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Abstract

While the total orbital angular momentum (OAM) of a definite quark flavor in a longitudinally-

polarized nucleon can be obtained through a sum rule involving twist-two generalized parton dis-

tribution (GPDs), its distribution as a function of parton momentum in light-front coordinates is

more complicated to define and measure because it involves intrinsically twist-three effects. In this

paper, we consider two different parton OAM distributions. The first is manifestly gauge invariant,

and its moments are local operators and calculable in lattice QCD. We show that it can potentially

be measured through twist-three GPDs. The second is the much-debated canonical OAM distribu-

tion natural in free-field theory and light-cone gauge. We show the latter in light-cone gauge can

also be related to twist-three GPDs as well as quantum phase-space Wigner distributions, both

being measurable in high-energy experiments.

1



I. INTRODUCTION

The nucleon spin structure is one of the most active research areas in hadronic physics in

recent years [1]. A gauge-invariant and frame-independent approach was put forward in [2],

according to which, the nucleon polarization can be decomposed into frame-independent

quark and gluon contributions,

1

2
=

∑

q

Jq + Jg , (1)

where Jq and Jg can be extracted from the following sum rule,

Jq,g =
1

2

∫

dxx (Hq,g(x, 0, 0) + Eq,g(x, 0, 0)) , (2)

where Hq,g and Eq,g are the relevant twist-two generalized parton distributions (GPDs) for

the quarks and gluons, respectively. The above result, however, does not seem to provide a

simple partonic interpretation for the individual contributions, which does exist, for example,

for the quark helicity contribution ∆q(x) to the nucleon helicity [3].

The partonic interpretation of transverse spin of the nucleon, in particular, in terms

of the GPDs are discussed in recent publications [4–11]. In this paper, we focus on the

longitudinal polarization of nucleon. For this case, the nucleon helicity naturally receives

contributions from the parton helicity and orbital angular momentum (OAM). The quark

and gluon OAM densities in light-front coordinates are not entirely leading-twist effects and

therefore are difficult to define and measure. This is a consequence of the power counting

analysis of the angular momentum density in the light-cone frame [6], where the tranverse

angular momentum appears as the leading power contribution and the longitudinal one

as sub-leading contribution. Intuitively, this can be understood as follows. The angular

momentum is constructed as ~r × ~p where ~r represents the coordinate space variable and

~p the momentum space variable. For longitudinal polarization (angular momentum along

z-drection), both ~r and ~p are in the transverse plane and order 1 on the light-cone. However,

for the transverse polarization, ~p is order p+ = (p0 + pz)/
√
2 (the leading component in the

infinite momentum frame pz →∞) and ~r is order 1, and thus ~r × ~p is leading.

In the work of Hoodbhoy et al [12], the partonic AM densities were defined starting

from the generalized AM tensors. The OAM distribution was identified as the difference of

the total AM density and the helicity distribution. A careful examination of the operator
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structure indicates that this OAM density contains extra quark and gluon mixing contribu-

tion. To keep the physics simple, we suggested to define the gauge-invariant quark OAM

distribution Lq(x) without this extra term [6]. Then, one can show that Lq(x) is related to

twist-three GPDs, which might be measured directly from the hard exclusive processes in

lepton-nucleon scattering [13].

The much-discussed partonic OAM distributions in the literature have been centered on

the canonical AM expression [14–17]. This definition is not guage invariant out right, but

can be made so through trivial gauge-invariant extension (GIE) of the light-cone gauge and

light-front coordinates [6, 18]. It can be shown that these distributions can also be related

to twist-three parton distributions [6, 19]. Meanwhile, recent studies [6, 19, 20] have also

shown that the quark OAM distributions are connected to the quantum phase space Wigner

distributions [21]. These distributions define the correlations of partons in transverse mo-

mentum and transverse coordinate spaces. The gauge-invariant OAM distribution discussed

in the previous paragraph and the canonical OAM distribution in light-cone gauge are just

the projections of the Wigner distributions with different choices of the associated gauge

links.

For the gluon contribution Jg to the helicity, there is no gauge-invariant decomposition

of the operator into the local ones corresponding to the gluon spin and OAM [2]. However,

there is a decomposition in a fixed gauge into the canonical contributions. To relate them

to partonic physics, a GIE of these contributions can be applied to the operators in the

light-cone gauge, just like that for the quark case. The GIE procedure provides a practical

way to connect the gluon spin and OAM contributions to physical observables [6, 18].

The paper is organized as follows. In Sec.II, we will review the definitions of the partonic

OAM distributions, we consider both naturally gauge-invariant approach as well as the

canonical definition in light-cone gauge. We explore the relation between these approaches.

In Sec. III, we analyze the twist-three GPDs and their role in directly probing the quark

and gluon OAM contributions. We also discuss the Wigner distributions for the quarks and

gluons, and their connections to the OAM. We summarize the results in Sec. IV.
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II. DEFINITIONS OF PARTON ORBITAL ANGULAR MOMENTUM

In this section, we review and relate the definitions of the parton OAM distributions in

a nucleon with momentum P µ = (E, 0, 0, P ) and definite helicity or the definite angular

momentum Jz = 1/2 (~ = 1). The fact that there are more than one definitions reflects the

difficulty of finding one satisfying all the required properties, namely 1) gauge symmetry,

2) clear physical interpretation, 3) measurability in high-energy scattering. This difficulty

originates possibly from the fact that in a longitudinally polarized nucleon the OAM of the

partons is intrinsically a twist-three effect [6]. In this sense, the parton structure of the

helicity is more complicated than that of the transverse polarization [7].

We start with the parton OAM distribution by Hoodbhoy et al. [12]. This definition

starts from the generalized AM tensor and derives the parton OAM density from twist-two

parton distributions. It emphasizes the experimental measurability and is gauge invariant.

However, the physical interpretation in partons is complicated. Then we consider an im-

proved definition by inserting the gauge-invariant OAM into a tower of twist-two operators.

This definition is gauge-invariant and has a clearer physical meaning. We will call this one

the gauge-invariant OAM distribution Lq(x). However, as we shall see, its measurement

is more difficult as it involves twist-three GPDs. For the same reason, its partonic inter-

pretation is not completely straightforward in the presence of the transverse gluon gauge

potential. The definition that has been studied the most in the literature has been motivated

from the canonical OAM without the transverse gluon potential. It is not manifestly gauge

invariant. In parton physics, this definition can be gauge-fixed in the light-cone gauge and

made gauge invariant through an extension of the concept of gauge invariance [18]. Recent

work shows that such light-cone gauge, canonical OAM distribution might be measurable

through twist-three GPDs and Wigner distributions [6, 20, 22], although this is even more

difficult to achieve than Lq(x).

In the third subsection, we comment on the relationship between the manifestly gauge-

invariant and the light-cone-gauge-motivated definitions.
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A. Gauge-Invariant OAM Distribution

Hoodbhoy et al. have defined a version of the quark OAM distribution from the gen-

eralized energy-momentum tensor [12]. Recall that the angular momentum operator can

be obtained from the rank-3 angular momentum tensor made of the symmetric energy-

momentum tensor T µα [2, 14],

Mµαβ = ξαT µβ − ξβT µα , (3)

where ξ is a space-time coordinates, T µα can be separated into quark and gluon contributions,

T µα = T µα
q + T µα

g . (4)

The quark and gluon components follows from the QCD lagrangian,

T µα
q =

1

2

[

ψγ(µi
−→
Dα)ψ + ψγ(µi

←−
Dα)ψ

]

T µα
g =

1

4
F 2gµα − F µρF α

ρ , (5)

where the covariant derivative follows the convention
−→
Dµ = ∂µ + igAµ,

←−
Dµ = −∂µ + igAµ,

and F µν is the field strength tensor for the gauge field. In the above expression, we have

neglected the contributions from the gauge-fixing term in the lagrangian which usually yield

vanishing physical matrix elements. From the above, the quark OAM operator is found to

be,

Lq =

∫

d3ξ ψqγ
+
(

ξ1(iD2)− ξ2(iD1)
)

ψq . (6)

This procedure can be generalized to define the quark OAM distribution in the same way

that the parton momentum distribution follows from generalizing the energy-momentum

tensor to a tower of twist-two operators.

The generalized AM tensors can be defined as

Mαβµ1...µn

q (ξ) = ξαOβµ1...µn

q − ξβOαµ1...µn

q − (trace) , (7)

where Oβµ1...µn

q (ξ) = ψ̄γ(βi
←→
D µ1 · · · i←→D µn)ψ(ξ) represents the tower of twist-two operators

generalizing the quark energy-momentum tensor (n = 1), with all indices symmetrized and

traces subtracted. The above operators have angular-momentum-dependent nucleon matrix
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elements Jqn in a state with polarization vector Sµ(see Eq. (4) in Ref. [12]). The quark

angular momentum distribution Jq(x) can be defined as

∫

dxxn−1Jq(x) = Jqn , (8)

just like the moments of the quark momentum distribution which are the matrix elements

of the generalized energy-momentum tensors. Using the GPDs, it has been shown that

Jq(x) =
x

2
[q(x) + Eq(x)] (9)

where q(x) is the quark momentum distribution and Eq(x) is one of the twist-two GPDs.

However, the above equation does not generate a simple quark OAM distribution in a

fixed helicity state. Indeed, by examining the matrix element of the component M12+...+,

one may define

L̃q(x) = Jq(x)−
1

2
∆q(x)

=
1

2
[x(q(x) + Eq(x))−∆q(x)] , (10)

as the quark OAM distribution. However, the moments of the OAM distribution is related

to the matrix elements of the following operator [12],

L̃+...+
q =

1

n

∫

d3ξ
[

ψγ+(ξ1iD2 − ξ2iD1)iD+ · · · iD+ψ + · · ·

+ ψγ+iD+ · · · iD+(ξ1iD2 − ξ2iD1)ψ
]

+
1

n(n + 1)

∫

d3ξ
[

ψγ+(ξ1γ2 − ξ2γ1)(igF ρ+γρ)iD
+ · · · iD+ψ + · · ·

+ ψγ+iD+ · · · iD+(ξ1γ2 − ξ2γ1)(igF ρ+γρ)ψ
]

. (11)

Apart from the first term that has a physical meaning as generalized OAM operator, it

also contains a term proportional to the gluon field strength F µν , whose physical origin

seems obscure. Apparently, the extra contribution comes from the requirement that the AM

density is a twist-two operator.

Thus, we define proper gauge-invariant OAM distribution in the nucleon helicity state

from the following tower of operators,

Lµ1...µn

q =
1

n

n−1
∑

i=0

∫

d3ξ ψ(ξ)γ+iDµ1 · · · iDµi(ξ1iD2 − ξ2iD1)iDµi+1 · · · iDµnψ(ξ) . (12)
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Considering the matrix elements

〈PS|L+...+
q |PS〉 = 2Lqn

n + 1
2S+P+ · · ·P+(2π)3δ3(0) , (13)

we define the associated OAM distribution Lq(x),

∫

dxLq(x)x
n−1 = Lqn . (14)

Lq(x) is gauge invariant and has a simple physical meaning, as it involves only the insertion

of the angular momentum operator ξ1iD2 − ξ2iD1 into the twist-two generalized energy-

momentum tensors.

However, Lµ1...µn

q contains both twist-two and -three operators, and depends on the corre-

lation of transverse distributions in both the coordinate and momentum spaces as well as the

transverse gluon potential. Therefore, its partonic content is not simple. The fact that OAM

is a higher-twist operator in a longitudinally-polarized nucleon can already be appreciated

from the matrix element of M+12, which is a subleading operator in light-front coordinates,

because it has one less + as compared to M++⊥ [6]. To calculate the matrix elements of

the Pauli-Lubanski spin operator, it was found that M++⊥ contributes to the transverse

polarization of nucleon which is leading operator, whereas the helicity contribution M+12 is

subleading operator.

We shall see that Lq(x) naturally follows from the (angular momentum) moment of a

Wigner distribution with the straightline gauge link [6]. We will also show in the next

section that Lq(x) is related explicitly to twist-two and -three GPDs, and hence is accessible

experimentally in principle.

B. Canonical OAM Distribution in Light-Cone Gauge

There are two definitions of quark angular momentum in the literature. Apart from the

gauge-invariant definition [2], there is the version motivated in free-field theory, expressed

in the light-cone coordinates [14],

J3 =

∫

d3~ξ

[

1

2
ψγ+Σ3ψ + ψγ+(~ξ × i~∂)3ψ + ( ~E × ~A)3 + Ei(~ξ × ~∂)3Ai

]

, (15)

where A+ = (A0 + A3)/
√
2, and Ei = F+i, and each term has a clear physical interpreta-

tion. When all fields expressed in terms of creation and annihilation operators in light-cone
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quantization, the above expressions involve just the “good” components of the parton fields.

In Ref. [23], the angular momentum evolution equation was derived. The related angular

momentum sum rule has been often quoted in the literature,

1

2
=

1

2
Σq + lq +∆G + lg , (16)

where all quantities are defined as the matrix elements of the above operators in the nucleon

helicity state. However, only the first term is gauge invariant, whereas all other three terms

are not. Since we are interested in the parton physics, it is the most natural way to fix the

light-cone gauge A+ = 0, which is what we will do in this paper.

The above canonical angular momentum operator has motivated introducing light-cone

AM density by Hägler and Schäfer [15] as generalized angular momentum operators, and

similarly by A. Harindranath and R. Kundu [17], by Bashinsky and Jaffe [16]

lq(x) =
1

2πP+

∫

dλeiλx〈PS|ψ(0)γ+i(ξ1∂2 − ξ2∂1)ψ(ξ)|PS〉 (17)

where λ = ξ−P+ and the integration over ξ⊥ is implicit. To take into account the transverse

coordinates, it can be calculated as the forward limit of an off-forward matrix element,

lq(x) = ǫαβ
i∂

∂q⊥α

∣

∣

∣

∣

q⊥=0

[
∫

dξ−

2π
eixp

+ξ−
〈

P ′S
∣

∣

∣
ψ(0)γ+i∂β

⊥
ψ(ξ−)

∣

∣

∣
PS

〉

]

, (18)

where q⊥ = P ′ − P , α and β only cover the transverse dimensions. Clearly,
∫

dxlq(x) = lq.

Likewise, the gluon helicity and OAM distributions can be defined in light-cone gauge as

∆g(x) =
1

4π
ǫαβ

∫

dλeiλx〈PS|F+α(0)Aβ(λn)|PS〉 (19)

lg(x) =
1

4π

∫

dλeiλx〈PS|F+α(0)(ξ1∂2 − ξ2∂1)Aα(λn)|PS〉 (20)

These are the gluon helicity distribution and canonical gluon OAM distribution. The gluon

helicity sum rule is

∆G =

∫

dx∆g(x) , (21)

and similarly,
∫

dxlg(x) = lg. Thus all the components of the canonical angular momentum

sum rule in Eq. (16) now have partonic interpretation, in the sense that they can be obtained

from integration of parton distributions.
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C. Relations Between Two OAM Distributions

From the covariant derivative iD = i∂ − gA, one can introduce the gauge-dependent

potential angular momentum term lpot = −g
∫

d3ξψ(~ξ × ~A)3ψ. Thus, Lq = lq + lq,pot.

Similarly, one can introduce the relevant parton distribution through its moments [19],

lnq,pot =
−ǫαβ
(P+)n

i∂

∂q⊥α

∣

∣

∣

∣

∣

q⊥=0

[〈

P ′S

∣

∣

∣

∣

∣

ψ(0)γ+
1

n

n−1
∑

k=0

(

iD+
)n−1−k

gAβ
⊥
(0)

(

iD+
)k
ψ(0)

∣

∣

∣

∣

∣

PS

〉]

. (22)

Again the above quantity is defined in the light-cone gauge. Obviously, the canonical AM

distribution plus the potential AM distribution yield the manifest gauge-invariant AM den-

sity,

Lq(x) = lq(x) + lq,pot(x) . (23)

The total quark angular momentum density contribution to the nucleon helicity is

J̃q(x) =
1

2
∆Σ(x) + Lq(x)

=
1

2
∆Σ(x) + lq(x) + lq,pot(x) (24)

which differs from Jq(x) defined from twist-two GPDs of Eq.(9) by a twist-three distribution.

There is no further decomposition of the gluon contribution to the nucleon spin in a gauge

invariant fashion. However, by using the equation of motion, the gluon part AM density

tensor can be written as,

M+αβ
g (ξ) =

(

F+αAβ − F+βAα
)

− F+i
(

ξα∂β − ξβ∂α
)

Ai + gψγ+
(

ξαAβ − ξβAα
)

ψ , (25)

where we have dropped out a total derivative term. From the above expression, we can see

that the total contribution is gauge invariant, but not the individual terms [24]. Therefore,

the individual contributions are not measurable in principle. However, one can define them in

the light-cone gauge and demand the same result in all other gauges (called GIE), and explore

their measurability. Thus, generalizing to the light-cone distributions in the light-cone gauge,

we find that the total gluon contribution to the nucleon helicity can be written [2],

J̃g(x) = ∆g(x) + lg(x)−
∑

q

lq,pot(x) . (26)

which again differs from Jg(x) by a twist-three GPDs.
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Therefore, the total partonic angular momentum distribution to the nucleon helicity can

be written as

J̃q(x) + J̃g(x) =
1

2
∆Σ(x) +

∑

q

Lq(x) + J̃g(x)

=
1

2
∆Σ(x) + ∆g(x) +

∑

q

lq(x) + lg(x) (27)

when integrated over x, one gets both the sum rule in Eq. (1) and the sum rule in Eq. (16).

III. PROBING ORBITAL ANGULAR MOMENTUM DISTRIBUTIONS

In this section, we consider the experimental probes of the OAM distributions. To this

effort, we relate them to experimentally measurable distributions such as GPDs and Wigner

distributions. In the process, one shall see that the OAM distributions defined in the previous

section require twist-three processes to measure. It is a general rule of thumb in high-energy

scattering that the higher-twist distributions are more difficult to probe than the leading

twist ones. We will not go into the details of specific experiments other than quote the

possible hard-scattering processes. We note that the total quark OAM can be measured in

the leading-twist processes because of Lorentz symmetry, which states that the fraction of

the angular momentum carried by quarks is independent of the polarization.

For the canonical angular momentum distributions in the light-cone gauge, one has to

find the corresponding gauge-invariant quantities that are measurable in experiments. Thus

in this section, we first consider the so-called GIE of the light-cone-gauge quantities to iden-

tify the proper observables. We then consider definitions of the twist-three GPDs and their

relations to the OAM distributions. Finally, we consider the relations with Wigner distri-

butions, exploring the possibility of obtaining the OAM distributions through the quantum

phase-space distributions.

A. Gauge-Invariant Extension

In the following discussion, the canonical AM operators, including the gluon spin operator,

are defined in the light-cone gauge. However, the experimental observables must be gauge-

invariant. To reconcile the difference, we introduce the concept of gauge-invariant extension
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in the sense that these gauge-dependent operators in any other gauge must yield the same

matrix elements in the light-cone gauge. Thus for the example, the gluon helicity distribution

∆g(x) in Eq. (19) has the following gauge-invariant form [25],

∆g(x) =
i

xP+

∫

dξ−

2π
eixp

+ξ−
〈

PS
∣

∣

∣
F+i(0)L[0,ξ−]F̃

i+(ξ−)L[ξ−,0]

∣

∣

∣
PS

〉

, (28)

where F̃+i = ǫijF+j, and L is the light-cone gauge link in fundamental representation.

Clearly, its first moment is no longer a local operator. However, it reduces to the gluon spin

operator in the light-cone gauge. ∆g(x) will appear in the polarized structure functions

measured in deep inelastic scattering and the longitudinal double spin asymmetries in pp

collisions. The experimental investigation of this distribution is actively pursued at the

relativistic heavy-ion collider at the Brookhaven National Laboratory [27], and will be the

main focus in the planed electron ion collider in the near future [1].

If we introduce the following GIE of the partial derivative in light-cone gauge

i∂̃α
⊥
= iDα

⊥
(ξ) +

∫ ξ−

dη−L[ξ−,η−]gF
+α(η−, ξ⊥)L[η−,ξ−] , (29)

where L is the light-cone gauge link (the only ambiguity is the boundary condition for the

gluon potential at infinity which can be fixed by residual gauge definition, we ignore this

point in our discussion, see [26]) we immediately find the canonical quark OAM distribution

lq(x) is now gauge invariant, so is the canonical gluon OAM distribution lg(x). The potential

AM distribution involves Aα, which can be made gauge invariant through,

Ãα
⊥
(ξ) =

∫ ξ−

dη−L[ξ−,η−]gF
+α(η−, ξ⊥)L[η−,ξ−] . (30)

Therefore all quantities defined in the light-cone gauge are now gauge invariant although

they are now highly non-local because of the light-cone gauge links.

Through GIE, we find the following relation between lq(x), Lq(x) and lq,pot,

lq(x) = Lq(x)− lq,pot(x) . (31)

Similarly, we can define the gluon gauge-invariant OAM distribution through its moments

Ln
g =

ǫαβ

4π(P+)n
i∂

∂q⊥α

∣

∣

∣

∣

∣

q⊥=0

[〈

P ′S

∣

∣

∣

∣

∣

1

n

n−1
∑

k=0

F+i(0)
(

iD+
)n−1−k

iDβ
⊥

(

iD+
)k
Ai(0)

∣

∣

∣

∣

∣

PS

〉]

, (32)

and gluon potential AM distribution,

lng,pot =
−ǫαβ

4π(P+)n
i∂

∂q⊥α

∣

∣

∣

∣

∣

q⊥=0

[〈

P ′S

∣

∣

∣

∣

∣

1

n

n−1
∑

k=0

F+i(0)
(

iD+
)n−1−k

gAβ(0)
(

iD+
)k
Ai(0)

∣

∣

∣

∣

∣

PS

〉]

. (33)
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It is also easy to see that

lg(x) = Lg(x)− lg,pot(x) . (34)

B. GPDs and OAM Distributions

GPDs have been extensively discussed in the literature [28–30]. In this section, we will

focus on the twist-three GPDs which are directly related to the various spin components

derived in the last section. We will also derive the connections between various twist-three

GPDs to illustrate the relations between different terms in the spin sum rule.

In particular, we are interested in the twist-three GPDs associated with the longitudinal

polarized nucleon. Define a distribution with two light-cone fractions,
∫

dλ

2π

∫

dµ

2π
eiλ(x−y)eiµy〈P ′S|ψ(0)γ+iD⊥(µn)ψ(λn)|PS〉

=
iǫ⊥α

2
∆αH

q(3)
D (x, y, η, t)U(P ′)γ+γ5U(P ) + · · · . (35)

where n is a conjugate vector n+ = n⊥ = 0 with n · P = 1, η is the skewness parameter,

t = ∆2 with ∆ = q = P ′ − P . It is straightforward to show that the moments of quark

orbital angular momentum distribution Lq(x) is related to the moments of twist-three GPDs

in the forward limit1

Ln
q =

∫

dx

∫

dy
1

n

n−1
∑

k=0

xn−1−k(x− y)kHq(3)
D (x, y, 0, 0) . (36)

Similarly, we can define the following twist-three GPDs associated with gluon which is

related to Lg(x),
∫

dλ

2πP+

∫

dµ

2π
eiλ(x−y)eiµy〈P ′S|F+i(0)iD⊥(µn)F+i(λn)|PS〉

=
iǫ⊥α

4
∆αH

g(3)
D (x, y, η, t)U(P ′)γ+γ5U(P ) + · · · . (37)

Again, the moments of Lg(x) is related to the moments of H
g(3)
D (x, y, η, t) in the forward

limit,

Ln
g =

∫

dx

∫

dy
1

n

n−1
∑

k=0

xn−1−k(x− y)k−1H
g(3)
D (x, y, 0, 0) . (38)

1 One may also define the OAM distribution by
∫

dyH
q(3)
D (x, y, 0, 0), which would correspond to the moment

definition in Eq. (12) with D⊥ only associated with ψ or ψ̄ fields. The following discussions apply to this

case as well (see also the discussions in Ref. [22]).
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For lq and lg, we have
∫

dλ

2π
eiλx

〈

P ′S|ψ(0)γ+i∂̃⊥ψ(λn)|PS
〉

=
iǫ⊥α

2
∆αH̃

(3)
q (x, η, t)U(P ′)γ+γ5U(P ) + · · · , (39)

∫

dλ

2πP+
eiλx〈P ′S|F+i(0)i∂̃⊥F+i(λn)|PS〉

=
iǫ⊥α

4
∆αH̃

(3)
g (x, η, t)U(P ′)γ+γ5U(P ) + · · · . (40)

We have,

lq(x) = H̃(3)
q (x, 0, 0) , (41)

xlg(x) = H̃(3)
g (x, 0, 0) . (42)

The associated potential OAM terms depend on the F-type twist-three GPDs. To discuss

the connections, we will start with more general forms for the twist-three GPDs.

In addition to the D-type twist-three GPDs of Eqs. (35,37), there are also F -type GPDs,
∫

dλ

2π

∫

dµ

2πP+
ei(x−y)λeiyµ〈P ′S|ψ(0)γ+gF+⊥(µn)ψ(λn)|PS〉

=
ǫ⊥α

2
∆αH

q(3)
F (x, y, η, t)U(P ′)γ+γ5U(P ) + · · · , (43)

∫

dλ

2πP+

∫

dµ

2πP+
ei(x−y)λeiyµ〈P ′S|F+i(0)gF+⊥(µn)F+i(λn)|PS〉

=
ǫ⊥α

4
∆αH

g(3)
F (x, y, η, t)U(P ′)γ+γ5U(P ) + · · · . (44)

It is the F-type twist-three GPDs that are related to the potential OAMs for the quarks and

gluons, respectively,

lnq,pot = −
∫

dx

∫

dy
1

n

n−1
∑

k=0

xn−1−k(x− y)kP 1

y
H

q(3)
F (x, y, 0, 0) , (45)

lng,pot = −
∫

dx

∫

dy
1

n

n−1
∑

k=0

xn−1−k(x− y)k−1P
1

y
H

g(3)
F (x, y, 0, 0) . (46)

Similar to that for the twist-three quark-gluon-quark correlation function in the forward

limit, the D-type and F-type twist-three GPDs are related to each other [31, 32],

H
q,g(3)
D (x, y, 0, 0) = −P 1

y
H

q,g(3)
F (x, y) + δ(y)H̃(3)

q,g (x, 0, 0) , (47)

respectively. These relations are consistent with the relations,

Lq/g(x) = lq/g(x) + lq/g,pot(x) (48)

in the previous sections.
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C. Wigner Distribution and Parton OAM Distributions

Parton Wigner distribution was introduced in Ref. [21] to unify the transverse momentum

dependent distributions (TMDs) and the GPDs. They describe the phase space distribution

of partons in nucleon. In particular, they contain information on momentum and coordi-

nate dependence in the transverse plane perpendicular to the nucleon momentum direction.

Therefore, the Wigner distribution will naturally provide the spin-orbital correlation which

is important to extract the parton orbital angular momentum. This has been demonstrated

explicitly in recent studies [6, 19, 20].

We define the Wigner distribution for the quark [21],

W q
Γ(x,

~k⊥, ~r) =

∫

dη−d2~η⊥
(2π)3

eik·η〈P |Ψ(~r − η

2
)ΓΨ(~r +

η

2
)|P 〉 , (49)

where x represents the longitudinal momentum fraction carried by the quark, k⊥ the trans-

verse momentum, ~r the coordinate space variable, and Γ the Dirac matrix to project out

the particular quark distribution. The quark field Ψ contains the relevant gauge link to

guarantee the gauge invariance of the above definition.

If we further integrate over rz, we will obtain the transverse Wigner distribution, which

can be interpreted as the phase space (x,~k⊥,~b⊥ ≡= r⊥) distribution of the parton in the

transverse plane perpendicular to the nucleon momentum direction. We are interested in

obtaining the Wigner distribution for the quark in a longitudinal polarized nucleon. With

the correct Dirac matrix projection, we define the following phase space distribution,

W q(x,~k⊥,~b⊥) =

∫

d2~q⊥
(2π)2

e−i~q⊥·~b⊥

∫

dη−d2~η⊥
(2π)3

eik·η〈P +
~q⊥
2
|Ψ(−η

2
)γ+Ψ(

η

2
)|P − ~q⊥

2
〉 , (50)

where ~b⊥ and ~k⊥ are transverse coordinate and momentum variables, respectively.

Because of the transverse momentum dependence, the above introduced Wigner distri-

butions involve the gauge links which are process dependent. For the relevance of the quark

OAM from the quark Wigner distributions, it was found two options can be chosen,

ΨLC(ξ) = P

[

exp

(

−ig
∫

∞

0

dλn · A(λn+ ξ)

)]

ψ(ξ) (51)

ΨFS(ξ) = P

[

exp

(

−ig
∫

∞

0

dλξ · A(λξ)
)]

ψ(ξ) . (52)

The light-cone gauge link in ΨLC(ξ) is appropriate for high energy process, such as semi-

inclusive hadron production in deep inelastic scattering [33] (see also [26] about the boundary

14



conditions at infinity). The second choice ΨFS(ξ) is a straightline gauge link along the

direction of spacetime position ξµ. This link reduces to unity in the Fock-Schwinger gauge,

ξ ·A(ξ) = 0.

It can be shown that the straightline gauge link corresponds to the gauge invariant OAM

for the quark,

Lq(x) =

∫

(~b⊥ × ~k⊥)3W q
FS(x,

~b⊥, ~k⊥)d
2~b⊥d

2~k⊥ , (53)

which gives a parton picture for the gauge-invariant OAM Lq(x). The above derivation

is straightforward, though a little tedious, and can be checked explicitly. In particular, if

we integrate over momentum fraction x, the straight-line gauge link becomes a gauge link

along the transverse direction, and the further derivation is simple. For the distribution as

function of x, one can apply the Taylor expansion, and obtains the final expression as stated

in the above equation. For the canonical quark OAM lq(x), we have,

lq(x) =

∫

(~b⊥ × ~k⊥)3W q
LC(x,

~b⊥, ~k⊥)d
2~b⊥d

2~k⊥ . (54)

From the above equations, we find that the gauge invariant OAM Lq(x) and the canonical

OAM lq(x) are unified as projection of the associated quark Wigner distribution with two

different choices for the gauge link.

D. Wigner Distributions for the Gluons

Similarly, we can define the Wigner distribution for the gluons,

xW g(x, k⊥, b⊥) =

∫

d2q⊥
(2π)2

e−iq⊥·b⊥

∫

dη−d2η⊥
(2π)3

eik·η〈P +
q⊥
2

∣

∣

∣
F+i(−η

2
)F+i(

η

2
)
∣

∣

∣
P − q⊥

2
〉 , (55)

where F contains the relevant gauge links,

F+i
FS(ξ) = P

[

exp

(

−ig
∫

∞

0

dλξ · A(λξ)
)]

F+i(ξ) (56)

F+i
LC(ξ) = P

[

exp

(

−ig
∫

∞

0

dλn · A(λn+ ξ)

)]

F+i(ξ) . (57)

Here, the gauge links are in the adjoint representations. We have chosen the future pointing

gauge links. We notice that there are different choices for the gauge links associated with the

transverse momentum dependent gluon distributions (see, e.g., Ref. [34]). Future pointing
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gauge link corresponds to the processes involving only final state interactions associated with

the gluon distribution, such as dijet-correlation in DIS [34]. Because of the time-reversal

invariance, for the above quantity, the future pointing gauge link yields the same Wigner

distribution as that for backward pointing gauge link in the process such as Higgs boson

production in pp collisions. Following the above calculations, we find that the gluon OAM

can be constructed from these Wigner distributions [20],

Lg(x) =

∫

(~b⊥ × ~k⊥)3W g
FS(x,

~b⊥, ~k⊥)d
2~b⊥d

2~k⊥ (58)

lg(x) =

∫

(~b⊥ × ~k⊥)3W g
LC(x,

~b⊥, ~k⊥)d
2~b⊥d

2~k⊥ . (59)

In high energy processes, these Wigner distributions could be measurable in hard exclusive

processes.

IV. SUMMARY

In conclusion, we have studied the parton sum rule for the spin of a longitudinal polarized

nucleon, in terms of the parton helicity contributions and OAM contributions. We have

identified the twist-three GPDs as direct probes for the parton OAMs. We also demonstrated

that the quark and gluon OAMs can be related to the quantum phase space distributions.

In particular, the canonical and gauge-invariant quark OAMs correspond to the different

choices for the associated gauge links structure in the Wigner distributions.

Since the twist-three GPDs can be used to probe the parton OAMs directly, we can now

in principle measure the different components of the spin sum rule. These GPDs shall be

studied in the hard exclusive processes. However, the associated spin asymmetries always

contain the leading-twist contributions as in, for example, deeply virtual Compton scattering

process, it is not easy to extract these twist-three GPDs. We have to make more detailed

studies on these processes and learn how to extract the relevant distributions.

Moreover, the Wigner distributions shall also be accessible through high energy processes.

We will investigate these issues in the future publications.
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