples are used in the link smoothening; no
temporal staples are used. The smeared quark field for
each quark flavor is defined by

ψ̃aα(x) = Sab(x, y) ψbα(y), (2)

where x, y are lattice sites, a, b are color indices, and α
is a Dirac spin component. We use the Laplacian Heav-
iside (LapH) quark-field smearing scheme introduced in
Ref. [26] and defined by

S = Θ
(
σ2
s + ∆̃

)
, (3)

where ∆̃ is the three-dimensional gauge-covariant Lapla-
cian defined in terms of the stout-smeared gauge field

Ũ , and σs is the smearing cutoff parameter. More details
concerning this smearing scheme are described in Ref. [6].
All of our single-hadron operators are assemblages

of basic building blocks which are gauge-covariantly-
displaced, LapH-smeared quark fields:

qAaαj = D(j)ψ̃(A)
aα , qAaαj = ψ̃

(A)

aα γ4D
(j)†, (4)

where a is a color index, α is a Dirac spin component, A
is a quark flavor, γ4 is the temporal Dirac γ-matrix, and
D(j) is a gauge-covariant displacement of type j. The
displacement type is a sequence of p spatial directions on
the lattice j = (j1, j2, · · · , jp). This displacement can be
trivial (j = 0 meaning no displacement), a displacement
in a given single spatial direction on the lattice by some
number of links (typically two or three), or a combination
of two or more spatial lattice directions. If we define
dr = ĵ1 + ĵ2 + . . . + ĵr−1, then the displacement D(j) is
defined as a product of smeared link variables:

D(j)(x, x′) = Ũj1(x) Ũj2(x+d2) Ũj3(x+d3) . . .

× Ũjp(x+dp)δx′,x+dp+1
. (5)
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FIG. 1: The axes Ox, Oy, Oz, Oa, Ob, Oc, Od, Oe, Of ,
Oα, Oβ, Oγ, Oδ corresponding to the group elements Cnj of
the octahedral group O, where Cnj denotes a proper rotation
through angle 2π/n about axis Oj.

The use of γ4 in Eq. (4) is convenient for obtaining baryon
correlation matrices that are Hermitian. To simplify no-
tation, the Dirac spin component and the displacement
type are sometimes combined into a single index in what
follows.
We can simplify our spectrum calculations as much

as possible by working with single-hadron operators that
transform irreducibly under all symmetries of a three-
dimensional cubic lattice of infinite extent or finite ex-
tent with periodic boundary conditions. Such symme-
tries form the simple cubic space group known as O1

h in
Schönflies notation or Pm3m in international notation.
This crystallographic space group is a semi-direct prod-
uct of the abelian group of allowed translations on a sim-
ple cubic lattice and the orthogonal point group Oh. For
bosonic systems with zero strangeness, we add G-parity
as a symmetry operation.
In order to construct such hadron operators, we first

need to identify all of the symmetry operations and to
determine how our basic building blocks transform un-
der these operations. An element of the space group O1

h
is here denoted by (R, b), where R is a spatial rotation or
reflection about the origin and is an element of the point
group Oh, and b is an allowed spatial shift. The group
element (R, b) corresponds to the coordinate transforma-
tion x → Rx+ b. The covariantly-displaced quark fields
transform according to

U(R,b) q
A
aα j(x)U

†

(R,b) = S(R)−1
αβ q

A
aβ Rj(Rx+b), (6)

U(R,b) q
A
aα j(x)U

†

(R,b) = qAaβ Rj(Rx+b)S(R)βα, (7)

where U(R,b) denotes the quantum field operator that
effects the transformation (R, b), and the transformation
matrices for spatial inversion Is and proper rotations Cnj

through angle 2π/n about axis Oj are given by

S(Cnj) = exp
(

1
8ωµν [γµ, γν ]

)
, (8)

S(Is) = γ4, (9)

with ωkl = −2πεjkl/n and ω4k = ωk4 = 0 (ωµν is an
antisymmetric tensor which parametrizes rotations and

boosts). A rotation by π/2 about the y-axis is conven-
tionally denoted by C4y , and C4z denotes a rotation by
π/2 about the z-axis. These particular group elements
are given by

S(C4y) =
1√
2
(1+γ1γ3), S(C4z) =

1√
2
(1+γ2γ1). (10)

The allowed rotations on a three-dimensional spatially-
isotropic cubic lattice form the octahedral group O which
has 24 elements. For the convenience of the reader, the
rotation axes corresponding to these group elements are
shown in Fig. 1. Inclusion of spatial inversion Is yields
the point group Oh which has 48 elements occurring in
ten conjugacy classes. All elements of Oh can be gen-
erated from appropriate products of only C4y, C4z , and
Is. Under G-parity, our basic building blocks transform
according to

UG qAaαj(x) U
†
G = qBaβj(x) (γ2)βα GBA, (11)

UG qAaαj(x) U
†
G = (γ2)αβ q

B
aβj(x) G

BA, (12)

using the Dirac-Pauli representation for the γ-matrices,
and where the only nonzero elements of the G flavor ma-
trix are Gud = −Gdu = −Gss = 1.
The construction of irreducible representations (irreps)

of O1
h begins with the irreps of the abelian subgroup of

lattice translations. These are characterized by a definite
three-momentum p as allowed by the periodic boundary
conditions.
Each of our meson operators which destroys a three-

momentum p is a linear superposition of gauge-invariant
quark-antiquark elemental operators of the form

ΦAB
αβ (t) =

∑

x

e−ip·(x+ 1
2
(dα+dβ))δab q

A
aα(x, t) q

B
bβ(x, t),

(13)
where q, q are defined in Eq. (4), dα,dβ are the spa-
tial displacements of the q, q fields, respectively, from
x, A,B indicate flavor, and α, β are compound indices
incorporating both spin and quark-displacement types.
The phase factor involving the quark-antiquark displace-
ments is needed to ensure proper transformation prop-
erties under G-parity for arbitrary displacement types.
The “barred” operators which create a momentum p then
take the form

Φ
AB

αβ (t) =
∑

x

eip·(x+
1
2
(dα+dβ))δab q

B
bβ(x, t) q

A
aα(x, t).

(14)
Each meson sink operator has the form

Ml(t) = c
(l)
αβ ΦAB

αβ (t), (15)

(or is a flavor combination of the above form), where l
is a compound index comprised of a three-momentum p,
an irreducible representation Λ of the little group of p
(discussed below), the row λ of the irrep, total isospin I,
isospin projection I3, strangeness S, and an identifier la-
beling the different operators in each symmetry channel.
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TABLE I: The spatial arrangements of the quark-antiquark
meson operators (left) and the three-quark baryon operators
(right). In the illustrations, the smeared quarks fields are de-
picted by solid circles, each hollow circle indicates a smeared
“barred” antiquark field, the solid line segments indicate co-
variant displacements, and each hollow box indicates the lo-
cation of a Levi-Civita color coupling. For simplicity, all dis-
placements have the same length in an operator.

Meson configurations Baryon configurations

ev

single-site

e v

singly-displaced
e

v

doubly-displaced-L
e v

triply-displaced-U

e
v
��

triply-displaced-O

uu
u

single-site

u
u

u

singly-displaced
uu u

doubly-displaced-I

u

u

u

doubly-displaced-L
u u

u

triply-displaced-T

u

u

u
��

triply-displaced-O

Here, we focus on mesons containing only u, d, s quarks.
The corresponding source operators are

M l(t) = c
(l)∗
αβ Φ

AB

αβ (t). (16)

Each of our baryon operators destroying a three-
momentum p is a linear superposition of gauge-invariant
elemental three-quark operators of the form

ΦABC
αβγ (p, t) =

∑

x

e−ip·xεabc q
A
aα(x, t) q

B
bβ(x, t) q

C
cγ(x, t).

(17)
The “barred” three-quark elemental operators which cre-
ate a momentum p have the form

Φ
ABC

αβγ (p, t) =
∑

x

eip·xεabc q
C
cγ(x, t) q

B
bβ(x, t) q

A
aα(x, t).

(18)
Our baryon sink operators, being linear superpositions of
the three-quark elemental operators, have the form

Bl(t) = c
(l)
αβγ ΦABC

αβγ (t), (19)

where again, the l label includes the momentum p, the lit-
tle group irrep Λ, the row λ of the irrep, isospin I, isospin
projection I3, strangeness S, and an identifier specifying
the different operators in each symmetry channel. We
focus on baryons containing only u, d, s quarks. The cor-
responding source operators are

Bl(t) = c
(l)∗
αβγ Φ

ABC

αβγ (t). (20)

In order to build up the necessary orbital and ra-
dial structures expected in the hadron excitations, we
use a variety of spatially-extended configurations for our
hadron operators, as shown in Table I. First, consider the
zero-momentum operators. The simplest meson opera-
tors combine the quark and antiquark fields at the same
lattice site. We refer to these as single-site (SS) opera-
tors. In the singly-displaced (SD) meson operators, the
quark is displaced from the antiquark along a direction
parallel to one of the axes of the lattice. If the quark is co-
variantly displaced from the antiquark along an L-shaped
path, we refer to this as a doubly-displaced-L (DDL)
operator. Displacement of the quark along a U-shaped
path or in three orthogonal directions from the antiquark
leads to triply-displaced-U (TDU) and triply-displaced-
O (TDO) meson operators, respectively, as shown in Ta-
ble I. The simplest baryon operators combine the three
quarks at a single lattice site. In the singly-displaced
baryons, one of the quarks is displaced from the other
two along a direction parallel to one of the axes of the
lattice. Displacement of two quarks away from the site
of the Levi-Civita coupling leads to doubly-displaced-I
(DDI) and doubly-displaced-L baryon operators of zero
momentum. All three quarks can be displaced from the
color-coupling site, producing triply-displaced-T (TDT)
and triply-displaced-O baryon operators of zero momen-
tum, as illustrated in Table I. For simplicity, all dis-
placement lengths along each of the different directions
are taken to be the same in any given operator. For
mesons, we use a length of 3as, and for baryons, the
length is 2as, as will be discussed later.

For nonzero momenta, we restrict our attention to
on-axis momenta, such as in the ±x̂, ±ŷ, ±ẑ direc-
tions, to momenta in a planar-diagonal direction, such
as ±x̂ ± ŷ, ±x̂ ± ẑ, ±ŷ ± ẑ, and momenta in a cubic-
diagonal direction, such as ±x̂ ± ŷ ± ẑ. We expect
that the above momentum directions are sufficient for
studying the stationary-states in the range of energies
of interest to us. For on-axis momenta, we construct
single-site meson and baryon operators, longitudinally-
singly-displaced (LSD) operators in which one quark is
displaced along the direction of the momentum, and
transverse-singly-displaced (TSD) operators, in which
one quark is displaced along a direction of the lattice
transverse to the momentum. For planar-diagonal mo-
menta, we use single-site meson and baryon operators,
transverse-singly-displaced operators in which one quark
is displaced along the direction of the lattice that is per-
pendicular to the plane containing the momentum di-
rection, and planar-singly-displaced (PSD) operators in
which one quark is displaced along one of the two direc-
tions of the lattice coinciding with the nonzero compo-
nents of the momentum. For cubic-diagonal momenta,
we use single-site and singly-displaced (SD) configura-
tions for both baryons and mesons. For such momenta,
displacements along the lattice axes are neither entirely
transverse nor entirely longitudinal to the momentum.
For mesons, we also use triply-displaced-O (TDO) oper-
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TABLE II: Our choices for the reference momentum pref di-
rections and the reference rotations Rref for each momentum
p direction that we use.

pref direction p direction Rp

ref

(0, 0, 1) ( 0, 0,−1) C2x

( 1, 0, 0) C4y

(−1, 0, 0) C−1
4y

( 0,−1, 0) C4x

( 0, 1, 0) C−1
4x

(0, 1, 1) (0,−1,−1) C2x

(0, 1,−1) C−1
4x

(0,−1, 1) C4x

( 1, 0, 1) C−1
4z

(−1, 0,−1) C2b = C2xC4z

( 1, 0,−1) C2a = C2yC4z

(−1, 0, 1) C4z

( 1, 1, 0) C4y

(−1,−1, 0) C2d = C2zC4y

( 1,−1, 0) C2c = C4yC2z

(−1, 1, 0) C−1
4y

( 1, 1, 1) ( 1, 1,−1) C4y

( 1,−1, 1) C4x

( 1,−1,−1) C2x

(−1, 1, 1) C4z

(−1, 1,−1) C2y

(−1,−1, 1) C2z

(−1,−1,−1) C2d = C2zC4y

ators for the on-axis, planar-diagonal, and cubic-diagonal
momenta.

For a given flavor structure, the next step in our
single-hadron operator construction is to find coefficients
in Eqs. (15) and (19) that produce operators which
transform irreducibly under all symmetries of the three-
dimensional cubic lattice. First, for each class of mo-
menta, such as on-axis or planar-diagonal, we choose
one representative reference momentum direction pref .
We then find coefficients corresponding to operators that
transform irreducibly under the little group of pref . Re-
call that the little group of pref is the subset of symmetry
operations that leave the reference momentum pref in-
variant. Next, for each momentum direction p in a class
of momenta, we select one reference rotation Rp

ref that
transforms pref into p. As long as the selected group el-
ement transforms pref into p, it does not matter which
group element is chosen, but a choice must be made and
clearly specified. Hadron operators having a momentum
in the direction of p are then obtained by applying the
reference rotation to the operators constructed using the
momentum in the direction of pref . Our choices of ref-
erence momenta directions and reference rotations are
listed in Table II.

Our choices of reference directions and rotations, as

TABLE III: The little group corresponding to reference mo-
mentum direction (0, 0, 0) is Oh. The elements of the double
group OD

h are listed below, grouped into conjugacy classes. E
is the identity element, E represents a rotation by 2π about
any axis, and G = EG for each element G in Oh. Spatial
inversion Is in OD

h satisfies I2s = E and I−1
s = Is. Conjugacy

classes C9 through C16 are not listed below. The elements of
class Cn+8 are obtained by multiplying each of the elements
in class Cn by Is.

C1 = {E}
C2 = {C3α, C3β, C3γ , C3δ, C

−1
3α , C−1

3β , C−1
3γ , C−1

3δ }
C3 = {C2x, C2y , C2z, C2x, C2y , C2z}
C4 = {C4x, C4y , C4z, C

−1
4x , C−1

4y , C−1
4z }

C5 = {C2a, C2b, C2c, C2d, C2e, C2f ,

C2a, C2b, C2c, C2d, C2e, C2f}
C6 = {E}
C7 = {C3α, C3β , C3γ , C3δ, C

−1
3α , C

−1
3β , C

−1
3γ , C

−1
3δ }

C8 = {C4x, C4y , C4z, C
−1
4x , C

−1
4y , C

−1
4z }

well as our choices of the irreducible representation matri-
ces, described later, are dictated mainly by simplicity. An
alternate approach would be to choose the z-direction as
the single reference direction, obtain all other momenta
using a rotation defined by the Jacob-Wick convention,
and use irreducible representation matrices correspond-
ing to helicity states. Since our procedure for combining
the single-hadron operators into multi-hadron operators
is automated using Maple, we found that there was no
great advantage in using the standard Jacob-Wick con-
vention with helicities.

The little groups associated with our choices of refer-
ence momentum directions are listed in Tables III, IV,
V, and VI. To describe both mesons and baryons, we
need the single-valued and double-valued (spinorial) ir-
reps of these groups. The double-valued representations
of a group G are constructed by extending the group el-
ements to form the so-called “double group” GD. This
is done by introducing a new generator, denoted by E,
which represents a rotation by 2π about any axis. For
each element G of the original group, the double group
contains another element G = EG. For the convenience
of the reader, the elements of the double groups associ-
ated with our choices of reference momentum directions
are explicitly listed in Tables III, IV, V, and VI, grouped
into their conjugacy classes.

The irreducible representations of these little groups
and their characters are listed in Tables VII, VIII, IX,
and X. One-dimensional single-valued irreps are labelled
by A or B, two-dimensional irreps are denoted by E,
and three-dimensional irreps are labelled by T . One-
dimensional double-valued irreps are denoted by F , two-
dimensional spinor irreps are denoted by G, and four-
dimensional irreps are indicated by H . A subscript g
indicates an even-parity irrep, whereas a subscript u in-
dicates an odd-parity irrep. For mesons which are eigen-
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TABLE IV: The little group corresponding to reference mo-
mentum direction (0, 0, 1) is C4v . The elements of the double
group CD

4v for this reference momentum direction are listed
below, grouped into conjugacy classes. E is the identity ele-
ment, E represents a rotation by 2π about any axis.

C1 = {E}
C2 = {C2z , C2z}
C3 = {C4z , C

−1
4z }

C4 = {IsC2x, IsC2y , IsC2x, IsC2y}
C5 = {IsC2a, IsC2b, IsC2a, IsC2b}
C6 = {E}
C7 = {C4z, C

−1
4z }

TABLE V: The little group corresponding to reference mo-
mentum direction (0, 1, 1) is C2v . The elements of the double
group CD

2v for this reference momentum direction are listed
below, grouped into conjugacy classes.

C1 = {E}
C2 = {C2e, C2e}
C3 = {IsC2f , IsC2f}
C4 = {IsC2x, IsC2x}
C5 = {E}

states of G-parity, a “+” superscript indicates an irrep
describing states even under G-parity, and a “−” super-
script indicates an irrep associated with states odd under
G-parity. Our notation differs from that of Refs. [27, 28].
Our method of constructing the hadron operators that

transform irreducibly under each little group makes use
of group-theoretical projections and is described in detail
in Ref. [1]. The first step in the method is to identify a
basis of hadron elemental operators Φi(t) at a single time
t that transform into one another under the elements of
the little group G. The key formula in obtaining the linear
combinations Oi of these basis operators that transform
irreducibly under G is

OΛλ
i (t) =

dΛ
gGD

∑

R∈GD

Γ
(Λ)
λλ (R) UR Φi(t) U

†
R, (21)

where GD is the double group of G, R denotes an element

TABLE VI: The little group corresponding to reference mo-
mentum direction (1, 1, 1) is C3v . The elements of the double
group CD

3v are listed below, grouped into conjugacy classes.

C1 = {E}
C2 = {C3δ, C

−1
3δ }

C3 = {IsC2b, IsC2d, IsC2f}
C4 = {E}
C5 = {C3δ , C

−1
3δ }

C6 = {IsC2b, IsC2d, IsC2f}

TABLE VII: Characters χΛ of the single-valued and double-
valued irreducible representations Λ of the group Oh. Only
the even-parity irreps (subscript g) and classes C1 to C8 are
shown below. For the even-parity irreps, χΛ

n+8 = χΛ
n , where

χΛ
n denotes the character of Λ for all group elements in class

Cn. For the odd-parity irreps (subscript u instead of g), χΛu
n =

χ
Λg
n for n = 1 . . . 8, and χΛu

n = −χ
Λg
n for n = 9 . . . 16.

Λ χΛ
1 χΛ

2 χΛ
3 χΛ

4 χΛ
5 χΛ

6 χΛ
7 χΛ

8

A1g 1 1 1 1 1 1 1 1

A2g 1 1 1 −1 −1 1 1 −1

Eg 2 −1 2 0 0 2 −1 0

T1g 3 0 −1 1 −1 3 0 1

T2g 3 0 −1 −1 1 3 0 −1

G1g 2 1 0
√
2 0 −2 −1 −

√
2

G2g 2 1 0 −
√
2 0 −2 −1

√
2

Hg 4 −1 0 0 0 −4 1 0

TABLE VIII: Characters χΛ for the single-valued and double-
valued irreps Λ of the group C4v .

Λ χΛ
1 χΛ

2 χΛ
3 χΛ

4 χΛ
5 χΛ

6 χΛ
7

A1 1 1 1 1 1 1 1

A2 1 1 1 −1 −1 1 1

B1 1 1 −1 1 −1 1 −1

B2 1 1 −1 −1 1 1 −1

E 2 −2 0 0 0 2 0

G1 2 0
√
2 0 0 −2 −

√
2

G2 2 0 −
√
2 0 0 −2

√
2

of GD, gGD is the number of elements in GD, dΛ is the
dimension of the Λ irreducible representation, and ΓΛ(R)
is the matrix for element R in irrep Λ.

To carry out the projections in Eq. (21), explicit repre-
sentation matrices Γ are needed for each group element,
and a representation for the Dirac γ-matrices must be
selected. We use the Dirac-Pauli representation for the
γ-matrices, as described in Ref. [1]. Often, helicity states
are used for moving hadrons in continuous space-time.
We could find no great advantage in using a helicity rep-
resentation for our subsequent lattice calculations involv-
ing multi-hadron operators. The use of helicity states
does not result in any reduction in the number of ir-
rep rows that must be evaluated for the single moving
hadron states. All of our group theory manipulations are
implemented using Maple, so the computational effort
is independent of our choices of representation matrices.
Instead, we chose the simplest possible matrices for our
irreducible representations. Our choices of representa-
tion matrices are summarized in Tables XI, XII, XIII,
and XIV. The representation matrices for all group ele-
ments can be obtained by suitable multiplications of the
matrices shown in these tables.

For a given set of elemental hadron operators that
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TABLE IX: Characters χΛ for the single-valued and double-
valued irreps Λ of the group C2v.

Λ χΛ
1 χΛ

2 χΛ
3 χΛ

4 χΛ
5

A1 1 1 1 1 1

A2 1 1 −1 −1 1

B1 1 −1 1 −1 1

B2 1 −1 −1 1 1

G 2 0 0 0 −2

TABLE X: Characters χΛ for the single-valued and double-
valued irreps Λ of the group C3v.

Λ χΛ
1 χΛ

2 χΛ
3 χΛ

4 χΛ
5 χΛ

6

A1 1 1 1 1 1 1

A2 1 1 −1 1 1 −1

E 2 −1 0 2 −1 0

F1 1 −1 i −1 1 −i

F2 1 −1 −i −1 1 i

G 2 1 0 −2 −1 0

TABLE XI: Our choices for the representation matrices Γ of
the single-valued and double-valued irreps Λ of the group Oh

for zero momentum operators. Only the even-parity irreps
(subscript g) are shown below. The matrices for C4y and C4z

for the odd-parity irreps (subscript u) are the same. Spatial

inversion Is is the third generator. Γ(Λ)(Is) is the identity
matrix for the even-parity irreps, and minus one times the
identity for the odd-parity irreps. The matrices for all other
group elements can be obtained from appropriate multiplica-
tions of the matrices below and the matrix for Is.

Λ Γ(Λ)(C4y) Γ(Λ)(C4z)

A1g [1] [1]

A2g [−1] [−1]

Eg
1

2

[
1

√
3√

3 −1

] [
−1 0

0 1

]

T1g




0 0 1

0 1 0

−1 0 0







0 −1 0

1 0 0

0 0 1




T2g




0 0 −1

0 −1 0

1 0 0







0 1 0

−1 0 0

0 0 −1




G1g
1√
2

[
1 −1

1 1

]
1√
2

[
1−i 0

0 1+i

]

G2g
−1√
2

[
1 −1

1 1

]
−1√
2

[
1−i 0

0 1+i

]

Hg
1

2
√
2




1 −
√
3

√
3 −1√

3 −1 −1
√
3√

3 1 −1 −
√
3

1
√
3

√
3 1




1√
2




−1−i 0 0 0

0 1−i 0 0

0 0 1+i 0

0 0 0 −1+i




TABLE XII: Our choices for the representation matrices Γ of
the single-valued and double-valued irreps Λ of the little group
C4v for momentum in the direction (0, 0, 1). The matrices for
all other group elements can be obtained from appropriate
multiplications of the matrices below.

Λ Γ(Λ) (C4z) Γ(Λ) (IsC2y)

A1 [1] [1]

A2 [1] [−1]

B1 [−1] [1]

B2 [−1] [−1]

E

[
0 −1

1 0

] [
1 0

0 −1

]

G1
1√
2

[
1− i 0

0 1 + i

] [
0 −1

1 0

]

G2
−1√
2

[
1− i 0

0 1 + i

] [
0 −1

1 0

]

TABLE XIII: Our choices for the representation matrices Γ of
the single-valued and double-valued irreps Λ of the little group
C2v for momentum in the direction (0, 1, 1). The matrices for
all other group elements can be obtained from appropriate
multiplications of the matrices below. C2e = C2zC4x is a
rotation about (0, 1, 1), and C2f = C2yC4x is a rotation about
(0, 1,−1).

Λ Γ(Λ) (C2e) Γ(Λ) (IsC2f )

A1 [1] [1]

A2 [1] [−1]

B1 [−1] [1]

B2 [−1] [−1]

G
1√
2

[
−i −1

1 i

]
1√
2

[
i −1

1 −i

]

TABLE XIV: Our choices for the representation matrices Γ of
the single-valued and double-valued irreps Λ of the little group
C3v for momentum in the direction (1, 1, 1). The matrices for
all other group elements can be obtained from appropriate
multiplications of the matrices below. C3δ = C4yC4z is a
rotation about (1, 1, 1), and C2b = C2xC4z is a rotation about
(1,−1, 0).

Λ Γ(Λ) (C3δ) Γ(Λ) (IsC2b)

A1 [1] [1]

A2 [1] [−1]

E
1

2

[
−1

√
3

−
√
3 −1

] [
−1 0

0 1

]

F1 [−1] [i]

F2 [−1] [−i]

G
1

2

[
1− i −1− i

1− i 1 + i

]
1√
2

[
0 1− i

−1− i 0

]
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transform among one another, many of the projections
in Eq. (21) vanish or lead to linearly-dependent opera-
tors, so the final step in the operator construction is to
choose suitable linear combinations of the projected op-
erators to obtain a final set of independent single-hadron
operators. These linear combinations are obtained using
a Gram-Schmidt procedure as described in Ref. [1].
At the end of this entire procedure, we obtain single-

hadron annihilation operators BII3S
pΛλi characterized by

total isospin I, the projection of the total isospin I3,
strangeness S, momentum p, little group irrep Λ, and ir-
rep row λ. Here, we use the index i to indicate all other
quantum numbers and identifying information. All of
these single-hadron operators constructed as described
above transform under a group element (R, b) of the
space group O1

h, in which x → Rx+ b, according to

U(R,b)B
II3S
pΛλi(t)U

†

(R,b)= BII3S
RpΛµi(t) Γ

(Λ)
µλ (Rp

W )∗eib·Rp,

U(R,b)B
II3S

pΛλi(t)U
†

(R,b)= B
II3S

RpΛµi(t) Γ
(Λ)
µλ (Rp

W )e−ib·Rp,

(22)

where the Wigner rotation is given by

Rp

W = (RRp

ref )
−1 R Rp

ref , (23)

and is an element of the little group of p. Note that
the above equations apply even when R refers to spatial
inversion Is. Eqs. (22) and (23) play a crucial role when
forming the multi-hadron operators. The behaviors of
our operators under G-parity and isospin rotations are
considered below.
In Ref. [1], the odd-parity zero-momentum baryons

were constructed from their even-parity partner op-
erators utilizing a particular transformation involv-
ing charge-conjugation. For a given even-parity zero-
momentum baryon operator Bg

i (t), an odd-parity opera-
tor Bu

i (t) can be defined by rotating the three Dirac in-
dices using the γ2 matrix and replacing the expansion co-
efficients by their complex conjugates. This yields partic-
ular relationships between the temporal correlation ma-
trices of the even-parity baryons and the time-reversed
correlation matrices of the odd-parity baryon operators,
allowing averaging over forward and backward temporal
propagations in some cases for increased statistics. How-
ever, for the baryon operators having nonzero momen-
tum, parity is no longer a good quantum number since
it reverses the three-momentum. For this reason, we do
not bother to apply a generalization of the above proce-
dure in constructing the odd-parity baryon operators of
nonzero momentum, especially since the increased sta-
tistical precision can be obtained in other more efficient
ways when using the stochastic LapH method.
In constructing our light pion and kaon operators, we

take symmetry under time reversal into account. Al-
though the lattices we use are rather large in temporal
extent, temporal wrap-around effects can still come into
play for the light pions and kaons in certain situations
where high precision is needed, such as in studying the ππ

scattering phase shifts. Energies can be extracted with
increased statistical precision if meson operators whose
temporal correlations are symmetric under time reversal
are used. Symmetry under time reversal helps in ex-
tracting meson energies whenever temporal wrap-around
effects become non-negligible since the functional forms
used for fitting the data have fewer parameters, leading
to more precise energy estimates. For meson operators,
the energies of the states propagating backwards in time
are the same as those of the states traveling forwards in
time, but the couplings of a given meson operator to the
forward-propagating states can differ from the couplings
to the backward-propagating states if symmetry under
time reversal is not taken into account.
We can reduce the number of needed fit parameters if

we use meson operators whose temporal correlation ma-
trices satisfy Cµν(t) = Cµν(Nt − t), where Nt is the tem-
poral extent of the lattice, assuming periodic boundary
conditions in time. This can be achieved if each me-
son operator itself satisfies Mi(t) = η Mi(Nt − t), with
|η|2 = 1. Under a certain symmetry of the lattice ac-
tion that involves time reversal, the covariantly-displaced
LapH-smeared quark fields transform according to

qAaαj(x) −→ (γ4γ5)αβ q
A
aβj(T x),

qAaαj(x) −→ qAaβj(T x) (γ4γ5)βα, (24)

where (T x)j = xj and (T x)4 = Nt − x4. Since wrap-
around effects are a potential problem only for the light-
est mesons, we decided to modify only the symmetry
channels containing the lightest pseudoscalars (π,K, η).
In each case, we projected the operators into the even and
odd operators under the above transformation. Numeri-
cal tests using a small number of configurations showed
that the odd operators performed somewhat better, but
the difference was not very significant. Hence, we dis-
carded the even operators, and kept the odd operators.
Note that the operator ψγ5ψ is odd under the above
transformation.
As in Ref. [1], we work in the approximation that the

masses of the u and d quarks are equal, and we neglect
electromagnetic interactions. In this approximation, the
theory has an exact isotopic spin symmetry, and states
are characterized by total isospin I, its projection I3 onto
a given axis, and strangeness S. Again, we consider only
the u, d, s quarks here. Incorporating this isospin sym-
metry into our operators is straightforward and has been
described in Ref. [1]. The flavor structure of the hadron
operators we use are summarized in Table XV. Due to
an approximate SU(3) uds-flavor symmetry, quark fla-
vor combinations in meson and baryon operators are of-
ten chosen according to the irreducible representations
of SU(3) flavor. Such combinations are simply linear
superpositions of the operators presented in Table XV.
Since we plan to obtain Monte Carlo estimates of the
complete correlation matrices of operators including all
allowed flavor combinations, the use of linear superposi-
tions which transform irreducibly under SU(3) flavor is
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TABLE XV: Flavor structure of the elemental hadron anni-
hiliation operators we use. Each is characterized by isospin
I , maximal I3 = I , strangeness S, and G-parity, where appli-
cable, expressed in terms of the gauge-invariant three-quark
and quark-antiquark operators defined in Eqs. (17) and (13),
respectively. UG is the quantum operator that effects a G-
parity transformation. Recall that f, f ′, h, h′, b, a are even-
parity mesons, while η, η′, ω, φ, ρ, π are odd-parity mesons.
Also, a flavored meson is named K∗ if its total spin J and
parity P are both odd or both even, otherwise it is named K.

Hadron I = I3 S G Annihilation operators

∆++ 3
2

0 Φuuu
αβγ

Σ+ 1 −1 Φuus
αβγ

N+ 1
2

0 Φuud
αβγ − Φduu

αβγ

Ξ0 1
2

−2 Φssu
αβγ

Λ0 0 −1 Φuds
αβγ − Φdus

αβγ

Ω− 0 −3 Φsss
αβγ

f, f ′, η, η′ 0 0 1 Φuu
αβ+Φdd

αβ+UG(Φ
uu
αβ+Φdd

αβ)U
†
G

Φss
αβ + UGΦ

ss
αβU

†
G

h, h′, ω, φ 0 0 −1 Φuu
αβ+Φdd

αβ−UG(Φ
uu
αβ+Φdd

αβ)U
†
G

Φss
αβ − UGΦ

ss
αβU

†
G

b+, ρ+ 1 0 1 Φdu
αβ + UGΦ

du
αβU

†
G

a+, π+ 1 0 −1 Φdu
αβ − UGΦ

du
αβU

†
G

K+, K∗+ 1
2

1 Φsu
αβ

K
0
, K

∗0 1
2

−1 Φds
αβ

unnecessary. For example, we construct isoscalar meson
operators having flavor content uu + dd separately from
those having flavor content ss. Our correlation matri-
ces then allow mixings of these operators. Our choices
of operators described in Table XV are dictated by com-
putational simplicity. In summary, we construct single-
hadron operators that transform under an isospin rota-
tion Rτ according to

URτ
BII3S

pΛλi(t)U
†
Rτ

= B
II′

3S
pΛλi(t) D

(I)
I′

3
I3
(Rτ )

∗,

URτ
B

II3S

pΛλi(t)U
†
Rτ

= B
II′

3S

pΛλi(t) D
(I)
I′

3
I3
(Rτ ), (25)

where D(I)(Rτ ) are the familiar Wigner rotation matri-
ces. Our meson operators M are constructed such that
they transform under G-parity according to

UGM
II3,S
pΛλi (t)U

†
G = ηΛM

II3,−S
pΛλi (t),

UGM
II3,S

pΛλi (t)U
†
G = ηΛM

II3,−S

pΛλi (t), (26)

where ηΛ = 1 if S = ±1, and when the strangeness S = 0,
then ηΛ = ±1 depending on the G-parity superscript of
the irrep Λ.
To associate our finite-box energies with observed

hadrons, it is necessary to know which spin-J irreps of
the continuous group of rotations occur in which irreps
of the octahedral point group. For the convenience of
the reader, the spin contents of the Oh single-valued and

TABLE XVI: Continuum limit spin identification: the num-
ber nJ

Λ of times that the Λ single-valued irrep of the octahedral
point group Oh occurs in the (reducible) subduction of the in-
teger J irrep of SU(2). The numbers for A1u, A2u, Eu, T1u,
T2u are the same as for A1g, A2g, Eg, T1g , T2g, respectively.

J nJ
A1g

nJ
A2g

nJ
Eg

nJ
T1g

nJ
T2g

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0 1 1

4 1 0 1 1 1

5 0 0 1 2 1

6 1 1 1 1 2

7 0 1 1 2 2

8 1 0 2 2 2

9 1 1 1 3 2

TABLE XVII: Continuum limit spin identification: the num-
ber nJ

Λ of times that the Λ double-valued irrep of the oc-
tahedral point group Oh occurs in the (reducible) subduc-
tion of the half-integral J irrep of SU(2). The numbers for
G1u, G2u,Hu are the same as for G1g, G2g,Hg, respectively.

J nJ
G1g

nJ
G2g

nJ
Hg

J nJ
G1g

nJ
G2g

nJ
Hg

1
2

1 0 0 9
2

1 0 2
3
2

0 0 1 11
2

1 1 2
5
2

0 1 1 13
2

1 2 2
7
2

1 1 1 15
2

1 1 3

double-valued irreps are listed in Tables XVI and XVII,
respectively. These tables list the number of times that
each irrep Λ of Oh appears in various J irreps of SU(2)
subduced to the double group of Oh. Table XVIII is use-
ful for identifying which hadrons of nonzero momentum
appear in which irreps of the little groups. The decom-
positions of the subduced representations of Oh into the
irreps of the little groups C4v, C3v, and C2v are given
in this table. Table XIX lists the irreps of Oh in which
various common hadrons at rest appear.

III. IMPLEMENTATION DETAILS

In order to test the effectiveness of the single-hadron
operators that we have designed, Monte Carlo calcula-
tions must be carried out. Details on how the tempo-
ral correlations of hadron operators are evaluated us-
ing Monte Carlo integration with the stochastic LapH
method are presented in this section. Many of these de-
tails have already been described in Ref. [6], so only de-
tails in addition to those in Ref. [6] are presented here,
along with some reiteration of important run parameters.
Our computations use the so-called stochastic LapH
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TABLE XVIII: Subduction ↓ of the irreducible representa-
tions of Oh to the irreducible representations of the little
groups C4v, C3v , and C2v.

Λ (Oh) ↓ C4v ↓ C3v ↓ C2v

A1g A1 A1 A1

A1u A2 A2 A2

A2g B1 A2 B2

A2u B2 A1 B1

Eg A1 ⊕B1 E A1 ⊕B2

Eu A2 ⊕B2 E A2 ⊕B1

T1g A2 ⊕E A2 ⊕ E A2 ⊕B1 ⊕B2

T1u A1 ⊕E A1 ⊕ E A1 ⊕B1 ⊕B2

T2g B2 ⊕ E A1 ⊕ E A1 ⊕ A2 ⊕B1

T2u B1 ⊕ E A2 ⊕ E A1 ⊕ A2 ⊕B2

G1g/u G1 G G

G2g/u G2 G G

Hg/u G1 ⊕G2 F1 ⊕ F2 ⊕G 2G

TABLE XIX: The irreducible representations of Oh in which
various commonly-known hadrons at rest occur.

Hadron Irrep Hadron Irrep Hadron Irrep

π A−
1u K A1u η, η′ A+

1u

ρ T+
1u ω,φ T−

1u K∗ T1u

a0 A+
1g f0 A+

1g h1 T−
1g

b1 T+
1g K1 T1g π1 T−

1u

N,Σ G1g Λ,Ξ G1g ∆,Ω Hg

method[6] and are done in a sequence of steps: (a) gener-
ation of gauge-field configurations using the Monte Carlo
method; (b) computation of quark sinks for various noises
and dilution projectors using the configurations from the
first step; (c) computation of the single meson and sin-
gle baryon sources and sinks using the quark sources and
sinks from the second step; (d) evaluation of the cor-
relators using the single-hadron sources and sinks and
their combinations into multi-hadron sources and sinks;
and (e) analysis of the correlators to extract the energies.
These steps are discussed below.
A description of step (a) is given in Ref. [29]. We are

currently focusing on three Monte Carlo ensembles: (A) a
set of 412 gauge-field configurations on a large 323 × 256
anisotropic lattice with a pion mass mπ ∼ 240 MeV,
(B) an ensemble of 551 configurations on an 243 × 128
anisotropic lattice with a pion mass mπ ∼ 390 MeV, and
(C) an ensemble of 584 configurations on an 243 × 128
anisotropic lattice with a pion mass mπ ∼ 240 MeV.
We refer to these ensembles as the (323|240), (243|390),
and (243|240) ensembles, respectively. These ensembles
were generated using the Rational Hybrid Monte Carlo
(RHMC) algorithm[30], which is a Metropolis method
with a sophisticated means of proposing a global change
to the gauge and pseudofermion fields. A fictitious mo-

mentum is introduced for each link variable with a Gaus-
sian distribution, and a Hamiltonian is formed involving
these momenta and the original action as a potential en-
ergy. A new field configuration is proposed by approxi-
mately solving Hamilton’s equations for some length of
fictitious time, known as an RHMC trajectory. In each
ensemble, successive configurations are separated by 20
RHMC trajectories to minimize autocorrelations. An
improved anisotropic clover fermion action and an im-
proved gauge field action are used[29]. In these ensem-
bles, β = 1.5 and the s quark mass parameter is set to
ms = −0.0743 in order to reproduce a specific combi-
nation of hadron masses[29]. In the (243|390) ensemble,
the light quark mass parameters are set to mu = md =
−0.0840 so that the pion mass is around 390 MeV if one
sets the scale using the Ω baryon mass. In the (323|240)
and (243|240) ensembles, mu = md = −0.0860 are used,
resulting in a pion mass around 240 MeV. The spatial
grid size is as ∼ 0.12 fm, whereas the temporal spacing
is at ∼ 0.035 fm.

A description of step (b) above, computation of the
quark sinks, is given in Ref. [6]. We employ the Lapla-
cian Heaviside (LapH) quark-field smearing scheme de-
fined using the three-dimensional gauge-covariant Lapla-
cian expressed in terms of a stout-smeared gauge field.
The spatial links are smeared using the stout-link proce-
dure described in Ref. [25] with nξ = 10 iterations and
staple weight ξ = 0.10. For the cutoff in the LapH smear-
ing, we use σ2

s = 0.33, which translates into the number
Nv of LapH eigenvectors retained being Nv = 112 for the
243 lattices and Nv = 264 for the 323 lattice. We use Z4

noise in all of our stochastic estimates of quark propa-
gation. Our variance reduction procedure is similar to
that described in Ref. [31]. Our noise dilution projectors
are products of time dilution, spin dilution, and LapH
eigenvector dilution projectors. We use a triplet (T, S,
L) to specify a given dilution scheme, where “T” denotes
time, “S” denotes spin, and “L” denotes LapH eigenvec-
tor dilution. The schemes are denoted by 1 for no dilu-
tion, F for full dilution, and BK and IK for block-K and
interlace-K, respectively (see Ref. [6]). For all forward-
time quark lines connecting source time t0 to the later
sink time tF , we use the dilution scheme (TF, SF, LIj),
where j = 8 for mesons and j = 4 for baryons. We
chose j = 4 for baryons in order to dramatically reduce
the disk space needed to store the baryon sources/sinks
by a factor of eight. We found that the statistical er-
rors in the baryon effective masses only increased by a
factor of two in changing from LI8 to LI4. Given the
eightfold reduction in both storage and computing time,
we deemed this an acceptable loss of accuracy. For all
same-sink-time tF -to-tF quark lines, the dilution scheme
(TI16, SF, LIj) is used, where j = 8 for mesons and j = 4
for baryons. The TI16 interlacing in time enables us to
evaluate quark lines that originate on any time slice, al-
lowing us to evaluate all diagrams needed to obtain the
temporal correlations involving single-hadron and multi-
hadron operators. Four widely-separated source times t0
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TABLE XX: The numbers Nop of single-hadron operators
whose sinks and sources have been computed. The opera-
tor numbers include operators having zero, on-axis, planar-
diagonal, and cubic-diagonal momenta, as well as momenta
for the pions in various special directions, such as (0, 1, 2) and
(1, 1, 2). Nmom indicates the number of momenta in the op-
erator sets. Here, π refers to any isovector quark-antiquark
meson operator with flavor content such as du (such as a, b,
π, and ρ mesons), η refers to any uu+ dd isoscalar meson op-
erator, φ refers to any ss isoscalar meson operator, K refers
to any quark-antiquark operator having flavor content su or
sd such that its strangeness is S = 1, and K is any quark-
antiquark operator having flavor content us or ds such that
its strangeness is S = −1.

(243|390) (243|240) (323|240)
Nop Nmom Nop Nmom Nop Nmom

π 1776 123 2028 123 2740 149

η 2012 51 2204 51 3078 77

φ 2012 51 2204 51 3078 77

K 1499 51 1517 51 1949 65

K 1499 51 1517 51 1949 65

N/∆ 1472 33 - - 1616 59

Λ/Σ 2274 33 - - 2054 51

Ξ 1320 33 - - 700 51

Ω 728 33 - - 680 45

are used on each 243 gauge configuration, whereas eight
t0 values are used on the 323 lattice.

Details about how the single-hadron sources and sinks
are computed in step (c) above can be found in Ref. [6]. A
comprehensive survey of the spectrum of excited states in
QCD requires obtaining temporal correlations of a large
number of different operators. For example, KK oper-
ators must mix with ππ operators, and so on. Hence,
a large variety of single-hadron operators must be avail-
able in the study of each sector, and a plethora of Wick
contractions must be evaluated. In order to study all
stationary states of QCD involving the u, d, s quarks, we
need suitable sources and sinks for all isovector mesons
(π, ρ, a, b), all isoscalar mesons (η, f, h, ω, φ), and all
kaons. To study KK states, we also need separate an-
tikaon sources and sinks. For the isoscalar mesons, sepa-
rate uu+dd and ss operators are evaluated, and these will
be allowed to mix in the correlation matrices. We also
need all single-baryon N,∆,Ξ,Λ,Σ,Ω sources and sinks.
Each hadron source and sink involves a summation over
color indices and the spatial sites on each time-slice of
the lattice. Different spin components and displacement
directions are combined to form the hadron operators
which transform irreducibly under the symmetry opera-
tions of the spatial lattice.

Using the lowest-lying energies in each symmetry sec-
tor as determined from low-statistics runs on small 163

lattices, we systematically identified all momenta in the
different little group irreps that would be needed to cap-

ture the energy spectrum up to 0.5a−1
t , where at is the

temporal lattice spacing. This energy value ensures that
a sufficient number of hadrons accessible to experiments
can be studied without overwhelming the computational
resources available to us. The numbers Nop of single-
hadron operators whose sinks and sources have been com-
puted are listed in Table XX. The operator numbers
include operators having zero, on-axis, planar-diagonal,
and cubic-diagonal momenta, as well as momenta for
pions in various special directions, such as (0, 1, 2) and
(1, 1, 2). Nmom indicates the number of momenta in
the operator sets. These operators were chosen from
much larger sets. Small-volume, low-statistics runs were
done to select operators having lower statistical noise and
smaller contamination from higher-lying eigenstates. In
this table, π refers to any isovector quark-antiquark me-
son operator with flavor content such as du (such as a, b,
π, and ρ mesons), η refers to any uu+dd isoscalar meson
operator, φ refers to any ss isoscalar meson operator, K
refers to any quark-antiquark operator having flavor con-
tent su or sd such that its strangeness is S = 1, and K
is any quark-antiquark operator having flavor content us
or ds such that its strangeness is S = −1. The N and ∆
were computed simultaneously, and so were the Λ and Σ,
since these baryons share many of the same three-quark
components.

Our final correlation matrices will not use such large
numbers of operators. We will combine the single-hadron
operators into two- and three-particle operators, pro-
jected into the irreps of the Oh point group. A last
round of operator selections will then occur. Many of
the multi-hadron operators will not produce signals of
suitable quality or be linearly dependent with other oper-
ators. We will have to identify a final set of multi-hadron
operators that best allows us to extract the low-lying en-
ergy spectrum in each symmetry sector.

For baryons containing identical quark flavors, the
sources/sinks defined by Eq. (23) in Ref. [6] can be evalu-
ated by assigning the quark spin and displacement indices
to the identical-flavor quark lines using either a single
canonical one-to-one mapping or by averaging over all
such one-to-one mappings. Averaging over the quark-
line mappings is tantamount to averaging over different
noises, so a reduction in the correlator variances can oc-
cur. However, operators of this form have more three-
quark terms in them, and the resulting increase in the
number of “elemental” three-quark operators that must
be evaluated raises the computational costs. We did some
small lattice studies to compare the benefits/cost of the
two different ways of assigning spin and displacement
indices to the identical-flavor quark lines. We decided
that the modest increase in computational cost was war-
ranted, given the variance reduction that resulted.

Since our hadrons are made out of spatially-displaced
quark fields, we carried out a study of the role of the
displacement length in the meson and baryon operators.
Excited-state contamination in the correlators of various
meson and baryon operators was investigated for a range
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of displacement lengths. For the value of as ∼ 0.12 fm
in the ensembles used, a displacement length of 3as pro-
duced operators having somewhat better overlaps with
the low-lying mesons of interest, whereas displacement
lengths 2as and 3as worked well for baryons. Our con-
clusions concerning these lengths were found to be insen-
sitive to changes in the quark-field smearing, although
we did not study this in too much detail. These displace-
ments can be rather costly for baryons, so we decided to
use 2as for all baryon operators. In addition to achiev-
ing overlaps with the states of interest, another concern
in setting the displacement length is to obtain operators
that are sufficiently different from one another to produce
correlation matrices with reasonable condition numbers.
An outline of how the temporal correlations are ob-

tained from the hadron sources and sinks, step (d) above,
is given in Ref. [6]. First, thousands of single-hadron op-
erators having different momenta for different noises, di-
lution schemes, and types of quark line ends (source or
sink, normal mode or γ5 Hermitian conjugate mode using
Eq. (17) in Ref. [6]) are evaluated and stored. The second
task in step (d) is computing the temporal correlations
using expressions such as Eqs. (24) and (33) in Ref. [6].
Given the large number of correlators that we will need
to evaluate, it is important to automate the Wick con-
traction process as much as possible. Maple is used to
create the software for the numerical evaluations. The
first step in the Maple calculations is forming appropri-
ate flavor combinations of symbolic Grassmann variables
representing single-hadron and multi-hadron operators of
definite total isospin I, strangeness S, and isospin pro-
jection I3, raising and lowering the isospin projections
of the individual constituent hadrons as needed. Next,
the Maple code carries out the actual Wick contractions
in terms of the Grassmann symbols. Finally, our Maple
program outputs the C++ subroutines for use in numer-
ically evaluating the correlators in terms of the stored
hadron sources and sinks in the different flavor sectors.
In evaluating the individual quark-line diagrams, we ap-
ply γ5 Hermiticity (see Eq. (16) in Ref. [6]) in cases where
a ψ(t0) at the source connects with a ψ(tF ) at the sink.
For all same-time quark lines, we average over estimates
obtained using both Eqs. (15) and (16) in Ref. [6] to in-
crease statistics.

IV. TESTS OF THE SINGLE-HADRON
OPERATORS

In order to test the effectiveness of the single-hadron
operators that we have designed, we examined the effec-
tive masses associated with the correlators of a variety
of meson and baryon operators having various momenta.
Samples of these effective masses are shown in Figs. 2
and 3. In these figures, we use the following definition of
the effective mass:

meff(t) = − 1

dt
ln

(
C(t+ dt)

C(t)

)
, (27)

where time separation t in the correlatorC(t) is measured
in term of the temporal lattice spacing at, and usually
dt = 3 is used.
Fig. 2 shows the effective masses, meff(t) using dt = 3,

associated with several isovector and isoscalar meson op-
erators of various momenta p = (2π/L) plat on the
(243|390) ensemble, where L = 24as is the spatial ex-
tent of the lattice. SS refers to a single-site meson oper-
ator, and LSD denotes an operator in which the quark
is displaced from the antiquark in a longitudinal direc-
tion along the direction of the momentum, as explained
in Sec. II. In a TSD operator, the quark is displaced in
a direction transverse to that of the momentum. Sev-
eral different operators of each spatial type can be con-
structed, and we label these different operators using an
integer that varies from zero to the number of such op-
erators less one. This integer is placed at the end of
the spatial type label, such as SS0 or TSD4. Results for
on-axis momentum plat = (0, 0, 1), planar-diagonal mo-
mentum plat = (0, 1, 1), and cubic-diagonal momentum
plat = (1, 1, 1) are shown. The names of the lowest-lying
known particles which appear in these finite-volume sym-
metry channels are indicated in square brackets.
Energies of the pion, nucleon, and ∆, obtained using

the (323|240) ensemble, are studied in Fig. 3. In the
left plot, effective masses associated with single-site pion
operators having different momenta are shown against
temporal separation t using dt = 3. Each effective mass
is labelled by its plat. The dispersion relation for the
pion is shown in the center plot, which displays a2tE

2

against p2
lat, where E is the pion energy. Effective masses

associated with two single-site baryon operators having
zero momentum are shown in the right plot of Fig. 3. One
effective mass corresponds to the nucleon (G1g channel)
and the other to a ∆ baryon (Hg channel).
Both Figs. 2 and 3 show that the stochastic LapH

method works well for moving hadrons on large lattices.
These plots also confirm that our choices of the gauge-
field and quark-field smearing parameters and our noise
dilution schemes for reducing variances are suitable for
treating hadron states having nonzero definite momenta
on the three Monte Carlo ensembles we plan to use.

V. TWO-HADRON OPERATORS OF DEFINITE
MOMENTUM

We construct our two-hadron operators using the same
procedure described in Sec. II to build the single-hadron
operators, except that the basic building blocks are
now the single-hadron operators instead of the elemental
three-quark and quark-antiquark operators. This pro-
cedure allows us to very efficiently build up the many
multi-hadron operators that our spectrum computations
will need. Evaluating the single-hadron sources and sinks
of various momenta requires summations over both quark
color and spin indices, as well as summations over the
spatial sites of the lattice. Once these relatively expen-
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FIG. 2: Effective masses, meff(t) using dt = 3, associated with several isovector and isoscalar meson operators of various
momenta p = (2π/L) plat on the (243|390) ensemble, where L = 24as is the spatial extent of the lattice. SS refers to a
single-site meson operator, and LSD denotes an operator in which the quark is displaced from the antiquark in a longitudinal
direction along the direction of the momentum, as explained in Sec. II. In a TSD operator, the quark is displaced in a direction
transverse to that of the momentum. For cubic-diagonal momenta, SD denotes a singly-displaced operator. The numbers
following the letters, such as in SS0, are simply identifying integer indices. Particle names in the square brackets have been
included to lend context to the little group irrep labels.

sive computations are done for the single hadrons, the
multi-hadron operators, being simple linear combinations
of the single-hadron operators, are very inexpensive to
compute, and many of them can be quickly made.

In addition to efficiency, there are good physical rea-
sons for using such multi-hadron operators. Hadron-
hadron interactions in finite volume move the energies of
any two-hadron systems away from their free two-particle
energies, and the interacting two-particle states could in-

volve distributions of different relative momenta. How-
ever, such interactions are usually small and the relative
momenta used in our operators should presumably dom-
inate in most cases. Also, we will always utilize multi-
hadron operators with a variety of different relative mo-
menta to accommodate the effects of such interactions.
The performance of some of our ππ operators are com-
pared to localized multi-hadron operators in Fig. 4, dis-
cussed below.
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FIG. 3: Pion and baryon results obtained using the (323|240) ensemble. (Left) Effective masses, meff(t) using dt = 3, against
temporal separation t, associated with single-site pion operators having different momenta. Each effective mass is labelled by its
plat. (Center) Dispersion relation for the pion showing a2

tE
2 against p2

lat, where E is the pion energy. (Right) Effective masses,
meff(t) using dt = 3, against temporal separation t, associated with two single-site baryon operators having zero momentum.
One effective mass corresponds to the nucleon (G1g channel) and the other to a ∆ baryon (Hg channel).

Each single-hadron operator is labelled by total isospin
I, the projection of the total isospin I3, strangeness S,
three-momentum p, the little group irrep Λ, the row of
the irrep λ, and i, which denotes all other identifying
information, such as the displacement type and index.
Hence, basis operators for the two-hadron operators can
be written

BIaI3aSa

paΛaλaia
BIbI3bSb

pbΛbλbib
, (28)

where B denotes either a baryon (as a Grassmann opera-
tor) or a meson, and a and b denote the separate hadrons.
Although the above operators form a perfectly acceptable
basis of operators, they do not transform irreducibly un-
der isospin rotations, nor under the O1

h symmetry trans-
formations.

To construct such irreducible operators, we first need
to know how the basis operators transform. Eqs. (22),
(23), (25), and (26) summarize the important transfor-
mation properties of our single-hadron operators. Start-
ing with the basis operators above, we first identify sub-
sets of these operators that transform among themselves
under all O1

h transformations. The total momentum
p = pa+pb is the first quantity we consider. We identify
the little group of transformations that leave p invariant,
then our goal is to construct operators that transform ac-
cording to the Λ irrep of that little group. Under group
element R of O1

h, the single particle operator BIaI3aSa

paΛaλaia
transforms into one that has possibly a different momen-
tum Rpa and is a linear combination of the different rows
of the Λa irrep. The following quantities do not change
under the O1

h transformations: Λa, Λb, ia, ib. We fix the
above quantities, then apply the same group-theoretical
projections as for the single-hadrons to construct the lin-
ear combinations that transform irreducibly. This can
be easily done since we know exactly how each of the ba-
sis operators transforms under any O1

h transformation.

Next, we form flavor combinations that transform ir-
reducibly under isospin rotations. Lastly, we apply G-
parity projections, whenever suitable.

The above procedure is applied for two-particle oper-
ators having total momenta in the directions of the ref-
erence momenta pref in Table II. An operator having
total momentum in any other direction is obtained by
applying the appropriate reference rotation Rref in Ta-
ble II to the appropriate operator having momentum in
a reference direction.

In order to test the effectiveness of the two-hadron op-
erators that we have designed, we examined the effective
masses associated with the correlators of a variety of two-
hadron operators. We also evaluated several correlation
matrices mixing single and two-hadron operators. Sam-
ples of our results are shown in Figs. 4, 5, and 6.

In the left plot of Fig. 4, effective masses using dt = 3
associated with a two-meson operator in the T1u irrep are
shown. The two-meson operator has total isospin I = 1

2
and zero total momentum and is constructed from single-
site kaon and pion operators having equal and opposite
on-axis momenta of minimal nonzero magnitude. Results
on the (243|390) and (323|240) ensembles are shown and
compared to the energies of a free π plus a free K, indi-
cated by horizontal dashed lines.

An alternative design for a two-hadron operator is to
use a suitable localized operator. For example, localized
ππ operators in the I = 2, A+

1g and I = 1, T+
1u channels

can be obtained using

(ππ)A
+

1g (t) =
∑

x

π+(x, t) π+(x, t), (29)

(ππ)T
+

1u (t) =
∑

x,k=1,2,3

{
π+(x, t) ∆kπ

0(x, t)

−π0(x, t) ∆kπ
+(x, t)

}
, (30)
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FIG. 4: (Left) Effective masses, meff(t) using dt = 3, associated with a two-meson operator in the T1u irrep, having total
isospin I = 1

2
and zero total momentum, constructed from single-site kaon and pion operators having equal and opposite

on-axis momenta of minimal nonzero magnitude. Results on the (243|390) and (323|240) ensembles are shown. The energies
of a free π plus a free K are indicated by horizontal dashed lines. (Center) Effective mass for one of our I = 1 π(1)π(−1)
operators in the T+

1u channel, consisting of single-site pion operators having equal and opposite on-axis momenta of minimal
nonzero magnitude, compared to the effective mass of a localized ππ operator, described in Eq. (30), on the (243|390) ensemble.
(Right) Effective mass for one of our I = 2 π(0)π(0) operators in the A+

1g channel, consisting of single-site pion operators

each having zero momenta, compared to the effective mass of a localized ππ operator, described in Eq. (29), on the (243|390)
ensemble.

where π(x, t) is a single-site pion field using a standard
γ5 construction with the LapH-smeared quark fields, and

∆kπ(x, t) = π(x+ k̂, t) − π(x− k̂, t). The superscripts
indicate the electric charges associated with each field.
In such localized ππ operators, the individual pions do
not have definite momenta.

The center and right plots of Fig. 4 compare the ef-
fective masses for our ππ operators to those for these
localized ππ operators. The center plot of Fig. 4 shows
the dt = 3 effective mass for one of our I = 1 π(1)π(−1)
operators in the T+

1u channel, consisting of single-site pion
operators having equal and opposite on-axis momenta of
minimal nonzero magnitude, compared to the effective
mass of the localized ππ operator, given in Eq. (30), on
the (243|390) ensemble. The right plot of Fig. 4 shows
the effective mass for one of our I = 2 π(0)π(0) operators
in the A+

1g channel, consisting of single-site pion opera-
tors each having zero momenta, compared to the effec-
tive mass of the localized ππ operator, given in Eq. (29),
on the (243|390) ensemble. One sees that the effective
masses of the localized ππ operators lie well above those
of our operators, indicating that they contain much more
excited-state contamination. These effective masses are
compared to the energies of the ground state ρ and the
free π + π energies, indicated by horizontal dashed lines,
in this figure. Note that, in addition to having much
less excited-state contamination, the two-pion operators
comprised of individual pions having definite momenta
are also much easier to make in large numbers, compared
to the localized multi-hadron operators.

The mixing of a single-site ρ quark-antiquark operator
and a two-pion operator is examined in Fig. 5. Both op-
erators transform according to the T+

1u irrep and create
states of zero total momentum. In the two-pion oper-

ator, each pion is a single-site operator travelling with
minimal nonzero on-axis momenta. In the left plot, the
2 × 2 real and symmetric correlation matrix C′

ij(t) =

Cij(t) ( Cii(τN )Cjj(τN ) )−1/2, with τN = 3, is shown.
Irrelevant normalization factors are removed by dividing
the original correlation matrix by ( Cii(τN )Cjj(τN ) )1/2

for some early τN . The condition number of this matrix
C′(t) at time t = 4 is 1.21, and at t = 20, the condition
number is 3.05. In each matrix element label, the sym-
bol to the right of the vertical bar indicates the source
operator and the symbol to the left of the vertical bar
denotes the sink operator. These results were obtained
on the (243|390) ensemble. This figure provides further
evidence that the stochastic LapH method is well suited
to studying systems involving the mixing of single and
multi-hadron operators, and that our smearing parame-
ters and noise dilution schemes were chosen judiciously.
One sees that there is a small but noticeably nonzero
mixing between these operators.
In the center plot of Fig. 5, the effective masses associ-

ated with the diagonal elements of the original correlator
matrix C(t) are displayed. A rotated correlation matrix

C̃(t) can be defined by first solving for the unitary matrix
U in the eigenvalue equation below:

C(τ0)
−1/2 C(τD) C(τ0)

−1/2 = U C̃(τD) U †, (31)

where C̃(τD) is a diagonal matrix and C(t) is the original
Hermitian correlation matrix, then writing

C̃(t) = U †C(τ0)
−1/2 C(t) C(τ0)

−1/2 U. (32)

By construction, C̃(τ0) is the identity matrix, and C̃(τD)

is a diagonal matrix. For all other times, C̃(t) need not

be diagonal. Note that C̃(t) is not a principal correlator,
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FIG. 5: Mixing of a quark-antiquark single-site ρ operator and a two-pion operator. Both operators transform according to the
T+
1u irrep and create states of zero total momentum. In the two-pion operator, each pion is a single-site operator travelling with

minimal nonzero on-axis momenta. (Left) The 2 × 2 correlation matrix C′
ij(t) = Cij(t) ( Cii(τN)Cjj(τN ) )−1/2 with τN = 3

in terms of temporal lattice spacing at. (Center) Effective masses, meff(t) using dt = 3, associated with the diagonal elements
of the original correlator matrix C(t). (Right) Effective masses associated with the diagonal elements of the rotated correlator

C̃(t) defined in Eq. 32, compared to the effective mass (hollow squares) of the ππ operator as also shown in the center plot.
The horizontal dashed lines show the location of the free π + π energy. The horizontal solid lines show the fit value of the
energy of the interacting ππ state. These results were obtained on the (243|390) ensemble.

such as used in Ref. [32], since the diagonalization is not
done for every time. We use τ0 = 8 and τD = 15, and we

find that C̃(t) remains diagonal, within statistical preci-
sion, for all t exceeding τD. In the right plot in Fig. 5, the
effective masses associated with the diagonal elements of

C̃(t) are shown, and are labeled by level 0 and level 1.
The purpose of Fig. 5 is to demonstrate the effective-

ness of the stochastic LapH method in providing esti-
mates of correlation matrices involving both single and
two-hadron operators that are accurate enough to allow
reliable diagonalizations and extractions of excited-state
energies. Here, it is not our intent to carry out a de-
tailed analysis of this correlation matrix. In future work,
we shall include many more operators and attempt to
extract the energies of a larger number of low-lying sta-
tionary states. For now, we only make a few remarks
concerning this correlation matrix.
In the center plot, one sees that the effective mass as-

sociated with the original ρ operator tends to the lowest-
lying stationary-state energy in this channel, consistent
with expectations. The effective mass associated with
the two-pion operator nearly levels off at a higher-lying
energy, but it will eventually fall to the lowest-lying ρ
energy, given large enough t. The coupling of our two-
pion operator to the ρ state is nonzero, but apparently
much smaller than its coupling to the lowest-lying two-
pion stationary state. The first excited-state energy can

be revealed by constructing the rotated correlator C̃(t)
described above. By ensuring the off-diagonal elements

of C̃(t) are zero within statistical precision for all t > τD,
the effective masses associated with the diagonal ele-

ments of C̃(t) tend to the two lowest-lying stationary-
state energies in this symmetry channel, as shown in the
right plot of Fig. 5. The solid horizontal lines indicate the

location of the first excited-state energy (level 1) as de-
termined by a single-exponential fit, with wrap-around,

to C̃11(t). An excellent fit quality is obtained, and the
uncertainty in the energy from the fit is indicated by the
two parallel lines. This energy is compared to the free
two-pion energy, indicated by the dashed horizontal line.
The effective mass for the original two-pion operator is
also shown in the right plot (hollow squares) for compar-
ison. The diagonalization appears to remove the small
coupling to the ρ stationary state.

The effective mass associated with C̃00(t) for level 0
shows a very slight downward drift at large t. This is
due to a temporal wrap-around effect in which our op-
erators create a ππ state and one π propagates forward
in time while the other π propagates backwards in time,
producing a small contribution that is essentially con-
stant with respect to time. A fit to this correlator using
A(e−Et+e−E(Nt−t)), which ignores this contribution, for
times t = 17−25 produces a poor χ2/dof = 2.51, whereas
a fit including a constant term A(e−Et + e−E(Nt−t)) +B
for t = 17−25 produces a good fit quality χ2/dof = 1.03,
with a fit value for the energy E = 0.1638(20).
A last example of the effectiveness of the stochas-

tic LapH method in dealing with mixings between sin-
gle and two-meson operators is given in Fig. 6, which
shows a rescaled 5 × 5 correlation matrix C′

ij(t) =

Cij(t) ( Cii(τN )Cjj(τN ) )−1/2, with τN = 4, of the
temporal correlations of five isoscalar operators in the
scalar A+

1g sector for the (243|390) ensemble. The con-

dition number of C′(3) is 4.82, of C′(8) is 18.1, and of
C′(12) is 57.7. G is the G∆ glueball operator described
in Sec. VI, and σ refers to a single-site quark-antiquark
operator. Three of the operators are I = 0 two-meson op-
erators constructed out of single-site single-meson opera-
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FIG. 6: The 5 × 5 matrix C′
ij(t) = Cij(t) ( Cii(τN )Cjj(τN ) )−1/2, with τN = 4, of the temporal correlations of five isoscalar

operators in the scalar A+
1g sector for the (243|390) ensemble. G is the G∆ glueball operator described in Sec. VI, and σ refers

to a single-site quark-antiquark operator. Three of the operators are I = 0 two-meson operators constructed out of single-site
single-meson operators having equal and opposite momenta. In the η(0)η(0) and π(0)π(0) operators, each meson has zero
momentum, whereas each pion in the π(1)π(−1) has minimal nonzero on-axis momentum. Note that large vacuum expectation
values have been subtracted to obtain each of these correlators.

tors having equal and opposite momenta. In the η(0)η(0)
and π(0)π(0) operators, each meson has zero momentum,
whereas each pion in the π(1)π(−1) has minimal nonzero
on-axis momentum. In this channel, the correlation ma-
trix elements are defined, for Nt → ∞, by

Cij(t) = 〈Oi(t) Oj(0)〉 − 〈Oi〉〈Oj〉. (33)

Large vacuum expectation values have been subtracted
to obtain each of these correlators. LetO0, O1, O2, O3, O4

denote the glueball operator G∆, the π(1)π(−1), the
π(0)π(0), the η(0)η(0), and the σ operators, respectively.
The ratios of the diagonal elements of the correlation ma-
trix at time separation t = 3 over the squares of their
respective vacuum expectation values for these five oper-
ators are shown below:

C00(3)/〈O0〉2 = 0.00001205(29),

C11(3)/〈O1〉2 = 0.006657(32),

C22(3)/〈O2〉2 = 0.11396(74),

C33(3)/〈O3〉2 = 0.155(12),

C44(3)/〈O4〉2 = 0.002371(12).

The smallness of these numbers demonstrates the large-
ness of the vacuum expectation values for these correla-
tors. This is a notoriously difficult channel to study, but
the stochastic LapH method appears to produce results
of adequate precision, even for the ηη → ηη correlator,
which includes many diagrams involving internal quark
loops and other same-time quark lines. Additional opera-
tors, such as KK and other ππ, ηη, operators are needed
to reliably study the physics here. We certainly plan to
investigate this channel in much more detail in the future
using a larger number of operators.
Table XXI summarizes the different flavor types of sin-

gle and two-hadron operators that we plan to include in
our first survey of the spectrum of stationary-state en-
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TABLE XXI: The following bosonic and fermionic flavor sec-
tors involving only the u, d, s quarks will be studied. J de-
notes total spin, I denotes total isospin, and S is the total
strangeness. The particle contents to be studied in each fla-
vor sector are listed. G denotes a glueball operator. Here, π
refers to any isovector quark-antiquark meson operator with
flavor content such as du (such as a, b, π, and ρ mesons),
η refers to any uu + dd isoscalar meson operator, φ refers
to any ss isoscalar meson operator, K refers to any quark-
antiquark operator having flavor content su or sd such that
its strangeness is S = 1, and K is any quark-antiquark oper-
ator having flavor content us or ds such that its strangeness
is S = −1.

(−1)2J I S Particle content

1 0 0 η, φ, G, ηη, ηφ, φφ, ππ, KK

1 1 0 π, ππ, ηπ, φπ, KK

1 2 0 ππ

1 1
2

1 K, Kπ, Kη, Kφ

1 3
2

1 Kπ

1 0 2 KK

1 1 2 KK

−1 1
2

0 N, Nη, Nφ, Nπ, ∆π, ΛK, ΣK

−1 3
2

0 ∆, ∆η, ∆φ, ∆π, Nπ, ΣK

−1 5
2

0 ∆π

−1 0 −1 Λ, Λη, Λφ, NK, Σπ, ΞK

−1 1 −1 Σ, Ση, Σφ, Σπ, NK, ∆K, Λπ, ΞK

−1 2 −1 ∆K, Σπ

−1 1
2

−2 Ξ, ΛK, Ξη, Ξφ, Ξπ, ΣK, ΩK

−1 3
2

−2 ΣK, Ξπ

−1 0 −3 Ω, ΞK, Ωη, Ωφ

−1 1 −3 Ωπ, ΞK

ergies. We plan to study all bosonic and fermionic fla-
vor sectors involving the u, d, s quarks that involve up to
two meson and meson-baryon pairs. The particle types
to be studied in each flavor sector are listed in this ta-
ble. G denotes a glueball operator. In this table, π
refers to any isovector quark-antiquark meson operator
with flavor content such as du (such as a, b, π, and ρ
mesons), η refers to any uu + dd isoscalar meson opera-
tor, φ refers to any ss isoscalar meson operator, K refers
to any quark-antiquark operator having flavor content su
or sd such that its strangeness is S = 1, and K is any
quark-antiquark operator having flavor content us or ds
such that its strangeness is S = −1. Our current plans
do not include states containing two or more baryons or
three or more mesons, although the computational tech-
nology can easily accommodate such states.

VI. A NEW GLUEBALL OPERATOR

Determining stationary-state energies in the interest-
ing scalar isoscalar sector will ultimately involve includ-
ing a scalar glueball operator. Glueballs are hypotheti-

cal particles comprised predominantly of gluons, having
no valence quarks. Scalar glueball operators are usually
constructed using a sum of gauge-invariant loops of the
smeared spatial link variables on a single time slice, which
is invariant under translations, rotations, and charge con-
jugation. However, any purely gluonic quantity with
similar symmetry properties could presumably be used.
LapH quark-field smearing involves the covariant spatial

Laplacian ∆̃. The eigenvalues of the Laplacian are in-
variant under rotations and gauge transformations, and
so, are appropriate for a scalar glueball operator. The
lowest-lying eigenvalue was studied, as well as other func-
tions of the eigenvalues. We found that essentially any
combination of the low-lying eigenvalues worked equally
well for studying the scalar glueball. Two operators in
particular that we studied are

G∆(t) = −Tr[Θ(σ2
s + ∆̃) ∆̃], (34)

GW (t) = −Tr[Θ(σ2
s + ∆̃) ∆̃ exp(−W ∆̃2)]. (35)

The first operator G∆ in Eq. (34), which we call the
TrLapH operator, is perhaps the simplest operator that
one can construct using the eigenvalues of the covariant
Laplacian. In the so-called weighted TrLapH operator
GW in Eq. (35), we used W = 64 in order that only a
handful of the lowest-lying eigenvalues contribute.
The effective masses obtained using G∆ and GW on

the 243 × 128 ensemble are shown in Fig. 7. These effec-
tive masses are compared to that obtained using a stan-
dard glueball operator which is a sum of 3 × 3 loops of
the smeared gauge link variables that is rotationally and
translationally invariant. One observes very little dif-
ference between these effective masses, suggesting these
operators are comparable in usefulness for studying the
scalar glueball. Similar conclusions were reached using
the 323 × 256 lattice. Each effective mass eventually
tends toward the energy of two pions at rest, demon-
strating non-negligible coupling of these operators to ππ
states. Thus, we plan to use the simplest operator G∆(t)
in future studies involving the scalar glueball.

VII. CONCLUSION

Multi-hadron operators are crucial for reliably ex-
tracting the masses of excited states lying above multi-
hadron thresholds in lattice QCD Monte Carlo calcula-
tions. Multi-hadron operators with significant coupling
to the low-lying multi-hadron states of interest can be
obtained by combining single-hadron operators of various
momenta. The construction and testing of single-hadron
operators of definite momentum, and their combinations
into two-hadron operators was the main subject of this
work.
The approach of Ref. [1] was extended to meson oper-

ators of zero momentum, and to both meson and baryon
operators having definite nonzero momentum. Our op-
erator design utilizes group-theoretical projections. The
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FIG. 7: Comparison of the effective masses, meff(t) using dt = 3, associated with three different scalar glueball operators on
the (243|390) ensemble. (a) The leftmost plot shows the effective mass using an operator defined by a sum of 3 × 3 loops of
the smeared gauge link variables that is rotationally and translationally invariant. (b) The middle plot uses the new TrLapH
glueball operator G∆, defined in Eq. (34). (c) The rightmost plot shows the results using the weighted TrLapH glueball operator
GW , defined in Eq. (35). One observes very little difference between these plots, suggesting that these operators are comparable
in usefulness for studying the scalar glueball. Each effective mass eventually tends toward the energy of two pions at rest,
demonstrating non-negligible coupling of these operators to ππ states.

point and space groups we use are well known, and the
properties of their irreducible representations are widely
available in the literature. However, we collected to-
gether and presented in this paper some of the specific
group theory details needed for our operator construction
for the convenience of the reader and to explicitly state
our conventions and the notations we use.
Tests of our single-hadron operators using a stochastic

method of treating the low-lying modes of quark prop-
agation which exploits Laplacian Heaviside quark-field
smearing were presented. These tests were carried out
on 243× 128 and 323× 256 anisotropic lattices with pion
masses mπ ≈ 390 and 240 MeV. A new glueball operator
was also introduced and tested. We demonstrated that
computing the mixing of this glueball operator with a
quark-antiquark operator, ππ, and ηη operators is feasi-
ble with the stochastic LapH method.
The stochastic LapH method provides reliable esti-

mates of all temporal correlations that will be needed
for a comprehensive survey of the low-lying spectrum of
QCD stationary states in finite volume. The method
works well even for those correlators that are particu-
larly difficult to compute, such as ηη → ηη in the scalar
channel, which involves the subtraction of a large vac-
uum expectation value. The effectiveness of the method
can be traced to two of its key features: the use of noise
dilution projectors that interlace in time, and the use of
ZN noise in the subspace defined by the Laplacian Heavi-
side quark-field smearing. Introducing noise in the LapH
subspace results in greatly reduced variances in temporal
correlations compared to methods that introduce noise
on the entire lattice. Although the number of Laplacian
eigenvectors needed to span the LapH subspace rises dra-
matically with the spatial volume, the number of inver-
sions of the Dirac matrix needed for a target accuracy
is remarkably insensitive to the lattice volume, once a

sufficient number of dilution projectors is introduced[6].
In addition to increased efficiency, the stochastic LapH

method has other advantages. The method leads to com-
plete factorization of hadron sources and sinks in tempo-
ral correlations, which greatly simplifies the logistics of
evaluating correlation matrices involving large numbers
of operators. Implementing the Wick contractions of the
quark lines is also straightforward. Contributions from
different Wick orderings within a class of quark-line di-
agrams differ only by permutations of the noises at the
source.
In the future, we plan to carry out a comprehensive

survey of the excitation spectrum of the stationary states
of QCD involving mesons and baryons containing u, d, s
quarks. Various scattering phase shifts and decay con-
stants will also be investigated. The needed single-meson
and single-baryon sources and sinks for a large number
of different momenta have been computed and stored for
three Monte Carlo ensembles. The development and test-
ing of the software to combine these sources and sinks via
Wick contractions of the quark fields into temporal cor-
relators has been completed, and the final stages of our
operator selections are now in progress. Results for the
spectrum, involving both single- and two-hadron opera-
tors and using the technology described in this work, will
appear in future publications.
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