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Abstract

An analysis of radiative decays of the neutrinos νj → νlγ is discussed in MSSM extensions

with a vector like lepton generation. Specifically we compute neutrino decays arising from

the exchange of charginos and charged sleptons where the photon is emitted by the charged

particle in the loop. It is shown that while the lifetime of the neutrino decay in the Standard

Model is ∼ 1043 yrs for a neutrino mass of 50 meV, the current lower limit from experiment

from the analysis of the Cosmic Infrared Background is ∼ 1012 yrs and thus beyond the reach

of experiment in the foreseeable future. However, in the extensions with a vector like lepton

generation the lifetime for the decays can be as low as ∼ 1012 − 1014 yrs and thus within

reach of future improved experiments. The effect of CP phases on the neutrino lifetime is

also analyzed. It is shown that while both the magnetic and the electric transition dipole

moments contribute to the neutrino lifetime, often the electric dipole moment dominates

even for moderate size CP phases.
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1 Introduction

It is well known that a neutrino can decay radiatively to neutrinos with lower masses. Thus

for the neutrino mass eigenstates ν1, ν2, ν3, with mν3 > mν2 > mν1 one can have radiative

decays so that ν3 → ν1γ, ν2γ. In the Standard Model this process can proceed by the

exchange of a charged lepton and a W boson so that ν3 → l−W+(loop) → ν1,2γ. However,

the lifetime for the neutrino decay in the Standard Model is rather large [1], i.e.,

τSMν3 ∼ 1043 yrs, (1)

for a ν3 with mass 50 meV. Now the current lower limit based on data from galaxy surveys

with infrared satellites AKARI [2], Spitzer [3] and Hershel [4] as well as the high precision

cosmic microwave background (CMB) data collected by the Far Infrared Absolute Spec-

trometer (FIRAS) on board the Cosmic Background explorer (COBE) [5] for the study of

radiative decays of the cosmic neutrinos[6] using the Cosmic Infrared Background (CIB)

gives [6]

τ expν3
≥ 1012 yrs (2)

This lower limit is below the Standard Model prediction of Eq.(1) by over 30 orders of

magnitude and thus the study of cosmic neutrinos using the Cosmic Infrared Background

is unlikely to be fruitful in testing the radiative decays of the neutrinos in the Standard

Model. However, much lower lifetimes for the neutrino decays can be achieved when one

goes beyond the Standard Model. For example, radiative decays of the neutrinos have been

discussed in extensions of the standard model with a heavy mirror generation [7]. Using

their result one finds a neutrino lifetime ∼ 1020 yrs which while much smaller than the one

given by the Standard Model is still eight orders of magnitude above the current level of sen-

sitivity. Similarly in the left-right symmetric models, calculations show that one can lower

the lifetime for the decay of the neutrino significantly so that [6] τLRν3 ∼ 1.5× 1017 yrs. The

experimental measurement using radiative decays provides a way to measure the absolute

mass of the neutrino. Thus consider the decay νj → νlγ. In the rest frame of the decay of

νj the photon energy is given by Eγ = (m2
j −m2

l )/(2mj). Since neutrino oscillations provide

us with the neutrino mass difference m2
j −m2

l , a measurement of the photon energy allows

a determination of mj. Thus the study of Cosmic Infrared Background provides us with an

alternative way to fix the absolute value of the neutrino mass aside from the neutrino less
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double beta decay.

In this work we will discuss a new class of models where the neutrino lifetimes as low

as close to the current experimental lower limits can be obtained which makes the study of

the lifetimes of the cosmic neutrinos using CIB interesting. Specifically we consider neutrino

decay via a light vector like generation. Light vector like generations have been discussed

in a variety of works recently. Specifically these include the neutrino magnetic moments [8],

contribution to EDMs of leptons [9] and quarks EDMs [10, 11], contribution to radiative

decay of charged leptons [12] and to variety of other phenomena [13, 14, 15, 16, 17]. Like

the flavor changing radiative decay of the charged leptons (for a review see [18] ) the ra-

diative decays of the neutrinos provide a window to new physics. With the inclusion of

the vector generation we also expect the radiative decays of the neutrinos could be signifi-

cantly larger than in the Standard Model. The reason for this expectation is the following:

In the analysis of the decay τ → µγ it is found [12] that the decay for this process is

much larger in models with vector like multiplets than in conventional models. We ex-

pect that a similar phenomenon will occur in the analysis of the radiative decay of the

neutrinos. This is so because the diagrams that enter in the neutrino radiative decay

are very similar to the diagrams that enter in the analysis of the radiative decay of the

τ . Thus we expect that the analysis would yield a decay lifetime which would be orders

of magnitude closer to the current experimental limits than the result from the Standard

Model. In the analysis we will impose the most recent constraints from the Planck satellite

experiment [19], i.e., that7
∑

imνi < 0.85 eV (95% CL) as well as the neutrino oscilla-

tion constraints [20] on the mass differences ∆m2
31 ≡ m2

3 − m2
1 = 2.4+0.12

−0.11 × 10−3eV2, and

∆m2
21 ≡ m2

2 −m2
1 = 7.65+0.23

−0.20 × 10−5eV2.

We note in passing that the radiative decays of the cosmic neutrinos in a supersymemetric

framework was discussed in early work in [21]. However, in their work the radiative decay

of neutrinos with testable lifetimes make flavor changing processes in the charged lepton

sector exceed the experimental limits. Thus these authors had to consider broken R parity

models to circumvent these constraints. In our work there are no problems of this sort in the

analysis presented here. Indeed the flavor changing neutral currents in the charged sector

7The recent data from the Planck experiment [19], gives two upper limits on the sum of the neutrino
masses, i.e., 0.66 eV and 0.85 eV (both at 95% CL), where the latter limit includes the lensing likelihood.
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were already discussed in this class of models in [12] and the results are consistent with

current limits with the possibility of detection of such processes in improved experiment.

The reason why the flavor changing neutral current processes in the charged sector do not

constrain the radiative decays of the neutrinos is because while the couplings f4, f
′
4, f

′′
4 in

Eq.(6) enter the charged lepton sector, they do not enter the neutrino sector. Further, while

the couplings f5, f
′
5, f

′′
5 enter the neutrino sector they do not enter the charged lepton sector.

This allows one to suppress the neutral current processes in the charged lepton sector with-

out a problem. In a similar fashion the muon g-2 experiment does not put any constraint

on the current analysis. This is so because the contribution of the vector-like multiplet to

gµ − 2 would arise from couplings f4, f
′
4, f

′′
4 which as already indicated above do not enter

in the radiative decays of the neutrinos and these couplings can be adjusted so that the

contribution of the vector like multiplet to gµ − 2 is consistent with the current gµ − 2 lim-

its. We have not done an explicit analysis of it here since these couplings do not enter in

the radiative decays of the neutrinos and hence are not relevant for the analysis of this paper.

2 Extension of MSSM with a vector multiplet

Vector like multiplets arise in a variety of unified models [22] some of which could be low

lying. Here we simply assume the existence of one low lying leptonic vector multiplet which

is anomaly free in addition to the MSSM spectrum. Before proceeding further it is useful to

record the quantum numbers of the leptonic matter content of this extended MSSM spectrum

under SU(3)C ×SU(2)L×U(1)Y . Thus under SU(3)C ×SU(2)L×U(1)Y the leptons of the

three generations transform as follows

ψiL ≡
(
νiL
liL

)
∼ (1, 2,−1

2
), lciL ∼ (1, 1, 1), νciL ∼ (1, 1, 0), i = 1, 2, 3 (3)

where the last entry on the right hand side of each ∼ is the value of the hypercharge Y

defined so that Q = T3 + Y . These leptons have V − A interactions. We can now add

a vector like multiplet where we have a fourth family of leptons with V − A interactions

whose transformations can be gotten from Eq.(3) by letting i run from 1-4. A vector like

lepton multiplet also has mirrors and so we consider these mirror leptons which have V +A

interactions. Their quantum numbers are as follows

χc ≡
(
Ec
L

N c
L

)
∼ (1, 2,

1

2
), EL ∼ (1, 1,−1), NL ∼ (1, 1, 0). (4)
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The MSSM Higgs doublets as usual have the quantum numbers

H1 ≡
(
H1

1

H2
1

)
∼ (1, 2,−1

2
), H2 ≡

(
H1

2

H2
2

)
∼ (1, 2,

1

2
). (5)

As mentioned already we assume that the vector multiplet escapes acquiring mass at

the GUT scale and remains light down to the electroweak scale. As in the analysis of

Ref.[9] interesting new physics arises when we consider the mixing of the second and third

generations of leptons with the mirrors of the vector like multiplet. Actually we will extend

our model to include the mixing of the first generation as well, for the computation of the

decay ν3 → ν2,1γ. Thus the superpotential of the model may be written in the form

W = −µεijĤ i
1Ĥ

j
2 + εij[f1Ĥ

i
1ψ̂

j
Lτ̂

c
L + f ′1Ĥ

j
2ψ̂

i
Lν̂

c
τL + f2Ĥ

i
1χ̂

cjN̂L + f ′2H
j
2χ̂

ciÊL

+h1H
i
1ψ̂

j
µLµ̂

c
L + h′1H

j
2ψ̂

i
µLν̂

c
µL + h2H

i
1ψ̂

j
eLê

c
L + h′2H

j
2ψ̂

i
eLν̂

c
eL]

+f3εijχ̂
ciψ̂jL + f ′3εijχ̂

ciψ̂jµL

+f4τ̂
c
LÊL + f5ν̂

c
τLN̂L + f ′4µ̂

c
LÊL + f ′5ν̂

c
µLN̂L

+f ′′3 εijχ̂
ciψ̂jeL + f ′′4 ê

c
LÊL + f ′′5 ν̂

c
eLN̂L (6)

where ψ̂L stands for ψ̂3L, ψ̂µL stands for ψ̂2L and ψ̂eL stands for ψ̂1L. Here we assume a mixing

between the mirror generation and the third lepton generation through the couplings f3, f4

and f5. We also assume mixing between the mirror generation and the second lepton genera-

tion through the couplings f ′3, f
′
4 and f ′5. The same is true for the mixing between the mirror

generation and the first lepton generation through the couplings f ′′3 , f ′′4 and f ′′5 . The above

nine mass terms are responsible for generating lepton flavor changing process. We will focus

here on the supersymmetric sector. Then through the terms f3, f4, f5, f
′
3, f

′
4, f

′
5, f

′′
3 , f

′′
4 , f

′′
5

one can have a mixing between the third generation, the second and the first generation

leptons which allows the decay of ν3 → ν2,1γ through loop corrections that include charginos

and scalar lepton exchanges with the photon being emitted by the chargino or by a charged

slepton. The mass terms for the leptons and mirrors arise from the term

L = −1

2

∂2W

∂Ai∂Aj
ψiψj +H.c. (7)

where ψ and A stand for generic two-component fermion and scalar fields. After spontaneous

breaking of the electroweak symmetry, (〈H1
1 〉 = v1/

√
2 and 〈H2

2 〉 = v2/
√

2), we have the
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following set of mass terms written in the 4-component spinor notation

−Lm = ( ν̄τR N̄R ν̄µR ν̄eR )


f ′1v2/

√
2 f5 0 0

−f3 f2v1/
√

2 −f ′3 −f ′′3
0 f ′5 h′1v2/

√
2 0

0 f ′′5 0 h′2v2/
√
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ντL
NL

νµL
νeL

+H.c. (8)

Here the mass matrices are not Hermitian and one needs to use bi-unitary transformations

to diagonalize them. Thus we write the linear transformations
ντR
NR

νµR
νeR

 = Dν
R


ψ1R

ψ2R

ψ3R

ψ4R

 ,


ντL
NL

νµL
νeL

 = Dν
L


ψ1L

ψ2L

ψ3L

ψ4L

 , (9)

such that

Dν†
R


f ′1v2/

√
2 f5 0 0

−f3 f2v1/
√

2 −f ′3 −f ′′3
0 f ′5 h′1v2/

√
2 0

0 f ′′5 0 h′2v2/
√

2

Dν
L = diag(mψ1 ,mψ2 ,mψ3 ,mψ4). (10)

In Eq.(10) ψ1, ψ2, ψ3, ψ4 are the mass eigenstates for the neutrinos, where in the limit of no

mixing we identify ψ1 as the light tau neutrino, ψ2 as the heavier mass eigen state, ψ3 as the

muon neutrino and ψ4 as the electron neutrino. To make contact with the normal neutrino

hierarchy we relabel the states so that

ν1 = ψ4, ν2 = ψ3, ν3 = ψ1, ν4 = ψ2. (11)

which we assume has the mass hierarchical pattern

mν1 < mν2 < mν3 < mν4 (12)

We will carry out the analytical analysis in the ψi notation but the numerical analysis will be

carried out in the νi notation to make direct contact with data. Next we consider the mixing
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of the charged sleptons and the charged mirror sleptons. The mass squared matrix of the

slepton - mirror slepton comes from three sources, the F term, the D term of the potential

and the soft susy breaking terms. Using the superpotential of Eq.(6) the mass terms arising

from it after the breaking of the electroweak symmetry are given by the Lagrangian

L = LF + LD (13)

where LF and LD are given in the Appendix along with the matrix elements of the slepton

mass squared matrix.

3 Interactions of charginos, sleptons and neutrinos

The chargino exchange contribution to the decay of the tau neutrino into a muon neutrino

(electron neutrino) and a photon arises through the loop diagram in Fig.(1). The relevant

part of the Lagrangian that generates this contribution is given by

−Lν−τ̃−χ+ =
4∑
j=1

2∑
i=1

8∑
k=1

ψ̄j[C
L
jikPL + CR

jikPR]χ̃+
i τ̃k +H.c. (14)

where

CL
jik = −f ′1V ∗i2Dν∗

R1j
D̃τ

1k − f ′2V ∗i2Dν∗
R2j
D̃τ

2k

+gV ∗i1D
ν∗
R2j
D̃τ

4k − h′1V ∗i2Dν∗
R3j
D̃τ

5k − h′2V ∗i2Dν∗
R4j
D̃τ

7k,

CR
jik = −f1Ui2Dν∗

L1j
D̃τ

3k − h1Ui2Dν∗
L3j
D̃τ

6k + gUi1D
ν∗
L1j
D̃τ

1k

+gUi1D
ν∗
L4j
D̃τ

7k − h2Ui2Dν∗
L4j
D̃τ

8k − f2Ui2Dν∗
L2j
D̃τ

4k, (15)

where D̃τ is the diagonalizing matrix of the scalar 8× 8 mass squared matrix for the scalar

leptons as defined in the Appendix. In Eq.(15) U and V are the matrices that diagonalize

the chargino mass matrix MC so that

U∗MCV
−1 = diag(m+

χ̃1
,m+

χ̃2
). (16)

4 The analysis of ψj → ψl + γ decay width

The decay ψj → ψl + γ is induced by one-loop electric and magnetic transition dipole

moments, which arise from the diagrams of Fig.(1). In the dipole moment loop, the incoming
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Figure 1: The diagrams that allow decay of the ψj into ψl + γ via supersymmetric loops
involving the charginos and the staus where the photon is either emitted by the chargino
(left) or by the stau (right) inside the loop.

ψj is replaced by a ψl. For an incoming ψj of momentum p and a resulting ψl of momentum

p′, we define the amplitude

〈ψl(p′)|Jα|ψj(p)〉 = ūψl(p
′)Γαuψj(p) (17)

where

Γα(q) =
F jl
2 (q)iσαβq

β

mψj +mψl

+
F jl
3 (q)σαβγ5q

β

mψj +mψl

+ ..... (18)

with q = p − p′ and where mf denotes the mass of the fermion f . The decay width of

ψj → ψl + γ is given by

Γ(ψj → ψl + γ) =
m3
ψj

8π(mψj +mψl)
2

(
1−

m2
ψl

m2
ψj

)3

{|F jl
2 (0)|2 + |F jl

3 (0)|2} (19)

where the form factors F jl
2 and F jl

3 arise from the left and the right loops of Fig. (1) as

follows

F jl
2 (0) = F jl

2 left + F jl
2 right

F jl
3 (0) = F jl

3 left + F jl
3 right (20)

The chargino contribution F jl
2 left is given by

F jl
2 left = −

2∑
i=1

8∑
k=1

[
(mψj +mψl)

64π2mχ̃i
+

{CL
likC

R∗
jik + CR

likC
L∗
jik}F3

(
M2

τ̃k

m2
χ̃i

+

)

+
mψj(mψj +mψl)

192π2m2
χ̃i

+

{CL
likC

L∗
jik + CR

likC
R∗
jik}F4

(
M2

τ̃k

m2
χ̃i

+

)]
(21)
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where

F3(x) =
1

(x− 1)3
{3x2 − 4x+ 1− 2x2 lnx} (22)

and

F4(x) =
1

(x− 1)4
{2x3 + 3x2 − 6x+ 1− 6x2 lnx} (23)

The right contribution F jl
2 right is given by

F jl
2 right =

2∑
i=1

8∑
k=1

[
(mψj +mψl)

64π2mχ̃i
+

{CL
likC

R∗
jik + CR

likC
L∗
jik}F1

(
M2

τ̃k

m2
χ̃i

+

)

+
mψj(mψj +mψl)

192π2m2
χ̃i

+

{CL
likC

L∗
jik + CR

likC
R∗
jik}F2

(
M2

τ̃k

m2
χ̃i

+

)]
(24)

where

F1(x) =
1

(x− 1)3
{1− x2 + 2x lnx} (25)

and

F2(x) =
1

(x− 1)4
{−x3 + 6x2 − 3x− 2− 6x lnx} (26)

The left contribution F jl
3 left is given by

F jl
3 left = −

2∑
i=1

8∑
k=1

(mψj +mψl)mχ̃i
+

32π2M2
τ̃k

{CL
jikC

R∗
lik − CR

jikC
L∗
lik}F6

(
m2
χ̃i

+

M2
τ̃k

)
(27)

where

F6(x) =
1

2(x− 1)2

{
− x+ 3 +

2 lnx

1− x

}
(28)

The right contribution F jl
3 right is given by

F jl
3 right =

2∑
i=1

8∑
k=1

(mψj +mψl)mχ̃i
+

32π2M2
τ̃k

{CL
jikC

R∗
lik − CR

jikC
L∗
lik}F5

(
m2
χ̃i

+

M2
τ̃k

)
(29)

where

F5(x) =
1

2(x− 1)2

{
1 + x+

2x lnx

1− x

}
(30)

Now for the numerical analysis below we switch from the ψi notation to the νi notation.

Here ν1, ν2, ν3 are the three neutrino mass eigenstates and we assume the mass hierarchy

so that ν3 is heavier than ν2 and ν2 is heavier than ν1. For the cosmic neutrinos we are
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interested in the decay of the ν3 to ν2 and ν1. Thus the total decay width of ν3 is given by

Γtotal(ν3) = Γ(ν3 → ν2 + γ) + Γ(ν3 → ν1 + γ). The lifetime of the tau neutrino is calculated

from the equation

τ(ν3) =
~

Γtotal(ν3)
(31)

where the Γtotal(ν3) is in GeV and ~ = 2.085× 10−32 GeV.Year.

5 Estimates of ν3 lifetime

In this section we give a numerical estimate of the neutrino lifetime for the heaviest neutrino

ν3 and investigate its dependence on the input parameters. In the analysis we ensure that

the constraint of Σimνi < 0.85 eV from the Planck Satellite experiment [19] is satisfied and

that ∆m2
31 and ∆m2

21 lie in the 3σ range of the neutrino oscillation experiment [20], i.e., in

the range of (2.07− 2.75)× 10−3 eV2 and (7.05− 8.34)× 10−5 eV2 respectively. In Table (1),

we give a benchmark point where the constraints mentioned above are satisfied. The form

factors and the lifetime of the ν3 decay are calculated and given in Table (1).

We now begin by exhibiting the dependence of the ν3 lifetime on the SU(2) gaugino

mass m2. The chargino masses are sensitive to m2 and increasing m2 implies a larger av-

erage chargino mass which affects the ν3 decay width and the lifetime. This is exhibited

in Fig. (2) for values of tan β = 30, 40, 50 while the values of the other input parameters

are shown in the caption of Fig. (2). It is found that both the magnetic and the electric

transition dipole moments enter in the analysis. The magnetic transition dipole moment

depends on F jl
2 while the electric transition dipole moment depends on F jl

3 . Typically the

electric transition dipole moment dominates the decay even for moderate size CP phases

since F jl
3 turns out to be much larger than F jl

2 .

In Fig. (3) we investigate the effect of the variation of m0 on ν3 lifetime, where m2
0 =

M̃2
τL = M̃2

E = M̃2
τ = M̃2

χ = M̃2
µL = M̃2

µ = M̃2
eL = M̃2

e (see Appendix). Three curves are

shown on the figure, corresponding to tan β = 30, 40, 50, starting from the upper curve

(tan β = 30) and going down. The analysis shows that the lifetime of ν3 increases as m0

increases. This is as expected since a larger m0 implies larger sfermion masses that enter in

the loop which gives a smaller decay width and a larger lifetime. It is seen that with values

of the input parameters in reasonable ranges the lifetime can be as low as few times 1012 yrs
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Neutrino Mass Eigenvalues (GeV) mν3 = 5.232137× 10−11

mν2 = 8.517946× 10−12

mν1 = 1.036377× 10−12

Process: F jl
2 left (1.4036× 10−20) exp(−2.73 i)

F jl
2 right (1.6163× 10−20) exp(+0.42 i)

ν3 → ν2 + γ F jl
2 (0) (2.1357× 10−21) exp(+0.51 i)

F jl
3 left (7.6091× 10−18) exp(+2.42 i)

F jl
3 right (1.8846× 10−18) exp(+2.42 i)

F jl
3 (0) (9.4946× 10−18) exp(+2.42 i)

Decay Width 1.2802755× 10−46 GeV

Process: F jl
2 left (2.9501× 10−21) exp(+1.57 i)

F jl
2 right (2.8460× 10−20) exp(+0.37 i)

ν3 → ν1 + γ F jl
2 (0) (2.9655× 10−20) exp(+0.46 i)

F jl
3 left (1.0064× 10−18) exp(−1.77 i)

F jl
3 right (2.4903× 10−19) exp(−1.77 i)

F jl
3 (0) (1.2555× 10−18) exp(−1.77 i)

Decay Width 3.1531459× 10−48 GeV
Life time 1.5899× 1014 Years

Table 1: Sample numerical values for the neutrino masses and the calculated form factors
and decay widths of the two processes ν3 → ν2+γ and ν3 → ν1+γ. The lifetime is also given.
The analysis corresponds to the parameter set: |m2| = 150, |µ| = 100, |f3| = 1.5 × 10−7,
|f ′3| = 2× 10−8, |f ′′3 | = 8× 10−9, |f4| = |f ′4| = |f ′′4 | = 50, |f5| = 8.11× 10−2, |f ′5| = 9.8× 10−2,
|f ′′5 | = 4 × 10−2, mN = 212, |A0| = 600, mE = 260, m0 = 300, tan β = 50, χm2 = 1.2,
χµ = 0.8, χ3 = 0.3, χ′3 = 0.2, χ′′3 = 0.6, χ4 = 1.4, χ′4 = 1.1, χ′′4 = 1.7, χ5 = 1.7, χ′5 = 0.5,
χ′′5 = 0.7 and χA0 = 2.4. All masses are in GeV and phases in rad.

just within the reach of improved CIB experiment.

In Fig. (4) we investigate the effect on ν3 lifetime of the variation of χ5 which is the phase

of the coupling term f5 in the neutrino mass matrix. The analysis is done for two values of

its magnitude |f5| (see the figure caption). The analysis shows that the ν3 lifetime depends

sensitively on the phase χ5 and also on its magnitude. Fig. (4) exhibits several oscillations

in the lifetime as a function of χ5.

One possible origin of such oscillations could be constructive and destructive interference

between F jl
2 left and F jl

2 right, and between F jl
3 left and F jl

3 right. Such interference was noticed

10



Figure 2: Variation of ν3 lifetime versus |m2| for three values of tan β. Starting with the upper
curve, tan β = 30, 40, 50. Other parameters have the values |µ| = 100, |f3| = 1.5 × 10−7,
|f ′3| = 2× 10−8, |f ′′3 | = 8× 10−9, |f4| = |f ′4| = |f ′′4 | = 35, |f5| = 1.01× 10−1, |f ′5| = 5.3× 10−1,
|f ′′5 | = 4× 10−2, mN = 200, |A0| = 500, mE = 260, m0 = 300, χm2 = 1.2, χµ = 0.8, χ3 = 0.3,
χ′3 = 0.2, χ′′3 = 0.6, χ4 = 1.4, χ′4 = 1.1, χ′′4 = 1.7, χ5 = 1.7, χ′5 = 0.5, χ′′5 = 0.7 and χA0 = 0.4.
All masses are in GeV and phases in rad.

and extensively studied in the context of EDMs of the quarks and the leptons [23] (for

review see [24, 25]). Some numerical values are exhibited in Table (2). Since F3 is much

larger than F2 for this region of the parameter space, we focus on the F3 terms. Here one

finds that the F3 left is larger than F3 right and further each of the terms have phases of the

same sign. Thus this possibility does not appear to be the reason for large oscillations in

ν3 lifetime. The above suggests that it is the interference in the F3 left terms themselves

that is the origin of such rapid variation. This can come about because there are sixteen

different contribution to F3 left each with their own phases and thus multiple constructive

and destructive interference can occur which is what Fig. (4) exhibits.
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Figure 3: Exhibition of the dependence of ν3 lifetime on m0 for three values of tan β. Starting
with the upper curve, tan β = 30, 40, 50. Other parameters have the values |µ| = 100,
|f3| = 1.5× 10−7, |f ′3| = 2× 10−8, |f ′′3 | = 8× 10−9, |f4| = |f ′4| = |f ′′4 | = 35, |f5| = 1.01× 10−1,
|f ′5| = 5.3× 10−1, |f ′′5 | = 4× 10−2, mN = 200, |A0| = 500, mE = 260, |m2| = 100, χm2 = 1.2,
χµ = 0.8, χ3 = 0.3, χ′3 = 0.2, χ′′3 = 0.6, χ4 = 1.4, χ′4 = 1.1, χ′′4 = 1.7, χ5 = 1.7, χ′5 = 0.5,
χ′′5 = 0.7 and χA0 = 0.4. All masses are in GeV and phases in rad.

χ5 0.4 rad 1.6 rad

F jl
2 left (1.89× 10−20) exp(+0.34 i) (3.56× 10−21) exp(+1.48 i)

F jl
2 right (5.53× 10−21) exp(−3.08 i) (1.39× 10−21) exp(−1.59 i)

F jl
2 (0) (1.37× 10−20) exp(+0.46 i) (2.17× 10−21) exp(+1.73 i)

F jl
3 left (2.49× 10−17) exp(+0.63 i) (1.59× 10−18) exp(−1.60 i)

F jl
3 right (2.68× 10−18) exp(+0.67 i) (1.68× 10−19) exp(−1.35 i)

F jl
3 (0) (2.76× 10−17) exp(+0.64 i) (1.75× 10−18) exp(−1.58 i)

Decay width 1.18× 10−44 GeV 7.58× 10−48 GeV

Table 2: A list of the right and left contributions, the form factors and the decay width of
the process ν3 → ν2 + γ for two values of χ5, with |f5| = 0.1 GeV.

In Fig. (5) we exhibit the variation of the lifetime as a function of the trilinear coupling

|A0| for two values of |µ|. In the analysis we make the simple approximation Aτ = AE =

Aµ = Ae = A0.

Finally we discuss the effect of |f3| on the tau neutrino lifetime. This analysis is exhibited

12



Figure 4: Exhibition of the dependence of ν3 lifetime on the phase χ5 for two values of
|f5|. Solid curve is for |f5| = 0.1 and dashed curve is for |f5| = 0.05. Other parameters
have the values |m2| = |µ| = 100, |f3| = 1.5 × 10−7, |f ′3| = 2 × 10−8, |f ′′3 | = 8 × 10−9,
|f4| = |f ′4| = |f ′′4 | = 35, |f ′5| = 5.3× 10−1, |f ′′5 | = 4× 10−2, mN = 200, |A0| = 500, mE = 260,
m0 = 300, tan β = 40, χm2 = 1.2, χµ = 0.8, χ3 = 0.3, χ′3 = 0.2, χ′′3 = 0.6, χ4 = 1.4, χ′4 = 1.1,
χ′′4 = 1.7, χ′5 = 1.0, χ′′5 = 0.7 and χA0 = 0.4. All masses are in GeV and phases in rad.

in Fig. (6) for two values of tan β (see figure caption). While f3 appears both in the slepton

and the neutrino mass matrix, the major effect of f3 arises via the variations in the neutrino

mass matrix. In summary the analysis of Figs.(2) - (6) shows that the neutrino lifetime as

low as the current experimental lower limits can be obtained in models with a vector like

generation. These lifetimes are over 30 orders of magnitude smaller than in the Standard

Model and thus within the reach of improved experiment.
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Figure 5: Exhibition of the dependence of ν3 lifetime on |A0| for two values of |µ|. Solid
curve is for |µ| = 150 and dashed curve is for |µ| = 100. Other parameters have the values
|m2| = 100, |f3| = 1.5 × 10−7, |f ′3| = 2 × 10−8, |f ′′3 | = 8 × 10−9, |f4| = |f ′4| = |f ′′4 | = 35,
|f5| = 1.01 × 10−1, |f ′5| = 5.3 × 10−1, |f ′′5 | = 4 × 10−2, mN = 200, mE = 260, m0 = 350,
tan β = 50, χm2 = 1.2, χµ = 0.8, χ3 = 0.3, χ′3 = 0.2, χ′′3 = 0.6, χ4 = 1.4, χ′4 = 1.1, χ′′4 = 1.7,
χ5 = 1.7, χ′5 = 0.5, χ′′5 = 0.7 and χA0 = 0.4. All masses are in GeV and phases in rad.

Figure 6: Exhibition of the dependence of the ν3 lifetime on |f3| for two values of tan β.
Solid curve is for tan β = 30 and dashed curve is for tan β = 40. Other parameters have
the values |m2| = 100, |µ| = 100, |f ′3| = 2 × 10−8, |f ′′3 | = 8 × 10−9, |f4| = |f ′4| = |f ′′4 | = 35,
|f5| = 1.01 × 10−1, |f ′5| = 5.3 × 10−1, |f ′′5 | = 4 × 10−2, mN = 200, |A0| = 500, mE = 260,
m0 = 400, χm2 = 1.2, χµ = 0.8, χ3 = 0.3, χ′3 = 0.2, χ′′3 = 0.6, χ4 = 1.4, χ′4 = 1.1, χ′′4 = 1.7,
χ5 = 1.7, χ′5 = 0.5, χ′′5 = 0.7 and χA0 = 0.4. All masses are in GeV and phases in rad.
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6 Conclusion

Lepton flavor changing processes provide an important window to new physics beyond the

Standard Model. In this work we have analyzed the radiative decay of the neutrinos νi → νjγ

in an extension of the MSSM with a vector like leptonic multiplet. Specifically we consider

mixing between the Standard Model generations of leptons with the mirror leptons in the

vector multiplet. It is because of these mixing which are parametrized by f3, f4, f5, f
′
3, f

′
4, f

′
5,

f ′′3 , f
′′
4 and f ′′5 as defined in Eq.(6) that the neutrino can have a radiative decay. The com-

putation of the neutrino decay is done in the supersymmetric sector where we compute the

contributions to the neutrino decay arising from diagrams with exchange of charginos and

staus in the loop with the chargino or the stau emitting the photon. The effects of CP

violation were also included in the analysis. In the presence of CP phases both the magnetic

and the electric transition dipole moments contribute to the neutrino lifetime. However, it

is found that the electric transition dipole moment often dominates for moderate size CP

phases in the region of the parameter space investigated. A numerical analysis shows that

the neutrino lifetime can be smaller than the one predicted in the Standard Model by sev-

eral orders of magnitude. Thus the Standard Model gives a lifetime for the decay of the

heaviest neutrino ν3 so that τSMν3 ∼ 1043 yrs for a ν3 with mass 50 meV. However, in the

class of models where the three generations of sleptons can mix with the vector like slepton

generation one finds that the decay lifetime of ν3 can be as low as 1012 years and thus much

smaller than the Standard Model prediction. Thus improved experiments in the future give

the possibility of observation of such effects.

7 Appendix: Further details of the interactions of the

vector like multiplet

In this Appendix we give further details of the interactions of the vector like multiplet. The

total lagrangian is constituted of LF and LD where

LF = LL + LN . (32)

Here
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−LL =

(
v22|f ′2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2

)
ẼRẼ

∗
R +

(
v22|f ′2|2

2
+ |f4|2 + |f ′4|2 + |f ′′4 |2

)
ẼLẼ

∗
L

+

(
v21|f1|2

2
+ |f4|2

)
τ̃Rτ̃

∗
R +

(
v21|f1|2

2
+ |f3|2

)
τ̃Lτ̃

∗
L

+

(
v21|h1|2

2
+ |f ′4|2

)
µ̃Rµ̃

∗
R +

(
v21|h1|2

2
+ |f ′3|2

)
µ̃Lµ̃

∗
L

+

(
v21|h2|2

2
+ |f ′′4 |2

)
ẽRẽ

∗
R +

(
v21|h2|2

2
+ |f ′′3 |2

)
ẽLẽ

∗
L

+

{
− f1µ

∗v2√
2

τ̃Lτ̃
∗
R −

h1µ
∗v2√
2

µ̃Lµ̃
∗
R

−f
′
2µ
∗v1√
2

ẼLẼ
∗
R +

(
f ′2v2f

∗
3√

2
+
f4v1f

∗
1√

2

)
ẼLτ̃

∗
L

+

(
f4v2f

′∗
2√

2
+
f1v1f

∗
3√

2

)
ẼRτ̃

∗
R +

(
f ′3v2f

′∗
2√

2
+
h1v1f

′∗
4√

2

)
ẼLµ̃

∗
L +

(
f ′2v2f

′∗
4√

2
+
f ′3v1h

∗
1√

2

)
ẼRµ̃

∗
R

+

(
f ′′∗3 v2f

′
2√

2
+
f ′′4 v1h

∗
2√

2

)
ẼLẽ

∗
L +

(
f ′′4 v2f

′∗
2√

2
+
f ′′∗3 v1h

∗
2√

2

)
ẼRẽ

∗
R

+f ′3f
∗
3 µ̃Lτ̃

∗
L + f4f

′∗
4 µ̃Rτ̃

∗
R + f4f

′′∗
4 ẽRτ̃

∗
R + f ′′3 f

∗
3 ẽLτ̃

∗
L

+f ′′3 f
′∗
3 ẽLµ̃

∗
L + f ′4f

′′∗
4 ẽRµ̃

∗
R −

h2µ
∗v2√
2

ẽLẽ
∗
R +H.c.

}
(33)

and

−LN =

(
v21|f2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2

)
ÑRÑ

∗
R

+

(
v21|f2|2

2
+ |f5|2 + |f ′5|2 + |f ′′5 |2

)
ÑLÑ

∗
L

+

(
v22|f ′1|2

2
+ |f5|2

)
ν̃τRν̃

∗
τR +

(
v22|f ′1|2

2
+ |f3|2

)
ν̃τLν̃

∗
τL

+

(
v22|h′1|2

2
+ |f ′3|2

)
ν̃µLν̃

∗
µL +

(
v22|h′1|2

2
+ |f ′5|2

)
ν̃µRν̃

∗
µR

+

(
v22|h′2|2

2
+ |f ′′3 |2

)
ν̃eLν̃

∗
eL +

(
v22|h′2|2

2
+ |f ′′5 |2

)
ν̃eRν̃

∗
eR

+

{
− f2µ

∗v2√
2

ÑLÑ
∗
R −

f ′1µ
∗v1√
2

ν̃τLν̃
∗
τR −

h′1µ
∗v1√
2

ν̃µLν̃
∗
µR

+

(
f5v2f

′∗
1√

2
− f2v1f

∗
3√

2

)
ÑLν̃

∗
τL +

(
f5v1f

∗
2√

2
− f ′1v2f

∗
3√

2

)
ÑRν̃

∗
τR
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+

(
h′1v2f

′∗
5√

2
− f ′3v1f

∗
2√

2

)
ÑLν̃

∗
µL +

(
f ′′5 v1f

∗
2√

2
− f ′′∗3 v2h

′
2√

2

)
ÑRν̃

∗
eR

+

(
h′∗2 v2f

′′
5√

2
− f ′′∗3 v1f2√

2

)
ÑLν̃

∗
eL +

(
f ′5v1f

∗
2√

2
− h′1v2f

′∗
3√

2

)
ÑRν̃

∗
µR

+f ′3f
∗
3 ν̃µLν̃τ∗L + f5f

′∗
5 ν̃µRν̃

∗
τR −

h′2µ
∗v1√
2

ν̃eLν̃
∗
eR

+f ′′3 f
∗
3 ν̃eLν̃

∗
τL + f5f

′′∗
5 ν̃eRν̃

∗
τR + f ′′3 f

′∗
3 ν̃eLν̃

∗
µL + f ′5f

′′∗
5 ν̃eRν̃

∗
µR +H.c.

}
. (34)

Similarly the mass terms arising from the D term are given by

−LD =
1

2
m2
Z cos2 θW cos 2β{ν̃τLν̃∗τL − τ̃Lτ̃ ∗L + ν̃µLν̃

∗
µL − µ̃Lµ̃∗L

+ν̃eLν̃
∗
eL − ẽLẽ∗L + ẼRẼ

∗
R − ÑRÑ

∗
R}

+
1

2
m2
Z sin2 θW cos 2β{ν̃τLν̃∗τL

+τ̃Lτ̃
∗
L + ν̃µLν̃

∗
µL + µ̃Lµ̃

∗
L + ν̃eLν̃

∗
eL + ẽLẽ

∗
L

−ẼRẼ∗R − ÑRÑ
∗
R + 2ẼLẼ

∗
L − 2τ̃Rτ̃

∗
R − 2µ̃Rµ̃

∗
R − 2ẽRẽ

∗
R}. (35)

In addition we have the following set of soft breaking terms

Vsoft = M̃2
τLψ̃

i∗
τLψ̃

i
τL + M̃2

χχ̃
ci∗χ̃ci

+M̃2
µLψ̃

i∗
µLψ̃

i
µL + M̃2

eLψ̃
i∗
eLψ̃

i
eL + M̃2

ντ ν̃
c∗
τLν̃

c
τL

+M̃2
νµ ν̃

c∗
µLν̃

c
µL + M̃2

νe ν̃
c∗
eLν̃

c
eL + M̃2

τ τ̃
c∗
L τ̃

c
L

+M̃2
µµ̃

c∗
L µ̃

c
L + M̃2

e ẽ
c∗
L ẽ

c
L + M̃2

EẼ
∗
LẼL + M̃2

NÑ
∗
LÑL

+εij{f1AτH i
1ψ̃

j
τLτ̃

c
L − f ′1AντH i

2ψ̃
j
τLν̃

c
τL

+h1AµH
i
1ψ̃

j
µLµ̃

c
L − h′1AνµH i

2ψ̃
j
µLν̃

c
µL

+h2AeH
i
1ψ̃

j
eLẽ

c
L − h′2AνeH i

2ψ̃
j
eLν̃

c
eL

+f2ANH
i
1χ̃

cjÑL − f ′2AEH i
2χ̃

cjẼL +H.c.} (36)

From LF,D and by giving the neutral Higgs their vacuum expectation values in Vsoft we can

produce the mass squared matrix M2
τ̃ in the basis (τ̃L, ẼL, τ̃R, ẼR, µ̃L, µ̃R, ẽL, ẽR). We label

the matrix elements of these as (M2
τ̃ )ij = M2

ij where

M2
11 = M̃2

τL +
v21|f1|2

2
+ |f3|2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
22 = M̃2

E +
v22|f ′2|2

2
+ |f4|2 + |f ′4|2 + |f ′′4 |2 +m2

Z cos 2β sin2 θW ,
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M2
33 = M̃2

τ +
v21|f1|2

2
+ |f4|2 −m2

Z cos 2β sin2 θW ,

M2
44 = M̃2

χ +
v22|f ′2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2 +m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
55 = M̃2

µL +
v21|h1|2

2
+ |f ′3|2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
66 = M̃2

µ +
v21|h1|2

2
+ |f ′4|2 −m2

Z cos 2β sin2 θW ,

M2
77 = M̃2

eL +
v21|h2|2

2
+ |f ′′3 |2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
88 = M̃2

e +
v21|h2|2

2
+ |f ′′4 |2 −m2

Z cos 2β sin2 θW ,

M2
12 = M2∗

21 =
v2f

′
2f
∗
3√

2
+
v1f4f

∗
1√

2
,

M2
13 = M2∗

31 =
f ∗1√

2
(v1A

∗
τ − µv2),

M2
14 = M2∗

41 = 0,M2
15 = M2∗

51 = f ′3f
∗
3 ,

M2∗
16 = M2∗

61 = 0,M2∗
17 = M2∗

71 = f ′′3 f
∗
3 ,M

2∗
18 = M2∗

81 = 0,M2
23 = M2∗

32 = 0,

M2
24 = M2∗

42 =
f ′∗2√

2
(v2A

∗
E − µv1),M2

25 = M2∗
52 =

v2f
′
3f
′∗
2√

2
+
v1h1f

∗
4√

2
,

M2
26 = M2∗

62 = 0,M2
27 = M2∗

72 =
v2f

′′
3 f
′∗
2√

2
+
v1h1f

′∗
4√

2
,M2

28 = M2∗
82 = 0,

M2
34 = M2∗

43 =
v2f4f

′∗
2√

2
+
v1f1f

∗
3√

2
,M2

35 = M2∗
53 = 0,M2

36 = M2∗
63 = f4f

′∗
4 ,

M2
37 = M2∗

73 = 0,M2
38 = M2∗

83 = f4f
′′∗
4 ,M2

45 = M2∗
54 = 0,M2

46 = M2∗
64 =

v2f
′
2f
′∗
4√

2
+
v1f

′
3h
∗
1√

2
,

M2
47 = M2∗

74 = 0,M2
48 = M2∗

84 =
v2f

′
2f
′′∗
4√

2
+
v1f

′′
3 h
∗
2√

2
,

M2
56 = M2∗

65 =
h∗1√

2
(v1A

∗
µ − µv2),M2

57 = M2∗
75 = f ′′3 f

′∗
3 ,M

2
58 = M2∗

85 = 0,M2
67 = M2∗

76 = 0,

M2
68 = M2∗

86 = f ′4f
′′∗
4 ,M2

78 = M2∗
87 =

h∗2√
2

(v1A
∗
e − µv2) (37)

Here the terms M2
11,M

2
13,M

2
31,M

2
33 arise from soft breaking in the sector τ̃L, τ̃R, the terms

M2
55,M

2
56,M

2
65,M

2
66 arise from soft breaking in the sector µ̃L, µ̃R, the termsM2

77,M
2
78,M

2
87,M

2
88

arise from soft breaking in the sector ẽL, ẽR and the terms M2
22,M

2
24, M

2
42,M

2
44 arise from soft

breaking in the sector ẼL, ẼR. The other terms arise from mixing between the staus, smuons
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and the mirrors. We assume that all the masses are of the electroweak size so all the terms

enter in the mass squared matrix. We diagonalize this hermitian mass squared matrix by

the unitary transformation D̃τ†M2
τ̃ D̃

τ = diag(M2
τ̃1
,M2

τ̃2
,M2

τ̃3
,M2

τ̃4
,M2

τ̃5
,M2

τ̃6
,M2

τ̃7
,M2

τ̃8
). For a

further clarification of the notation see [12]).
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