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Abstract

It has been widely assumed that partially quenched chiral perturbation theory is the correct low-

energy effective theory for partially quenched QCD. Here we present arguments supporting this

assumption. First, we show that, for partially quenched QCD with staggered quarks, a transfer

matrix can be constructed. This transfer matrix is not Hermitian, but it is bounded, and it can

be used to construct correlation functions in the usual way. Combining these observations with

an extension of the Vafa–Witten theorem to the partially quenched theory allows us to argue that

the partially quenched theory satisfies the cluster property. By extending Leutwyler’s analysis of

the unquenched case to the partially quenched theory, we then conclude that the existence and

properties of the transfer matrix as well as clustering are sufficient for partially quenched chiral

perturbation theory to be the correct low-energy theory for partially quenched QCD.
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I. INTRODUCTION

Partially quenched chiral perturbation theory (PQChPT) has been extensively used in

the analysis of numerical computations of hadronic quantities in lattice QCD. In such com-

putations, one has the freedom to vary valence quark masses (masses of quark operators

appearing explicitly in correlation functions) and sea quark masses (masses of quarks ap-

pearing in the fermion determinant of the theory) independently. This generalized version

of QCD, which is commonly referred to as partially quenched QCD (PQQCD), contains full

QCD as the special case in which valence and sea quark masses are set equal to each other

(for each flavor) [1]. PQChPT is, correspondingly, the generalization of chiral perturbation

theory to the partially quenched setting.1

The ability to vary valence and sea quark masses independently is useful for a variety of

reasons. First, the computation of quark propagators needed for the contractions making up

a correlation function is significantly less expensive in most applications than the generation

of gauge field configurations, which depend on the sea quark mass. With fixed computational

resources, it can thus be an advantage to generate data for a number of valence quark masses

on an ensemble of gauge configurations with a given sea quark mass.

Second, PQQCD contains full QCD with the same set of sea quarks. It follows that the

low-energy constants (LECs) of the effective theory for the partially quenched theory are

those of the real world, because, by definition, the LECs do not depend on the quark masses

[3].2 It turns out that in a number of cases, it is easier to determine these LECs by varying

the valence and sea quark masses independently; having more parameters to vary provides

more “handles” on the theory.

Third, on the lattice, PQQCD can be generalized to QCD with a “mixed action,” in which

not only valence and sea quark masses are independently chosen, but also the discretization

of the Dirac operator is different for valence and sea quarks [4]. The continuum limit of such

a theory is a partially quenched theory; a fine tuning is generally required to make valence

and sea quark masses equal in the continuum limit.

Fourth, lattice theories with staggered fermions that use the fourth-root procedure [5]

to eliminate unwanted “taste” degrees of freedom are closely related to PQQCD because

1 For a review, see Ref. [2].
2 They do depend on the number of sea-quark flavors.
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there is a mismatch between the (rooted) sea quarks and the (unrooted) valence quarks

[6–8]. PQChPT plays an important role in the development of the effective chiral theory for

rooted staggered fermions [9, 10], which in turn provides some evidence for the validity of

the rooting procedure. For more discussion of these issues see Refs. [7, 11–13] and references

therein.

However, it is less clear than in the case of full QCD that the partially quenched chiral

theory is indeed the proper low-energy effective field theory. This is because PQQCD violates

some of the properties of a healthy quantum field theory: The path integral definition of

PQQCD includes an integral over ghost quarks, which have the same quantum numbers

and masses as the valence quarks, but which have bosonic, rather than fermionic, statistics.

The partially quenched theory thus violates the spin-statistics theorem. The reason for the

presence of ghost quarks is that their determinant cancels the valence quark determinant

[14]; it is this very cancellation that makes the gauge configurations independent of the

valence mass.

In Ref. [15], Weinberg conjectured that the validity of chiral perturbation theory (ChPT)

as a low-energy effective theory for the Goldstone sector of QCD follows from the basic

properties of a healthy quantum field theory, which include analyticity, unitarity, cluster

decomposition, and symmetry considerations. It was assumed that the S-matrix calculated

with the most general local Lagrangian consistent with a certain symmetry group is the

most general possible S-matrix consistent with these basic properties. This was then used

as a starting point for the systematic development of ChPT to obtain S-matrix elements

as an expansion in terms of the pion momenta and masses, following a well-defined power-

counting scheme. The implicit reliance of this argument on unitarity, though, appears to be

an obstruction to extending this line of reasoning to the partially quenched case, which is

certainly not unitary.

A justification for ChPT as the low-energy effective theory for QCD based on a somewhat

different set of arguments was presented by Leutwyler [16]. In this justification, the most

important ingredients, in addition to symmetries, are locality and the cluster property of

the underlying theory (full QCD), while unitarity is not used. Locality and clustering guar-

antee the existence of vertices in the effective theory that are independent of the correlation

functions in which they appear, and, consequently, the existence of a loop expansion. We

have found this approach more useful for the case of PQQCD than that of Ref. [15]. By
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construction, PQQCD is local. The question then becomes whether the theory also satis-

fies the cluster property. The main goal of the present article is to collect the theoretical

evidence that this is indeed the case. Our argument will be based on three ingredients:

the existence and properties of a transfer matrix for PQQCD, the observation that chiral

symmetry breaking is expected to take place in PQQCD because it takes place in the full

theory contained within PQQCD [17], and an extension of the Vafa–Witten theorem [18]

about the absence of spontaneous symmetry breaking of vector-like global symmetries (this

part of the argument extends the argument already given in Ref. [17]). The combination

of these ingredients allows us to argue that the partially quenched theory satisfies the clus-

ter property, under a set of mild additional assumptions similar to those used in Ref. [16].

With this result in hand, the justification for PQChPT as the low-energy effective theory

for PQQCD then follows, much like it does for the case of full QCD. For technical reasons,

we limit ourselves to lattice QCD with staggered quarks, but we believe that the extension

to other discretizations of QCD is relatively straightforward.3 An earlier account of part of

this work appeared in Ref. [20].

As is well known, the partially quenched theory has more severe mass singularities than

normal QCD. These arise in particular when valence and ghost masses vanish with sea masses

held fixed and nonzero (“partially quenched chiral logarithms”) and are caused by double

poles in flavor-neutral propagators [1, 21]. The double poles are properties of PQQCD itself,

not just of the chiral effective theory, as shown (with some assumptions) in Ref. [17]. Here,

we will avoid these mass singularities by always working with all quark and ghost masses

strictly positive. This has the further advantage that there are no massless particles (either

from chiral symmetry breaking, or from breaking of other symmetries, which we show cannot

occur). Thus “clustering” in this article means, “exponential clustering,” with correlation

functions of widely separated Euclidean points falling exponentially with distance. We

emphasize that we do not need to take the limit of vanishing masses in order to show that

pseudo-Goldstone bosons (pions) exist in the partially quenched theory; as mentioned above,

this is a consequence of their existence in unquenched QCD and the (extended) Vafa–Witten

theorem.

In constructing the PQQCD transfer matrix, we begin with a theory of ghost (bosonic)

3 For instance, see Ref. [19] for Wilson ghost quarks.
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quarks only, coupled to background gluons. This is clearly the nontrivial part of the problem,

since transfer matrices for ordinary quarks and gluons are standard. Our approach makes

it unnatural to demand that ghost-quark and valence-quark masses (call them mq and mv,

respectively) are equal from the outset, as they are in the usual numerical application of

PQQCD. Thus we are led to a more general setting, where all three types of quark masses

(valance quark, sea quark, and ghost quark) may be different. This general setting has some

interesting features, most of which seem to be of purely academic interest, since the limit of

equal ghost-quark and valence-quark masses is the useful one. However, it does provide one

important insight: The double poles, which are considered to be characteristic of PQQCD

and PQChPT, arise from the near-cancelation of single poles in the limit mg → mv. It is

crucial here that the poles associated with ghosts have residues with opposite signs from

those of the valence quarks. These unusual signs are associated with the bosonic nature of

the ghost quarks, which also causes the ghost-quark Hamiltonian to be non-Hermitian. The

ensuing violations of unitarity (see Sec. IIIC) thus appear to be a more fundamental feature

of PQQCD than the existence of double poles per se, which appear only in the special case

mg = mv.

Instead of using bosonic quarks to cancel the unwanted valence-quark determinant,

Damgaard and Splittorff [22] proposed a replica approach, in which each valence quark

is replicated nr times, and one attempts to continue nr to zero from the positive integers

at the end in order to remove the determinant. It is interesting to consider whether fur-

ther progress in justifying PQChPT can be made using that approach. The main obstacle

in that direction seems to be the absence of a proof that the replica approach is indeed

equivalent to PQQCD nonperturbatively. If that obstacle were overcome, many other steps

would be straightforward, since the theory has a conventional chiral theory for each positive

integer nr. However, a similar problem would also remain on the chiral side of the argument,

since one also has no proof that the replica version of the chiral theory is nonperturbatively

equivalent to PQChPT when nr is continued to zero.

This article is organized as follows. In Sec. II we construct the transfer matrix for PQQCD

with staggered quarks. We find that the transfer matrix is not Hermitian, but is nevertheless

bounded. It turns out to be instructive to consider the free theory in some detail, and this is

done in Sec. III. In particular, the free theory clearly demonstrates that unitarity is violated

in PQQCD.
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Then, in Sec. IV, we turn to the effective theory, PQChPT. We first give a brief reca-

pitulation of Leutwyler’s arguments for the unquenched case in Sec. IVA, focusing on the

use of clustering. In the partially quenched case, the exponential clustering “almost” follows

from the existence of a bounded transfer matrix, but the possibility of massless particle from

spontaneous symmetry breaking is a significant loophole. In Sec. IVB, we argue that the

extension of the Vafa–Witten theorem about vector-like global symmetries in QCD implies

(up to certain mild assumptions) that the cluster property does in fact hold in PQQCD. We

discuss the role of rotational symmetry in Sec. IVC, and synthesize all our observations into

an argument for the correctness of PQChPT as the low-energy effective theory for PQQCD

in Sec. IVD. For technical reasons, we need to assume that the pion masses remain real in

PQQCD, despite the fact that the corresponding transfer-matrix Hamiltonian is not Her-

mitian. This assumption is strongly supported by numerical evidence. In Sec. IVE, we use

CPT symmetry to argue that all low energy constants in PQChPT have the same phases

(real, with usual conventions) as they would in a Hermitian theory. This supports our as-

sumption that the masses are real. Nevertheless, as we show in Sec. IVF, in the nonstandard

case where ghost-quark masses are not degenerate with valence-quark masses, the effective

theory shows that complex masses may arise in some ranges of quark and ghost masses, as

may a new phase transition. The effective theory also shows how double poles arise from

single poles in the mg → mv limit. Our conclusions are contained in Sec. V. There are two

appendices, both concerned with the free theory. In App. A we show completeness of a basis

of (right or left) eigenstates, and App. B discusses a path integral formulation of the free

theory.

II. TRANSFER MATRIX

In this section, we construct the transfer matrix for a gauge theory coupled to fermionic

and bosonic or “ghost” staggered quarks. Each of these quarks can have an arbitrary mass,

but we will require all masses to be positive.4 In Sec. IIA we construct the transfer matrix

for ghost quarks in a background gauge field. In Sec. II B we discuss some properties of

the ghost transfer matrix; in particular, we show that it is bounded. Then, in Sec. IIC

4 The phase of a ghost-quark mass cannot be changed by chiral transformations [19, 23].
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we combine this with the transfer matrix for a gauge theory with only fermionic quarks to

arrive at the complete transfer matrix, and show that it is invariant under PT and CPT

symmetry. We will use the “double time-slice” construction for both fermionic and ghost

quarks [24, 25].

A. Ghost sector

The staggered action is

S =
∑

x

{

1

2

∑

µ

ηµ(x)
(

χ†(x)Uµ(x)χ(x+ µ)− χ†(x+ µ)U †
µ(x)χ(x)

)

+mχ†(x)χ(x)

}

,

(2.1)

in which

ηµ(x) = (−1)x1+...xµ−1 , (2.2)

and where χ and χ† are the staggered fields, Uµ(x) are the link variables, and color indices

are suppressed. We will denote a lattice gauge field consisting of all link variables Uµ(x) by

U . If χ and χ† are Grassmann, they are independent of each other, and χ† can then also be

denoted as χ, as is often done. However, here we are interested in the ghost-quark sector of

the theory, for which we take χ(x) to be a c-number. In order that the path integral over

the ghost fields be convergent, we need to take χ†(x) to be the Hermitian conjugate of χ(x).

With this choice, the partition function

Z(U) =
∫

∏

x

dχ†
xdχx exp (−S) (2.3)

is well-defined, as long as we take m > 0, which we will assume throughout this article.

In order to construct the transfer matrix representation of Z, we find it convenient to

introduce real fields φ1 and φ2 through

χ(x) = η4(x)φ1(x) + iφ2(x) , χ†(x) = η4(x)φ1(x)− iφ2(x) . (2.4)
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Choosing temporal gauge, U4(x) = 1, and splitting x→ (~x, t = x4), we rewrite S as5

S =
∑

x

{

i
(

φ1(~x, t)φ2(~x, t+ 1)− φ2(~x, t)φ1(~x, t+ 1)
)

(2.5)

+i
∑

j

η′j(~x)
(

φ1(~x, t) Re Uj(~x, t)φ2(~x+~j, t) + φ2(~x, t) Re Uj(~x, t)φ1(~x+~j, t)
)

+i
∑

j

ηj(~x)
(

−φ1(~x, t) Im Uj(~x, t)φ1(~x+~j, t) + φ2(~x, t) Im Uj(~x, t)φ2(~x+~j, t)
)

+m
(

φ1(x)
2 + φ2(x)

2
)

}

,

in which

η′j(~x) = ηj(~x)η4(~x) , (2.6)

and

Re Uk(x) =
1

2
(Uk(x) + U∗

k (x)) , (2.7)

Im Uk(x) =
1

2i
(Uk(x)− U∗

k (x)) .

Next, we divide the lattice into even and odd time slices, and rename the fields Φ, respectively

Π, defining

t = 2k : φ1(~x, t) = Φ1,k(~x) , φ2(~x, t) = −Φ2,k(~x) , (2.8)

t = 2k + 1 : φ1(~x, t) = Π2,k(~x) , φ2(~x, t) = Π1,k(~x) .

Accordingly, the action can be rewritten as

S =
∑

k

{

∑

~x

i (Φ1,k(~x)Π1,k(~x) + Φ2,k(~x)Π2,k(~x)) (2.9)

+H−[Φ1,k,Φ2,k;U(2k)] +H0[Φ1,Φ2;m]

}

+
∑

k

{

∑

~x

−i (Π1,k(~x)Φ1,k+1(~x) + Π2,k(~x)Φ2,k+1(~x))

+H+[Π1,k,Π2,k;U(2k + 1)] +H0[Π1,Π2;m]

}

,

5 The fields φ1 and φ2 are always transposed when they appear as the first factor in a bilinear in these

fields. We also use that η4(~x+~j) = −η4(~x).
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in which U(t) denotes the gauge field at a time slice t, and

H±[Ψ1,Ψ2; U(t)] =
∑

~x

{

±
∑

j

iη′j(~x)
(

Ψ1(~x) Re Uj(~x, t)Ψ2(~x+~j) + (1 ↔ 2)
)

−
∑

j

iηj(~x)
(

Ψ1(~x) Im Uj(~x, t)Ψ1(~x+~j)− (1 → 2)
)

}

,

H0[Ψ1,Ψ2;m] = m
∑

~x

(

Ψ1,k(~x)
2 +Ψ2,k(~x)

2
)

. (2.10)

After shifting k to k + 1 in the H− term, we define a kernel

T (Φ1,k+1Φ2,k+1; Φ1,kΦ2,k) =

∫

∏

~y

dΠ1,k(~y)

∫

∏

~y

dΠ2,k(~y) × (2.11)

exp

[

−
{

∑

~x

i (Φ1,k(~x)Π1,k(~x)+Φ2,k(~x)Π2,k(~x)−Π1,k(~x)Φ1,k+1(~x)−Π2,k(~x)Φ2,k+1(~x))

+H−[Φ1,k+1,Φ2,k+1; U(2(k + 1)] +H+[Π2,k,Π1,k; U(2k + 1)]

+H0[Φ1,Φ2;m] +H0[Π1,Π2;m]

}]

.

The claim is then that

T (Φ1,k+1Φ2,k+1; Φ1,kΦ2,k) = 〈Φ1,k+1Φ2,k+1|T̂G,k(U)|Φ1,kΦ2,k〉 , (2.12)

with

T̂G,k(U) = e−H−[Φ̂1,Φ̂2; U(2(k+1)]−H0[Φ̂1,Φ̂2;m] e−H+[Π̂2,Π̂1; U(2k+1)]−H0[Π̂1,Π̂2;m] , (2.13)

in which the Hermitian operators Φ̂a(~x) and Π̂a(~x) obey the commutation rules

[Φ̂a(~x), Π̂b(~y)] = iδ~x,~y δab . (2.14)

This is proven by inserting a complete set of states into the right-hand side of Eq. (2.12):

〈Φ1,k+1Φ2,k+1|T̂G,k(U)|Φ1,kΦ2,k〉 = (2.15)
∫

dΠ1,k

∫

dΠ2,k 〈Φ1,k+1Φ2,k+1|e−H−[Φ̂1,Φ̂2; U(2(k+1))] e−H+[Π̂2,Π̂1; U(2k+1)]|Π1,kΠ2,k〉

× 〈Π1,kΠ2,k|Φ1,kΦ2,k〉

=

∫

dΠ1,k

∫

dΠ2,k e
−H−[Φ1,k+1,Φ2,k+1; U(2(k+1))] e−H+[Π2,k,Π1,k; U(2k+1)]

× ei(Φ1,k+1Π1,k+Φ2,k+1Π2,k−Φ1,kΠ1,k−Φ2,kΠ2,k) ,
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where we omitted the explicit arguments ~x from the fields. Restoring these, the last line of

Eq. (2.15) coincides precisely with Eq. (2.11). The ghost partition function in a gauge-field

background U is now given by

ZG(U) = Tr





T/2
∏

k=1

T̂G,k(U)



 , (2.16)

if T is the time extent of the lattice.

B. Properties of the ghost transfer matrix

The transfer matrix (2.13) is not Hermitian, but it is bounded. The proof is as follows.

The operator H−[Φ̂1, Φ̂2;U(2(k+1))]+H0[Φ̂1, Φ̂2;m] consists of a positive semi-definite part

(if m > 0), and an anti-Hermitian part containing the gauge field. Moreover, it commutes

with its Hermitian conjugate, because all Φ̂a(~x) commute among themselves. Therefore, the

operator

T̂1(U) = e−H−[Φ̂1,Φ̂2; U(2(k+1)]−H0[Φ̂1,Φ̂2;m] (2.17)

is normal and bounded,6

‖ T̂1(U) ‖≤ 1 . (2.18)

A similar argument applies to

T̂2(U) = e−H+[Π̂2,Π̂1; U(2k+1)]−H0[Π̂1,Π̂2;m] , (2.19)

and thus it follows that T̂G itself is bounded,

‖ T̂G(U) ‖≤‖ T̂1(U) ‖‖ T̂2(U) ‖≤ 1 . (2.20)

This establishes that all eigenvalues of T̂G have an absolute value less than or equal to one.

If, moreover, the eigenvalue λ0 with maximal absolute value is unique, correlation functions

in this theory decay exponentially with distance.

The transfer matrix (2.13) may be assumed to have a complete set of right and left

eigenstates. This is equivalent to saying that, if we block-diagonalize T̂G (put it in Jordan

6 We use the Euclidean norm, which, for a matrix A, is defined as the positive square root of the largest

eigenvalue of A†A.
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normal form), there are no blocks of the form





λ κ

0 λ



 , (2.21)

with κ 6= 0 (or generalizations of this form with higher degeneracies). We will see in Sec. III

(and App. A) that this situation does not occur in the free theory. The condition that it

happens on some nontrivial gauge field in the interacting case then restricts such fields to

a subspace of co-dimension one (or more) in the full space of gauge-field configurations.

Therefore, for “most” (meaning all gauge fields except a set of zero measure in the space of

all gauge fields), the transfer matrix T̂G,k(U) can be completely diagonalized, and complete

sets of right and left eigenstates exist.

There is a caveat, however. In the next section, we will incorporate the ghost transfer

matrix we have constructed thus far into a transfer matrix for the entire theory, including

quantized quarks and gauge fields as well as ghosts. In order to conclude that the total

transfer matrix does not have any nontrivial Jordan blocks of the form (2.21) (or general-

izations thereof, cf. App. A), we would have to construct the full Hilbert space for the entire

matrix, something we do not know how to do.7 One might, however, consider a hybrid

construction of the entire theory, in which fermions and ghosts are treated in a canonical

formalism, and gauge fields are taken into account through the path integral. What this

means is that correlation functions with quarks or ghosts on the external lines are first con-

structed in the transfer-matrix formalism, in an arbitrary fixed gauge-field background. The

full QCD correlation functions are then obtained by integrating these correlation functions

over the gauge fields. We first exclude from this integral the measure-zero set of gauge fields

for which the Jordan normal form of the transfer matrix in a fixed gauge-field background

may be nondiagonal. Since we then have a complete set of eigenstates in each background

field, we think it reasonable to assume that the entire transfer matrix has a complete set of

eigenstates.

7 For the free theory it is obvious that it can be completely diagonalized, because in that case the Hilbert

space is the direct product of the free Hilbert spaces for the quark and ghost sectors.
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C. Full transfer matrix

It is straightforward to combine the transfer matrix for ghost quarks constructed in

Sec. IIA with the transfer matrix for lattice QCD with staggered fermions. First, from

Refs. [24, 25], the fermionic transfer matrix for a staggered quark in a fixed background

gauge field U can be written in the form

T̂F,k(U) = eÂ
†[U(2(k+1))] eB̂[m] eÂ[U(2k+1)] , (2.22)

with B̂ Hermitian. This translates the system from double time slice k (cf. Eq. (2.8)), with

gauge fields U(2k) and U(2k + 1), to the next double time slice k + 1, with gauge fields

U(2(k + 1)) and U(2(k + 1) + 1). In more detail, the factor eÂ takes care of the hop within

the double slice, connecting slice 2k to slice 2k + 1 (and it contains spatial terms on slice

2k + 1), whereas the factor eÂ
†

hops from slice 2k + 1 to slice 2(k + 1) in the next double

slice (and it contains spatial terms on the slice 2(k + 1)).

The ghost transfer matrix of Eq. (2.13) can be written similarly as:

T̂G,k(U) = e−H−[Φ̂1,Φ̂2; U(2(k+1))] e−Ĥ[m] e−H+[Π̂1,Π̂2; U(2k+1)] , (2.23)

where

e−Ĥ[m] ≡ e−H0[Φ̂1,Φ̂2;m] e−H0[Π̂1,Π̂2;m] . (2.24)

We can then write the transfer matrix for the total theory of QCD with staggered quarks

and ghost quarks in the form

T̂total = T̂
1/2
U eÂ

†

e−H−[Φ̂1,Φ̂2; Û ] T̂U e
−Ĥ[m] eB̂ eÂ e−H+[Π̂1,Π̂2; Û ] T̂

1/2
U , (2.25)

with T̂U the transfer matrix of the pure gauge theory constructed in Ref. [26]. The gauge

field transfer matrix hops between single time slices, and therefore a factor T̂U needs to be

inserted between eÂ e−H+[Π̂1,Π̂2; Û ] and eÂ
†

e−H−[Φ̂1,Φ̂2; Û ], with matrix elements

〈U(2(k + 1))|T̂U |U(2k + 1)〉 . (2.26)

Then, when one writes the partition function as a trace over a power of the transfer matrix,

the factors T̂
1/2
U combine to hop the gauge field from slice 2k to 2k + 1 (on the right of

Eq. (2.25)), or from slice 2(k + 1) to slice 2(k + 1) + 1 (on the left of Eq. (2.25)).
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Although T̂total is not Hermitian, and therefore is not required to have only real eigenval-

ues, there are significant restrictions on the eigenvalues coming from discrete symmetries.

Most importantly, T̂total is invariant under the antiunitary symmetry PT, the product of

parity and time-reversal symmetries. Under PT, the ghost fields in Eq. (2.25) transform

according according to

PT Φ̂1(~x) (PT )† = Φ̂2(−~x) ,

PT Φ̂2(~x) (PT )† = Φ̂1(−~x) ,

PT Π̂1(~x) (PT )† = −Π̂2(−~x) , (2.27)

PT Π̂2(~x) (PT )† = −Π̂1(−~x) ,

where PT is the antiunitary operator that generates the symmetry. Note that, because

it is antiunitary, PT it leaves the commutation rules, Eq. (2.14), unchanged. In the free

case (Uj(~x, t) = 1), the invariance of the ghost part of the transfer matrix, T̂G, under PT

can be easily checked using the definitions of H± and H0, Eq. (2.10), and the relations

ηj(~x+~j) = ηj(~x) and η
′
j(~x+~j) = −η′j(~x). In the interacting case, the ghost transfer matrix

T̂G(U) is of course not invariant under Eq. (2.27) for fixed background fields Uj(~x, t); we must

also let the time-slice gauge field operators transform. The transformation rule is standard:

PT Ûj(~x) (PT )† = Û−j(−~x) ≡ Û †
j (−~x−~j) . (2.28)

Of course the quark and pure gauge parts of T̂total are also invariant under PT.

Since T̂total is invariant under PT,

PT T̂total (PT )† = T̂total , (2.29)

each eigenvalue of T̂total must be either real or one of a complex conjugate pair:

T̂total|Ψ〉 = λ|Ψ〉 ⇒ T̂total(PT |Ψ〉) = λ∗(PT |Ψ〉) . (2.30)

Non-Hermitian Hamiltonians with PT symmetry have been studied extensively by Bender

and others [27]. PT-symmetric theories may often be redefined to give an acceptable unitary

theory. Here, however, we do not want to make any such redefinitions, since the path

integral is given, and the unitarity violations due to a non-Hermitian transfer matrix (or

Hamiltonian) are as expected for a theory with spin-1/2 bosons.
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For future reference, we note that T̂total is also invariant under charge conjugation sym-

metry, C, and hence under the combined symmetry CPT, with

CPT Φ̂1(~x) (CPT )† = Φ̂1(−~x) ,

CPT Φ̂2(~x) (CPT )† = Φ̂2(−~x) ,

CPT Π̂1(~x) (CPT )† = −Π̂1(−~x) , (2.31)

CPT Π̂2(~x) (CPT )† = −Π̂2(−~x) .

The gauge field transforms under CPT as

CPT Ûj(~x) (CPT )† = ÛT
j (−~x−~j) , (2.32)

with T the matrix transpose.

From Eq. (2.31), we can find the CPT transformation rules for the c-number fields χ(x)

and χ†(x), which are, from Eqs. (2.8) and (2.4), the eigenvalues of (linear combinations

of) the operators Φ̂1(~x), Φ̂2(~x), Π̂1(~x), and Π̂2(~x) on each time slice. Note that, since the

time-translation operator in Euclidean space is exp(−Hx4), we should not send x4 → −x4
under this symmetry if we want the Euclidean action, as opposed to merely the Hamiltonian,

to be invariant.8 We then have

CPT : χ(~x, x4) → (−1)x4 χ†T(−~x, x4) ,

CPT : χ†(~x, x4) → (−1)x4 χT(−~x, x4) , (2.33)

where the factors of (−1)x4 arise from the minus signs in the last two equations in Eq. (2.31).

It is straightforward to check that the action, Eq. (2.1), is unchanged by this transformation.

For staggered quarks, the action is

S =
∑

x

{

1

2

∑

µ

ηµ(x)
(

q̄(x)Uµ(x)q(x+ µ)− q̄(x+ µ)U †
µ(x)q(x)

)

+mq̄(x)q(x)

}

, (2.34)

where now q(x) and q̄(x) are independent Grassmann-valued fields. Starting from the naive-

quark transfer matrix Hamiltonian [25] or the “reduced-staggered” transfer matrix in [24],

8 There is however a linear time-inversion symmetry of the action in Euclidean space, which is simply the

time-direction equivalent of the spatial inversions. We focus instead on the antiunitary symmetry of the

Hamiltonian because it will be useful to us in constraining the chiral theory.
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one can derive the transformation rules for q(x) and q̄(x) that correspond to Eq. (2.33):

CPT : q(~x, x4) → (−1)x4 q̄T(−~x, x4) ,

CPT : q̄(~x, x4) → −(−1)x4 qT(−~x, x4) . (2.35)

The extra minus sign in the second equation in Eq. (2.35) (as compared to Eq. (2.33)) makes

up for the minus sign coming from Fermi statistics when taking the transpose of the action.

We end this section with a few comments. First, implicitly, we have only considered one

flavor of quarks and one flavor of ghost quarks. The generalization to arbitrary numbers

of each is immediate. In addition, we have generalized beyond PQQCD by choosing an

arbitrary (positive) mass for each quark or ghost quark. In PQQCD, each ghost quark mass

is equal to the mass of one of the fermionic quarks, thus turning that quark into a valence

quark. Sea quarks appear as fermionic quarks without ghost partners. A further issue arises

from the use of the staggered action (without rooting) for the ghosts and quarks, which

implies that each flavor comes in four tastes. This is actually not a serious restriction for

PQQCD, since extra (unwanted) species of valence quarks and ghosts are harmless: they

have no effect on any processes if we choose not to put them on external lines (in the standard

case where valence quarks and ghosts are degenerate). Further, if one wishes to avoid extra

tastes in the sea, it would be completely straightforward to use any alternative discretization

for the sea quarks that has a transfer matrix, such as unimproved Wilson quarks.

III. THE FREE THEORY

This section focuses on the ghost transfer matrix, Eq. (2.13), in the free theory, i.e., in

the case where the background gauge field Uj(~x, t) = 1. We work in the limit of vanishing

temporal lattice spacing. We first follow the standard momentum-space construction for

staggered fermions [24, 28] to identify the eight degrees of freedom that arise from spatial

doubling (the doubling associated with the time direction is already explicitly taken into

account in our two-time-slice construction of the transfer matrix).9 We diagonalize the

Hamiltonian in spin-taste space, and proceed to determine the eigenstates and eigenvalues

using a generalized Bogoliubov transformation. Two-point correlators can then be easily

9 The 16 degrees of freedom are identified as the four tastes of Dirac fermions, each with four spin degrees

of freedom.
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found; they clearly show the expected violations of unitarity in the ghost sector of the

theory. The explicit calculations below and in App. A demonstrate that T̂G has a complete

set of (right or left) eigenstates in the free theory. In other words, they show that, when

Uj(~x, t) = 1, blocks of the form of Eq. (2.21) do not occur in the Jordan normal form

of the transfer matrix. As an alternative to the Bogoliubov-transformation approach, a

path-integral construction of the correlators is given in App. B.

A. The free Hamiltonian

Setting Uj(~x, t) = 1, writing10

T̂G,k(U = 1) ≡ exp (−2atH) , (3.1)

and taking the limit at → 0, we find the Hamiltonian H in that limit:11

H =
1

2

∑

~x

{

m
(

Φ1(~x)
2 + Φ2(~x)

2 +Π1(~x)
2 +Π2(~x)

2
)

+
∑

j

iη′j(~x) × (3.2)

(

−Φ1(~x)Φ2(~x+~j)− Φ1(~x+~j)Φ2(~x) + Π2(~x)Π1(~x+~j) + Π2(~x+~j)Π1(~x)
)

}

.

Introducing creation and annihilation operators a†1, a1, a
†
2, a2 through

Φ1(~x) =

∫

k

1√
2

(

a1(~k) + a†1(−~k)
)

ei
~k·~x , (3.3)

Π1(~x) =

∫

k

−i√
2

(

a1(~k)− a†1(−~k)
)

ei
~k·~x ,

Φ2(~x) =

∫

k

−i√
2

(

a2(−~k)− a†2(
~k)
)

ei
~k·~x ,

Π2(~x) =

∫

k

−1√
2

(

a2(−~k) + a†2(
~k)
)

ei
~k·~x ,

in which
∫

k

≡
∫

d3k

(2π)
3

2

, (3.4)

10 The factor 2 appears because T̂G is a double time-slice transfer matrix.
11 From now on we drop hats on operators.
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this can be re-expressed as

H =
1

2

∑

~x

∫

k

∫

ℓ

ei(
~k+~ℓ)·~x × (3.5)

{

m
(

a†1(−~k)a1(~ℓ) + a1(~k)a
†
1(−~ℓ) + a†2(

~k)a2(−~ℓ) + a2(−~k)a†2(~ℓ)
)

+
∑

j

eiℓj e
i~πη′

j
·~x
(

−a1(~k)a2(−~ℓ) + a†1(−~k)a†2(~ℓ)− a2(−~k)a1(~ℓ) + a†2(
~k)a†1(−~ℓ)

)

}

.

Here the factors e
i~πη′

j
·~x
are equal to the sign factors η′j(~x) in Eq. (3.2), if we choose

~πη′
1
= (π, π, π) , ~πη′

2
= (0, π, π) , ~πη′

3
= (0, 0, π) . (3.6)

The creation and annihilation operators have commutation rules

[aα(~k), a
†
β(
~ℓ)] = δ(~k − ~ℓ) δαβ . (3.7)

We now split up the (spatial) Brillouin zone as in Refs. [24, 28] for staggered fermions:12

~k = ~p+ ~πA , ~ℓ = ~q + ~πB , (3.8)

with

~πA, ~πB ∈ {(0, 0, 0), (π, 0, 0), . . . , (π, π, π)} , (3.9)

such that −π/2 < pj, qj ≤ π/2. Operators get relabeled as in

aα(~k) = aα(~p+ ~πA) ≡ aAα (~p) , (3.10)

etc. Performing the sum over ~x in Eq. (3.5) we find the delta functions

δ(~p+ ~q + ~πA + ~πB) = δ(~p+ ~q)δAB , (3.11)

δ(~p+ ~q + ~πA + ~πB + ~πη′j ) = δ(~p+ ~q)Xj
AB ,

where the second of these equations defines three symmetric matricesXj . In the Hamiltonian

these matrices occur in combination with the factors eiπBj coming from eiℓj , and we define

another set of matrices

αj
AB = Xj

AB e
iπBj . (3.12)

12 See also Ref. [2] for a review.
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The matrices αj are real, and antisymmetric:

αj
BA = Xj

BA e
iπAj = Xj

AB e
i(πB+πη′

j
)j
= −Xj

AB e
iπBj = −αj

AB , (3.13)

because (πη′j )j = π. Hence the αj are anti-Hermitian. Using all this, we can simplify the

expression for the Hamiltonian to

H =

∫

p

{

1

2
m

(

a†1(~p)a1(~p) + a1(~p)a
†
1(~p) + a†2(~p)a2(~p) + a2(~p)a

†
2(~p)

)

(3.14)

+i
∑

j

sin (pj)
(

a1(~p)α
ja2(~p)− a†2α

ja†1(~p)
)

}

.

Note that the integral over ~p is over the reduced Brillouin zone.

Finally, the eigenvalues of the 8×8 matrix
∑

j sin (pj)α
j are equal to ±is(~p) with s2(~p) =

∑

j sin
2 (pj). Dropping a constant proportional to 1/a3, we can thus write H as a sum and

integral over terms of the form

h(~p) = m
(

a†1(~p)a1(~p) + a†2(~p)a2(~p)
)

± s(~p)
(

a1(~p)a2(~p)− a†2(~p)a
†
1(~p)

)

. (3.15)

B. Eigenvalues and eigenstates

Dropping the dependence on ~p in Eq. (3.15), our next step is to find eigenvalues and left

and right eigenstates of the non-Hermitian Hamiltonian

h = m(a†1a1 + a†2a2) + s(a1a2 − a†2a
†
1) , (3.16)

in which a1,2 and a†1,2 are a set of bosonic annihilation and creation operators, m > 0 and s

is real. (Taking s real without restriction on its sign takes care of both signs in Eq. (3.15).)

Adapting the method of Ref. [29], we introduce new operators

b1 = cos θ a1 − sin θ a†2 , (3.17)

b2 = cos θ a2 − sin θ a†1 ,

b̃1 = cos θ a†1 + sin θ a2 ,

b̃2 = cos θ a†2 + sin θ a1 ,

which obey the commutation rules

[bα, b̃β] = δαβ , (3.18)
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while all other commutators vanish. Note that the operators b̃α are not the Hermitian con-

jugates of the operators bα, which is why this is a “generalized” Bogoliubov transformation.

Expressed in terms of these operators h becomes

h = (m cos(2θ) + s sin(2θ)) (b̃1b1 + b̃2b2) (3.19)

+ (−m sin(2θ) + s cos(2θ)) (b1b2 − b̃2b̃1) + constant .

Requiring the term proportional to b1b2 − b̃2b̃1 to vanish yields

θ =
1

2
arctan(s/m) , (3.20)

where we picked the solution that vanishes for s → 0. Substituting this solution into

Eq. (3.19) gives

h =
√
m2 + s2 (b̃1b1 + b̃2b2) + constant . (3.21)

Even though b̃α 6= b†α, the operators Nα = b̃αbα are still number operators, and we can find

a set of right eigenstates |n1, n2〉R such that

N1|n1, n2〉R = n1|n1, n2〉R , (3.22)

N2|n1, n2〉R = n2|n1, n2〉R ,

and

b1|n1, n2〉R ∝ |n1 − 1, n2〉R , (3.23)

b2|n1, n2〉R ∝ |n1, n2 − 1〉R .

Because of the upper bound (2.20) on the absolute values of the eigenvalues of T̂G, which

implies a lower bound on the real part of the eigenvalues of h, we find that there exists a

“right vacuum” state |0, 0〉R annihilated by b1 and b2; otherwise n1 and n2 could be lowered

indefinitely, violating this bound. Therefore, it follows that N1 and N2 vanish on |0, 0〉R.
The right eigenstates of h are then given by

|n,m〉R =
1√
n!m!

b̃n1 b̃
m
2 |0, 0〉R , (3.24)

h|n,m〉R = (n+m)E|n,m〉R , E ≡
√
m2 + s2 ,

where we have dropped the constant in Eq. (3.21). The normalization of the states we have

chosen is convenient but arbitrary, since the only relevant normalization condition relates
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right to left states (Eq. (3.26) below). A similar reasoning leads to a left ground state L〈0, 0|,
and a construction of the left eigenstates

L〈n,m| = L〈0, 0|
1√
n!m!

bn1 b
m
2 , (3.25)

L〈n,m|h = L〈n,m|E(n+m) ,

where the normalization here follows from Eq. (3.24) if we demand that

L〈n1, m1|n2, m2〉R = δn1,n2
δm1,m2

. (3.26)

We note that

L〈n,m| 6= (|n,m〉R)† (3.27)

because b̃α 6= b†α; there is no simple relation between left- and right-eigenstates. However,

we do have a completeness relation:

∑

n,m

|n,m〉R L〈n,m| = 1 . (3.28)

Completeness is not obvious, since our Hamiltonian is not Hermitian. We refer to App. A

for a proof.

Under PT symmetry, h(~p, s) → h(−~p,−s), so it is actually the sum h(~p, s) + h(−~p,−s)
that is PT symmetric. Since, from Eq. (3.21), h(~p, s) and h(−~p,−s) have identical eigenval-
ues, PT symmetry implies that those eigenvalues must either be real or come in complex-

conjugate pairs. In fact all the eigenvalues are real, as seen in Eq. (3.24), and all energy

eigenstates of the sum may be chosen to be eigenstates of PT. In the PT literature [27]

this situation is referred to as “unbroken PT symmetry.” This is somewhat different from

standard field-theory usage of the terms broken and unbroken symmetry, which refer to the

properties of the ground state only.

C. Two-point correlators

The free ghost partition function Z is the trace of the (Euclidean) evolution operator,

which we may write, using Eq. (3.28), as

Z =
∑

n,m

L〈n,m|e−Th|n,m〉R =
∑

n,m

e−(n+m)ET =
1

(1− e−ET )2
. (3.29)

20



From Eqs. (3.24), (3.25) and the commutation rules (3.18), it is straightforward to show

that (with no sum over α)

〈bα(t)b̃α(0)〉 =
1

Z

∑

n,m

L〈n,m|e−(T−t)hbαe
−thb̃α|n,m〉R =

e−Et

1− e−ET
, (3.30)

and likewise

〈b̃α(t)bα(0)〉 =
e−E(T−t)

1− e−ET
, (3.31)

where we used

∞
∑

n=0

n e−nET = − ∂

∂(ET )

∞
∑

n=0

e−nET = − ∂

∂(ET )

1

1− e−ET
=

e−ET

(1− e−ET )2
. (3.32)

More interesting are the two-point correlation functions involving the original creation and

annihilation operators aα and a†α. For these we find from Eqs. (3.30) and (3.31), using the

inverse of Eq. (3.17),

〈ai(t)aj(0)〉 = δi+j,3
s

2E

e−Et + e−E(T−t)

1− e−ET
= −〈a†i (t)a†j(0)〉 , (3.33)

and

〈ai(t)a†j(0)〉 = δij

(

E +m

2E

e−Et

1− e−ET
− E −m

2E

e−E(T−t)

1− e−ET

)

, (3.34a)

〈a†i(t)aj(0)〉 = δij

(

−E −m

2E

e−Et

1− e−ET
+
E +m

2E

e−E(T−t)

1− e−ET

)

. (3.34b)

Equation (3.34b) is a clear indication of the violation of unitarity in this theory: In the limit

T → ∞, this correlator is negative (for s 6= 0). In a normal theory, it would be a sum of

decaying exponentials times positive coefficients.

An alternative, path-integral derivation of the correlators Eqs. (3.33) and (3.34) is given

in App. B. That approach also makes possible a direct comparison between our treatment

of this nonunitary theory, and a treatment of a similar Hamiltonian in the PT symmetry

literature [30], where unitarity is restored through a redefinition of the theory.

IV. THE EFFECTIVE THEORY

We now return to the interacting theory defined by the transfer matrix Ttotal given in

Eq. (2.25). We want to argue that the there exists a corresponding chiral effective theory,

and that it is given by PQChPT. We will follow the discussion of Ref. [16] as closely as
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possible, so we first give a brief overview of the arguments there. Two key ingredients

are the identification of the light degrees of freedom (which we will collectively refer to

as “pions”) and clustering. For each of these ingredients, an extension of the Vafa–Witten

theorem [18] turns out to be useful, as discussed in Sec. IVB. In the case of clustering, we are

then able to close the loophole that remains after constructing a bounded transfer matrix:

we can argue that there is a gap (for strictly positive quark and ghost masses) between the

ground state and the lowest excited state, so that clustering is in fact exponential. The fact

that an extended Vafa–Witten theorem allows one to identify the light degrees of freedom

has already been noted in Refs. [17, 31]. In the case of unquenched QCD, Lorentz invariance

also plays an important role [16]. Our setting is Euclidean, and we instead have hypercubic

invariance, which we assume to enlarge to O(4) in the continuum limit, as usual. We use

this to argue in Sec. IVC that our pions satisfy the expected dispersion relation.

We then put all the ingredients together to write down the effective theory in Sec. IVD.

A subtlety absent in the unquenched theory arises because, in our theory with arbitrary

fermionic and ghost quark masses, pion masses can in general be complex. In Sec. IVE,

we use CPT invariance, already introduced in Sec. IIC, in order to show that the phases of

LECs in our theory are the same as in normal ChPT. This does not preclude the occurrence

of complex masses in the effective theory, but the effective theory can now be used to

investigate this issue in more detail, as we do in Sec. IVF.

As before, we will assume that all quark masses are always positive, both in the mass-

degenerate and mass-nondegenerate cases considered below, as this is the setting for which

the path integral (2.16) is well-defined, and the arguments of Ref. [18] apply. For simplicity,

we will also assume that the continuum limit has been taken, so that we can ignore the

peculiarities of the staggered quark formalism with respect to species doubling. In particular,

our arguments will apply to QCD with any number of continuum quarks.

A. Recapitulation of Leutwyler’s arguments

Reference [16] attempts to justify standard ChPT as the effective theory for low-energy

QCD. The argument is, roughly speaking, divided into two parts. In the first, which is

largely qualitative, it is argued that there is an effective chiral description of QCD in terms

of a Lagrangian that describes pions being exchanged between local vertices. This is based
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on a few observations and assumptions:

• Pions are the lightest particles, so the low energy theory is dominated by pion ex-

change. In Minkowski space, this is the statement of “pion pole dominance.”

• Clustering, either power-law (when pions are massless) or exponential (when pions

are massive), implies that the interaction among pions in a local region of space is

independent of what is going on far away. Thus the local interactions of pions may

be described by vertices that do not depend of the particular Green’s function being

considered.

• The vertices are assumed to be expandable in a power series in the momenta of the

pions. Note that one needs to assume this in the case of massless pions, since Green’s

functions are themselves not expandable in a power of series in momenta, due to the

infrared singularities that would result. The assumption is that, once the singularities

are accounted for by the exchange of massless pions, the vertices may be expanded.

However, this assumption seems to be unnecessary in the massive case, because no

infrared singularities would result from a momentum expansion.

• Because more than one pion may be exchanged between any two given vertices, pion

loops must be included. The fact that these loops can be expressed as the usual

four-dimensional momentum integrations of a quantum field theory is not explained

in detail. However, the point seems to be that the underlying theory has a complete

set of states, and the sum over (on shell) states can be turned into four-dimensional

loop integrals over off-shell states, by the standard arguments that relate old-fashioned

perturbation theory to the Feynman diagram approach. (See, for example, Ref. [32],

Sec. 9.5.)

The second, and much more lengthy, part of the discussion in Ref. [16] is a demonstration

that the chiral Lagrangian, with vector sources inserted that transform like gauge fields,

can be chosen to have local chiral symmetry (up to anomalies, which must be dealt with

separately). The main ingredient here is the chiral Ward–Takahashi identities. This part

of the argument is crucial for showing that the chiral Lagrangian has the standard form of

ChPT.

23



B. Pion spectrum and clustering: extension of the Vafa–Witten theorem

An extension of the Vafa–Witten theorem serves two purposes here. First of all, it shows

that, due to spontaneous breaking of chiral symmetry, pions exist in PQQCD, so that any

effective theory must be based on the exchange and interaction of pions. Second, it shows

that pions are the only light particles (absent particles that are light for accidental reasons,

which cannot be ruled out except by assumption). This allows us to argue that the fall off of

correlation functions with distance, which follows from the existence of a bounded transfer

matrix, is actually exponential. In other words, the theory obeys exponential clustering.

PQQCD contains unquenched QCD. Concretely, this means that if we consider correlation

functions of operators made out of sea quarks (and gluons) only, these correlation functions

coincide exactly with those of QCD with only sea quarks, i.e., unquenched QCD. Therefore,

we know that PQQCD has excitations which correspond to pions made only out of sea

quarks, and that all correlation functions made out of sea-pion operators behave as they

should in a healthy quantum field theory.

First, consider PQQCD in which all quark masses are equal; i.e.,ms = mv = mg.
13 In this

case, we have a vector flavor symmetry group14 SU(Ns + Nv|Nv), which, if it is unbroken,

relates the two-point (and other) correlation functions of all pions in the theory to each

other, and thus implies that there is a fully degenerate multiplet of pions in the adjoint

representation of SU(Ns+Nv|Nv). As already observed in Ref. [17], the vector-flavor group

SU(Ns +Nv|Nv) is unbroken because of an extension of the Vafa–Witten theorem [18].

Reference [18] contains two proofs. The first proof is based on a consideration of quark

bilinears, and goes through without modification in the partially quenched case. It implies

immediately that valence condensates are equal to sea condensates, because with mv = ms

there is in fact no distinction between these two types of fermions. One ingredient that is

needed is that the measure in the path integral is positive, but this is not changed by the

13 For the rest of this article we will use the subscripts s, v, and g to refer to sea, valence, and ghost quarks,

respectively.
14 Until further notice, we use for simplicity the language of the “fake symmetries” introduced in Ref. [1],

which do not take into account all the subtleties coming from the ghost sector, rather than the correct

symmetries introduced in Refs. [17, 19, 23]. The subtleties do not affect the general argument. In Sec. IVE,

where the details of the chiral Lagrangian matter, we use the nonperturbatively correct form. See Ref. [2]

for a review of the issues arising from the ghost sector.
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fact that the valence part of the fermion determinant is missing. It is also straightforward

to prove that no flavor-symmetry breaking can take place between the valence and ghost

sectors, at the level of order parameters made out of quark bilinears [31].

As Ref. [18] points out, spontaneous breaking of flavor symmetry could occur without

quark-bilinear order parameters. A more general proof that it does not considers the current-

current correlation functions for the conserved flavor currents. If spontaneous symmetry

breaking took place, these correlation functions would couple to the corresponding massless

Goldstone excitations, and would therefore show a power-like fall-off. The idea is to show

that such correlation functions instead satisfy an exponential bound that is uniform in the

gauge-field configuration. This implies that no Goldstone mesons exist, and thus that flavor

symmetry is unbroken. Since this argument is based on the Ward–Takahashi identities for

flavor symmetry, the framework also applies to the Euclidean partially quenched theory,

because these identities can also be worked out from the Euclidean path integral.

In fact, Ref. [18] establishes a somewhat more complicated bound by considering a

smeared, gauge-invariant quark propagator. But the key point for our discussion is that

this bound is obtained for a fixed gauge-field background, and independent of that gauge-

field background. Since the only difference between the standard QCD case and the PQQCD

case is the relative weight of all gauge-field backgrounds in the Euclidean path integral, the

analysis of Ref. [18] carries over to the partially quenched case.

Therefore, we conclude that the Vafa–Witten theorem applies to the PQQCD case with

fully degenerate quarks [17]. PQQCD contains a complete SU(Ns + Nv|Nv) multiplet of

pseudo-Goldstone mesons in the mass-degenerate case. As in full QCD, if there are no other

excitations that are accidentally light, one can consider the low-energy regime, in which

this partially quenched pion multiplet contains the only light excitations below a certain

scale. Since we know that the pions in the sea sector have a nonzero mass, all pions in the

partially quenched theory are massive, and thus all correlation functions of pion operators

fall off exponentially, with a rate equal to the pion mass.

In the partially quenched theory, there are other states, made for example from multiple

valence quarks, that have no analogue in the sea sector, so these states are not constrained

by the Vafa–Witten argument above. The absence of spontaneous symmetry breaking means

that there is no fundamental reason for these states to be light, but we cannot eliminate the

possibility that they are accidentally light or massless. As in Ref. [16], this possibility can
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be excluded only by assumption: we assume that the pions are the only light states in the

theory.

With this additional assumption, all correlation functions must decay exponentially,

which we may call “cluster-like.” This result is supported by overwhelming numerical evi-

dence from lattice QCD computations. For true clustering it is necessary in addition that

a vacuum state exists and that this state is nondegenerate. The existence of a complete set

of states follows from the existence of a transfer matrix for the partially quenched theory,

cf. Sec. IIC.15 A state with a maximal absolute eigenvalue of the transfer matrix must also

exist, because the transfer matrix is bounded. We cannot, however, prove uniqueness. For

example, we must by assumption exclude the possibility that some breaking of a discrete

symmetry (e.g. parity) occurs, resulting in two vacua, but without Goldstone bosons. With

these assumptions, which are closely analogous to the assumptions required in Ref. [16], it

follows that the degenerate partially quenched theory obeys exponential clustering.

Next, we consider the nondegenerate case, always keeping all quark masses nonzero.

When we move away from the degenerate point by taking the valence, ghost, and sea masses

unequal (including, but not limited to, the partially quenched case where valence and ghost

masses remain degenerate), we can still apply the bounds of Ref. [18] on correlation functions

directly, even if the vector symmetries are broken explicitly by the mass differences. The

gauge measure remains positive in this case because it is just a product of two positive

determinants (valence and sea determinants) divided by the positive ghost determinant.

Thus the bounds go through, and all connected correlation functions from point x to point

y decay exponentially. Here “connected” means they are formed out of one or more quark

propagators that go from x to y. For connected correlation functions, we thus automatically

have behavior which is “cluster-like,” in that correlators decay exponentially.

There are however many disconnected correlators in the partially quenched theory (made

using many valence flavors so that x to y contractions do not occur), and once again most

of these have no pure-sea analogue. We need to assume, as before, that such correlators

do not have power-law or anomalously light decay. With this assumption, the nondegener-

ate partially quenched theory has exponential decay in all channels. If we further assume

15 At least this is true at nonzero lattice spacing; we will ignore subtleties with defining a Hilbert space in

the continuum limit. We also will follow Sec. II B in assuming that any gauge configuration on which T̂G

does not have a complete set of eigenstates can be ignored.
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that there is a unique lowest state, then the partially quenched theory obeys exponential

clustering, even with nondegenerate masses.

C. The dispersion relation

We will assume that the continuum limit of the Euclidean partially quenched theory has

O(4) “space-time” invariance. What we wish to argue next is that this leads to the expected

form of propagators for one-particle pion states, and thus to the usual relation between

energy, mass and spatial momentum.

The transfer matrix for the full theory has (right) eigenstates, which can be classified

according to their eigenvalues. In addition, since the theory is invariant under spatial trans-

lations, spatial momentum is conserved, and the eigenstates of the transfer matrix can

simultaneously be labeled by their spatial momentum. This follows because the transfer

matrix, even if it is not Hermitian, generates translations in the time direction, and thus

commutes with the generators of spatial translations, i.e., spatial momentum.

Consider first a pion two-point correlator with zero spatial momentum. We know from

the preceding section that this correlator falls off exponentially for large times:

Cπ(t) ∝ e−mπ|t| . (4.1)

Here the parameter mπ might in principle be complex, since the Hamiltonian is not Hermi-

tian, and it is possible at this stage that mπ is one of a complex pair of eigenvalues. However

we do know that mπ has a positive real part, as required by the exponential damping of

correlation functions. There may also be other states that contribute to Cπ(t), which would

lead to other exponentially damped contributions, with a faster decay rate (for instance,

three-pion states).

The Fourier transform of Cπ(t) is

f(p4) =

∫ ∞

−∞

dt eip4t−mπ |t| =
2mπ

p24 +m2
π

. (4.2)

We now consider the correlator of a pion with a nonzero spatial momentum ~p. By O(4)

invariance, the Fourier transform of this correlator has to be equal to

f(p) =
2mπ

p2 +m2
π

, (4.3)
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where p2 =
∑

µ pµpµ. If we now Fourier transform back, we obtain the leading exponential

of the pion correlator with nonzero spatial momentum,

Cπ(t, ~p) =
1

2π

∫ ∞

−∞

dp4
2mπe

−ip4t

p24 + ~p2 +m2
π

=
mπ

E
e−E|t| , (4.4)

with E =
√

m2
π + ~p2. It follows that the dispersion relation for pions in PQQCD is the

usual one, even though this theory is only defined in Euclidean space and even though the

“mass” mπ may in principle be complex.

D. The chiral effective theory

We now have all the needed ingredients to extend the arguments of Ref. [16] to the

partially quenched case. The existence of the transfer matrix, together with the arguments

and assumptions discussed in Sec. IVB, tell us that the theory clusters, and that the lowest

states are pions. From Sec. IVC, the pion states have arbitrary momentum, with the usual

dispersion relation for energy in terms of spatial momentum and (possibly complex) mass.

Further, from Sec. II, the transfer matrix has a complete set of eigenstates, under the mild

assumption discussed at the end of Sec. IIC.

We then just follow Ref. [16] step by step. The low-energy theory is dominated by

exchange of the lightest particles, the pions (i.e., one has “pion pole dominance,” although

of course there are no poles in Euclidean space). Pion interactions in a small region of space

are described by vertices, which do not depend on the overall process due to clustering.

These vertices are strictly local, i.e., they may be expanded in powers of momenta. In fact,

since we are not concerned here with the massless case, this strict locality would appear to

follow from the absence of infrared singularities in Green’s functions, and thus not require

a separate assumption as it does in the massless case considered in Ref. [16]. However,

the relevant mass scale in this argument is the pion mass, mπ, and this argument would

not exclude an expansion parameter p/mπ, with p a typical momentum. What we need

instead is that vertices can be expanded in p/ΛQCD, and we thus end up having to make

the same assumption as in Ref. [16]. Long-distance correlation function then involve the

exchange of pions between local vertices. Since the vertices are strictly local building blocks

in correlation functions in the effective theory, two (or more) vertices can be joined by

more than one pion propagator, leading to loops. And because the set of eigenstates is
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complete, the correlation functions can be written as sums over intermediate states, which

can be turned into four-dimensional loop integrals as in the normal QCD case. Note that

the existence of double poles is not a problem for this argument, because we can work with

ghost and valence masses unequal, where we have only single poles, and take the limit of

equal ghost and valence masses only after the loop expansion is in place. However, a subtlety

could arise if the possibility of complex masses is realized, because the standard arguments

to relate sums over intermediate (on-shell) states to four-dimensional loop integrals would

seem to depend on knowing the locations of poles and cuts in Green’s functions, and these

singularities will not be in the normal places if there are complex masses. We will assume

that no complex masses arise, and then note that this assumption is confirmed a posteriori

by the effective theory of PQChPT both in the conventional (and most important) limit

of degenerate valence-quark and ghost masses, and for appropriate choices of masses in the

more general theory that allow us to take that limit. As discussed in Sec. IVF, however,

complex masses do seem to be possible in PQChPT with some choices of nondegenerate

valence- and ghost-quark masses. Thus the reader should keep in mind that the foundations

of the effective theory are less secure at present if such nondegenerate masses are allowed.

Following the first part of the discussion in Ref. [16], the above ingredients (which we

may roughly summarize as “pions, vertices, and loops”), are all that are needed to argue

that there is an effective chiral theory describing the low energy behavior of the theory.

To get the standard chiral theory (ordinary ChPT in the full QCD case, PQChPT in the

partially quenched case), a further technical argument, based on the chiral Ward–Takahashi

identities, is needed to show that one may choose the chiral theory to have local chiral

symmetry. However, we claim that this part of the argument goes through in the partially

quenched case exactly as in the full QCD case, since the partially quenched theory Ward–

Takahashi identities are just like those of the ordinary theory, but with the chiral group

extended to a graded chiral group. The role of Lorentz invariance in this argument in

Ref. [16] is of course played by Euclidean invariance in our case.

Note that we do not have to build the existence of double poles into the chiral theory from

the beginning, even though they can be shown to occur already at the fundamental PQQCD

level when valence and ghost masses are equal [17] . Their existence in the appropriate limit

follows automatically from the effective theory, PQChPT.
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E. The effective theory and constraints from CPT

We now work with the nonperturbatively-correct partially quenched chiral Lagrangian

introduced in Refs. [17, 19, 23]. The Lagrangian is a function of the chiral fields Σ(x) and

Σ−1(x). Σ is parameterized as

Σ(x) = exp(2Φ(x)/f) ; Φ(x) =





iφ(x) ω(x)

ω̄(x) φ̃(x)



 (4.5)

where f is the pion decay constant, and where φ(x) are the quark-antiquark mesons, φ̃ are

the ghost-antighost mesons, and ω and ω̄ are quark-antighost and ghost-antiquark mesons,

respectively. While φ and φ̃ are commuting fields, ω and ω̄ are Grassmann valued. At

leading order (and in the continuum limit), the Euclidean effective Lagrangian is [19]

Leff =
f 2

8
str (∂µΣ∂µΣ

−1)− v str (MΣ + Σ−1M †) (4.6)

where str denotes the supertrace, M is the quark and ghost mass matrix, and v is a LEC.

We have assumed that the super-η′ field Φ0 ≡ −i str lnΣ = tr (φ+ iφ̃) has been integrated

out, which is possible as long as the theory is not completely quenched [17].

In the past, it has been assumed that the LECs in the partially quenched chiral Lagrangian

are real, just as the corresponding ones are in the ordinary Hermitian chiral Lagrangian for

full, unitary QCD. For most LECs, such as v above, this follows from the fact that QCD is a

special case of PQQCD, and LECs that the two effective theories share (for the same number

of sea-quark flavors) are equal [3]. However there are additional LECs that are unique to the

partially quenched theory, and vanish for pure sea quantities [33]. We would like to be able

to argue that those LECs are real too, in order to see that complex meson masses will in

general not occur.16 The antiunitary CPT symmetry of the theory, introduced in Sec. IIC,

can be used to show this.

We must first determine the transformation properties of φ, φ̃, ω and ω̄ under CPT

symmetry. This is a bit subtle since the discrete symmetries of staggered quarks (or ghosts)

include additional discrete taste transformations (see for instance the discussion of spatial

inversion symmetry in Ref. [28]). Since we want the transformation laws of pseudoscalar

16 They may still occur in the flavor-diagonal sector, as we will see in the next section.
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mesons under continuum CPT (without additional taste transformations), we must look on

the lattice at taste-singlet mesons.

From Ref. [34],17 a staggered quark-antiquark bilinear with spin Γ and taste Ξ is

1

64

∑

A,B

q̄(x+ A) q(x+B)tr (Ω†(A) Γ Ω(B) Γ†
Ξ) (4.7)

where A and B hypercube vectors (with components 1 or 0 in each of the four directions),

ΓΞ = Ξ∗, Ω(x) ≡ γx1

1 γ
x2

2 γ
x3

3 γ
x4

4 , and we have omitted gauge links for simplicity. For the

quark-antiquark meson field φjk, with j and k the quark and antiquark flavors, respectively,

we have:

φjk(y) =̇
i

64

∑

A,B

q̄k(x+ A) qj(x+B)tr (Ω†(A) γ5 Ω(B))

=
i

16

∑

A,B

(

δA+B,D (−1)B1+B3 q̄k(x+ A) qj(x+B)
)

(4.8)

where =̇ should be read as “has the same renormalized matrix elements as,” D = (1, 1, 1, 1)

is the diagonal of a hypercube, and y ≡ x+D/2 is defined for convenience to be the middle

of the hypercube. The taste-singlet pseudoscalar meson is thus created by a “four-link”

operator that joins opposite corners of a hypercube. The overall factor of i in Eq. (4.8) is

crucial; it is required to make the propagator 〈φjk(y) φkj(y
′)〉 positive, which follows at the

chiral level from the definitions Eqs. (4.5) and (4.6).18

For ghost-ghost mesons, the corresponding relation is

φ̃jk(y) =̇
1

16

∑

A,B

(

δA+B,D (−1)B1+B3 χ†
k(x+ A) χj(x+B)

)

. (4.9)

Here there is no factor of i because there is no minus sign in the propagator due to statistics;

by the definitions in Eqs. (4.5) and (4.6), φ and φ̃ have equal propagators. Similarly the

17 The following argument can also be given in the language of Ref. [35].
18 The positivity of this propagator in the continuum limit can be most easily seen by noting that the

corresponding propagator for taste ξ5 (taste-pseudoscalar) pions is a sum of absolute squares, which in

turn follows from the fact that the staggered Dirac operator obeys D† = ǫDǫ, where ǫ is a diagonal matrix

in position space with ǫ(x) = (−1)x1+x2+x3+x4 along the diagonal. The two factors of i in the propagator

cancel the minus sign from Fermi statistics. In the continuum limit, the propagators for (flavor-charged)

mesons of arbitrary taste will be equal.
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quark-antiqhost and ghost-antighost mesons are given by

ωjk(y) =̇
1

16

∑

A,B

(

δA+B,D (−1)B1+B3 χ†
k(x+ A) qj(x+B)

)

ω̄jk(y) =̇
1

16

∑

A,B

(

δA+B,D (−1)B1+B3 q̄k(x+ A) χj(x+B)
)

. (4.10)

Again, no factor of i is needed here to make the 〈ωjk(y) ω̄kj(y
′)〉 propagator have the same

sign as the corresponding φ propagator, which is required by Eqs. (4.5) and (4.6).

We can now determine the CPT transformation rules for the meson fields by using the

ghost and quark transformation rules, Eqs. (2.33) and (2.35). We find

CPT : φ(~y, y4) → φT(−~y, y4) ,

CPT : φ̃(~y, y4) → − φ̃T(−~y, y4) ,

CPT : ω(~y, y4) → − ω̄T(−~y, y4) , (4.11)

CPT : ω̄(~y, y4) → ωT(−~y, y4) ,

with T the transpose, which acts on flavor indices. The factors of (−1)x4 in Eqs. (2.33) and

(2.35), combined with the fact that the spin-1/2 fields in the taste-singlet mesons are on

different time-slices, are important to getting the above signs under CPT. The fact that the

quark-antiquark meson field is even under CPT is standard.

From the definition of Φ in Eq. (4.5) we then have

CPT : Φ(~x, x4) → −Φt(−~x, x4) (4.12)

where t denotes a graded transpose defined on a matrix with commuting diagonal blocks

and anticommuting off-diagonal blocks by





a b

c d





t

=





aT cT

−bT dT



 . (4.13)

The operation t has the useful property that

str
(

Et F tGt . . . Kt
)

= str
(

[K . . . GF E]T
)

(4.14)

where E, F,G,K are matrices of the form in Eq. (4.13). The property can be proved by

writing both sides as index sums, counting the number of interchanges of anticommuting

numbers between the left and right sides, and showing that the sign resulting from the
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interchanges is the same as the sign coming from the factors of −1 in the definition of t.

Note that, unlike the normal rule for the transpose of a product of matrices with commuting

entries, this equality is only true under the supertrace. It is not true for the matrices

themselves, as is already obvious from considering a single matrix instead of a product.

We can now investigate the consequences of CPT for the chiral theory. Our definitions

have ensured that antiunitary CPT symmetry leaves the Euclidean action of the fundamental

theory invariant, so it will also leave the Euclidean chiral action invariant. We will see that

this implies that the phases of all LECs in the partially quenched chiral Lagrangian are

the same as they would be in normal ChPT. For a term that is special to the partially

quenched case (because in the normal case with the given number of sea-quark flavors it is

not independent due to Cayley-Hamilton relations), the phase of the LEC is the same as it

would be in the ChPT theory for a QCD-like theory with sufficient numbers of flavors to

make the term independent. The argument goes as follows:

1. Since Euclidean rotational invariance requires derivative operators to be contracted as

∂µ∂µ we may redefine ~x → −~x on the right-hand-side of Eq. (4.12) without changing

sign of any term. (We postpone discussion of anomaly terms, which may have the

form ǫµνλσ∂µ∂ν∂λ∂σ, until item 5, below.)

2. Chiral symmetry demands that any term in the Lagrangian be formed from one or more

supertraces. Therefore Eq. (4.12) and the rule Eq. (4.14) mean that CPT effectively

interchanges Σ and Σ−1 and inverts the order of products of arbitrary numbers Σ and

Σ−1 matrices. The overall transpose on the right-hand side of Eq. (4.14) of course has

no effect inside a supertrace.

3. Because CPT is antiunitary it complex-conjugates all LECs.

4. Thus the effect of CPT on the Lagrangian is exactly the same as the effect of taking

the Hermitian conjugate would be in a theory where Σ is unitary. The phases are

therefore the same as in normal ChPT.

5. For anomaly terms with ǫµνλσ∂µ∂ν∂λ∂σ, an extra minus sign results from taking ~x →
−~x, since we are not flipping the sign of x4 in Euclidean space. Therefore such terms

require an overall factor of i (relative to what they would have in Minkowski space)

in order to be CPT invariant. However, this factor of i is precisely the factor that
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automatically arises in going from Minkowski space to Euclidean space in any term

with a single time derivative. Thus the LEC again has the same phase as it would be

ordinary ChPT.

A consequence of this result is that all parameters in the chiral effective Lagrangian

corresponding to the square of a meson mass are real (in the usual convention in which they

would also be real in the case of a normal theory). Further, all mass terms shared by the PQ

and normal theory must have signs that ensure that squared meson masses are positive. This

means that as one turns on partial quenching by moving away from a point where valence

and ghost masses are degenerate with sea quark masses, the squared meson mass terms must

stay positive, at least until the valence, ghost and sea mass differences become large.19 As

we will see in the next section, this still does not preclude complex masses from appearing in

the theory for small perturbations, due to subtleties in the flavor-diagonal sector. However,

“trivial” complex masses, coming directly from complex LECs, are ruled out.

F. Masses in the chiral theory

As mentioned in Sec. IVD, the possibility of complex masses is a concern for our deriva-

tion. Once we have the chiral effective theory, however, we can study this possibility in more

detail.

Consider, for instance, the two-point function of a flavor-diagonal valence pion and a

flavor-diagonal ghost pion, in the mass nondegenerate case. Extending the results of Ref. [1],

this two-point function is given by

Dvg(p) = − p2 +M2
s

Nv(p2 +M2
s )(M

2
g −M2

v ) +Ns(p2 +M2
v )(p

2 +M2
g )

, (4.15)

where we have chosen the number of ghost flavors, Ng, equal to the number of valence

flavors, Nv, while allowing mg 6= mv, and where we have sent the singlet part of the η′ mass

to infinity. Mv,g,s are the masses of (flavor nondiagonal) valence, ghost, and sea pions; in

19 Negative squared masses would not imply imaginary masses, but rather signal a phase transition and the

need to find a new vacuum state. We believe such transitions, driven by possible mass terms special to

the partially quenched theory, cannot occur in the usual PQ case of degenerate valence and ghost masses,

since the dynamics of such a theory are controlled by the sea masses. We have not however ruled out the

existence of such transitions when valence and ghost mass differences are large.
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this subsection we use capital letters to distinguish meson masses from quark masses. The

denominator of this expression is a quadratic form in −p2 of the form

A(−p2)2 +B(−p2) + C , (4.16)

with

A = Ns , (4.17)

B = −Nv(M
2
g −M2

v )−Ns(M
2
g +M2

v ) ,

C = NvM
2
s (M

2
g −M2

v ) +NsM
2
gM

2
v .

The discriminant of this quadratic form is

B2 − 4AC = (Nv +Ns)
2(M2

g −M2
v )

2 + 4NvNs(M
2
g −M2

v )(M
2
v −M2

s ) . (4.18)

Note that the discriminant vanishes in the limit Mg =Mv, and Eq. (4.15) has a double pole

in that case as expected, unless alsoMs =Mv. The double pole is coming from cancellations

between ghost and valence terms, which arise in turn because “wrong sign” contributions

from the ghosts due ultimately to their non-Hermitian Hamiltonian.

In order to obtain only real single poles, B2 − 4AC needs to be positive, and this turns

out not to be always the case. For simplicity, take Nv = Ns ≡ N , so that

(

B2 − 4AC
)

|Nv=Ns=N = 4N2(M2
g −M2

v )(M
2
g −M2

s ) . (4.19)

This is only positive if Mg < Mv and Mg < Ms, or if Mg > Mv and Mg > Ms. This means

that even a small perturbation from the degenerate case can lead to a situation in which the

discriminant is negative, leading to a conjugate pair of complex zeros of Eq. (4.16). The real

part of these zeros is given by −B/(2A) =M2
g . The two-point function is still well defined,

but the effective theory implies that it is possible to be in the situation that energies of

states become complex (with a positive real part). Note that the existence of a conjugate

pair of energies is consistent with the PT symmetry of the theory. The reality of M2
g , M

2
v

and M2
s , which follows from the reality of the LECs of theory, does however not guarantee

that the poles of this real propagator occur at real values of −p2. We emphasize, though,

that it is always possible to take the limit Mg →Mv in such a way that the energies remain

real. In particular, if Mv < Ms, we can take Mg →Mv from below, and if Mv > Ms, we can

take Mg →Mv from above.

35



Another instructive example is to take Mv = Ms 6= Mg (while leaving Nv and Ns arbi-

trary), which keeps B2 − 4AC > 0. Now the zeros −p2± of the quadratic form are

−p2− = M2
v , (4.20)

−p2+ = M2
g +

Nv

Ns
(M2

g −M2
v ) .

However, the zero −p2+ becomes negative for

M2
v > M2

g

(

1 +
Ns

Nv

)

> M2
g . (4.21)

This would make the Fourier transform of Eq. (4.15) ill-defined, but this can only happen if

one perturbs Mv far enough away from Mg. This suggests that for a choice of Mv such that

M2
v = M2

g (1 + Ns/Nv) a phase transition takes place. In that case, the effective partition

function would have to be evaluated by performing a different saddle-point expansion than

the one assumed in writing down Eq. (4.15). Of course, as already remarked above, no such

problems, and no complex energies, appear when Mg =Mv, which is the “physical” case of

PQQCD, because in that case B2 − 4AC = 0, and we recover the usual double pole. We

therefore do not pursue the possibilities arising for Mg 6=Mv further.

V. CONCLUSION

In this article, we have presented the theoretical evidence that PQChPT provides the

correct low-energy effective theory for PQQCD. Our starting point is the discussion by

Leutwyler [16] of the foundations of chiral perturbation theory in the case of full QCD. The

cluster property of a Lorentz invariant, local quantum field theory plays a central role in

Ref. [16]; unitarity, in contrast, appears not to be needed. This starting point is essential in

any attempt to extend the validity of ChPT to the partially quenched case, in which unitarity

is lost. Therefore, our main task has been to see to what extent the cluster property can be

established in PQQCD as well.

The key ingredients are the existence of a bounded transfer matrix, as well as an extension

of the Vafa–Witten theorem to the partially quenched case. The existence of the transfer

matrix allows us to identify a complete set of states in the theory, even though the transfer

matrix and the corresponding states do not have all the usual properties they possess in a

unitary theory. An important point, however, is that the pion states do satisfy a rotationally
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invariant dispersion relation. The Vafa–Witten theorem [18] allows us to connect the space-

time dependence of correlation functions in the partially quenched theory with those of

correlation functions of the corresponding full QCD theory with the same set of sea quarks.

While these ingredients together are not sufficient to provide a rigorous proof of clustering, we

have identified the further assumptions needed to establish the cluster property in PQQCD,

assuming that it holds in the full theory.20

Once the cluster property is established, the argument for the correctness of PQChPT

as the low-energy effective theory for PQQCD follows mainly along the same lines as that

given in Ref. [16]. While in both cases some additional assumptions are needed (such as

the assumption that no other accidentally light states exist in the theory), these additional

assumptions in general have little to do with the “sickness” of the partially quenched theory,

and we thus believe them to be equally plausible in both the full and partially quenched

cases. One issue unique to the partially quenched case is the possibility of complex energies,

which could make it difficult to write effective-theory loops as normal four-dimensional

integrals, and require instead three-dimensional integrals over on-shell states. The arguments

presented in Sec. IV support the assumption that this situation does not occur in the only

case of practical interest, in which ghost quark masses are chosen equal to the corresponding

valence quark masses, i.e., the case usually referred to as partial quenching. Section IVE

shows that CPT symmetry requires the effective theory to have real low energy constants.

This restricts the problem of complex masses to the flavor-diagonal sector. As demonstrated

in Sec. IVF, complex masses (or poles located at negative values of (Euclidean) −p2) do

not occur when all ghost quark masses are chosen equal to the corresponding valence quark

masses. The only “sickness” is the familiar occurrence of double poles, at positive values of

−p2, in the valence sector.

Our framework for the construction of the effective low-energy theory generalizes to the

fully nondegenerate case, in which ghost-quark masses are not equal to valence-quark masses.

It turns out that this generalized theory contains some new properties absent in the par-

tially quenched case; these properties can be investigated in the corresponding effective field

theory. In particular, one can choose values for ghost and valence masses such that complex

20 We are not aware of a rigorous proof of the cluster property for full QCD either; for a discussion of the

cluster property in quantum field theories, see Ref. [36].
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poles appear in the disconnected propagator. We leave open the question of the validity

of the standard loop expansion of the effective theory for this case. Of course, as already

emphasized above, this issue is primarily of academic interest, since, by construction, ghost

and valence quark masses are always equal in numerical applications of PQQCD.
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Appendix A: Completeness

In this appendix, we prove completeness in the free theory of the basis of right eigenstates

given by Eq. (3.24), or the left eigenstates given by Eq. (3.25). The argument has three steps.

First, we prove that |0, 0〉R, L〈0, 0| are the unique right and left vacuum states. We then

show that all right eigenstates are obtained by acting with the raising operators b̃1 and b̃2

on |0, 0〉R (and similarly for left eigenstates). Finally, we prove that that no blocks of the

form of the form (2.21), or larger generalizations thereof, occur in the Jordan normal form

of the Hamiltonian matrix of the free theory.

The uniqueness of the right and left vacua can be proved by working in position space

and solving the differential equations corresponding to the definitions of |0, 0〉R and L〈0, 0|,
which are given in operator form by

b1 |0, 0〉R = (cos θ a1 − sin θ a†2) |0, 0〉R = 0 , (A1)

b2 |0, 0〉R = (cos θ a2 − sin θ a†1) |0, 0〉R = 0 ,
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and

L〈0, 0| b̃1 = L〈0, 0| (cos θ a†1 + sin θ a2) = 0 , (A2)

L〈0, 0| b̃2 = L〈0, 0| (cos θ a†2 + sin θ a1) = 0 ,

where we used Eq. (3.17).

Using x for the position associated with oscillator described by a1, a
†
1 and y for the

oscillator described by a2, a
†
2, we have

a1 =
1√
2
(x+

∂

∂x
), a†1 =

1√
2
(x− ∂

∂x
) (A3)

a2 =
1√
2
(y +

∂

∂y
), a†2 =

1√
2
(y − ∂

∂y
) .

Now let

〈x, y|0, 0〉R = ψ(x, y), L〈0, 0|x, y〉R = χ∗(x, y) (A4)

be the position-space wavefunctions for the vacua. The equations for ψ(x, y) and χ(x, y) are

[

cos θ

(

x+
∂

∂x

)

− sin θ

(

y − ∂

∂y

)]

ψ(x, y) = 0 , (A5)

[

− sin θ

(

x− ∂

∂x

)

+ cos θ

(

y +
∂

∂y

)]

ψ(x, y) = 0 ,

[

cos θ

(

x+
∂

∂x

)

+ sin θ

(

y − ∂

∂y

)]

χ(x, y) = 0 ,

[

sin θ

(

x− ∂

∂x

)

+ cos θ

(

y +
∂

∂y

)]

χ(x, y) = 0 .

The solutions are (recalling Eq. (3.20))

ψ(x, y) = A exp

(

− E

2m
(x2 + y2) +

s

m
xy

)

,

χ(x, y) = A exp

(

− E

2m
(x2 + y2)− s

m
xy

)

. (A6)

Since the only free parameter in these solutions is the normalization A, we have shown that

the right and left vacua are unique.

It is now clear (following the argument after Eq. (3.23)) that any right eigenstate of h can

be repeatedly lowered by application of b1 and b2 until we reach |0, 0〉R. This is all we need

in order to show that the eigenstate can, in turn, be obtained by operating with b̃1 and b̃2

on the vacuum, and is therefore just proportional to one of the states |n,m〉R in Eq. (3.24).
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For example, consider an eigenstate |1′, 0′〉R, with

b̃1b1 |1′, 0′〉R = |1′, 0′〉R , (A7)

b̃2b2 |1′, 0′〉R = 0 .

By uniqueness of the vacuum,

b1 |1′, 0′〉R ∝ |0, 0〉R . (A8)

Operating on both sides of this equation with b̃1 and using Eq. (A7) then proves that

|1′, 0′〉R ∝ b̃1 |0, 0〉R = |1, 0〉R . (A9)

It is straightforward to extend this step to a proof by induction that, similarly,

|n′, m′〉R ∝ |n,m〉R , (A10)

for an eigenstate |n′, m′〉R of the number operators b̃1b1 and b̃2b2 with eigenvalues n′ and m′

respectively. An analogous argument extends this first step to left eigenstates as well.

The fact that we have shown that all right and left eigenstates are of the form of

Eq. (3.24) and (3.25) does not yet quite prove completeness of these states. Since the

Hamiltonian (3.21) is not Hermitian, it is possible that its Jordan normal form has non-

trivial blocks of the form (2.21), with κ 6= 0. We now prove that this does not happen in

the free theory. First, the Hamiltonian is proportional to the sum of two number operators,

N1 = b̃1b1 and N2 = b̃2b2, which commute with each other. Therefore, the matrix repre-

sentation of the sum is a direct product of the two matrices representing N1 and N2. It is

thus sufficient to show that no nontrivial Jordan blocks occur in the matrix representation

of N = b̃b, where b = bi and b̃ = b̃i, with i = 1 or 2.

Now assume that a hypothetical Jordan block of arbitrary size p × p occurs, with p >

1. Such blocks have an eigenvalue on the diagonal, and an arbitrary constant κ on the

“superdiagonal.” The block is trivial if κ = 0; nontrivial otherwise. We already know that

possible eigenvalues of the number operator N are n = 0, 1, 2, . . . . So, for example, a block

for eigenvalue n and p = 4 would look like














n κ 0 0

0 n κ 0

0 0 n κ

0 0 0 n















. (A11)
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We will prove by induction on n that no such blocks can exist for any n, and any size p. For

any such hypothetical block, let |n〉R be the true right eigenvector and |A(n)〉R be the first

nontrivial generalized right eigenvector. These states obey

N |n〉R = n|n〉R , (A12)

N |A(n)〉R = n|A(n)〉R + κ|n〉R .

For example, in the p = 4 case above, |n〉R and |A(n)〉R could be represented by















1

0

0

0















and















γ

1

0

0















, (A13)

respectively, with γ arbitrary.

The theorem that we will prove is:

If, for any n, there exists a state |A(n)〉R that is linearly independent of

the eigenvector |n〉R and obeys

N |A(n)〉R = n|A(n)〉R + κ|n〉R , (A14)

then κ = 0.

Thus |A(n)〉R is a right eigenstate degenerate with |n〉R. However, since we showed above

that the eigenstates of N are nondegenerate, |A(n)〉R would have to be proportional to |n〉R,
which contradicts the assumption of linear independence. Thus, no state |A(n)〉R can exist,

and the Jordan block is not only trivial (κ = 0) but is actually one-dimensional (p = 1).

We first show the theorem is true for n = 0. For a nontrivial Jordan block with n = 0

we would have

N |A(0)〉R = κ|0〉R , (A15)

which implies

Nb |A(0)〉R = (bN − b)|A(0)〉R = −b |A(0)〉R . (A16)

So b |A(0)〉R would have to be an eigenstate of N with eigenvalue −1, which is impossible

since N is positive semidefinite. Thus b |A(0)〉R must vanish, which implies

N |A(0)〉R = b̃b |A(0)〉R = 0 . (A17)
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Comparing with Eq. (A15), we see that κ = 0, as desired.

We now assume that the theorem is true for eigenvalue n, and prove it is also true for

eigenvalue n+1. Suppose we have a state |A(n+1)〉R that is linearly independent of |n+1〉R
and satisfies

N |A(n+1)〉R = (n+ 1)|A(n+1)〉R + κ|n+ 1〉R . (A18)

Then

Nb |A(n+1)〉R = (bN − b)|A(n+1)〉R = nb |A(n+1)〉R +
√
n+ 1 κ|n〉R . (A19)

So the state b|A(n+1)〉R satisfies Eq. (A14) for eigenvalue n, with κ replaced by κ′ =
√
n + 1 κ.

Furthermore, b|A(n+1)〉R is linearly independent of |n〉R. If not, b |A(n+1)〉R = α|n〉R for some

constant α, which implies by Eq. (A18) that

b̃b |A(n+1)〉R = (n+ 1)|A(n+1)〉R + κ|n + 1〉R = b̃ α|n〉R =
√
n+ 1 α|n+ 1〉R , (A20)

contradicting the assumption that |A(n+1)〉R is linearly independent of |n+ 1〉R. Therefore,
b |A(n+1)〉R satisfies the conditions of the induction hypothesis, which implies κ′ = 0, and

hence κ = 0.

This concludes the proof of our theorem, and hence completeness of the free theory as in

Eq. (3.28).

Appendix B: Path integral for the free ghost theory

Starting from Eq. (3.16), we reconstruct a path integral which yields the same correla-

tion functions as those generated by the transfer matrix defined in terms of h. This is an

alternative to the operator analysis based on the generalized Bogoliubov transformation,

Eq. (3.17). For simplicity, we take T → ∞ from the beginning.

We start by defining new fields ψi and conjugate momenta ρi

ψi =
1√
2m

(ai + a†i ) , ρi = −i
√

m

2
(ai − a†i ) , (B1)

which are conventionally normalized,

[ψi, ρj ] = i δij . (B2)

The Hamiltonian then may be written

h =
1

2

(

ρ21 + ρ22 +m2(ψ2
1 + ψ2

2)
)

+ is (ψ1ρ2 + ψ2ρ1) + constant . (B3)
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Introducing sources Ji for ψi and Ki for ρi, the partition function in the Hamiltonian form

of the path integral is

Z[Ji, Ki] =

∫

Dψ1 Dψ2 Dρ1 Dρ2 exp(iρjψ̇j − h+ Jjψj +Kjρj) , (B4)

with a sum over the repeated index j, and with ψ̇j ≡ dψj/dt. The quadratic integrals over

ρ1 and ρ2 are easily done,21 and the result is

Z[Ji, Ki] =

∫

Dψ1 Dψ2 e
−LE [Ji,Ki] , (B5)

with the Euclidean Lagrangian LE[Ji, Ki] given by

LE[Ji, Ki] =
1

2

(

ψ̇2
1 + ψ̇2

2 + E2(ψ2
1 + ψ2

2)
)

− iK1(ψ̇i − sψ2)− iK2(ψ̇2 − sψ1)

−J1ψ1 − J2ψ2 −
1

2
(K2

1 +K2
2 )− s

d

dt
(ψ1ψ2) . (B6)

The terms quadratic in Kj are standard, and just give contact terms that we drop from

now on. We will also drop the final, total-derivative term, since we want to calculate

a partition function with periodic boundary conditions on ψj . Note, however, that for

computing transition amplitudes between ψj eigenstates, dropping the total derivative would

be incorrect; indeed that term leads to violations of unitarity. Violations arise because the

Minkowski-space transition amplitude

Tba = 〈ψ1,bψ2,b; tb|ψ1,aψ2,a; ta〉 (B7)

is proportional to exp[s(ψ1,bψ2,b − ψ1,aψ2,a)] and does therefore does not obey Tba = T ∗
ab.

If we focused only on correlation functions of ψj, the sources Kj could also be dropped

completely, and one would immediately see that the correlation functions are the completely

normal correlators of two harmonic oscillators with frequency E. One could in fact change

the rules at this point, and write down a standard (double) harmonic oscillator Hamiltonian

h′ that gives these same ψj correlators:

h′ =
1

2

(

ρ21 + ρ22 + E2(ψ2
1 + ψ2

2)
)

(B8)

The analogous step for the Hamiltonian of Ref. [29] is taken in Ref. [30]. However, this

is really a change of rules, because it changes the correlators involving ρj. As we will see

below, nonunitary effects we already obtained in Sec. IIIC show up in those correlators.

21 The ρj have open boundary condition, as is always the case in the path integral formulation.
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From Eqs. (B5) and (B6), we can easily compute all two-point correlators by taking

derivatives with respect to Jj and Kj . The results are:

〈ψi(t)ψj(0)〉 = δij
e−Et

2E

[

= δij
e−Et

2E

]

, (B9a)

〈ψi(t)ρj(0)〉 = δij
ie−Et

2
+ δi+j,3

−ise−Et

2E

[

= δij
ie−Et

2

]

, (B9b)

〈ρi(t)ψj(0)〉 = δij
−ie−Et

2
+ δi+j,3

−ise−Et

2E

[

= δij
−ie−Et

2

]

, (B9c)

〈ρi(t)ρj(0)〉 = δij
m2e−Et

2E

[

= δij
Ee−Et

2

]

. (B9d)

Here, the corresponding results in the standard theory defined by h′ are shown in square

brackets. For both our theory and the standard theory, these correlators satisfy the condi-

tions required by the commutators Eq. (B2) in the limit t → 0. (The relevant correlators

are unaffected by the dropped contact terms.)

Aside from the off-diagonal terms in the ψ-ρ correlators, the difference between our

theory and the standard theory appears in the normalization of the ρ-ρ correlator in

Eq. (B9d). From Eq. (B1) and Eq. (B9), we can easily check that we reproduce the correla-

tors Eqs. (3.33) and (3.34) for the creation and annihilation operators in the limit T → ∞.

In particular, the unitarity-violating negative result for 〈a†i(t)aj(0)〉 shows up here because

of the incomplete cancellation of the various contributions from Eqs. (B9a) through (B9d).

(Note that, in order to recover expected results for correlators of creation and annihila-

tion operators in the standard theory, one must replace the definitions Eq. (B1) by letting

m→ E, so that the Hamiltonian h′ takes its standard form in terms of ai and a
†
i .)
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