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Abstract

We present next-to-leading order QCD predictions for the total cross section and for a compre-

hensive set of transverse-momentum distributions in W + 5-jet production at the Large Hadron

Collider. We neglect the small contributions from subleading-color virtual terms, top quarks and

some terms containing four quark pairs. We also present ratios of total cross sections, and use

them to obtain an extrapolation formula to an even larger number of jets. We include the decay

of the W boson into leptons. This is the first such computation with six final-state vector bosons

or jets. We use BlackHat together with SHERPA to carry out the computation.

PACS numbers: 12.38.-t, 12.38.Bx, 13.87.-a, 14.70.Fm
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I. INTRODUCTION

Reliable theoretical predictions for Standard-Model processes at the Large Hadron Col-

lider (LHC) are important to ongoing searches for new physics. They are also important to

the increasingly precise studies of the newly discovered Higgs-like boson [1, 2], of the top

quark, and of vector boson self-interactions. New-physics signals very typically lie beneath

Standard-Model backgrounds in a broad range of search strategies. Ferreting out the sig-

nals requires a good quantitative understanding of the backgrounds and their uncertainties.

With the increasing jet multiplicities used in cutting-edge search strategies, this becomes

more and more challenging. Some of the uncertainty surrounding predictions of Standard-

Model background rates can be alleviated through use of data-driven estimates, but this

technique also requires theoretical input to predict the ratios of background processes in

signal regions to those for control processes or in control regions.

Predictions for background rates at the LHC rely on perturbative QCD, which enters

all aspects of short-distance collisions at a hadron collider. Leading-order (LO) predictions

in QCD suffer from a strong dependence on the unphysical renormalization and factoriza-

tion scales. This dependence gets stronger with increasing jet multiplicity. Next-to-leading

(NLO) results generally reduce this dependence dramatically, typically to a 10-15% residual

sensitivity. Thus they offer the first quantitatively reliable order in perturbation theory.

The production of a W boson in association with jets has played a special role in collider

physics. It was the dominant background to top-quark pair production at the Tevatron. At

the LHC it remains an important background for precision studies, including those of top

quarks. It is important to many new physics searches involving missing energy, including

those for supersymmetry. Recent searches have made use of samples with high jet multi-

plicity, and proposed searches aim to push to higher multiplicities yet. Precise quantitative

control over the theoretical predictions leads to improved sensitivity to new phenomena.

Measurements of W boson production in association with multiple jets have been made by

the CDF [3] and D0 [4] collaborations at the Tevatron, and by the ATLAS [5, 6] and CMS [7]

collaborations at the LHC. Such measurements also permit stringent tests of the predictions

of the Standard Model.

Theoretical predictions for the production of vector bosons with a lower multiplicity of

jets (one or two jets) have been available at NLO in QCD for many years [8–10]. In recent
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years, the advent of new on-shell techniques [11–19] for computing one-loop amplitudes at

larger multiplicity has led to NLO results for three [20–23] and four [24, 25] associated

jets. Other new results include those for the production of vector-boson pairs [26] or top–

anti-top pairs [27, 28] in association with two jets. Another recent approach [29] has been

demonstrated in the production of up to seven jets in e+e− collisions, and shows promise

for LHC physics as well. There have also been important advances with more traditional

methods, especially for the case of heavy quarks [27, 30, 31]. In the present article, we

take another step forward in multiplicity, presenting NLO results for inclusive W + 5-jet

production at the LHC. These are the first NLO QCD results at a hadron collider with six

or more electroweak bosons or jets in the final state. We incorporate the decay of the W

boson into leptons, so that there are seven final-state objects to track.

In the present paper we use on-shell methods as implemented in numerical form in the

BlackHat software library [32]. This library, together with the SHERPA package [33],

has previously been used to make NLO predictions for W,Z/γ∗ + 3-jet production [22, 23],

forW,Z/γ∗+ 4-jet production [24, 25], and for four-jet production [34]. It has also been used

in investigations of high-pT W polarization [35], and to compute γ+ n-jet to Z+ n-jet ratios

for assessing theoretical uncertainties [36, 37] in the CMS searches [38] for supersymmetric

particles. The ATLAS collaboration has also used results from BlackHat computations

with SHERPA for Standard-Model studies of electroweak vector-boson production in asso-

ciation with three or more jets [6]. Other programs that use on-shell methods are described

in refs. [39].

SHERPA is used to manage the numerous partonic subprocesses entering the calcu-

lation, to integrate over phase space, to construct physical distributions, and to output

root [40] n-tuples. In contrast to earlier computations, we use the COMIX package [41]

to compute Born and real-emission matrix elements, along with the Catani–Seymour [42]

dipole subtraction terms. Rather than repeating the entire computation for each scale and

for each parton distribution function (PDF) set, we store intermediate results in n-tuple

format, recording momenta for all partons in an event, along with the coefficients of vari-

ous scale- or PDF-dependent functions in the event weight. The n-tuple storage makes it

possible to evaluate cross sections and distributions for different scales and PDF error sets.

We perform the basic calculation with loose cuts, also making it possible to choose different

(tighter) cuts without recomputing the time-consuming matrix elements.
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FIG. 1: Sample eight-point loop diagrams for the processes qg → Wq′gggg, qQ̄1 → Wq′gggQ̄1 and

qQ̄1 → Wq′Q̄2Q2gQ̄1, followed by the decay of the W boson to leptons.
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FIG. 2: Sample nine-point real-emission diagrams for the processes qg → Wq′ggggg and qq̄′ →

W Q1ggQ2Q̄2Q̄1, followed by the decay of the W boson to leptons.

In this paper, we compute the total cross sections at NLO for inclusive W+ + n-jet

and W− + n-jet production with n ≤ 5 and describe W+/W− ratios and W + n-jet/W+

(n−1)-jet ratios. Such ratios can be sensitive probes of new physics. We also study two

types of distributions: the differential cross section in the total hadronic transverse energy

H jets
T =

∑

j∈jets p
j
T, and the complete set of differential cross sections in the jet transverse

momenta. For four and five jets we make use of a leading-color approximation for the virtual

contributions. This approximation has been shown to have subleading-color corrections of

under 3% for processes with four or fewer associated jets [22, 43].

This paper is organized as follows. In section II we summarize the basic setup of the

computation. In section III we present our results for cross sections, ratios and distributions.

We give our summary and conclusions in section IV.
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II. BASIC SETUP

In this paper we compute the W + 5-jet processes in NLO QCD, followed by leptonic

W -boson decay,

pp −→ W− + 5 jets → e−ν̄e + 5 jets ,

pp −→ W+ + 5 jets → e+νe + 5 jets . (2.1)

These processes receive contributions from several partonic subprocesses. At leading order,

and in the virtual NLO contributions, the W− subprocesses are all obtained from

qq̄′ggggg → W− → e− ν̄e ,

qq̄′Q1Q̄1ggg → W− → e− ν̄e ,

qq̄′Q1Q̄1Q2Q̄2g → W− → e− ν̄e , (2.2)

by crossing five of the partons into the final state. Similarly, we obtain the subprocesses for

the W+ case from the various crossings of the subprocesses

qq̄′ggggg → W+ → e+ νe ,

qq̄′Q1Q̄1ggg → W+ → e+ νe ,

qq̄′Q1Q̄1Q2Q̄2g → W+ → e+ νe . (2.3)

The W boson changes the quark flavor and couples to the q-q′ line. Both the labels q and

Qi denote light quarks. Amplitudes with multiple identical quark flavors are obtained by

appropriate symmetrization. Sample Feynman diagrams illustrating virtual contributions

with 1, 2 and 3 external quark pairs are shown in fig. 1 (although our calculation is not based

on Feynman diagrams). All contributions to the virtual corrections are included in a leading-

color approximation described below. Besides the virtual contributions, NLO QCD requires

also real-emission contributions with an additional parton in the final state. Here we keep

the full color dependence. However, we drop the finite contributions from tree amplitudes

with four external quark pairs; they contribute well under 1% to the cross section. Sample

real-emission diagrams are displayed in fig. 2.

The decay of the vector boson (W±) into a charged lepton and neutrino is included

at the amplitude level; no on-shell approximation is made for the W boson. The lepton-

pair invariant mass follows a relativistic Breit-Wigner distribution with width given by
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ΓW = 2.06 GeV and mass MW = 80.419 GeV. (The other electroweak parameters are

also chosen as in ref. [22].) We take the leptonic decay products to be massless. In this

approximation, of course, the results for muon final states are identical to those for electrons.

The five light quarks, u, d, c, s, b, are all treated as massless. We do not include contributions

to the amplitudes from a real or virtual top quark; its omission should have a percent-

level effect on the overall result [24, 25]. We also approximate the Cabibbo-Kobayashi-

Maskawa matrix by the unit matrix. As previously determined for the three-jet case, this

approximation causes a change of under 1% in total cross sections for the cuts we impose [22],

and should also be completely negligible in our study.

A. Kinematics and Observables

We use standard kinematic variables, whose definitions may be found in Appendix A of

ref. [23]. The renormalization and factorization scales in ref. [22] were chosen as multiples

of a total partonic transverse energy ĤT. We will use a modified version of it here,

Ĥ ′

T ≡
∑

m

pmT + EW
T , (2.4)

where the sum runs over all final-state partons m and EW
T ≡

√

M2
W + (pWT )2. All partons

m are included in Ĥ ′
T, whether or not they are inside jets that pass the cuts. This quantity

is not directly measurable; however, it is very similar to the more usual jet-based total

transverse energy, and it is more practical for use as a dynamical scale choice. Both ĤT

and the modified version Ĥ ′
T are independent of the experimental cuts. Thus, modifying the

cuts will not affect the value of the matrix element at a point in phase space. This makes it

suitable as a choice of renormalization or factorization scale, avoiding unwanted dependence

on experimental cuts. Later we will compute the distribution in the jet-based observable

H jets
T =

∑

j∈jets p
j
T. This variable is similar to the partonic version, Ĥ ′

T, except that the W

boson ET is omitted, and it is based on jets passing all cuts.

We define jets using the anti-kT algorithm [44] with parameter R = 0.5. The jets

are ordered in pT, and are labeled i, j = 1, 2, 3, . . . in order of decreasing transverse mo-

mentum pT, with jet 1 being the leading (hardest) jet. The transverse mass of the W

boson is computed from the transverse momenta of its leptonic decay products, MW
T =

√

2Ee
TE

ν
T(1− cos(∆φeν)).
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In our study, we consider the inclusive process pp → W + 5 jets at an LHC center-of-mass

energy of
√
s = 7 TeV with the following set of cuts:

Ee
T > 20 GeV , |ηe| < 2.5 , /ET > 20 GeV ,

pjetT > 25 GeV , |ηjet| < 3 , MW
T > 20 GeV . (2.5)

In this study we take the missing transverse energy, /ET, to equal the neutrino transverse

energy, Eν
T.

In carrying out the computation we imposed a set of looser cuts and generated root [40]

format n-tuples. As mentioned above and described further below, the n-tuples store inter-

mediate results such as parton momenta and coefficients associated with the event weights

for the events passing the looser cuts, whose only restriction is that the minimum jet trans-

verse momentum is pjetT > 25 GeV. The n-tuples are also valid for anti-kT , kT and SISCone

algorithms [44, 45] for R = 0.4, 0.5, 0.6, 0.7, as implemented in the FASTJET package [46].

In the SISCone case the merging parameter f is chosen to be 0.75. This allows the n-tuples

to be used for studying the effects of varying the jet algorithm, along with variations due to

parton distributions, scale choices, and experimental cuts.

In our study, we use the MSTW2008 LO and NLO PDFs [47] at the respective orders.

We use the five-flavor running αs(µ) and the value of αs(MZ) supplied with the parton

distribution functions.

Our predictions are at parton level. We do not apply corrections due to non-perturbative

effects such as those induced by the underlying event or hadronization. For comparisons

to experiment it is important to incorporate these effects, although for most cross-section

ratios we do not expect them to be large. Parton-shower event generators such as POWHEG

and MC@NLO [48], and further refinements of these methods [49], have been developed

that consistently include a parton shower and maintain NLO accuracy for events with a

specified jet multiplicity. More recently, advances have been made in maintaining the NLO

accuracy across different jet multiplicities in a single sample [50]. These advances mark an

important step in significantly reducing theoretical uncertainties associated with hadron-

level predictions of many types of LHC events. We look forward to applying them in the

future to the production of W bosons with up to five additional jets.
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B. Formalism and Software

The new techniques we use for obtaining virtual contributions are collectively known

as on-shell methods, and are reviewed in refs. [51]. These methods rely on underlying

properties of amplitudes — factorization and unitarity — in order to express them in terms

of simpler, on-shell amplitudes of lower multiplicity. While amplitudes necessarily contain

off-shell states inside loops or trees, avoiding direct use of these states allows the method

to avoid the gauge dependence they induce. Eliminating the gauge dependence greatly

reduces the enormous cancellations of intermediate terms that would plague a textbook

Feynman-diagram calculation. The first application of the unitarity method [11] to collider

physics was to obtain the analytic matrix elements for qq̄gg → V and qq̄Q1Q̄1 → V (V =

W or Z) [13], used in the NLO program MCFM [9]. More recently, on-shell methods

been implemented in a more flexible numerical form, breaking the long-standing bottleneck

to NLO computations for higher-multiplicity final states posed by the one-loop (virtual)

corrections. These methods scale well as the number of external legs increases [16, 20–

22, 24–26, 28, 39, 52]. There have also been important advances in computing virtual

corrections with more traditional methods [30].

One-loop amplitudes in QCD with massless quarks may be expressed as a sum over three

different types of Feynman integrals (boxes, triangles, and bubbles) with additional so-called

rational terms. The integrals are universal and well-tabulated, so the aim of the calculation is

to compute their coefficients, along with the rational terms. In an on-shell approach, the in-

tegral coefficients may be computed using four-dimensional generalized unitarity [11, 13, 14],

while the rational terms may be computed either by a loop-level version [16] of on-shell re-

cursion [15] or using D-dimensional unitarity [12]. We use a numerical version [32] of Forde’s

method [18] for the integral coefficients, and subtract box and triangle integrands similar to

the Ossola–Papadopoulos–Pittau procedure [17], improving the numerical stability. To com-

pute the rational terms, we use a numerical implementation of Badger’s massive continuation

method [19], which is related to D-dimensional unitarity.

These algorithms are implemented in an enhanced version of theBlackHat code [20, 32].

BlackHat organizes the computation of the amplitudes in terms of elementary gauge-

invariant “primitive amplitude” building blocks [13, 53]. Many primitive amplitudes can be

associated with Feynman diagrams in which all external partons touch the loop (i.e. there
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are no nontrivial trees attached to the loop). Representative Feynman diagrams for the

leading-color primitive amplitudes used in the present calculation are shown in fig. 1. The

primitive amplitudes are then assembled into partial amplitudes, which are the kinematic

coefficients of the different color tensors that can appear in the amplitude. The complete

virtual cross section is obtained by interfering the one-loop partial amplitudes with the tree-

level amplitude and summing over spins and color indices. The color factors arising from

the color sum in the assembly of primitive amplitudes into partial amplitudes become highly

nontrivial as the number of quark lines increases; we use a general solution given in ref. [43].

An important feature is that each primitive building block has a relatively simple analytic

structure with only a limited number of spurious singularities present. A given primitive

amplitude can appear in multiple partial amplitudes and does not have to be recomputed

for each one. This approach also allows for a straightforward separation of leading- and

subleading-color contributions. This separation can be exploited to significantly enhance

the efficiency of the Monte Carlo integration [22]: The subleading-color contributions are

much smaller, yet more computationally costly; separating them out allows them to be

evaluated at far fewer phase-space points than the leading-color contributions, in order to

obtain similar absolute uncertainties.

In the W + 4, 5-jet calculations we drop altogether the small but time-consuming

subleading-color contributions to the virtual corrections. As explicitly verified for three-

[22] and four-jet production [43], the omitted subleading-color contributions to the virtual

corrections are typically 10% of the leading-color virtual terms, and under 3% of the total

cross section. We expect the dropped subleading-color contributions to be similarly small for

W + 5-jet production. The precise version of the leading-color approximation for the virtual

terms used here is the one of ref. [43]. It retains full-color dependence in all contributions

multiplying poles in the dimensional regularization parameter ǫ in the virtual corrections. In

the finite parts of the virtual corrections, it drops certain contributions that are subleading

in the number of colors Nc in the formal limit Nc → ∞, with nf /Nc held fixed. In particu-

lar, we drop those finite parts of the leading-color partial amplitudes that are suppressed by

explicit powers of 1/Nc, as well as all finite parts of the subleading-color partial amplitudes.

In forming the color-summed interference of the surviving parts of the one-loop amplitudes

with the tree amplitudes, we do not drop any further terms. The BlackHat code uses the

four-dimensional helicity (FDH) scheme [54] internally but automatically shifts the result
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before output to the ’t Hooft–Veltman scheme [55] using the full-color dependence in the

shift. The approximation differs in these last two aspects from the one used in the earlier

BlackHat calculation of W + 4-jet production [24]. This causes very slight shifts, under

a percent, in our reported cross sections for W + n-jet production for n ≤ 4 compared to

ref. [24]. (A somewhat larger shift arises from the choice of a five-flavor scheme for the

running of the coupling instead of the six-flavor scheme used earlier.)

The NLO result also requires real-emission corrections to the LO process, which arise

from tree-level amplitudes with one additional parton; sample contributions are illustrated

in fig. 2. For W production with four or five associated jets we use the COMIX code [41],

included in the SHERPA framework [33], to compute these contributions, including the

Catani-Seymour dipole subtraction terms [42]. The COMIX code is based on a color-

dressed form [56] of the Berends-Giele recursion relations [57], making it very efficient for

processes with high multiplicities. When there are fewer jets, we use the AMEGIC++

package [58] instead. In order to carry out the Monte Carlo integration over phase space we

use an efficient hierarchical phase-space generator based on QCD antenna structures [59], as

incorporated into SHERPA. The integration is performed using an adaptive alogorithm [60].

Running the algorithm in a stable and convergent manner for the real-emission contributions

is highly nontrivial, in particular given the intricate structure of their infrared subtractions.

In general, the same physical distributions need to be analyzed at different PDF error

sets, different renormalization or factorization scales, and for different jet algorithms or

experimental cuts. We have organized the computation so the matrix elements do not

have to be reevaluated for each choice of parameters [34]. For each event we generate, we

record the momenta for all partons, along with the numerical values of the coefficients of the

various scale- or PDF-dependent functions. Each term contains a simple function we wish to

vary, such as a logarithm of the renormalization scale, multiplied by a numerical coefficient

independent of such variation. We store the intermediate information in root-format n-

tuple files [40]. At the end of the main computation we assemble the stored matrix-element

coefficients, the PDF and scale choices to obtain cross sections. The availability of these

intermediate results makes it straightforward to evaluate cross sections flexibly, for different

scales, PDF error sets, experimental cuts or jet-based observables. This format has also been

used by the experimental collaborations to compare results from BlackHat + SHERPA

to experimental data [6].
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FIG. 3: The distribution of the relative error in the virtual cross section for three subprocesses,

gd → e−ν̄eggggu, ud → e−ν̄eggguu and ud → e−ν̄eguuss̄, reading from left to right. The horizontal

axis is the logarithm of the relative error (2.6) between an evaluation by BlackHat, running in

production mode, and a target expression evaluated at higher precision. The vertical axis shows

the number of phase-space points having that relative error. The dark (black) line labeled by

“double” shows the 1/ǫ2 term; the darkly shaded (red) curve labeled by “single”, the 1/ǫ term;

and the lightly shaded (green) curve labeled by “finite”, the finite (ǫ0) term. Each plot is based

on approximately 10,000 points in phase space, distributed as in the actual calculation.

C. Numerical Stability

The different terms in the virtual contributions to matrix elements typically contain poles

at unphysical locations in phase space. These poles cancel out when summing over all terms.

When different terms are computed independently, one must ensure that the numerical

precision of the computations suffices for cancellation of these spurious singularities anywhere

in the phase space, so as to avoid unwanted loss of precision in the full matrix element.

While the degree of the spurious singularities is in fact typically lower when using on-shell

methods than with traditional ones, they are nonetheless present. They may cancel between

coefficients of different integrals, each computed numerically. Obtaining a numerically stable

result for the virtual terms at each point in phase space is accordingly nontrivial.

The BlackHat code detects instabilities following the criteria described in refs. [22, 32].

When faced with an unstable point in phase space, the code switches to higher precision

arithmetic, and recomputes only those terms which suffer from the instability. The higher-

precision computations are performed in software rather than in hardware, and are accord-

ingly much slower than those at native precision. The recomputation of a limited number

11



of terms (as opposed to the entire amplitude) minimizes the additional computer time. We

use the QD package [61] for higher-precision arithmetic.

In fig. 3, we illustrate the stability of the virtual contribution to the differential cross sec-

tion, dσV , summed over colors and over all helicity configurations for the three subprocesses,

gd → e−ν̄eggggu and ud → e−ν̄eggguu and ud → e−ν̄eguuss̄. In each plot, the horizontal

axis represents the logarithmic error,

δ = log10

(

|dσBH
V − dσtarget

V |
|dσtarget

V |

)

, (2.6)

for each of the three components: 1/ǫ2, 1/ǫ and ǫ0, where ǫ = (4−D)/2 is the dimensional

regulator. In eq. (2.6), dσBH
V is the cross section computed by BlackHat as it normally

operates. The target value dσtarget
V is the cross section computed by BlackHat using

multiprecision arithmetic with approximately 32 digits, and approximately 64 digits if the

point is deemed unstable using the criteria described in refs. [22, 32]. The phase-space

points are selected in the same way as those used to compute cross sections. We note that

an overwhelming majority of events are accurate to better than one part in 103 — that is,

to the left of the ‘−3’ mark on the horizontal axis. We have explicitly checked that the few

points to the right of this mark produce completely negligible errors in the final cross section

or distributions, as their cross-section values are not especially large.

III. RESULTS

We now present our NLO results for W + 5-jet production at the LHC. We first discuss

the renormalization-scale dependence of the total cross section. Then we provide the total

hadronic energy distribution as an example distribution. Finally we present results for the

total cross sections for W− + 5-jet and W+ + 5-jet production and for the pT distributions

of the five jets.

A. Scale dependence

We expect perturbative results to be more stable under variation of the renormalization

and factorization scales as the perturbative order is increased. The residual variability has

been used as a proxy for the expected uncertainty due to higher-order corrections beyond
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FIG. 4: The renormalization-scale dependence of the total cross section using a fixed reference

scale of µ0 = 2MW . The top four panels give the renormalization-scale dependence at both LO

and NLO for W + 2-jets through W + 5-jets. The bottom panel shows the K factors for these

cases, with the top curve for W + 2-jets and the bottom one for W + 5-jets. The factorization

scale is held fixed.

the calculated order. In previous papers [22, 23], we have seen that the variability increases

substantially with a growing number of jets at LO, but stabilizes at under 20% at NLO.

This trend continues as the number of jets grows beyond the multiplicity considered in our

just-cited studies. In fig. 4, we show the variation of the total cross section for W− + n-

jet production with the renormalization scale around a central choice of µ0 = 2MW , for

n = 2, 3, 4, 5 at LO and at NLO, along with the so-called “K factor,” the ratio of the

NLO to LO cross sections. We vary the scale down by a factor of four and upwards by a

factor of eight. A fixed scale of O(MW ) is appropriate for the total cross section, as it is
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FIG. 5: The improvement in the renormalization and factorization scale dependence of the dif-

ferential cross section as a function of the hadronic total transverse energy H jets
T , comparing LO

to NLO at the LHC at
√
s = 7 TeV. In the upper panels, the NLO predictions are shown as

solid (black) lines, while the LO predictions are shown as dashed (blue) lines. The thin vertical

line in the center of each bin (where visible) gives its numerical integration error, corresponding

to the fluctuations in the plots. The lower panels show the predictions for the LO distribution

and scale-dependence bands, normalized to the NLO prediction at the scale µ = Ĥ ′
T/2. The LO

distribution is the dashed (blue) line, and the scale-dependence bands are shaded (gray) for NLO

and cross-hatched (brown) for LO.

dominated by total transverse energies of the order of a small multiple of this scale. We

hold the factorization scale fixed in order to eliminate changes in the PDFs as we vary the

scale. This makes it simpler to see the trends as we change from two to five jets. Similar

improvements in scale dependence are also observed when we include the variation of the

factorization scale.

The four upper panels of fig. 4 show that the scale variation at NLO is greatly reduced

with respect to that at LO. Furthermore, the LO variation grows substantially with an

increasing number of jets, while the NLO variation is fairly stable. This increase is expected,
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because there is an additional power of αs for every additional jet; the variation of αs is

uncompensated at LO, but compensated at NLO by the virtual corrections. The relative

stability of the NLO prediction in contrast to the LO one is also reflected in the bottom

panel. As one increases the number of jets from the smallest (two), the K-factor curve

steepens at first. This steepening slows down as the number of jets reaches five. This

reflects a slowing down of the relative stabilization with growing number of jets. For the

W + 5-jet process at LO, the change in the total cross section is on the order of a factor of

2 if we vary the renormalization scale by a factor of 2 around MW as in fig. 4. In contrast,

at NLO the dependence is cut to about ±20%.

The distributions we study have a large dynamic range. Accordingly, for physics studies

we choose an event-by-event scale to match typical energy scales individually rather than

merely on average. Following ref. [22], we use a central scale equal to half the total partonic

final-state transverse energy,

µR = µF = µ = Ĥ ′

T/2 . (3.1)

where Ĥ ′
T is defined in eq. (2.4). As an illustration of the scale dependence in a distribu-

tion using this choice, we show the variation of the LO and NLO W + 5-jet cross section

as a function of the total jet transverse energy H jets
T in fig. 5. The bands in the figure

show the results from varying the scale up and down by a factor of 2 around the central

value (3.1), taking the minimum and maximum of the observable evaluated at five values:

µ/2, µ/
√
2, µ,

√
2µ, 2µ. The figure shows the markedly reduced scale dependence at NLO

compared to that at LO. It also shows a remarkably flat ratio between the LO and NLO

distributions. Other authors have suggested alternate choices of dynamical scale [27, 62].

B. Cross Sections and Distributions

In Table I, we present the LO and NLO parton-level cross sections for inclusive W−- and

W+-boson production accompanied by one through five jets. As discussed in section II, we

include all subprocesses, except for the IR-subtracted real-emission contributions with four

quark pairs, which give contributions (as determined from a low-statistics evaluation) of well

under 1% using SHERPA’s αdipole = 0.03. Neglecting these contributions leaves a residual

dependence on αdipole; however, it is numerically unimportant to the full result for αdipole =

0.03. We perform a full-color sum everywhere, except in the virtual contributions toW+4, 5-
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Jets W− LO W− NLO W+ LO W+ NLO

1 284.0(0.1)+26.2
−24.6 351.2(0.9)+16.8

−14.0 416.8(0.6)+38.0
−35.5 516(3)+29.

−23

2 83.76(0.09)+25.45
−18.20 83.5(0.3)+1.6

−5.2 130.0(0.1)+39.3
−28.1 125.1(0.8)+1.8

−7.4

3 21.03(0.03)+10.66
−6.55 18.3(0.1)+0.3

−1.8 34.72(0.05)+17.44
−10.75 29.5(0.2)+0.4

−2.8

4 4.93(0.02)+3.49
−1.90 3.87(0.06)+0.14

−0.62 8.65(0.01)+6.06
−3.31 6.63(0.07)+0.21

−1.03

5 1.076(0.003)+0.985
−0.480 0.77(0.02)+0.07

−0.19 2.005(0.006)+1.815
−0.888 1.45(0.04)+0.12

−0.34

TABLE I: Total cross sections in pb for W + n jet production at the LHC at
√
s = 7 TeV, using

the anti-kT jet algorithm with R = 0.5. The NLO results for W + 4, 5-jet production use the

leading-color approximation discussed in the text. The numerical integration uncertainty is given

in parentheses, and the scale dependence is quoted in superscripts and subscripts.

jet production. In these latter contributions, we employ the leading-color approximation

discussed in section IIB, which has been validated to be accurate to better than 3% for

W -boson production in association with up to four jets [22, 43].

In figs. 6 and 7, we show the pT distributions for the five leading jets in W− + 5-jet

and W+ + 5-jet production at
√
s = 7 TeV at the LHC. In the upper panels, we show the

distributions at LO and NLO on a logarithmic scale. On this scale, the differences between

distributions are not easily seen, so we display the ratios to the NLO prediction (with the

central scale choice µ = Ĥ ′
T/2) in the lower panels. We also show the scale-dependence

bands for both the LO and NLO predictions, again generated by varying the scale up and

down by a factor of 2. We can see that the scale dependence is dramatically smaller at NLO,

fulfilling one of the goals of the calculation. It makes the prediction of this high-multiplicity

process truly quantitative. At larger transverse momenta for the leading two jets, the bands

do show noticeable fluctuations because of limited statistics.

The overall normalization is not the only feature that changes in going from LO to NLO.

The shape of the last-jet distribution appears to be the same at NLO (up to fluctuations

from limited integration statistics), but all harder jets — four, in the present study — appear

to have slightly softer distributions at NLO compared to LO. This continues a pattern seen

previously in W + 3-jet [20, 22] and W + 4-jet [24] production.

In Table II, we present the charge-asymmetry ratio, which is the ratio between the pro-

duction of a W+ boson to a W− boson, each accompanied by up to five jets. This ratio
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FIG. 6: The pT distributions of the leading five jets in W− + 5-jet production at the LHC at

√
s = 7 TeV. In the upper panels, the NLO predictions are shown as solid (black) lines, while

the LO predictions are shown as dashed (blue) lines. The lower panels show the predictions for

the LO distribution and scale-dependence bands normalized to the NLO prediction (at the scale

µ = Ĥ ′
T/2). The LO distribution is the dashed (blue) line, and the scale-dependence bands are

shaded (gray) for NLO and cross-hatched (brown) for LO.

can be a sensitive probe of new physics [63]. The table also shows the jet-production ra-

tios [7, 64] for either sign of the W charge, here defined by the ratio of the total cross section

for W± + n-jet to W± + (n−1)-jet production. The charge-asymmetry ratios are all sig-

nificantly greater than unity, and grow with increasing numbers of jets. The jet-production

ratios are of order 1/4, and decrease with increasing numbers of jets. The NLO corrections

to the charge-asymmetry are quite small, and the corrections to the jet-production ratios

are modest but noticeable.

These values of the charge-asymmetry ratio reflect the excess of up quarks over down

quarks in the proton. The W+ bosons are necessarily emitted by up-type quarks, whereas

W− bosons are emitted by down-type quarks. The up-quark excess in the proton then leads
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FIG. 7: The pT distributions of the leading five jets in W+ + 5-jet production at the LHC at

√
s = 7 TeV.

Jets
W+/W−

W− + n

W− + (n−1)

W+ + n

W+ + (n−1)

LO NLO LO NLO LO NLO

1 1.467(0.002) 1.47(0.01) — — — —

2 1.552(0.002) 1.50(0.01) 0.2949(0.0003) 0.238(0.001) 0.3119(0.0005) 0.242(0.002)

3 1.651(0.003) 1.61(0.01) 0.2511(0.0005) 0.220(0.001) 0.2671(0.0004) 0.235(0.002)

4 1.753(0.006) 1.72(0.03) 0.2345(0.0008) 0.211(0.003) 0.2490(0.0005) 0.225(0.003)

5 1.864(0.008) 1.87(0.06) 0.218(0.001) 0.200(0.006) 0.2319(0.0008) 0.218(0.006)

TABLE II: The first two columns give cross-section ratios for W+ production to W− production,

as a function of the number of associated jest. The last two columns give the ratios of the cross

section for the given process to that with one fewer jet. The numerical integration uncertainty is

in parentheses.

to larger W+ cross sections. As the number of jets increases, production of a W requires a

larger value of the momentum fraction x. This alters the mix of subprocesses that contribute

18



to vector-boson production, and also increases the u(x)/d(x) ratio. The case of W + 1-jet

production is special, because the gg initial state is absent at LO. In general, the gg initial

state contribution is expected to decrease with increasing x; but for W production this

contribution actually increases with the number of jets, for production in association with

two through four jets (judged by LO fractions); only for more than four jets does it start to

decrease as expected. (In W+ production, it starts to decrease above three rather than four

accompanying jets.) The qg initial state decreases, but the qq initial state increases; the net

effect, along with the increase in the u(x)/d(x) fraction, is an increase in the W+/W− ratio.

The results presented here extend our previous NLO analysis of these ratios with up to four

accompanying jets [24] to the case of five accompanying jets. Both the LO and the NLO

ratios are quite insensitive to correlated variations of the renormalization and factorization

scales in numerator and denominator, so we do not quote the variation here, and only show

the uncertainty from the numerical integration.

The increase in typical values of x with increasing numbers of jets also reduces the values

of both the strong coupling αs and the derivatives of the parton distributions, leading to a

decrease in the jet-production ratios. The double ratios — the ratios of the LO cross sections

in the fifth column of table II to those in the third column, and of the NLO cross sections

in the last column to those in the fourth column — are roughly constant, suggesting that

the decrease is primarily due to the decrease of αs with increasing scale.

We can use the ratios to extrapolate to larger number of jets for the cuts used in this

study. This approach was recently investigated using jet calculus and found to be a good ap-

proximation when the jets are required to have the same minimum transverse momenta [65].

(Substantially different cuts could give rise to different behavior.) While ratios involving

W + 1-jet production behave differently from the rest, both because of strong kinematic

constraints and because of missing production channels (at LO), the remaining ratios turn

out to allow an excellent fit to a straight line. For the charge ratio (W+ + n to W− + n),

the results through W + 4-jet production would suffice to yield a non-trivial prediction;

the ratio for W + 5-jet production confirms this prediction. For the jet-production ratios

(W±+ n to W±+ (n−1)), the W + 5- to W + 4-jet production ratio is essential to making

a non-trivial prediction, as it provides a third point in the fit. While these extrapolations

should not be taken to too large a number of jets n, we expect them to provide a reasonable

prediction for n somewhat beyond five.
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For the LO charge ratio with n jets, we obtain the following prediction (n ≥ 2),

RLO
W+/W− = 1.347± 0.006 + (0.102± 0.002)n ; (3.2)

for the NLO ratio,

RNLO
W+/W− = 1.27± 0.03 + (0.11± 0.01)n . (3.3)

For the W− jet-production ratio at LO, we find the following prediction (n ≥ 3),

RLO, W−

n/(n−1) = 0.301± 0.002− (0.0165± 0.0005)n ; (3.4)

at NLO, we find,

RNLO, W−

n/(n−1) = 0.248± 0.008− (0.009± 0.002)n . (3.5)

Similarly, for the W+ jet-production ratio at LO, we find the following prediction (n ≥ 3),

RLO, W+

n/(n−1) = 0.320± 0.002− (0.0177± 0.0004)n ; (3.6)

and at NLO, we find,

RNLO, W+

n/(n−1) = 0.263± 0.009− (0.009± 0.003)n . (3.7)

The slopes for W+ and W− differ slightly at LO but are essentially the same at NLO. These

predictions are based on fits to the data in table II. (More precisely, they are based on an

ensemble of 10,000 fits to synthetic data distributed in a Gaussian according to the cross

sections and statistical error in table I from which the ratios in table II were computed.)

From eqs. (3.5) and (3.7), we obtain the following predictions for the NLO cross sections

for production of a W± in association with six jets,

W− + 6 jets : 0.15± 0.01 pb ,

W+ + 6 jets : 0.30± 0.03 pb , (3.8)

matching the experimental cuts used for table I. The ratio of these two predictions, 2.0±0.3,

is consistent with an extrapolation using eq. (3.3), 1.94± 0.08.

IV. CONCLUSIONS

In this paper, we presented the first NLO QCD results for inclusive W + 5-jet produc-

tion at the LHC at
√
s = 7 TeV. This process is an important background to many new
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physics searches involving missing energy, as well as to precise top-quark measurements. In

addition to its phenomenological usefulness, it also sets a new bar for the state of the art in

perturbative QCD at next-to-leading order, at hadron-collider processes with six final-state

objects including jets.

We have adopted a number of approximations in this work: the leading-color approxima-

tion for the virtual terms; neglecting top-quark loops; and neglecting infrared-finite parts of

real-emission contributions with four quark pairs. Based on studies of W + 4-jet production

and W production in associated with fewer jets [22, 43], we expect the leading-color ap-

proximation to change cross sections by no more than 3%, and the other approximations to

be smaller yet. Hence these approximations should have no phenomenological significance,

given the other theoretical uncertainties.

We find a dramatic reduction in scale dependence in NLO predictions for the total cross

section, and for differential distributions as well. The scale dependence of observables shrinks

from more than a factor of two variation at LO to a 20% sensitivity at NLO for W + 5-

jet production. With our dynamical scale choice in eq. (2.4), we find K factors typically

between 1 and 1.5, with moderate though non-trivial changes in shapes of distributions.

We have studied a number of ratios, between W+ and W− production, and for processes

differing by the addition of one jet. The QCD corrections to these ratios are more modest

than to total cross sections, and they should also benefit from milder experimental system-

atical uncertainties. The ratios show interesting trends with increasing number of jets, and

with results for W + 5-jet production in hand, we can make plausible extrapolations to

results for additional jets. These ratios also probe the evolution of different subprocesses

with increasing parton fraction x.

The present study brings an unprecedented level of precision to W + 5-jet production.

We look forward to comparing the NLO results for this process, and for the extrapolations

to yet higher numbers of jets based upon it, with LHC data.
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[41] T. Gleisberg and S. Höche, JHEP 0812, 039 (2008) [arXiv:0808.3674 [hep-ph]].

[42] S. Catani and M. H. Seymour, Nucl. Phys. B 485, 291 (1997) [Erratum-ibid. B 510, 503

(1998)] [hep-ph/9605323].

[43] H. Ita and K. Ozeren, JHEP 1202, 118 (2012) [arXiv:1111.4193 [hep-ph]].

[44] M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804, 063 (2008) [arXiv:0802.1189 [hep-ph]].

[45] S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Nucl. Phys. B 406, 187 (1993);

G. P. Salam and G. Soyez, JHEP 0705, 086 (2007) [arXiv:0704.0292 [hep-ph]].

25



[46] M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72, 1896 (2012) [arXiv:1111.6097

[hep-ph]].

[47] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009)

[arXiv:0901.0002 [hep-ph]].

[48] S. Frixione and B. R. Webber, JHEP 0206, 029 (2002) [hep-ph/0204244];

P. Nason, JHEP 0411, 040 (2004) [hep-ph/0409146];

S. Frixione, P. Nason and C. Oleari, JHEP 0711, 070 (2007) [0709.2092 [hep-ph]].

[49] S. Alioli, P. Nason, C. Oleari and E. Re, JHEP 1006, 043 (2010) [1002.2581 [hep-ph]];

K. Hamilton and P. Nason, JHEP 1006, 039 (2010) [1004.1764 [hep-ph]];
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[56] C. Duhr, S. Höche and F. Maltoni, JHEP 0608, 062 (2006) [hep-ph/0607057].

[57] F. A. Berends and W. T. Giele, Nucl. Phys. B 306, 759 (1988).

[58] F. Krauss, R. Kuhn and G. Soff, JHEP 0202, 044 (2002) [hep-ph/0109036];

T. Gleisberg and F. Krauss, Eur. Phys. J. C 53, 501 (2008) [arXiv:0709.2881 [hep-ph]].

[59] A. van Hameren and C. G. Papadopoulos, Eur. Phys. J. C 25, 563 (2002) [hep-ph/0204055];
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