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Based on the Hamiltonian formalism approach, a generalized Lüscher’s formula for two particle
scattering in both the elastic and coupled-channel cases in moving frames is derived from a relativistic
Lippmann-Schwinger equation. Some strategies for extracting scattering amplitudes for a coupled-
channel system from the discrete finite-volume spectrum are discussed and illustrated with a toy
model of two-channel resonant scattering. This formalism will, in the near future, be used to extract
information about hadron scattering from lattice QCD computations.
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I. INTRODUCTION

Hadron spectroscopy in lattice QCD is entering a new
era, in particular, recent developments in the application
of variational methods [1–3] to large bases of hadron in-
terpolating fields have made the extraction of the excited
spectrum of hadronic states a realistic possibility (see e.g.
[4–6]). Since excited hadrons appear as resonances in the
continuous distribution of multi-hadron scattering states,
to study hadron spectroscopy one requires evaluation of
scattering amplitudes, but because lattice QCD is for-
mulated in Euclidean space, we do not have direct access
to these [7]. Fortunately, in a finite volume, interactions
between particles as they evolve from the in to the out
states lead to discrete changes in a free particle’s energy
that can be related to the scattering amplitude [8].

Various extensions to the framework derived by
Lüscher in [8] have been proposed which allow for evalu-
ation outside the center-of-mass frame [9–13], and to in-
clude the coupled-channel effects that can appear above
the inelastic threshold [14–18]. The original approach
and its extensions to describe the moving center-of-mass
frame have been quite successfully used by the lattice
community to extract elastic hadron-hadron scattering
phase shifts[6, 19–25].

In this work, we discuss a generalization of Lüscher’s
method for relativistic scattering in terms of a Hamilto-
nian where the specific interactions considered are based
on a relativistic particle exchange model. We apply
the technique to a two-channel system and a general-
ized Lüscher’s equation for scattering in a moving frame
is derived based on the relativistic Lippmann-Schwinger
equation. The coupled-channel system has been consid-
ered previously, [14, 15, 17, 18], and our result agrees with
these works. A novelty of the present work is to discuss
practical strategies for extraction of scattering amplitude
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parameters from lattice simulations of a coupled-channel
system. These strategies are demonstrated using an ex-
plicit toy model of resonant two-channel scattering.

The paper is organized as follows. A discussion of elas-
tic scattering in a finite-volume is given in Section II,
with extension to the coupled channel system in Section
III. Strategies for extracting scattering amplitudes from
measured discrete finite-volume spectra are presented in
Section IV. The summary and outlook are given in Sec-
tion V.

II. FINITE-VOLUME ELASTIC SCATTERING
IN A HAMILTONIAN FRAMEWORK

In this section we present relativistic two-particle scat-
tering on a torus using the Hamiltonian formalism de-
veloped in [26, 27]. In particular we consider a complex
scalar field, Φ, describing a charged boson, φ±, of mass
m, and its interactions with a neutral boson, θ, which
acts as a force carrier and is described by a real scalar
field, Θ. We first derive the Lüscher formula describ-
ing the finite-volume spectrum of the asymptotic two-
particle, φ+φ− state,

det
[
δJM,J ′M ′ cot δJ(k)−M(Q)

JM,J ′M ′(k)
]

= 0,

where the volume and scattering-frame dependent ma-

trix element M(Q)
JM,J ′M ′ is defined in Eq.(B1) and (B3),

and the center-of-mass frame scattering momentum, k,
is related to the energy by

√
s/4−m2. The model cor-

responds to a Lagrangian density,

L = ∂µΦ∗∂µΦ−m2Φ∗Φ + 1
2∂µΘ∂µΘ− 1

2µ
2Θ2− gΘΦ∗Φ,

(1)
from which the Hamiltonian can be derived following the
canonical procedure of instant-time quantization (see Ap-
pendix A) [28]. Taking matrix elements of the Hamilto-
nian in an infinite basis of Fock states spanned by any
number of φ and θ bosons one can obtain a Schrödinger
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equation Ĥ|Ψ〉 = E|Ψ〉 for the eigenstates of the theory.
Assuming µ� m, in describing low-energy φ-boson scat-
tering we can truncate the Fock space to include up to
one θ-boson in the intermediate state, which reduces the
Schrödinger equation to[

H22 H23

H32 H33

] [
|φ+φ−〉
|φ+φ−θ〉

]
= E

[
|φ+φ−〉
|φ+φ−θ〉

]
. (2)

The three-particle sector can be formally eliminated, re-
sulting in an effective two-body equation,

(E −H22)|φ+φ−〉 = H23
1

E −H33
H32|φ+φ−〉. (3)

A. Two-particle scattering in an infinite volume

Before considering two-particle states on a torus, we
will first review the scattering problem in infinite-volume,
with further details given in Appendix A. After elim-
inating the three-particle states |φ+φ−θ〉 from the cou-
pled system (cf Eq.(2)) we are left with an equation for
the center-of-mass frame momentum-space wavefunction,
ϕJM (q), which is a product of a radial wavefunction de-
pending on the magnitude of the relative 3-momentum,
q = |q|, and the spherical harmonic of definite angular
momentum, (J,M),

ϕJM (q) =
1

√
s− 2

√
q2 +m2

∫
d3k

(2π)3
V (q,k)ϕJM (k).

(4)
Here, E =

√
s is the energy of the two-particle system

in the center-of-mass frame. The non-local potential,
V (q,k), induced by θ-exchange is given explicitly in Eq.
(A1). Expressing this equation in coordinate space via a
Fourier transform gives

ψJM (r) =

∫
d3r′G0(r− r′;

√
s)

∫
d3z Ṽ (r′,−z)ψJM (z),

(5)
where the free Green’s function is given by

G0(r− r′;
√
s) =

∫
d3q

(2π)3

eiq·(r−r
′)

√
s− 2

√
q2 −m2

. (6)

The wavefunction satisfies a relativistic Schrödinger
equation,(√

s− 2
√
−∇2 +m2

)
ψJM (r) =

∫
d3z Ṽ (r,−z)ψJM (z).

(7)
While Eq.(5) was derived in the context of a particular
model, our subsequent derivation only requires the gen-
eral form of the relativistic Lippmann-Schwinger equa-
tion. The asymptotic component of the two-body wave-
function relevant to scattering is given by the large dis-
tance behavior of the Green’s function. Evaluating the

integral in Eq.(6) (cf. Appendix A), we find

G0(r;
√
s = 2

√
k2 +m2) =

−
√
s

2

eikr

4πr
− 1

r

∫ ∞
m

ρ dρ

(2π)2

√
ρ2 −m2

e−ρr

k2 + ρ2
, (8)

with the first term on the right hand side dominating
as r → ∞. For a potential Ṽ which falls at large sepa-
rations, the solution to Eq (7) outside the range of the
interaction is given by

ψJM (r)→
√
s

2m
iJ YJM (r̂)

[
4π jJ(kr) + ik fJ(k)h+

J (kr)
]
,

(9)

where fJ(k) is the partial wave scattering amplitude,

fJ(k) = −m
iJ

∫
d3r′d3z jJ(kr′)Y ∗JM (r̂′) Ṽ (r′,−z)ψJM (z),

(10)
which up to the inelastic threshold can be parameterized
in terms of a single real momentum-dependent parame-
ter, the scattering phase-shift, δJ(k), as

fJ(k) =
4π

k
eiδJ sin δJ .

B. Two-particle scattering on a torus

Now we consider the theory in a cubic box of volume
V = L3, with periodic boundary conditions. In Eq. (5)
we split the integral over r′ into a sum of integrals over
a set of boxes labelled by the integers n representing the
location of one of its corners,

ψ
(L)
JM (r) =

∑
n∈Z3

∫
L3

d3r′G0(r− r′ − nL;
√
s)

×
∫
d3z′ Ṽ (r′ + nL,−z′ − nL)ψ

(L)
JM (z′ + nL).

(11)

In general we can make the wavefunctions periodic up to
a phase,

ψ
(L)
JM (z + nL) = eiQ·nLψ

(L)
JM (z),

where the Bloch wave-vector, Q, is related to the total
momentum of the two-particle system [9] by P = 2γQ.

γ =
√
s+ P2/

√
s is the Lorentz contraction factor that

reduces the effective size of the box in the direction
parallel to P. Using the periodicity of the potential,
Ṽ (r′ + nL,−z′ − nL) = Ṽ (r′,−z′), and the boundary
condition on the wavefunction, we have

ψ
(L,Q)
JM (r) =

∫
L3

d3r′GQ(r− r′;
√
s)

×
∫
d3z Ṽ (r′,−z)ψ

(L,Q)
JM (z),
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which is analogous to the infinite-volume equation, but
with the Green’s function given by

GQ(r− r′;
√
s) =

∑
n∈Z3

G0(r− r′ − nL;
√
s) eiQ·nL.

Using the Poisson summation formula,
(2π)−3

∑
n∈Z3 eiQ·nL = L−3

∑
n∈Z3 δ

(
Q + 2π

L n
)
, we

obtain

GQ(r− r′;
√
s) =

1

L3

∑
q∈PQ

eiq·(r−r
′)

√
s− 2

√
q2 +m2

→
√
s

2

1

L3

∑
q∈PQ

eiq·(r−r
′)

k2 − q2
,

where PQ = {q ∈ R3|q = 2π
L n + Q, for n ∈ Z3}, and

where we have retained only the leading term in the limit
L� |r− r′| � m−1. Finally, expanding Eq.(11) for r �
r′ and using the definition of the scattering amplitude,
Eq. (10) we can express the wavefunction as

ψ
(L,Q)
JM (r)→

√
s

2m
(−k) iJfJ(k)

∑
J′M ′

YJ′M ′(r̂)

×
[
δJM,J ′M ′ nJ′(kr)−M(Q)

JM,J ′M ′(k) jJ′(kr)
]
.

(12)

The residual sum over all angular momenta reflects the
broken rotational invariance induced by the finite cu-
bic volume, with the volume-dependent matrix elements
M given in Appendix B. In the infinite-volume case,
the most general solution of the relativistic Schrödinger
equation, Eq.(7), outside the range of the potential is∑
JM cJM ψJM (r) for ψJM (r) given by Eq. (9). Cor-

respondingly in finite-volume, the most general solution

is given by
∑
JM cJM ψ

(L,Q)
JM (r) for ψ

(L,Q)
JM (r) given by

Eq.(12). Matching the two wavefunctions at a fixed r,
larger than the range of the interaction, we obtain∑

JM

cJMYJM (r̂) iJ
[
4π jJ(kr) + ik fJ(kr)h+

J (kr)
]

= −
∑

JM,J ′M ′

cJM iJk fJ(k)YJ′M ′(r̂)

×
[
δJM,J ′M ′ nJ′(kr)−M(Q)

JM,J ′M ′(k) jJ′(kr)
]
,

which has a non-trivial, cJM 6= 0, solution provided

det
[
δJM,J ′M ′ cot δJ(k)−M(Q)

JM,J ′M ′(k)
]

= 0. (13)

This condition expresses the relationship between the
asymptotic behavior of the two-particle wavefunction
on a torus, expressed through the matrix elements

M(Q)
JM,J ′M ′ , and the effect of the interaction on the wave-

function determined by the phase shifts, δJ . In practice
for a given set of elastic phase-shifts, δJ(k), it determines
a discrete spectrum of states in a finite volume.

The analysis presented here can be generalized to
an arbitrary shaped box. In general the three
edges of box are spanned by three arbitrary vec-
tors L1,2,3. The volume of the cube L3 is re-
placed by (L1 × L2) · L3 and the vector nL by∑
i=1,2,3 niLi, ni ∈ Z. Finally the momentum

q = 2πn/L,n ∈ Z3 is replaced by generalized momentum
2π
∑
i=1,2,3 ni(Lj × Lk)/|(L1 × L2) · L3|, ni ∈ Z , where

indices (i, j, k) follow the cyclic permutation. Such a gen-
eralization has to be considered when using the moving
center-of-mass frame since the symmetric shape of a cubic
box in the rest frame is deformed due to Lorentz contrac-
tion [9]. In this case if P = 2πd/L,d ∈ Z3, is the center-
of-mass momentum, the volume of the box becomes γL3,
and the vectors nL and 2πn/L are replaced by γnL and
2πγ−1n/L, respectively (using the notation defined in
[9]). With these substitutions and the relation P = 2γQ,

our definition of the matrix elementsM(Q)
JM,J ′M ′ becomes

identical to the matrix elements Md
lm,l′m′ in Eq.(89) of

[9].

Typically, as discussed in [8], for the low-energy region
that we are interested in, higher partial waves become
progressively smaller and can be ignored, so that the par-
tial wave basis can be truncated at a certain maximal
angular momentum Jmax. For a finite-volume with cubic
boundaries, the continuous rotation symmetry is reduced
to the little-group of allowed cubic rotations that leave
the centre-of-mass momentum invariant - the matrices
in Eq.(13) become block-diagonal if subduced according
to the irreducible representations of these little groups.
Details of subduction in general moving frames can be
found in [29].

III. COUPLED CHANNEL SCATTERING IN
FINITE VOLUME

We extend the model of the previous section to include
additional two-particle asymptotic states, by adding an-
other species of charged bosons, σ±, which also couples
to the force carrier, θ, into the Lagrangian. We can ob-
tain coupled equations for the two-particle states, |φ+φ−〉
and |σ+σ−〉, by eliminating states featuring three or more
particles and obtain a two-channel Schrödinger equation,

∣∣φ+φ−
〉

=
1

E −H(0)
φ

[
Vφφ

∣∣φ+φ−
〉

+ Vφσ
∣∣σ+σ−

〉]
,

∣∣σ+σ−
〉

=
1

E −H(0)
σ

[
Vσφ

∣∣φ+φ−
〉

+ Vσσ
∣∣σ+σ−

〉]
, (14)

where H
(0)
φ , H

(0)
σ are the one-particle operators and

Vφφ, Vφσ, Vσφ, Vσσ are effective interactions (two-body
operators) generated by the reduction to the two-particle
subspace. From Eq.(14), for the channel wavefunctions,
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ψα=φ,σ
JM (r) ≡ 〈r|α, JM〉, we obtain

ψαJM (r) =

∫
d3r′Gα0 (r− r′;

√
s)

×
∑
β

∫
d3z Ṽαβ(r′,−z)ψβJM (z).

The coupled-channel scattering amplitudes can be de-
fined by

fαβJ (s) = −mα

iJ

∫
d3r′d3z jJ(kαr

′)Y ∗JM (r̂′)

× Ṽαβ(r′,−z)ψβJM (z), (15)

where kα =
√
s/4−m2

α is the magnitude of the relative
momentum in the center-of-mass frame of the two parti-
cles in channel α. By analogy to the single channel case,
the asymptotic wavefunction in channel α is given by

ψαJM (r)→
√
s

2mα
YJM (r̂) iJ

×
[

4π jJ(kαr) + ikα h
+
J (kαr)

∑
βf

αβ
J (s)

]
. (16)

Extending the one-channel analysis of the asymptotic
states in finite-volume to the two-channel system, one
obtains,

ψ
α(L,Q)
JM (r)→

√
s

2mα
(-kα) iJ

∑
J′M ′

YJ′M ′(r̂)
[∑

β f
αβ
J (s)

]
×
[
δJM,J ′M ′ nJ′(kαr)−M(Q)

JM,J′M ′(kα) jJ′(kαr)
]
.

(17)

Matching the wavefunctions in finite-volume, Eq. (17),
to the wavefunctions in infinite volume, Eq. (16), we get
a determinant condition

det

[
δJM,J ′M ′ δα,β

4π

kα

1

fααJ
+
[
i δJM,J ′M ′ −M(Q)

JM,J ′M ′(kα)
] fαβJ
fααJ

]
= 0. (18)

The derivation logically extends to any number of scattering channels. Expressing the scattering amplitudes using

t-matrix elements, t
(J)
αβ (s) ≡

√
s

8π f
αβ
J (s), and introducing the phase-space for channel α by ρα(s) = 2kα√

s
, we can write

the condition as

0 = det
[
δJM,J ′M ′δα,β + iρα(s) t

(J)
αβ (s)

(
δJM,J ′M ′ + iM(Q)

JM,J ′M ′(kα)
)]
, (19)

or, alternatively in a form which expresses the effect of unitarity more directly as,

0 = det
[
δJM,J′M ′

([
t(J)(s)

]−1

αβ
+ iρα(s)δα,β

)
− δα,β ρα(s)M(Q)

JM,J ′M ′(kα)
)]
. (20)

The multichannel unitarity condition can be expressed as Im
[
t(J)(s)

]−1

αβ
= −δαβρα(s)Θ(s − s(α)

thr.), and thus, since

ρα(s) becomes pure imaginary below threshold, the first term in Eqn 20 is always real.
The form presented in Eqn 19 can be shown to be equivalent to that presented in [17] and [18]. Their expressions

include an additional phase of iJ−J
′

in front ofM, but the effect of this phase is always cancelled in the determinant.
Reflecting the remaining symmetry of a cube in flight, there is in fact one determinant condition for each irreducible

representation of the symmetry group. As presented in [6], [29] these conditions can be obtained by subduction, the
result being conditions

0 = det
[
δJJ ′δnn′

([
t(J)(s)

]−1

αβ
+ iρα(s)δα,β

)
− δα,β ρα(s)M(Q,Λ)

Jn,J ′n′(kα)
)]
, (21)

where the Λ-irrep subduced M(Q,Λ)
Jn,J ′n′(kα) is as defined in Eqn (28) of [6]. The angular-momentum space is defined

by the various embeddings, n, of spin-J into the irrep Λ. If the subduction conventions in [6] are followed, for unitary
t-matrices, the conditions are purely real at all real energies.

The two-channel scattering matrix fαβ can be conventionally parameterizated in terms of two scattering phase-
shifts, δαJ (s) (α = φ, σ), and an inelasticity, ηJ(s), representing the fraction of flux exchanged between the two
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channels,

fααJ (s) =
4π

kα
· ηJ e

2iδαJ − 1

2i
; fαβJ (s) =

4π√
kαkβ

·
√

1− η2
J e

i(δαJ+δβJ )

2
, (22)

so that the determinant condition can be written

det

 δJM,J′M ′ cot ∆φ
J −M

(Q)
JM,J′M ′(kφ)

√
kφ
kσ

[
i δJM,J ′M ′ −M(Q)

JM,J ′M ′(kφ)
] √

1−η2
J e

i∆σJ

2ηJ sin ∆φ
J√

kσ
kφ

[
i δJM,J ′M ′ −M(Q)

JM,J ′M ′(kσ)
] √

1−η2
J e

i∆
φ
J

2ηJ sin ∆σ
J

δJM,J ′M ′ cot ∆σ
J −M

(Q)
JM,J ′M ′(kσ)

 = 0, (23)

where ∆α
J (s) ≡ δαJ (s) − i

2 log ηJ(s). One can show that
this result is equivalent to Eq.(4.14) in [14].

The determinant conditions presented above for
coupled-channels scattering provide only one equation,
at each finite-volume energy, for many unknowns. At
low energies we may be justified in only considering the
effect of the lowest contributing partial-wave, but even
then there are multiple unknowns. For example in the
case of two-channel scattering in S-wave we require three
parameters to describe the t-matrix at each energy which

might be the two phase-shifts and inelasticity, δφ0 , δ
σ
0 , η0.

Hence additional constraints need to be imposed to ob-
tain a unique solution. As an example, in [15] unitarized
chiral perturbation was used to constrain amplitude pa-
rameters at low energies. In the next section we explore
some strategies for extraction of the scattering amplitude
from finite-volume spectra in the context of an analytical
parametrization of the amplitude.

It is worth noting here that in a finite volume, kinemat-
ically closed channels can play a role in determining the
spectrum. Examining Eqn 19, we see that the behavior of

M(Q)
JM,J ′M ′(k), analytically continued below threshold (to

imaginary k) must be considered. These matrix elements
decay rapidly below threshold, such that the effect of a
kinematically closed channel on the finite-volume spec-
trum is only felt in a limited energy region below the
kinematic threshold. For example if k = iκ,

M(Q)
00,00(iκ) = i− i

κ

∑
n∈Z3

n6=0

e−κ|γnL|

|γnL|
eiQ·γnL,

so that far below threshold, or in very large volume,
M → i, and thus in Eqn 19, the effect of this chan-
nel is removed. However this closed channel will have an
effect in a region just below the threshold, for γκ . L−1.
Hence we are required in practice to analytically con-
tinue scattering amplitudes below thresholds in order to
determine the finite-volume spectrum. An example of
this is presented in [30] for the case of S-wave πΣ,KN
scattering.

IV. A TOY MODEL OF RESONANT
COUPLED-CHANNEL SCATTERING IN

FINITE-VOLUME

In order to explore possible strategies for extracting
coupled-channel scattering amplitudes from the discrete
finite-volume spectra emerging from lattice QCD com-
putations, we consider a simple model of two-channel
S-wave scattering. The model is based on resonance-
dominated scattering and satisfies multi-channel unitar-
ity and the analytical properties required of partial wave
amplitudes. With an explicit model for scattering ampli-
tudes we can solve Eq. (19) to obtain finite-volume spec-
tra of states as a function of the volume (V = L3) and to-
tal momentum of the center-of-mass P = 2πd/L, d ∈ Z3

(P = 2γQ). We then use this spectrum as pseudo-data
representing a hypothetical lattice QCD simulation and
attempt to reproduce the input model.

A. Analytic model of two-channel scattering

We consider a model in which a single S-wave reso-
nance coupled to both scattering channels interferes with
a non-resonant background. The two-channel scattering
amplitude is parametrized in terms of a K-matrix,

Kαβ(s) =
gαgβ
M2 − s

+ γ
(0)
αβ + γ

(1)
αβ s+ . . . , (24)

which is related to the t-matrix by[
t−1(s)

]
αβ

=
[
K−1(s)

]
αβ

+ δαβ Iα(s),

and to the scattering amplitude defined in Eq. (15) by

tαβJ (s) =
√
sfαβJ (s)/8π with (α = φ, σ). Here Iα(s) is the

Chew-Mandelstam form [31],

Iα(s) = Iα(0)− s

π

∫ ∞
4m2

α

ds′
√

1− 4m2
α

s′
1

(s′ − s)s′
,

whose imaginary part above threshold, i.e. for s > 4m2
α,

is the negative of the phase-space, Im
[
Iα(s)

]
= −ρα(s).

This form ensures the unitarity of the amplitude and pro-
vides a smooth transition across the kinematic threshold.
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FIG. 1: Phase-shifts and inelasticity for the model defined in
the text.

We have opted to subtract the integral once, and it is con-
venient to choose Iα(0) such that Re Iα(M2) = 0 so that
we have an amplitude which for real s near M2 is close
to the Breit-Wigner form with mass M . The t-matrix
thus constructed is an analytical function in the complex
s-plane with the discontinuity across the right-hand cut
determined by unitarity.

With the following choice of parameters,

mφ = 0.2 GeV, mσ = 0.4 GeV

M = 1.1 GeV, gφ = 0.35 GeV, gσ = 0.2 GeV

γ
(n)
φφ = γ

(n)
φσ = 0, γ(0)

σσ = 0.7, γ(1)
σσ = 0.7 GeV−2, γ(n>1)

σσ = 0,

we obtain the phase-shifts and inelasticity shown in
Fig. 1. The parameters have been chosen in such a way
that there is a narrow resonance near

√
s = 1.1 GeV. It

is usual to analyse scattering in terms of the most rele-
vant singularities of the t-matrix on the nearby unphys-
ical sheets. Poles on unphysical sheets are often identi-
fied with hadron resonances. In this case the four sheets
(sheet I is the physical sheet) can be defined by

[
t−1
sheet(s)

]
αβ

=



[
t−1
I (s)

]
αβ

sheet I[
t−1
I (s)

]
αβ

+ 2i

√
1− 4m2

φ

s δαφ sheet II[
t−1
I (s)

]
αβ

+ 2i

√
1− 4m2

α

s δαβ sheet III[
t−1
I (s)

]
αβ

+ 2i

√
1− 4m2

σ

s δασ sheet IV

.

The model amplitude has a single pole on the lower half-
plane1 of each of sheets II and III, with the t-matrix in
the neighbourhood of the pole at s0 behaving like,

[tsheet(s→ s0)]αβ →
cαcβ
s0 − s

,

1 and a conjugate pole on the upper half-plane

with

√
s0 =

(
1.1067− i

20.0961
)

GeV

cφ =
(
0.3585 GeV

)
e−i0.0023π, cσ =

(
0.1367 GeV

)
e−i0.237π

on sheet II and

√
s0 =

(
1.1088− i

20.1195
)

GeV

cφ =
(
0.3573 GeV

)
e+i0.0026π, cσ =

(
0.1391 GeV

)
e+i0.297π

on sheet III. Our aim is to use the finite-volume spectrum
determined on a set of volumes and total momenta, P, to
reproduce the pole positions of this scattering amplitude.

B. Finite-volume spectrum

The finite-volume spectrum corresponding to the
model defined in the previous section can be obtained
by solving Eq. (23) (or equivalently Eq. (19)), where
for E =

√
s < 2mσ we require the analytic continuation

of t-matrix elements featuring channel σ. Assuming that
partial waves higher than S-wave are negligible reduces
Eq. (23), for E > 2mσ, to,

0 = Ω(δφ(E), δσ(E), η(E);L,d;E)

= η [Mφ −Mσ] sin
(
δφ − δσ

)
+ [Mφ +Mσ] sin

(
δφ + δσ

)
− η [1 +MφMσ] cos

(
δφ − δσ

)
− [1−MφMσ] cos

(
δφ + δσ

)
, (25)

whereMφ ≡M(Q)
J=0M=0,J′=0M ′=0(kφ) with a similar ex-

pression forMσ. Q is a function of d, L, E as discussed
in Sec. II B. In Fig.2 we show the finite-volume spec-
trum2 obtained by solving the determinant condition as
a function of the volume in a region L = 16− 24 GeV−1

(or L = 3.2− 4.7 fm).

C. “Pointwise” estimation of scattering from
finite-volume spectrum

In the region below 2mσ the φφ scattering is elastic and
it is tempting to use Eq (13), completely ignoring the ex-
istence of the kinematically closed σσ channel. Doing so
leads to the points shown in pink in Fig 3 which success-
fully reproduce the input model except in a region just
below the threshold. As previously discussed, in a finite-
volume the effect of a closed channel can be felt within a
limited energy region immediately below the threshold.
With this in mind, we must be careful not to use the
simple elastic relation, Eq (13), close to a threshold.

2 this would be the spectrum in irrep A1 [6]
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FIG. 2: Finite-volume spectra for the K-matrix model described in Sec. IV A. Black dots indicate the spectrum ob-
tained by solving Eq. (19). Red and blue curves represent the energy of a non-interacting pair of mesons (α = φ, σ)[(√

m2
α + k2

1 +
√
m2
α + k2

2

)2
−P2

]1/2
, k1 + k2 = P and k = 2π

L
n,n ∈ Z3. The points labelled by letters are used as

described in the text.
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FIG. 3: “Pointwise” determination of the phase-shifts and inelasticity. δφ points below the opening of the σσ threshold (in
pink) are determined by solving the elastic relation, Eqn. (13), ignoring the effect of the closed channel. The badly discrepant
points just below the threshold are all within a momentum scale of 1/L of the threshold where the finite-volume effect of the
closed-channel should not be neglected. Energies A− J are determined from constrained three-level analysis, energies a− h by
interpolation in δφ from two-level analysis. The light-colored curves show the exact input model.

One approach to determining the phase-shifts and in-
elasticities at discrete values of energy above 2mσ is to
locate multiple energy levels (in different volumes and/or
different d) that appear at approximately the same en-
ergy. As an example consider the three levels labeled A
in Fig. 2 which all lie within 3 MeV of

√
sA = 830 MeV.

For the three levels we can build three independent copies

of Eq. (23) which each feature approximately the same
values of δφ(sA), δσ(sA), η(sA), which can be determined
by solving the set of simultaneous equations. Since the
energies are not exactly degenerate, there need not be an
exact solution to the equations and hence we seek to find
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the solution which minimizes∑
E(L,d)

∣∣Ω(δφ, δσ, η;L,d;E)
∣∣2 ,

with Ω defined in Eq. (25) and where the sum is over
the three energy levels. For the levels A, the obtained
solution, as shown in Fig. 3, is within 3% of the exact
value of δφ(sA), δσ(sA), η(sA). We emphasize that this
procedure is not guaranteed to successfully reproduce the
true scattering amplitudes - theM matrices can in some
circumstances vary rather rapidly over a narrow energy
region.

Within the energy region considered, E = 0.8 −
1.2 GeV, considering only three volumes, L =
16, 20, 24 GeV−1, and three sets of center-of-mass mo-
mentum, d = (000), (100), (110), we can isolate a num-
ber of such sets. These sets of three near-degenerate
energy levels are labelled A − J in Fig. 2. In Fig. 3 the
labels are shown on the plot of δφ with the corresponding
solutions for δσ and η marked by solid dots.

With these points alone, in Fig. 3 we see strong hints of
a signal for resonant behavior in the δφ phase shift. While
obviously reasonably successful, this approach does not
make optimal use of the finite-volume spectral informa-
tion, by failing to use any energy level which does not
have two near-degenerate partners. To use somewhat
more of the discrete levels we might consider building a
system of two instances of Eq. (23) with one parameter
from the set δφ, δσ, η, estimated using interpolation be-
tween already determined values. For example consider
the two levels near 1.009 GeV labeled e in Fig. 2. Linear
interpolation between the energies of the C and D points
in Fig. 3 gives δφ(1.009 GeV) = 30.7◦. Using this value
and minimizing with respect to δσ, η at the energy cor-
responding to point e we obtain δσ = 50.6◦, η = 0.903.
A spline interpolation using all the points A− J yields
δφ(1.009 GeV) = 29.6◦ which results in δσ = 48.1◦, η =
0.934 at the point e. In Fig. 3 we show the results for
sets of two degenerate levels labeled a−h from Fig. 2. In
each case the range shown indicates limiting values ob-
tained using two methods of interpolation. Even though
in some cases there is a considerable sensitivity to the
interpolation method, overall the points are in reason-
able agreement with the model input (solid light-colored
curves).

D. Parameterized estimation of scattering from
finite-volume spectrum

The previously discussed “pointwise” strategy,
while having the advantage of being largely model-
independent, is reliant upon there being multiple energy
levels which, through accident or design, are close to
degenerate. Since it would be unusual to engineer
lattice volumes purely for this purpose, and unusual
in contemporary calculations to have such a high
density of determined energy levels, it is appropriate

0.4

0.6

0.8

1.0

1.2

FIG. 4: L = 16 GeV−1. Orange rectangles: finite-volume
spectra with 0.3% noise. Black lines: exact finite-volume
spectrum given in Fig.2. Also shown the position of the
thresholds and the K-matrix pole mass.

to consider alternative methods of analysis. One such
approach that makes full use of all determined levels,
and which may require far fewer levels to be determined,
involves parameterising the scattering amplitude and
performing a minimisation to get the best description
of the determined finite-volume spectrum by varying
the parameters. In the current toy-model, even limited
“pointwise” analysis would suggest that the phase δφ

is rapidly rising and would indicate that a resonance
could be present. In practical calculations (e.g.[4],
[32]), the presence of a sharp meson resonance can
also be indicated by large overlap onto fermion bilinear
operators. By including a pole (as well as polynomial
behaviour) in a K-matrix parameterisation we are likely
to get rapid convergence to a solution with a pole in the
t-matrix corresponding to the resonance.

We will take this opportunity to make the toy model
a slightly more realistic simulation of an actual lattice
QCD calculation by introducing statistical uncertainty
on the energy level values. In recent work [22], [6], [32],
the Hadron Spectrum Collaboration has obtained statis-
tical errors on excited levels as small as 0.3% and we will
assume that this remains practical. For each energy level
below 1.2 GeV on a single volume L = 16 GeV−1 ∼ 3.2 fm
with d = (000), (100), (110), we randomly generated an
ensemble by drawing from a distribution whose mean is
the exact value given in Fig. 2 and whose variance is
chosen such that the ensemble has variance on the mean
of 0.3% of the mean value. The resulting spectrum is
shown in Fig. 4.

Parametrizing according to a form like that given in



9

0.4 0.6 0.8 1.0 1.2

1.0

0.9

0.8

0

30

60

90

120

150

180

1.0

0.9

0.8

0

30

60

90

120

150

180

1.0

0.9

0.8

0

30

60

90

120

150

180

1.0

0.9

0.8

0

30

60

90

120

150

180

1.0

0.9

0.8

0

30

60

90

120

150

180

0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2

0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2

−0.10

−0.05

0.900.85 0.95 1.00 1.05 1.10 1.15

−0.15

−0.20

FIG. 5: Best-fit phase-shifts and inelasticity for the parameterizations A− E as described in the text. Solid curves with error
bands show the minimized solutions with the dashed curves showing the exact input. Black dots under the energy scale show
the positions of the discrete energy levels used in the minimization. Bottom-right panel shows the determined position of a
t-matrix pole on the unphysical sheets II(red) and III(blue) for the five parameterisations along with the exact input positions
(black dots).

Eq. (24), we can minimise a function,

χ2
(
{ai}

)
=

∑
En(L,d)

[
En(L,d)− Edet

n (L,d; {ai})
]2

σ(En(L,d))2
,

(where Edet are the solutions of Eq. (19)), by vary-
ing the parameters of the K-matrix parameterisation,
{ai} = {M, gφ, gσ, γ

(n) . . .}. In practical lattice QCD cal-
culations, the χ2 can be trivially redefined to deal with
correlated data by replacing the inverse diagonal variance
(1/σ2) by the inverse of the data covariance matrix.

In Fig.5 we show the parameterized phase-shifts and
inelasticity obtained using five model parameterisations:

• A: “exact model”, which uses a 1st order polyno-
mial in s to describe the non-pole contribution to

the K-matrix with γ
(0,1)
φφ = γ

(0,1)
φσ ≡ 0 [5 parame-

ters]

• B: “relaxed model”, with a 1st order polynomial in
all channels i.e. all γ(0,1) free [9 parameters]

• C: “tight model”, with 0th order of polynomials in
all channels i.e. γ(1) = 0 [6 parameters].

• D: “loose model”, with 2nd order of polynomials
in all channels i.e. γ(0,1,2) free [12 parameters].

• E: “two pole model”, with no polynomial, but with
a second K-matrix pole with independent variable
couplings [6 parameters].

As one would expect, within statistical uncertainty, pa-
rameterization A reproduces the input model. Parame-
terisation B, which is more flexible, also reproduces the
input quite well over the energy region where data is
given, albeit with a larger statistical uncertainty, but be-
gins to show signs of deviation from the originalK-matrix
in the energy range outside of the fit region. Parameter-
ization C does not have sufficient flexibility to describe
the complete energy dependence - while it does correctly
reproduce the resonance shape in δφ and the presence of
a dip in η, the precise energy dependence of η is not cor-
rect and it fails to describe δσ at high energies, away from
the energy region where the pole dominates. Parameter-
isation D introduces too much parameter-space freedom
for the limited set of data points available. As such we
see rapid energy variation that is not really required and
a large degree of statistical uncertainty. Parameterisa-
tion E shows that a precise knowledge of the form of the
“background” is not required to reproduce the energy de-
pendence in a limited region - a second K-matrix pole (at
higher energy) is able to mock-up the polynomial behav-
ior away from the resonance pole quite well.

All the above parameterizations include at least one
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pole in the K-matrix – a feature that is not strictly nec-
essary to generate a pole in the t-matrix. In principle,
polynomial behavior in K can give rise to poles in t. In
the current case, probably due to the fact that the reso-
nance is rather narrow, fits to the finite-volume spectrum
that included only a polynomial in K and no poles did
not give rise to descriptions with reasonable χ2. Go-
ing to a higher order polynomial introduces too much
parameter-space freedom and fits typically fail to con-
verge. The rapid rise in δφ(s) suggested by even limited
“pointwise” analysis of the spectrum, and the low χ2’s
associated with the fits A-E, suggest that a parameteri-
zation that generates a pole in t(s) close to the real axis
is required to describe the finite-volume spectrum.

Our principal interest lies in identifying resonances as
poles in the complex-s plane – analytically continuing
the fitted model amplitudes we find that all five have
single poles on sheets II and III whose locations are in a
rather good agreement with the input pole position (see
Fig. 5). The residues at the pole agree similarly. The
statistical precision of the pole position determination
typically decreases as we introduce more parameters into
the model. The pleasing observation here is that in order
to determine the position of a sharp resonance we do not
need to have precise knowledge of the form of the energy-
dependence of the “background”.

In summary, the “pointwise” strategy may provide
a less model-dependent approach for extracting phase
shifts and inelasticities, however, this method is limited
by the number of points for which accidental degenera-
cies appear. Parameterizing the scattering amplitude al-
low us to make use of all measured energy levels, how-
ever we need to find suitable parameterizations. One
strategy is to explore the “pointwise” approach to find a
crude guide to the energy dependence and then build pa-
rameterizations which are able to reproduce the obtained
form. The parameterizations, which should respect cer-
tain constraints applicable to scattering amplitudes, can
be made progressively more sophisticated in an effort to
reduce the overall χ2 – in this sense the approach is not
dissimilar to what is done with real experimental data.

V. SUMMARY

Using the Hamlitonian formalism applied to a model
of interacting relativistic fields, we derived a generalized
Lüscher’s formula [8, 9, 14, 15] for two-particle scatter-
ing, in both the single- and coupled-channel systems, in
moving frames.

Our results are consistent with the ones obtained pre-
viously in [8, 9, 14, 15]. In the coupled-channel case we
are challenged by the fact that, even for dominance of a
single partial-wave, the system is underconstrained for
determination of multiple-channel phase-shifts and in-
elasticities from a single determined finite-volume energy
level. Using a toy model of two-channel S-wave scatter-
ing we demonstrated that it is possible to determine this

information if multiple energy levels are determined.

Two possible strategies for extracting information from
discrete spectra of a coupled-channel system were dis-
cussed, one approach utilizes the near degeneracy of en-
ergy levels in different volumes and total momenta of
system, and another fits the discrete spectra by param-
eterizating the scattering amplitudes with certain num-
bers of parameters. These strategies may be useful for
the analysis of future lattice QCD data. In particular,
the coupled-channel analysis has to be considered for the
strongly coupled systems, for instance, ππ,KK̄ and ηη
system in S-wave.
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Appendix A: Relativistic Lippmann-Schwinger
equation from Hamiltonian formalism

Following the method presented in [26, 27], we treat
the relativistic dynamics of particle scattering in the
Hamiltonian formalism approach. We start from the
covariant Lagrangian in Eq.(1) and choose to quantize
the field operators in the instant form [28]; the construc-
tion of generators of the Poincaré group can be done in
a standard way in quantum field theory. In principle,
one needs to solve eigenstate equations Ĥ|Ψ〉 = E|Ψ〉
on a instant quantization plane, where |Ψ〉 denotes the
Poincaré covariant state vector spanning the complete
Fock space. We truncate the Fock space up to three-
body states, assuming that this is sufficient to describe
low-energy physics. Thus, the eigenstate equations re-
duce to a matrix equation given in Eq.(2). Eliminating
the three-body sector, we end up with the relativistic
Schrödinger-like equation for a two-body system given in
Eq.(3). For simplicity, we have assumed that the two
charged scalars scattering have equal mass, however, the
conclusion of this work can be generalized to non-equal
masses case as well (c.f. [33, 34]).

We choose the center-of-mass frame of the many-body
system to construct multiple-particle states |JM〉 having
total spin J and spin projection M . The two-particle
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state |φ+φ−〉 in the center-of-mass frame is given by

∣∣φ+φ−; JM
〉

= 2
√
s

∫
d3p1

(2π)32Ep1

d3p2

(2π)32Ep2

δ3(p1 + p2)

× (2π)3ϕ
(2)
JM (p1,p2) a†p1

b†p2

∣∣0〉,
where pi is the momentum of the i-th particle and√
s is the invariant mass of the two-particle system.

ϕ
(2)
JM (p1,p2) is the wavefunction of the two-particle sys-

tem, describing the momentum distribution of the two
particles.

Similarly, the three-particle state |φ+φ−θ〉 is given by

∣∣φ+φ−θ; JM
〉

= 2
√
s

∫
d3p1

(2π)32Ep1

d3p2

(2π)32Ep2

d3p3

(2π)32Ep3

× (2π)3δ3(p1 + p2 + p3)

× ϕ(3)
JM (p1,p2,p3) a†p1

b†p2
d†p3

∣∣0〉,

where ϕ
(3)
JM (p1,p2,p3) is the wavefunction of the three-

particle system. The wavefunctions are normalized
so that the normalization of states is 〈JM |JM〉 =
2
√
s (2π)3 δ3(0).

It is straightforward to evaluate the matrix elements
of the eigenstate equations Eq.(2) and to get coupled
equations for the wavefunctions

ϕ
(2)
JM (q) =

g
√
s− 2

√
q2 +m2

∫
d3k′

(2π)32
√

k′2 + µ2

[
ϕ

(3)
JM (q + 1

2k
′,k′)

2
√

(q + k′)2 +m2
+

ϕ
(3)
JM (q− 1

2k
′,k′)

2
√

(q− k′)2 +m2

]
,

ϕ
(3)
JM (q,k) = g

1

2
√

( 1
2k−q)2+m2

ϕ
(2)
JM (q− 1

2k) + 1

2
√

( 1
2k+q)2+m2

ϕ
(2)
JM (q + 1

2k)

√
s−

√
( 1

2k + q)2 +m2 −
√

( 1
2k− q)2 +m2 −

√
k2 + µ2

,

where we have used a short-hand notation for wavefunctions ϕ
(2)
JM (q) and ϕ

(3)
JM (q,k), with arguments of relative

momenta defined by q = 1
2 (p1 − p2),k = −p3. Eliminating the three-body wavefunction, we get a relativistic

equation for the two-particle state |φ+φ−〉 with an effective non-local potential generated from the neutral scalar
exchange between two charged scalars

ϕ
(2)
JM (q) =

1
√
s− 2

√
q2 +m2

∫
d3k

(2π)3
V (q,k)ϕ

(2)
JM (k),

with

V (q,k) =
g2

4

1

1− Σ(q)

1

(k2 +m2)

1√
(k− q)2 + µ2

1
√
s−
√
k2 +m2 −

√
q2 +m2 −

√
(k− q)2 + µ2

, (A1)

where the self-energy contribution is,

Σ(q) =
1

√
s− 2

√
q2 +m2

g2

4

∫
d3k′

(2π)3

1
√
s−

√
k′2 +m2 −

√
q2 +m2 −

√
(k′ − q)2 + µ2

× 1√
q2 +m2

1√
k′2 +m2

1√
(k′ − q)2 + µ2

.

In coordinate space, the wave-equation becomes

ψJM (r) =

∫
d3r′G0(r− r′,

√
s)

∫
d3z Ṽ (r′,−z)ψJM (z),

where ψJM (r) and Ṽ (r′,−z) are the Fourier transforms

of the momentum-space two-particle wavefunction and
effective potential, respectively. The free Green’s func-
tion is given in Eq.(8). Performing the angular integral,
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FIG. 6: Integration contours and singularities of the free
Green’s function in Eq.(A2) on the complex q plane.

the free Green’s function reads

G0(r,
√
s) =

1

2ir

∞∫
−∞

qdq

(2π)2

eiqr − e−iqr
√
s− 2

√
q2 +m2

, (A2)

which has the following singularities in the complex q
plane: two poles on the real axis, q = ±k, and two branch
cuts on the imaginary axis ± [im, i∞], see Fig.6. We
choose the contour C1 + C2 to include the pole at q = k
and circle around the cut [im, i∞] on the upper half-plane
for first term with factor eikr and choose the contour
C1 +C3 to include the pole at q = −k and circle around
the cut [−im,−i∞] on the lower half-plane for the second
term with factor e−ikr, as shown in Fig.6. The contour
integral leads to

G0(r,
√
s) = −

√
s

2

eikr

4πr
− 1

r

∞∫
m

ρdρ

(2π)2

√
ρ2 −m2

e−ρr

k2 + ρ2
,

where k = 1
2

√
s− 4m2 is the momentum of either par-

ticle in the rest frame of the two-particle system. The
first term on the right hand side comes from the poles at
q = ±k and is proportional to the usual non-relativistic
Green’s function which oscillates over the path of propa-
gation. The second term comes from the contribution of
the discontinuity crossing the branch cuts at ± [im, i∞] -
it decays exponentially over the propagation. Expanding√
ρ2 −m2 = ρ

(
1−O

(
m2

ρ2

))
, at large separations, the

free Green’s function may be approximated by

G0(r;
√
s) ≈ −

√
s

2

1

4πr

[
eikr +

2

π

e−mr

r
√
s

]
, (A3)

and therefore the exponential decaying term can be
dropped in the limit r � m−1.

Appendix B: Expansion of Green’s function and
regularization of expansion coefficients

We start from the expansion of the Green’s function

1

L3

∑
q∈PQ

eiq·r

k2 − q2

=
k

4π
n0(kr)−

∑
jmj

g
(Q)
jmj

(k) jj(kr)Yjmj (r̂),

where the summation of q runs over PQ = {q ∈ R3|q =
2π
L n + Q, for n ∈ Z3}. The expansion coefficients are

given by [8]

g
(Q)
jmj

(k) =
4π

L3

∑
q∈PQ

ij
qj

kj
Y ∗jmj(q̂)

q2 − k2
−
δj0 δmj0√

4π

1

r

∣∣∣∣
r→0

.

(B1)

Note that the definition of nj(x) in this work differs from
the definition in [8] by a overall negative sign.

Using the identities

jj
(
k|r− r′|

)
Yjmj (r̂− r′)

r′<r
=
√

4π
∑
lml
l′ml′

il−l
′−j jl(kr) jl′(kr

′)Ylml(r̂)Y ∗l′ml′ (r̂
′)

×
√

(2j+1)(2l′+1)
2l+1 〈jmj ; l

′ml′ |lml〉 〈j0; l′0|l0〉,

and

k

4π
n0

(
k|r− r′|

) r′<r
= k

∑
lml

nl(kr) jl(kr
′)Ylml(r̂)Y ∗lml(r̂

′),

we also have

1

L3

∑
q∈PQ

eiq·(r−r
′)

k2 − q2

r′<r
=

∑
lml
l′ml′

[
δl′m′

l′ ,lml
nl(kr)−M(Q)

l′m′
l′ ,lml

(k) jl(kr)
]
,

× k jl′(kr′)Ylml(r̂)Y ∗l′ml′ (r̂
′), (B2)

with

M(Q)
l′m′

l′ ,lml
(k) =

∑
jmj

il−l
′−j
√

4π

k
g

(Q)
jmj

(k)

×
√

(2j+1)(2l′+1)
2l+1 〈jmj ; l

′ml′ |lml〉〈j0; l′0|l0〉. (B3)

If Q is identified with 1
2γP for two-equal-mass-

particle scattering, the generalization to two-unequal-

mass-particle scattering leads to 1
2γP(1+

m2
1−m

2
2

E2 ) [33, 34],

these expressions are the same as those presented in
[9], and the regularisation procedure outlined therein
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can be followed. Once the Lorentz contraction is con-
sidered (substitution of box volume L3 and momentum
2π
L n,n ∈ Z3 by γL3 and 2π

L γ
−1n respectively), the func-

tion g
(Q)
jmj

(k) is related to the Zeta function defined in

Eq.(93) of [9] by

g
(Q)
jmj

(k) =
1

π

1

γL

ij(
kL
2π

)j Zd∗
jmj

(
1, kL2π

)
. (B4)
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