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Abstract

Quarkonium production in hadron collisions at low transverse momentum q⊥ ≪M with M as the
quarkonium mass can be used for probing Transverse Momentum Dependent(TMD) gluon distribu-
tions. For this purpose one needs to establish the TMD factorization for the process. We examine
the factorization at one-loop level for the production of ηc or ηb. The perturbative coefficient in the
factorization is determined at one-loop accuracy. Comparing the factorization derived at tree-level and
that beyond the tree-level, a soft factor is in general needed to completely cancel soft divergences. We
have also discussed possible complications of TMD factorization of p-wave quarkonium production.

Quarkonium production in hadron collision can be used to explore the gluon content of hadrons,
because the quarkonium is dominantly produced through gluon-gluon fusions. For the produced quarko-
nium with large transverse momentum, one can apply QCD collinear factorizations for long distance
effects of the initial hadrons. In this case, one can extract the standard gluon distributions(see e.g., [1]).
If the quakonium is produced with small transverse momentum q⊥, it can be thought that the small q⊥
is generated at least partly from the transverse motion of gluons inside the initial hadrons. In this case
one can apply Transverse Momentum Dependent(TMD) factorization for initial hadrons. Therefore, the
production with small q⊥ allows to access TMD gluon distributions.

Factorizations with TMD quark distributions and fragmentation functions have been studied inten-
sively beyond tree-level in different processes in[2, 3, 4, 5]. In comparison, the factorization with TMD
gluon distributions beyond tree-level has only been studied for Higgs production in hadron collision in
[6]. Recently, the TMD factorization of quarkonium production has been derived at tree-level in [7], and
based on it numerical predictions have been obtained. For theoretical consistency and precision it is
important to examine the TMD factorization beyond tree-level. From early studies in [2, 3, 4, 6] it is
known that a soft factor needs to be implemented into the factorization. In this work we examine TMD
factorization of ηc or ηb production at one-loop level.

A quarkonium is dominantly a bound state of a heavy quark Q and its antiquark Q̄. Because of the
heavy mass the QQ̄ pair is of a nonrelativistic system. To separate the nonperturbative effects related to
the quarkonium in its production one can employ nonrelativistic QCD(NRQCD) factorization[8] by an
expansion of the small velocity of Q relative to Q̄ . The inclusive production of a quarkonium at moderate-
or large q⊥ has been studied intensively both in theory and in experiment. In last five years, important
progresses were made in the study of the next-to-leading order QCD correction for J/ψ production in
hadron collisions[9] and power corrections[10]. The activities in this field can be seen in [11]. It should
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be noted that in experiment it is also possible to study the inclusive production at low q⊥. E.g., a
J/ψ produced at LHCb can be measured with q⊥ smaller than 1GeV[12]. Therefore, with theoretically
established TMD factorization one can extract from experimental results TMD gluon distributions.

We will use the light-cone coordinate system, in which a vector aµ is expressed as aµ = (a+, a−,~a⊥) =
((a0 + a3)/

√
2, (a0 − a3)/

√
2, a1, a2) and a2⊥ = (a1)2 + (a2)2. We introduce two light cone vectors nµ =

(0, 1, 0, 0) and lµ = (1, 0, 0, 0) and the transverse metric gµν⊥ = gµν−nµlν−nνlµ. We consider the process:

hA(PA) + hB(PB) → ηQ(q) +X, (1)

in the kinematical region Q2 = q2 ≫ q2⊥ with Q =MηQ as the mass of ηQ, where ηQ stands for ηc or ηb.
The momenta of the initial hadrons and of the quarkonium are given by

Pµ
A ≈ (P+

A , 0, 0, 0), Pµ
B ≈ (0, P−

B , 0, 0), qµ = (xP+
A , yP

−
B , ~q⊥), (2)

where we have neglected masses of hadrons, i.e., P−
A ≈ 0 and P+

B ≈ 0. In the kinematic region of q⊥ ≪ Q
TMD factorization can be applied with corrections suppressed by positive powers of q⊥/Q. It is clear
that in the kinematical region with q⊥ ∼ Q or q⊥ ≫ Q the TMD factorization can not be used. In these
regions one can use collinear factorization as studied in [9].

For each hadron in the initial state one can define its TMD gluon distribution. We introduce the
gauge link along the direction uµ = (u+, u−, 0, 0):

Lu(z,−∞) = P exp

(

−igs
∫ 0

−∞
dλu ·G(λu + z)

)

, (3)

where the gluon field is in the adjoint representation. At leading twist one can define two TMD gluon
distributions through the gluon density matrix[13]:

1

xP+

∫

dξ−d2ξ⊥
(2π)3

e−ixξ−P+

A
+i~ξ⊥·~k⊥〈hA|

(

G+µ(ξ)Lu(ξ,−∞)
)a
(

L†
u(0,−∞)G+ν(0)

)a
|hA〉

= −1

2
gµν⊥ fg/A(x, k⊥, ζ

2
u, µ) +

(

kµ⊥k
ν
⊥ +

1

2
gµν⊥ k2⊥

)

hg/A(x, k⊥, ζ
2
u, µ) (4)

with ξµ = (0, ξ−, ~ξ⊥). x is the momentum fraction carried by the gluon inside hA. The gluon has also a
nonzero transverse momentum ~k⊥. The definition is given in non-singular gauges. It is gauge invariant.
In singular gauges, one needs to add gauge links along transverse direction at ξ− = −∞[14]. Because of
the gauge links, the TMD gluon distributions also depend on the vector u through the variable:

ζ2u =
(2u · PA)

2

u2
≈ 2u−

u+

(

P+
A

)2
. (5)

In the definition the limit u+ ≪ u− is taken in the sense that one neglects all contributions suppressed
by negative powers of ζ2u.

From the definition in Eq.(4) there are two TMD gluon distributions. The distribution fg/A cor-
responds to the standard gluon distribution in collinear factorization. The distribution hg/A describes
gluons with linear polarization inside hA. The relevant phenomenology of hg/A has been only recently
studied[15, 16, 17]. Through the process studied here one can also obtain information about this dis-
tribution [7]. For hB one can also define two TMD gluon distributions fg/B and hg/B similar to those
in Eq.(4), in which the gauge links are along the direction vµ = (v+, v−, 0, 0) instead of u and the limit
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v+ ≫ v− is taken. Therefore the two distributions fg/B and hg/B depend on the parameter ζv which is
defined by replacing in ζu PA with PB and u with v in Eq.(5).

To study the TMD factorization of the process in Eq.(1), we need to study

g(p) + g(p̄) → ηQ(q) +X, (6)

with pµ = (P+
A , 0, 0, 0) and p̄µ = (0, P−

B , 0, 0). Since we are interested in the kinematical region of the
small transverse momentum, we need to study the process in the limit of q⊥ ≪ Q = 2MηQ . In reality
initial hadrons are bound-states of partons. One can imagines that ηQ can be produced through two-
gluon fusion as in Eq.(6) in which one gluon is from the hadron hA and another is from the hadron hB .
Certainly, there can be interactions or gluon exchanges between spectators in hA and those in hB and
between partons involved in Eq.(6) and spectators. If these interactions are of short-distances or the
exchanged gluons are hard, their effects in cross-sections can be factorized with operators of higher-twists
because that the involved processes are scattering of multi partons. These effects are power-suppressed
and can be neglected. A factorization may not be obtained if the interactions are of long-distance or
the exchanged gluons are soft. It has been shown in Drell-Yan processes[3, 18] that the effects of soft-
gluon exchanges are cancelled or power-suppressed if the sum of the unobserved states is completed. The
exchanged gluons can be those collinear to the initial hadron hA or hB , the effects of these collinear
gluons can be factorized into the gauge-links in the corresponding parton distribution functions. Since
the process in Eq.(1) is similar to Drell-Yan processes, we expect that the conclusion made in [3, 18] for
Drell-Yan processes also applies here. In our case we have an observed ηQ in the final state. In general
ηQ is a bound state of a heavy-quark pair and possible light partons. We will use NRQCD for ηQ. In the
approximation explained later, ηQ is effectively taken as a QQ̄ state in which the state is in color-singlet
and there is no relative momentum between Q and Q̄. This QQ̄ is effectively point-like and can not emit
soft gluons. Hence, there is no soft-interactions between ηQ and spectators at leading power. With the
arguments given in the above we only need to study the process in Eq.(6) for factorization.

The reason why we only need to study the process in Eq.(6) at the leading power for the factorization
can be understood in another way: If the factorization holds or is proven, it holds for arbitrary hadrons in
the initial state. Especially, it also holds if the initial states are of partons. In the case with a factorization
which is not rigorously proven, one can use parton states to study or to examine it, and to eventually
prove it. In this work we use the process in Eq.(6) to study the relevant factorization beyond tree-level.

For long-distance effects related to ηQ we use NRQCD factorization. We will work at the leading
order of the small velocity expansion in NRQCD. At this order the production of ηQ can be thought as a
two-step process. In the first step a QQ̄ pair is produced in which the heavy quark Q and its antiquark
Q̄ carry the same momentum q/2. The pair is in color-singlet and spin-singlet 1S0. Then the pair is
transmitted into ηQ with the mass Q = 2mQ = MηQ . The transition is described by a NRQCD matrix
element. It is noted that the considered QQ̄-pair is in color-singlet and hence there is no interaction of
long distance between the QQ̄-pair and spectators of initial hadrons, as discussed before. At higher-orders
of the small velocity expansion the QQ̄ pair can be in color-octet state[8]. With the color-octet QQ̄ pair
it is possible that the NRQCD factorization proposed in [8] is violated beyond one-loop level indicated
by the study in [19].

At tree-level, the process in Eq.(6) is with X as nothing. It is straightforward to obtain the differential
cross-section:

dσ

dxdyd2q⊥
= σ0

π

Q2
δ(xys −Q2)δ(1 − x)δ(1 − y)δ2(~q⊥),

σ0 =
(4παs)

2

Nc(N2
c − 1)mQ

|ψ(0)|2, (7)
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with s = 2p+p̄− and mQ being the pole mass of the heavy quark. ψ(0) is the wave function of ηQ at the
origin. In fact |ψ(0)|2 should be expressed as an NRQCD matrix element. Beyond tree-level Coulomb
singularities representing long-distance effects related to ηQ appear. These singularities are factorized
into the NRQCD matrix element. At tree-level, one easily finds:

f
(0)
g/A(x, k⊥, ζ

2
u, µ) = f

(0)
g/B(x, k⊥, ζ

2
v , µ) = δ(1 − x)δ2(~k⊥), (8)

while hg/A and hg/B are zero. They become nonzero at order of αs. With these results one can write the
tree-level cross-section as a factorized form:

dσ

dxdyd2q⊥
=

πσ0
Q2

∫

d2ka⊥d
2kb⊥fg/A(x, ka⊥)fg/B(y, kb⊥)δ

2(~ka⊥ + ~kb⊥ − ~q⊥)δ(xys −Q2)H,

H = 1 +O(αs). (9)

Beyond the tree-level one needs to introduce a soft factor. As we will see explicitly , all soft divergences
will be factorized into the soft factor and TMD gluon distributions so that the perturbative coefficient
H is free from soft divergence. We will then determine H at one-loop level.

+ h.c.

(a) (b) (c)

Figure 1: The one-loop corrections to the gluon TMD. The double lines represent the gauge link. The
black bubble in Fig.1a is for self-energy correction.

To derive the factorization at one-loop we need to study the one-loop corrections to TMD gluon
distributions and the differential cross-section. The one-loop correction to TMD gluon distribution has
been studied in [6] where the collinear divergence has been regularized with a infinitely small off-shellness
of the gluon. Here we regularize all divergences in d = 4 − ǫ space-time. The correction can be divided
into the virtual- and real correction. The virtual correction is given by diagrams in Fig.1. We will use
MS-scheme to subtract U.V. divergences. After the subtraction we have the virtual correction from Fig.1:

f
(1)
g/A(x, k⊥, ζu, µ)

∣

∣

∣

∣

vir.
=

αs

4π
δ(1 − x)δ2(~k⊥)

[(

− 2

ǫs
+ ln

eγµ2

4πµ2s

)

(

11

3
Nc −

2

3
NF

)

+2Nc

(

− 4

ǫ2s
− 2

ǫs
ln

4πµ2s
eγζ2u

− 1

2
ln2

4πµ2s
eγζ2u

− 5π2

12
+

(

− 2

ǫs
+ ln

eγζ2u
4πµ2s

)

+
1

2
ln
µ2

ζ2u
− 3

2

)]

, (10)

where the poles in ǫs = 4− d stand for collinear- or infrared divergences, i.e., soft divergences. µs is the
scale associated with these poles. µ is the U.V. scale. The terms in the first line in Eq.(10) is the sum of
the contributions from Fig.1a and Fig.1c with their conjugated diagrams. The remaining terms are from
Fig.1b and its conjugated diagram.
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(b) (c) (d)(a)

Figure 2: The real correction at one-loop to the gluon TMD. The double lines represent the gauge link.
These diagrams are for real corrections.

The corrections from Fig.2 are real corrections. They can be found in [6] as

f
(1)
g/A(x, k⊥, ζu, µ)

∣

∣

∣

∣

re.
=

αsNc

π2k2⊥

[(

1− x

x
+ x(1− x) +

x

2

)

− 1

2
δ(1 − x)

+
x

(1− x)+
− x

2
+

1

2
δ(1 − x) ln

ζ2u
k2⊥

]

, (11)

where the terms in the first line are from Fig.2a and Fig.2d. The total one-loop correction is then the
sum of the virtual- and real correction. At one-loop hg/A becomes nonzero. It receives a contribution
from Fig.2a. We have:

hg/A(x, k⊥, ζu, µ) =
2αsNc

π2(k2⊥)
2

1− x

x
+O(α2

s). (12)

By replacing ζu with ζv we obtain fg/B and hg/B from fg/A and hg/A, respectively.

(a) (b) (c)
g(p)

Figure 3: The class of diagrams where a gluon is emitted from the initial gluon g(p) and is attached to
a possible place. There are 6 diagrams. 3 of them are given here. Another 3 diagrams are obtained by
reversing the direction of the heavy quark line.

Now we turn to one-loop corrections of the differential cross-section. The corrections can be divided
into the virtual correction and the real correction. The virtual correction is the one-loop correction to
the process g(p) + g(p̄) → ηQ(q). We denote the total contribution from the virtual correction as

dσ(gg → ηQ)

dxdyd2q⊥

∣

∣

∣

∣

vir.
=

1

2s(2π)3
δ(xys −Q2)δ(1 − x)δ(1 − y)δ2(~q⊥)σ1. (13)

The contributions to σ1 can be divided into 4 parts:

σ1 = σ1A + σ1B + σ1C + σ1D, (14)
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σ1A receives contributions from diagrams in which a virtual gluon is emitted by the initial gluon g(p).
The diagrams for this part are given in Fig.3. σ1B receives contributions from diagrams in which a virtual
gluon is emitted by the initial gluon g(p̄). σ1C denotes the contributions from diagrams in which a virtual
gluon is exchanged between heavy quark line. σ1D denotes the one-loop corrections of external gluon
lines. This part will not contribute to H, because the contributions to σ1D are automatically subtracted
into TMD gluon distributions. In the below we will only give and discuss the results of σ1A,1B,1C .

In the above classification Fig.3a can contribute both to σ1A and σ1B . We put the half of the
contribution Fig.3a into σ1A and another half into σ1B . With symmetry arguments one easily finds
σ1A = σ1B . We have then:

σ1A = σ1B =
1

2
σ1

∣

∣

∣

∣

3a
+ σ1

∣

∣

∣

∣

3b
+ σ1

∣

∣

∣

∣

3c
. (15)

By summing contributions from each diagram we obtain the following results for the virtual corrections:

σ1A
σ0

=
αsNc

12π

[

− 6
4

ǫ2s
− 6

2

ǫs

(

1 + ln
e−γ4πµ2s
Q2

)

− 3 ln2
e−γ4πµ2s
Q2

− 6 ln
e−γ4πµ2s
Q2

+9 ln
µ2

Q2
− 6 ln 2 + 6 +

11

4
π2
]

,

σ1C
σ0

=
αs

2π

[

−Nc ln
µ2

Q2
+ CF

(

− 2 + 4 ln 2

)

+
1

Nc

(

2 ln 2− 1

4
π2
)]

. (16)

In these results the U.V. poles are subtracted in the MS-scheme. The on-shell scheme for the renormal-
ization of heavy quark propagators is used so that mQ = Q/2 is the pole mass of heavy quark. In σ1A
the pole terms of ǫs are for soft divergences coming only from Fig.3a. The contributions from Fig.3b and
Fig.3c also contain collinear divergences and infrared divergences. The infrared divergences are canceled
in the sum of the two diagrams, because the QQ̄ is in color singlet. The collinear divergences are also
canceled. In calculating the diagrams for σ1C one will meet Coulomb singularity. This singularity is
factorized into NRQCD matrix element. Hence we have finite σ1C .

The real correction is from the tree-level process

g(p) + g(p̄) → ηQ(q) + g(k). (17)

For the color-single QQ̄-pair there are 12 diagrams for the amplitude. Since we are interested in the low q⊥
region, we expand the differential cross section in q⊥/Q and only take the leading order in the expansion.
At the leading order we have only those diagrams given in Fig.4 for the differential cross-section. The
result for the process in Eq.(17) in the limit of q⊥ → 0 is:

dσ

dxdyd2q⊥
=

πσ0
Q2

Ncαs

4π2q2⊥
δ(xys −Q2)

[

2δ(1 − y)

x

(

2− 2x+ 3x2 − 2x3
)

+
x(1 + x)

(1− x)+
δ(1− y)

−δ(1 − x)δ(1 − y) ln
q2⊥
Q2

+ (x↔ y)

]

+O(q0⊥). (18)

The factorized result in Eq.(9) is derived at tree-level. If we extent the factorization beyond tree-
level, with the one-loop results in the above we will find the following: 1). The soft divergences are
not factorized, i.e., H will contain some infrared divergences represented by poles in ǫs. 2). The real
correction of the differential cross-section is not totally generated by TMD gluon distributions, in other
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(a) (b) (c) (d)

Figure 4: The diagrams for the cross-section of g + g → g + ηQ. In these diagrams, the gluon in the
intermediate state is emitted or absorbted by gluons. The black dots denote the projection of the QQ̄
pair into the color singlet 1S0 state. By resversing the quark lines one can obtain other 3 diagrams from
each diagram.

word, H will receives correction from the real correction. It results in that H depends on q⊥. All of these
have the common reason. In the one-loop corrections to the differential cross-section there are exchange of
a soft gluon between the two initial gluons g(p) and g(p̄). In the virtual correction the exchange results in
infrared divergences, and in the real correction it results in contributions proportional to δ(1−x)δ(1−y).
The effects of the soft gluon exchange are not exactly generated by the corresponding soft gluon exchange
in TMD gluon distributions. The effects of soft gluon exchange are of long-distance. Therefore, one needs
to introduce a soft factor in the factorization to completely factorize these effects from H determined
with Eq.(9).

The effects of soft gluon exchange between a gluon moving in the +-direction and a gluon moving
in the −-direction can be described by the expectation value of a product with four gauge links. We
introduce as in [6]:

S(~b⊥, µ, ρ) =
1

N2
c − 1

〈0|Tr
[

L†
v(
~b⊥,−∞)Lu(~b⊥,−∞)L†

u(~0,−∞)Lv(~0,−∞)
]

|0〉. (19)

The gauge links are past-pointing. It reflects the fact that the two gluons g(p) and g(p̄) are in the
initial state. The dependence on the directions of gauge links is only through the parameter ρ2 =
(2u · v)2/(u2v2) ≈ u−v+/(u+v−). The limit u− ≪ u+ and v+ ≫ v− is taken similarly to that in TMD
gluon distributions. The gauge links or the gauge field is in the adjoint representation. At leading order
one has

S(0)(~b⊥, µ, ρ) = 1. (20)

At one-loop there are corrections from Fig.5. One can divide the corrections into a virtual- and a real
part. The diagrams in the first row are of the virtual part. Those in the second row are of the real part.
The virtual correction read:

S
(1)
vir.(

~b⊥, µ, ρ) =
αsNc

2π

[

− 2

ǫs
+ ln

eγµ2

4πµ2s

]

(

2− ln ρ2
)

, (21)

where the U.V. pole is subtracted. The pole in ǫs represents the I.R. divergence with the scale µs. The
real part is:

S(1)
re. (

~b⊥, µ, ρ) = −αsNc

2π2

(

2− ln ρ2
)

∫

d2k⊥
e−i~b⊥·~k⊥

k2⊥
. (22)
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+ h.c.

(a) (b) (c)

(d) (e) (f) (g)

Figure 5: One-loop corrections for the soft factor. The first three diagrams plus their complex conjugated
are virtual corrections. The last four diagrams are real corrections. A cut line is implied.

The total one-loop contribution is the sum of the virtual- and real contribution.
We now define our soft factor which will enter the TMD factorization as:

S̃(~ℓ⊥, µ, ρ) =

∫

d2b⊥
(2π)2

ei
~b⊥·~ℓ⊥S−1(~b⊥, µ, ρ)

= δ2(~ℓ⊥)−
αsNc

2π

(

2− ln ρ2
)

[(

− 2

ǫs
+ ln

eγµ2

4πµ2s

)

δ2(~ℓ⊥)−
1

πℓ2⊥

]

+O(α2
s). (23)

With the introduced soft factor we propose the TMD factorization as:

dσ

dxdyd2q⊥
=

πσ0
Q2

∫

d2ka⊥d
2kb⊥d

2~ℓ⊥δ
2(~ka⊥ + ~kb⊥ + ~ℓ⊥ − ~q⊥)δ(xys −Q2)

·fg/A(x, ka⊥, ζu, µ)fg/B(y, kb⊥, ζv, µ)S̃(ℓ⊥, µ, ρ)H(Q,µ, ζu, ζv). (24)

From one-loop results of the differential cross-section, TMD gluon distributions and the soft factor we
derive:

H(Q,µ, ζu, ζv) = 1 +
αsNc

4π

[

ln2
ζ2u
Q2

+ ln2
ζ2v
Q2

− ln ρ2
(

1 + 2 ln
µ2

Q2

)

+ 2 ln
µ2

Q2
+

7

2
π2

+
2

N2
c

(

1− 1

4
π2
)]

+O(α2
s). (25)

It is clear that H is free from any soft-divergence and does not depend on q⊥. With the factorization
the small transverse momentum q⊥ is generated by the transverse motion of gluons in the initial hadrons
and by soft gluon radiation. Eq.(24) and Eq.(25) are of our main results. It should be noted that
the factorization holds for arbitrary large ζu and ζv. For practical applications one may take a frame
to simplify the results in Eq.(24) and Eq.(25). One can take ζ2u = ζ2v = ρQ2 so that the TMD gluon
distributions in Eq.(24) depends on ρ and Q2 and the perturbative coefficient becomes a function of Q,
µ and ρ:

H(Q,µ, ρ) = 1 +
αsNc

2π

[

ln2 ρ− ln ρ

(

1 + 2 ln
µ2

Q2

)

+ ln
µ2

Q2
+

7

4
π2 +

1

N2
c

(

1− 1

4
π2
)

]

+O(α2
s). (26)
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(a) (b)

Figure 6: The diagrams for the cross-section of g+ g → g+ g+ ηQ give the contributions factorized with
the gluon TMD gk. By resversing the quark lines one can obtain other 3 diagrams from each diagram.

At the orders we have consider we do not find the contributions which are factorized with hg/A or
hg/B defined in Eq.(4). But, there is a contribution involving these distributions of linearly polarized
gluons in the TMD factorization. This contribution can be found at higher order of αs from diagrams
given in Fig.6. It is straightforward to calculate these diagrams in the limit q⊥ → 0. We find that the
contribution takes the factorized form:

dσ

dxdyd2q⊥

∣

∣

∣

∣

F ig.6
=

πσ0
Q2

δ(xys−Q2)

∫

d2ka⊥d
2kb⊥δ

2(~ka⊥ + ~kb⊥ − ~q⊥)

[

fg/A(x, ka⊥)

∣

∣

∣

∣

2a
fg/B(y, kb⊥)

∣

∣

∣

∣

2a

−1

2

(

(~ka⊥ · ~kb⊥)2 −
1

2
k2a⊥k

2
b⊥

)

hg/A(x, ka⊥)hg/B(y, kb⊥)

]

. (27)

Our result in the last line has also been derived in [7] with a different method. The perturbative coefficient
of the contribution in the last line is at order of α0

s. This contribution should be added to Eq.(24). In
principle one can determine the perturbative coefficient of the contribution beyond the leading order of
αs following the same way as has been done for Eq.(24,25). But this will be very tedious because one
needs to calculated the partonic process g + g → ηQ +X at 3-loop level. We leave this for future study.

In the factorized form of the differential cross-section in Eq.(25) the TMD gluon distributions do not
depend on processes, they only depend on hadrons. The perturbative coefficient H does not depend on
initial hadrons. The soft factor S̃ defined in Eq.(19,23) is a basic quantity of QCD, i.e., it depends neither
on hadrons or on processes. It is noted that the same soft factor also appears in TMD factorization of
Higgs production studied in [6]. This indicates that soft divergences in different processes or in a class of
processes can be factorized into the same object. This implies that the soft factor is universal at certain
level. In TMD factorization of Drell-Yan processes one also needs a soft factor to take radiation of soft
gluons to complete the factorization[3, 4]. The soft factor there is similar to that defined in Eq.(19,23).
The only difference is that they are defined in different SU(3) representations.

The studied TMD factorization can be used for the region with q⊥ ∼ ΛQCD for extracting TMD
gluon distributions. But its usage is not limited to this kinematic region, because the factorization holds
in general in the region q⊥/Q ≪ 1. In the region Q ≫ q⊥ ≫ ΛQCD both TMD factorization and
collinear factorization hold. In the collinear factorization the perturbative coefficient functions in this
region contain large log of q⊥/Q. The results from TMD factorization can be used to resume these large
log’s. This leads to the well-known CSS resumation[3]. Based on our result here one can also derive the
resummation in the case of quarkonium production, similarly to that derived in [6]. We therefore do not
discuss the details about the resummation here. We note that such a resummation has been studied very
recently in [20]. An early work about the resummation can be found in [21], where the formation of a
quarkonium from a QQ̄ pair is described with a color evaporation model instead of NRQCD factorization.
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At the orders we have considered, the production of a p-wave quarkonium is possible. But, the TMD
factorization in this case can be complicated. According to the NRQCD factorization in [8], one needs
to consider not only the contribution from the production of a color singlet p-wave QQ̄ pair, but also
the contribution of a color-octet s-wave QQ̄ pair. The formation of a p-wave quarkonium from the color-
singlet- and the color-octet QQ̄ pair is at the same order in the small velocity expansion. In the case we
studied here, we only need to consider the contribution from production of a color-singlet s-wave QQ̄ pair.
At the leading power the pair decouples with soft gluons. However in the case of p-wave quarkonia, the
color-singlet p-wave- and color-octet s-wave QQ̄ pair can emit soft gluons at leading power. To completely
separate the effects of soft gluons, one may need a different soft factor than that introduced here. This
is also the reason why we write our TMD factorization in Eq.(24) explicitly with the unsubtracted TMD
gluon distributions and the soft factor. Another complication with p-wave quarkonia is that one needs a
gauge link for the NRQCD matrix element of the contribution from the color-octet QQ̄ pair to establish
NRQCD factorization beyond one-loop, as shown in [19]. We will examine the TMD factorization for
p-wave quarkonium in a separate publication.

Before summarizing our work, we note that one can define subtracted TMD gluon distributions as
those used for Higgs production in [6], to factorize the differential cross section. Then our result can be
factorized as the same form in [6] only with the difference that the perturbative coefficient is different.
One may also re-define TMD gluon distributions as suggested in [22] so that the differential cross-section is
factorized only with the re-defined TMD gluon distributions. Because of this and the reason discussed for
p-wave quarkonium, we only give our results factorized with the unsubtracted TMD gluon distributions
as in Eq.(24).

To summarize: We have studied the one-loop TMD factorization of 1S0-quarkonium production
in hadron collision at low transverse momentum. We find that the differential cross section can be
factorized with the TMD gluon distributions, the soft factor and the perturbative coefficient. The TMD
gluon distributions and the soft factor are consistently defined with QCD operators, the perturbative
coefficient is determined here at one-loop. In comparison with the factorization derived at tree-level, the
soft factor is needed to cancel all effects of soft gluons. Our result will be useful not only for extracting
TMD gluon distributions from experimental data, but also for resumming large log’s of q⊥ appearing in
the collinear factorization.
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