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We investigate the effects of realistic quark masses and local color neutrality on quark pairing in the
three flavor Polyakov–Nambu–Jona-Lasinio model. While prior studies have indicated the presence
of light flavor quark (2SC) or symmetric color-flavor-locked (CFL) pairing at low temperatures, we
find that in the absence of a local color neutrality constraint the inclusion of the Polyakov loop gives
rise to phases in which all quark colors and flavors pair, but with unequal magnitudes. We study
this asymmetric color-flavor-locked (ACFL) phase, which can exist even for equal mass quarks,
identifying its location in the phase diagram, the order of the associated phase transitions, and its
symmetry breaking pattern, which proves to be the intersection of the symmetry groups of the 2SC
and CFL phases. We also investigate the effects of the strange quark mass on this new phase and the
QCD phase diagram generally. Finally, we analyze the effect of a local color neutrality constraint on
these phases of asymmetric pairing. We observe that for massless quarks the neutrality constraint
renders the 2SC phase energetically unfavorable, eliminating it at low temperatures, and giving rise
to the previously proposed low temperature critical point, with associated continuity between the
hadronic and ACFL phases. For realistic strange quark masses, however, the neutrality constraint
shrinks the 2SC region of the phase diagram, but does not eliminate it, at T = 0.

I. INTRODUCTION

The phase structure of strongly interacting matter
has seen an explosion of activity in recent years as the
boundaries of our experimental probes have continued
to expand [1–5]. As facilities such as the Large Hadron
Collider (LHC) and the Relativistic Heavy Ion Collider
(RHIC) probe matter of ever higher densities and tem-
peratures, we are able to continually test and refine our
theoretical models and understanding of matter under
the extreme conditions encountered in the moments af-
ter the big bang and in the cores of neutron stars.

While the fermion sign problem largely restricts the
techniques of lattice QCD to zero density, one method
for describing strongly interacting matter throughout the
phase diagram is the use of effective field theories which
are built upon the symmetries of QCD. One model which
has proven useful in this context is the Polyakov–Nambu–
Jona-Lasinio (PNJL) model, which was developed to de-
scribe dynamical chiral symmetry breaking and has been
extended to include quark pairing, confinement, and the
QCD axial anomaly [6–21].

An aspect of the QCD phase diagram of particular
interest is the nature of quark pairing at intermediate
chemical potential, µ. While it is known that for three
quark flavors a color-flavor-locked (CFL) phase, in which
all quark flavors and colors pair, is energetically favor-
able for asymptotically large µ, the preferred pairings for
µ not asymptotically large are not determined. Calcula-
tions indicate phases in which only two colors and flavors
pair (2SC) [22], in which one flavor pairs with all others
(uSC, dSC) [23], and a phase which has properties of
both free quarks and hadrons (quarkyonic) [5, 24, 25].

In this paper we build on prior studies of the ef-
fects of confinement on quark pairing in the three fla-

vor PNJL model by considering a wider range of pairing
schemes than the CFL and 2SC phases previously con-
sidered [1, 22]. In particular, by permitting distinct ud,
us, and ds pairing amplitudes, we allow for the possibil-
ity that the confining mechanism of QCD may not treat
quark flavors, even for equal masses, on an equal foot-
ing. Further, by considering a range of strange quark
masses we investigate the combined effects of this poten-
tial asymmetry and the decoupling of the strange quark
sector with increasing strange quark mass.

We also investigate the implications of a local color
neutrality constraint on the phase structure of dense
quark matter. While QCD has the capacity to dynami-
cally achieve local color neutrality by means of a gluon
field condensate 〈A0

a〉, the PNJL model lacks the neces-
sary gluonic degrees of freedom to achieve such neutrality
in a phase of asymmetric quark pairing (e.g., 2SC, uSC).
Thus, one must impose such neutrality “by hand” in or-
der to avoid the large color-electric forces which would
result from color accumulation [26–30]. Prior studies of
the axial anomaly’s influence on the phase structure of
dense quark matter in the (P)NJL model have either fo-
cused on pairing structures which are trivially color neu-
tral [1, 17] or have allowed for locally colored phases [22].
By introducing an effectively color-dependent chemical
potential we impose local color neutrality and study its
effects on the low temperature portion of the QCD phase
diagram, most notably its supression of phases of asym-
metric quark pairing and the subsequent realization of
quark-hadron continuity.

The outline of the paper is as follows. We begin in
Sec. II by recalling the three flavor PNJL model with ax-
ial anomaly. In Sec. III we construct the phase diagram
for massless QCD and identify a new homogeneous asym-
metric color-flavor-locking (ACFL) phase characterized
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by breached pairing in which all quarks pair, but with un-
equal magnitudes. In Sec. IV we construct the phase dia-
gram for massive QCD with various strange quark masses
in order to study the effects of the strange quark mass on
both the ACFL phase and the phase diagram generally.
In Sec. V we consider the ACFL phase more carefully by
studying the associated phase transitions and symmetry
breaking patterns. Finally, in Sec. VI we impose a local
color neutrality constraint and investigate the resulting
suppression of the 2SC phase at low temperatures.

II. THREE-FLAVOR PNJL MODEL

A. Lagrangian

The Lagrangian for the three-flavor Nambu–Jona-
Lasinio model with Polyakov loop at temperature T
is [1, 22]

L = q(i /D − m̂+ µγ0)q + L(4) + L(6) − U(Φ,Φ, T ),(1)

where the covariant derivative Dµ = ∂µ − iδ0µA0 couples
a static homogeneous gauge field A0 to the quark field
q and m̂ is the bare quark mass matrix in flavor space.
L(4) and L(6) are effective four- and six-quark interac-
tions respectively, and U(Φ,Φ, T ) is the Polyakov loop
potential, which governs the deconfinement transition in
the pure-gauge sector.
The four-quark interaction is invariant under the

SU(3)L ⊗ SU(3)R ⊗ U(1)B ⊗ U(1)A symmetry group of
classical QCD, while allowing for spontaneous breaking
of chiral symmetry and diquark pairing:

L(4) = 8GTr(φ†φ) + 2HTr(d†RdR + d†LdL), (2)

where φij = (qR)
j
a(qL)

i
a is the chiral operator

and (dR)
i
a = ǫabcǫijk(qR)

j
bC(qR)

k
c and (dL)

i
a =

ǫabcǫijk(qL)
j
bC(qL)

k
c are diquark operators of right- and

left-chirality respectively, with C the charge-conjugation
operator. The labels a, b, c and i, j, k index color and fla-
vor respectively. We take G,H > 0, which corresponds
to attractive four-quark interactions.
The six-quark interaction reflects the QCD axial

anomaly by explicitly breaking U(1)A, while retaining in-
variance under the remaining (physical) QCD symmetry
group:

L(6) = −8Kdetφ+K ′Tr[(d†RdL)φ] + H.c. (3)

The final ingredient in our model is the Polyakov loop,
which serves as an order parameter for confinement in
the pure-gauge sector [10, 15]

Φ(x) =
1

3
TrP exp

{

i

∫ β

0

dτA0(τ,x)

}

, (4)

where P is the path-ordering operator and β = 1/T .
Writing Aµ = Aa

µλa/2, where the λa are the Gell-Mann

TABLE I: Coefficients of the Polyakov-loop potential [13].

a0 a1 a2 b3
3.51 -2.47 15.2 -1.75

matrices, and working in the Polyakov gauge, in which
A0 is diagonal, yields A0 = φ3λ3 + φ8λ8.
As discussed at length in [1, 13], in order to ensure a

real thermodynamic potential we restrict our attention to
the case φ8 = 0. Making the standard finite-temperature
replacements t → −iβ and A0 → iA0, evaluating Eq.
(4) explicitly for a homogeneous gauge field yields the
relation

Φ =
1 + 2 cos(βφ3)

3
. (5)

Following Fukushima we describe the pure-gauge decon-
finement transition via the potential [5, 15]

U
T 4

= −1

2
a(T )ΦΦ + b(T ) ln[1− 6ΦΦ

+4(Φ3 +Φ
3
)− 3(ΦΦ)2], (6)

where the temperature-dependent coefficients are

a(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

, b(T ) = b3

(

T0

T

)3

,

and the ai and b3 are chosen to correctly reproduce lattice
QCD results (see Table I). In addition, while T0 = 270
MeV is the critical temperature for the deconfinement
transition in the pure-gauge sector [11, 12], when quarks
are included in the PNJL model, the transition temper-
ature deviates from T0. Therefore, in what follows we
consider T0 as a parameter of our model, which we will
set by matching the deconfinement transition at µ = 0,
defined as a maximum in dΦ/dT (as discussed in [31, 32]),
to the lattice QCD value of TQGP

c = 176 MeV.

B. Thermodynamic Potential

Working in mean field, we consider the homogeneous
scalar chiral and diquark condensates

〈qiaqja〉 = σiδij , 〈qTCγ5tiljq〉 = diδij . (7)

Note that there is no sum over i; rather, the right sides of
Eq. (7) are diagonal matrices in flavor space with three
distinct elements. As shown in [1, 22] the mean field
Lagrangian becomes

LMF =

3
∑

j=1

qj
(

i/∂ −Mj + (µ+ iφ3λ3)γ
0
)

qj

−1

2

3
∑

j=1

[∆∗
j (q

TCγ5tj ljq) + H.c.] (8)

−V − U ,
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where the tj and lj are the antisymmetric Gell-Mann
matrices in flavor and color space respectively, V is given
explicitly below, the effective mass of the jth quark flavor
is

Mj = mj − 4Gσj +K|ǫjkl|σkσl +
K ′

4
|dj |2, (9)

and the jth pairing gap is

∆j = −2

(

H − K ′

4
σj

)

dj . (10)

We choose (u, d, s) and (r, g, b) as flavor and color bases
and use the Gell-Mann matrices λ7,5,2 as a representation
of t1,2,3 and l1,2,3, so that ∆1 represents the dgsb and dbsg
pairing gap, while ∆2 and ∆3 represent the gaps of ursb
and ubsr and urdg and ugdr pairs respectively.
Introducing the Nambu-Gor’kov spinor Ψ =

(q CqT )T /
√
2, we may recast our model as a free

theory with L = ΨS−1Ψ − V − U , where the inverse
propagator in Nambu-Gor’kov and momentum space is

S−1(k) =

(

/k − M̂ + µ′γ0 ∆jγ5tj lj
−∆∗

jγ5tj lj /k − M̂ − µ′γ0

)

, (11)

with µ′ = µ+ iφ3λ3 and where the sum over j in the off-
diagonal elements is implied. The condensates directly
contribute a potential

V = 2G

3
∑

j=1

σ2
j − 4Kσ1σ2σ3 +

3
∑

j=1

(

H − K ′

2
σj

)

|dj |2.

(12)

Integrating over the Nambu-Gor’kov fields and per-
forming the resulting Matsubara sum yields the thermo-
dynamic potential:

Ω = −T

2

72
∑

n=1

∫ Λ d3k

(2π)3

[

ln(1 + e−βEn) +
1

2
β∆En

]

+V + U , (13)

where the En are the 72 poles of the inverse propagator
in Eq. (11), ∆En = En − Efree

n is the difference be-
tween the eigenvalue and its non-interacting value (with-
out absolute value), and the factor of 1/2 accounts for
the double-counting of degrees of freedom in the Nambu-
Gor’kov formalism.
Note that in Eq. (13) we have introduced a high-

momentum cutoff Λ to regulate the integral. The value of
Λ, along with the coupling constants G and K, are ini-
tially fit to empirical mesonic properties and are given
in Table II (parameter set I). Following Abuki et al.,
as we adjust the strange quark mass and coupling K ′

(parameter sets II-IX), rather than recalculating G by
again fitting the mesonic quantities, we instead, for the
sake of simplicity, choose G to yield a fixed value for
(Mu+Md)/2 = 367.5 MeV [17]. The quantitative effects
of this choice are negligible for the present purposes.

TABLE II: Parameter sets for the three-flavor PNJL model:
the strange quark bare mass ms, coupling constants G and K ′,
and Polyakov loop parameter T0, with a spatial momentum cutoff
Λ = 602.3 MeV [9]. Also shown is the constituent strange quark
mass at µ = T = 0. ∗In parameter set I all bare quark masses are
set to zero. In all others we take mu = 2.5 MeV and md = 5.0
MeV [35].

ms (MeV) GΛ2 K′Λ5 T0 (MeV) Ms (MeV)

I∗ 0 1.926 12.36 210 355.1
II 5 1.928 12.36 208 369.4
III 5 1.928 51.91 208 369.4
IV 20 1.915 12.36 207 392.2
V 20 1.915 51.91 207 392.2
VI 40 1.899 12.36 206 417.5
VII 40 1.899 51.91 206 417.5
VIII 80 1.877 12.36 204 476.6
IX 80 1.877 51.91 204 476.6

Finally, we consider two values of K ′: (1) K ′ = K,
which is suggested by applying a Fierz transformation to
the instanton vertex [17], and (2) K ′ = 4.2K, which al-
lows the realization of a low T critical point and provides
for easy comparison to the current literature [17, 22].
The remaining couplings are HΛ2 = 1.74 and KΛ5 =
12.36 [11, 13, 17].

In the next two sections we construct the phase dia-
gram of three flavor QCD, first in the limit of massless
quarks, and then with realistic quark masses. In order to
facilitate a comparison with the current literature, which
largely ignores the complication of a local color neutrality
constraint, we begin by constructing the phase diagrams
without enforcing color neutrality, deferring a discussion
of the effects of color neutrality to Sec. VI. We also note
that while a variety of spatially inhomogeneous phases
(e.g., crystalline color superconductors, FFLO phases)
may be energetically preferred in certain high density
regions of the phase diagram [33, 34], in this paper we
consider only homogeneous phases.

III. MASSLESS QCD PHASE DIAGRAM

A. Without Confinement

In this section we discuss the phase structure of mass-
less QCD before moving on to consider the case of three
different mass quarks. This will allow us to investigate
both the general effects of quark mass on the phase dia-
gram, as well its particular influence on a possible ACFL
phase. Note we do not impose color neutrality in either
this section or the following, in order that we may con-
sider the effects of this additional constraint in Sec. VI.
When we turn off confinement by setting φ3 = 0

and dropping the potential U(φ3, T ) the thermodynamic
potential reduces to that considered by Basler and
Buballa [22]. The only significant difference between the
massless NJL model considered here and the massive case
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FIG. 1: (color online) Phase diagram for the NJL model (no
confinement) with three massless quark flavors. Thick (red) lines
denote first order transitions while thin (green) lines denote sec-
ond order transitions. The first order 2SCBEC-2SCBCS transition
is defined by Mu,d(µ, T ) = µ.

is that for massless quarks the chiral phase transition is
first order for all µ, rather than a smooth crossover at
low µ (Fig. 1). Basler and Buballa have shown that for
K ′ & 3.5K a 2SCBEC phase appears, which we define as
a 2SC phase (d1 = d2 = 0, d3 6= 0) in which Mu,d > µ.
This phase is similarly visible in Fig 1, separated from
the hadronic NG phase by a second order phase transi-
tion, and from the 2SCBCS phase (in which Mu,d < µ) by
a first order transition.
Anticipating the ACFL phase discussed in Secs. IV

and V, in Fig. 2 we show the single diquark conden-
sate of the CFL phase as a function of temperature
for µ = 500 MeV. We note that it is roughly constant
for T . 30 MeV, and then falls as d ∼

√
Tc − T for

30 MeV . T < 71 MeV, before finally vanishing as
d ∼ (Tc − T ), due to the effective σ|d|2 coupling induced
by the axial anomaly [1, 36, 37].

B. With Confinement

In order to construct the phase diagram in the pres-
ence of the Polyakov loop we first fix T0 by matching the
model’s deconfinement transition at µ = 0 to the lat-
tice value of TQGP

c = 176 MeV. The resulting value of
T0 varies slightly with ms, and is given for the various
parameter sets used in Table II. Minimizing Ω with re-
spect to the condensates and Polyakov loop, we obtain
the phase diagram shown in Fig. 3. As has been widely
reported, the inclusion of the Polyakov loop pulls the chi-
ral transition to higher temperatures (from 151 MeV to
193 MeV), significantly enlarging the region of symmetry
breaking [11, 13, 38].
One important consequence of the increase of TQGP

c is
that the Polyakov loop gives rise to a much larger region
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0.06

0 10 20 30 40 50 60 70 80
T (MeV)

d̃1 = d̃2 = d̃3

FIG. 2: (color online) Dimensionless diquark condensate d̃i =
di/Λ3 in the non-confining massless NJL model for µ = 500
MeV. As indicated in Fig. 1, the system undergoes a second order
phase transition from the CFL phase to the QGP at 73 MeV.
The linear approach to zero for 71 MeV < T < 73 MeV is due to
an effective σ|d|2 coupling [1, 36, 37].

of 2SCBCS, which we define as a 2SC phase (d1 = d2 = 0,
d3 6= 0) in which Mu,d < µ. In particular, this phase now
persists to much higher µ than in the NJL model, where
it is constrained to roughly 270 MeV . µ . 350 MeV.
Figure 4 shows the two distinct diquark condensates

d1 = d2 and d3 for µ = 500 MeV. We find that for T . 20
MeV, the results are not significantly altered from the
NJL model. However, for T & 20 MeV we find that d1 =
d2 falls with increasing T , while d3 increases until the
system undergoes a second order phase transition to the
2SCBCS phase at 70 MeV, slightly below the location of
the CFL-QGP transition in the absence of confinement.
Thus, the ground state of the system at intermediate
µ is no longer a symmetric CFL phase, but rather an
asymmetric CFL phase characterized by 0 < d1 = d2 <
d3.

IV. REALISTIC MASS QCD PHASE DIAGRAM

Having observed the emergence of an ACFL phase in
massless QCD, we now consider the effects of realistic
bare quark masses on both this phase and the phase di-
agram generally. To do so we construct phase diagrams
for ms = 0, 20, 40, and 80 MeV. In all cases we take
mu = 2.5 MeV and md = 5.0 MeV, while the coupling
G is adjusted in order to maintain (Mu +Md)/2 = 367.5
MeV at µ = T = 0.
As shown in Figs. 5 and 6, as the strange quark mass

increases, the region of ACFL moves to higher µ, effec-
tively decoupling the strange quark from the up/down
sector. This is due to the fact that in the limit ms → ∞,
there is insufficient energy to generate strange quarks and
we are left with an effectively two flavor system. We also
note that while for small ms, the deconfinement transi-
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FIG. 3: (color online) Phase diagram for the PNJL model with
three massless quark flavors. Line types have the same meaning
as in Fig. 1, with the additional dotted (blue) line representing
the deconfinement crossover.
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FIG. 4: (color online) Dimensionless diquark condensates in the
massless PNJL model for µ = 500 MeV.

tion at large µ essentially coincides with the breaking of
up/down quark Cooper pairs (the 2SC-QGP transition),
as ms increases the deconfinement temperature moves
down somewhat.
Also noteworthy is the fact that except for small ms

and K ′, a critical point appears on the ACFL-2SC phase
boundary, separating a first-order transition at lower µ
from a second-order transition at higher µ. One can sum-
marize the situation by noting that the ACFL-2SC tran-
sition is first order when Tc . 50 MeV, and second order
when Tc & 50 MeV. Thus, for example, for ms = 5, 20
MeV and K ′ = K, the phase boundary never drops be-
low T ≈ 50 MeV and the transition is always second
order. We note, however, that while the phase boundary
has a negative slope for large µ, the transition does not
again become first order when the boundary drops below
T ≈ 50 MeV.

As shown by Abuki et al. in the non-confining NJL
model and by the authors for the massless PNJL model,
we find that for K ′ ≥ 4.2K, a low T critical point
emerges [1, 17]. Also, as shown by Basler and Buballa,
when one allows for 2SC pairing this critical point acts
as the termination of a line of first order BEC-BCS tran-
sitions, above which a smooth crossover develops [22].
Interestingly, as shown in Fig. 6, when the 2SCBEC phase
exists, we find that forms = 5, 20, and 40 MeV the BEC-
BCS transition is first order at zero temperature, while
for ms = 80 MeV the critical point drops below the T -
axis and one obtains a smooth BEC-BCS crossover.

While not visible in Figs. 5 and 6, for unequal mass
quarks much of the ACFL-2SC phase boundary is actu-
ally two distinct, but very closely spaced phase bound-
aries. The first boundary, at slightly lower temper-
ature, separates the ACFL phase from a sliver of a
uSC phase in which up/down and up/strange quarks
pair, but down/strange quarks do not. Thus, cross-
ing this phase boundary corresponds to breaking the
down/strange quark Cooper pairs. The second bound-
ary separates the uSC phase from the 2SC and corre-
sponds to the breaking of the up/strange quark pairs.
Figure 7 shows these two distinct transitions for exag-
gerated up and down quark masses (mu = 0, md = 40
MeV, ms = 80 MeV), in order to make the distinct phase
boundaries visible.

We note that while the precise value of K ′ is unknown,
on the basis the Fierz transformation mentioned in Sec. II
it is expected that K ′ ∼ K, and it is unclear if any
mechanism might increase K ′ above the 4.2K threshold
required to realize the low temperature critical point and
BEC-BCS crossover. It seems more likely that Fig. 5(d)
is closest to the true QCD phase diagram.

Finally, a word is required regarding quark pairing in
the ACFL phase for realistic quark masses. While the
splitting of up and down quark masses is quite small rel-
ative to the chemical potential at which the ACFL phase
is obtained (µ ∼ 400 MeV), the mass spliting between
the strange quark and the two light flavors is indeed large
(Ms −Mu,d & 100 MeV). This mass difference results in
significantly mis-matched Fermi surfaces, which acts as
a barrier to quark pairing in the conventional BCS pic-
ture of superconductivity. However, with the assumption
of spatially uniform pairing, the different dispersion re-
lations of the ultra-relativistic light quarks on the one
hand, and the much slower strange quarks on the other,
can lead to a situation in which quarks on the strange
quark Fermi surface pair with quarks on the interior of
the light flavors’ Fermi spheres, as shown in [39]. This
breached pairing corresponds to a situation in which the
T = 0 state of the system consists of both superfluid and
normal Fermi liquid components with both gapped and
ungapped quasiparticle excitations [40]. Thus, as shown
in [41], it is indeed possible to form a stable homogeneous
superfluid phase out of the mis-matched Fermi spheres,
as we observe.
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FIG. 5: (color online) Phase diagrams for the PNJL model with realistic up and down quark masses and various
strange quark masses, where the axial anomaly couplings are taken to be equal (K ′ = K). Line types have the
same meaning as in Fig. 3.

V. ASYMMETRIC CFL (ACFL) PHASE

A. Quark Pairing Amplitudes

The evolution of color superconducting quark matter
with increasing temperature can be inferred from Fig. 8.
At low temperatures, the ACFL phase is essentially iden-
tical with the CFL phase, with d1 = d2 ≈ d3, and has a
thermodynamic potential well below the QGP. At high
temperatures, the ACFL phase morphs continuously into
the 2SCBCS phase, with d1 = d2 = 0, via a second order
phase transition. In between these two limiting cases,
for 20 MeV < T < 70 MeV, the ACFL phase is distinct
from both the 2SC and QGP phases, and has a thermo-
dynamic potential below both.
We also note that while not clearly visible in Fig. 4,

our calculations indicate that for T > 6 MeV it is always
energetically favorable to adopt unequal pairing ampli-
tudes. Thus, while we cannot exclude the possibility of
a low temperature CFL-ACFL phase transition, it seems
very likely that the unequal pairing amplitudes persist to
arbitrarily low temperatures, and that a symmetric CFL

phase at intermediate µ is restricted to T = 0.
We can understand the asymmetric behavior of the

quark pairing by noting that in our chosen gauge (and
with φ8 = 0) the quark-Polyakov loop coupling is of the
form

qA0γ
0q = φ3(rγ

0r − gγ0g), (14)

where we have written the color indices explicitly, so that
the Polyakov loop couples only to red and green quarks.
Thus, the condensates d1 (which involves green and blue
quarks) and d2 (red and blue) are only singly-coupled to
the Polyakov loop, while d3 (green and red) is doubly-
coupled.
One may inquire whether this phase of unequal quark

pairing is simply an artifact of our choice of φ8 = 0, or
whether such a phase might actually be realized in QCD.
Unfortunately, in the present model, allowing φ8 6= 0 ren-
ders the thermodynamic potential complex so that its
minimization is no longer a well-posed problem. Never-
theless, our results do demonstrate the possibility of ob-
taining a phase characterized by non-equal quark pairing,
and present a challenge to other models of dense quark
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FIG. 6: (color online) Phase diagrams for the PNJL model with realistic up and down quark masses and various
strange quark masses, where K ′ = 4.2K. Line types have the same meaning as in Fig. 3.

matter to address the question of its realization.
In addition to local color charge, asymmetric quark

pairing in both the ACFL and 2SC phases can give rise
to a net local electric charge. In quark matter in neutron
stars such a charge is neutralized by a net electron (and
possibly muon) density, and indeed in deriving an equa-
tion of state for neutron stars, we must include charge
neutrality. On the other hand, matter encountered in
heavy ion collisions is electrically charged and the colli-
sions occur on sufficiently short time scales that while the
matter reaches equilibrium with respect to the strong nu-
clear force, it does not reach charge equilibrium. While
we discuss color neutrality in Sec. VI, we do not further
consider electrical neutrality in this paper.

B. Symmetry Breaking Pattern

Having identified the region of the phase diagram oc-
cupied by the ACFL phase as well as the order of the
associated phase transitions, we next study the symme-
try breaking pattern of this phase. We begin by noting
that the symmetry groups of the 2SC and CFL states

are [16, 42]

2SC : SU(2)rg ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B̄ ⊗U(1)S ,

CFL : SU(3)c+L+R ⊗ Z2,

where SU(2)rg denotes a rotation in the color subspace
of red and green quarks, U(1)B̄ is a rotated baryon con-
serving symmetry with conserved quantity

B = Q+ I3 with Q = Q− 1

2
√
3
λ8, (15)

where I3 is the isospin operator, Q and Q are the stan-
dard and rotated (conserved) electromagnetic charge op-
erators in the 2SC phase, and U(1)S corresponds to mul-
tiplying the strange quark by an arbitrary phase.
Since both the CFL and 2SC phases are special cases

of the ACFL phase, the symmetry group of the ACFL
phase must be a subset of the symmetry groups of these
respective phases. Thus, the color-flavor-locking aspect
of the CFL phase requires that there be no unbroken
independent color or chiral rotations in the ACFL phase,
while the SU(2)rg symmetry of the 2SC phase requires
that there be no unbroken symmetry which mixes blue
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quarks with red or green quarks. A direct calculation
demonstrates that none of the remaining symmetries are
broken and we are left with the symmetry group

ACFL : SU(2)rg+L+R ⊗ Z2.

In fact, the symmetry group of the ACFL phase is
simply the intersection of the symmetry groups of the
2SC and CFL phases. Moreover, this symmetry group is
identical to that of the CFL phase with unequal strange
quark mass [43]. Finally, we note that we expect 14 Gold-
stone bosons in the ACFL phase, which follows from the
8R +8L +1B = 17 generators of the Lagrangian and the
3 generators of the ACFL symmetry group.

VI. COLOR NEUTRALITY

In the prior sections we have constructed the phase di-
agram of the PNJL model for both massless and massive
quarks and have observed the emergence of a new ACFL
phase at large µ. If our model is to accurately reflect the
behavior of dense QCD, however, for the homogeneous
phases which we consider here we must also investigate
the effects of the requirement of local color neutrality. In
fact, both the 2SC phase previously reported by Basler
and Buballa [22] and the new ACFL phase posess non-
zero color densities which would, if left unchecked, induce
large color-electric forces in the superconducting quark
matter.
The origin of the net color density, in both the 2SC and

ACFL phases, is the modification of the quark dispersion
relations which results from unequal pairing amplitudes
for red and green quarks compared with blue quarks. In
the 2SC phase, for example, at fixed particle number the
pairing of red and green quarks results in a decrease in
the Fermi energy of these colors. In a system at fixed
quark chemical potential µ, this results in an increase
in the density of red and green quarks compared to the
unpaired blue quarks, and a corresponding net anti-blue
color density. In QCD, this quark color density is ex-
actly cancelled by the development of a non-zero expec-
tation value of the gluon field (i.e., tadpole diagrams),
and so the homogeneous 2SC phase remains color neu-
tral [26, 27]. However, having replaced the local SU(3)
color symmetry of QCD with the global symmetry of the
PNJL model we now lack the means for dynamically re-
alizing a neutral ground state.
The standard method for imposing color neutrality in

the NJL model is to introduce a set of color chemical
potentials µa, which are chosen to ensure vanishing color
densities [28–30]:

na = 〈q†Taq〉 = − ∂Ω

∂µa

= 0, (16)

where Ta = λa/2. In light of our prior discussion, we see
that the equilibrium value of µa (i.e., the value required
to achieve color neutrality) is proportional to 〈A0

a〉 in
QCD. In both the 2SC and ACFL phases red and green
quarks pair symmetrically, so we need only include µ8, in
order to ensure that n8 = nr+ng−2nb = 2(nr−nb) = 0.
Thus, we modify the Lagrangian from Eq. (1) to

L = q(i /D − m̂+ µγ0 + µ8λ8γ
0)q + L(4) + L(6)

−U(Φ,Φ, T ). (17)

In order to obtain the locally color neutral phase di-
agram we now minimize the thermodynamic potential
with respect to the condensates σi and di, and Polyakov
loop variable φ3 as before, while imposing the additional
neutrality constraint

n8 = − ∂Ω

∂µ8
= 0, (18)
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as well as the stability condition

∂n8

∂µ8
= −∂2Ω

∂µ2
8

> 0. (19)

Thus, our solution is a saddle point of Ω, minimized with
respect to the condensates, and maximized with respect
to µ8.
Due to the computational intensity of the saddle point

problem for our eight variable thermodynamic potential
we defer a complete assessment of the effects of color neu-
trality, together with the strange quark mass and confine-
ment, to a future publication. However, we report three
important results from themassless quark limit at T = 0,
which give insight into the structure of the full color neu-
tral QCD phase diagram. Note that, as shown in Fig. 4,
at T = 0 the the quark pairing asymmetry vanishes so
that a true CFL phase is obtained.
First, in the massless quark limit the color neutrality

constraint eliminates the 2SC phase from a large por-
tion of the phase diagram, in favor of the ACFL phase.
We can understand this effect by considering Fig. 9. At
µ = 275 MeV the thermodynamic potentials of the color
neutral NG and CFL phases (µ8 = 0) are nearly equal,
indicating the location of a phase transition between the
NG phase, which exists at low µ, and the CFL phase
which exists at high µ. As the system moves to higher
density the energy of the NG phase is essentially con-
stant, while both the 2SC and CFL phases decrease in
energy, becoming more favorable.
The crucial effect of the color neutrality constraint is

visible in the thermodynamic potentials at µ = 285 MeV.
In the absence of a color neutrality constraint (µ8 = 0),
we find that the 2SC phase is indeed the lowest energy,
and therefore the preferred, phase of the system. How-
ever, in imposing color neutrality, we require the 2SC
phase to take on a nonzero µ8 ≈ −40 MeV, which results
in a (physical) 2SC state which is formally higher in en-
ergy than the colored state. This “additional” energy

is sufficient to raise Ω2SC above both ΩNG and ΩCFL,
with the lower energy CFL phase being the color neutral
ground state. As the system moves to yet higher µ, both
the 2SC and CFL phases continue to move to lower ener-
gies, with the latter always maintaining a slight energetic
advantage. Thus, at T = 0 color neutrality eliminates
the 2SC phase altogether. We do note, however, that the
2SC phase is not eliminated altogether, and that its color
neutral form (with µ8 6= 0) remains the preferred phase
in some portions of the phase diagram for T > 0.

A second effect of the local color neutrality constraint
is the elimination of the ACFL phase at high µ, in favor of
a symmetric CFL phase. This is somewhat encouraging,
given our expectation of a CFL phase at asymptotically
high µ, due to general considerations [44, 45]. Thus, we
find that the color neutrality constraint disfavors both
the asymmetric 2SC and ACFL phases, and at least for
some parameters, leads to the complete exclusion of these
phases.

A third important effect of color neutrality, which is
a corollary of the suppression of the 2SC and ACFL
phases is the “re-emergence” of a low temperature critical
point [1, 36]. As shown in [22], when one allows for 2SC
quark pairing (rather than simply a CFL structure) in the
absence of a local color neutrality constraint this critical
point is eliminated in favor of a second order NG-2SC
phase transition at intermediate µ. However, with the
2SC and ACFL phases eliminated by the color neutrality
constraint, the system once again realizes quark-hadron
continuity via a smooth crossover between the NG and
CFL phases at low temperatures.

In the case of realistic quark masses, the 2SC phase
remains intact after imposing local color neutrality, but
the location of the low temperature NG-2SC transition
is moved to the right by ∆µ ≈ 30 MeV. This shift in
the phase boundary is not surprising in light of the addi-
tional energy required to maintain a non-zero µ8. Indeed,
the 2SC phase still becomes more favorable (i.e., Ω2SC
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.

decreases) as the system moves to higher µ, but the non-
zero value of µ8 results in an overall shift of Ω2SC to
larger values. As a result, the NG-2SC phase boundary
defined by Ω2SC = ΩNG is shifted to larger µ.

VII. SUMMARY

We have investigated the effects of confinement and
realistic mass quarks on the the QCD phase diagram,
particularly the preferred quark pairing structures at in-
termediate chemical potentials. While many prior studies
have not enforced local color neutrality in spatially homo-
geneous phases of asymmetric quark pairing (e.g., 2SC)
they have nonetheless assumed a CFL pairing structure
at large µ. Rather, we have shown that in the absence of
a local color neutrality constraint the Polyakov loop can
give rise to an asymmetric CFL (ACFL) phase in which
all quark flavors pair, but with unequal magnitudes. This
ACFL phase, which can exist even for three equal mass
quarks, provides a mechanism for moving continuously
from a true CFL phase to a 2SC phase, as two of the pair-
ing amplitudes (namely, those involving strange quarks)
vanish via second order phase transitions with increasing
temperature.

When local color neutrality is enforced, we have shown
that the 2SC phase is partially supressed due to the
energy cost of forming the gluon condensate (or µ8 =
g 〈A0

8〉) required to achieve color neutrality. However,
the ACFL phase remains intact and does not require a
gluon condensate (i.e., µ8 = 0), as the combined effects of
the unequal masses and pairing amplitudes dynamically
achieve color neutrality. The mechanism for achieving
spatially uniform pairing between quark flavors with im-

balanced Fermi seas is the breached pairing described
in [39–41].
While an exhaustive analysis of the effects of color neu-

trality and realistic quark masses is beyond the scope of
the present paper, based on the results obtained here we
can propose an educated hypothesis for the QCD phase
diagram under the assumptions adopted here, namely the
restriction to spatially homogeneous phases. Figure 10)
shows our proposed phase diagram, which should be com-
pared to Fig. 5(d), in which color neutrality was not en-
forced. We expect the essential effect of the color neu-
trality constraint to be the reduction in size of the 2SC
phase, due to the additional energy required to gener-
ate the neutralizing gluon condensate. In particular, the
lines of first order NG-2SC and ACFL-2SC transitions
will encroach upon the 2SC region due to the upward
shift of Ω2SC , as indicated by the arrows in Fig. 10. Sec-
ond order transition lines, however, will remain largely
unaffected as µ8 → 0 on these boundaries.
A number of outstanding questions exist regarding the

PNJL model and the QCD phase diagram which we will
address in a future publication [46]. Foremost among
them is a complete construction of the QCD phase dia-
gram which incorporates local color neutrality along with
realistic quark masses. Also the effects of charge neutral-
ity and β-equilibrium, which are important in the study
of stable quark matter at low temperatures in neutron
stars, remain to be completely elucidated in the context
of the PNJL model.
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