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Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA

TheγZ-box diagram for parity violating elastice-p scattering has recently undergone a thorough analysis by
several research groups. Though all now agree on the analytic form of the diagram, the numerical results differ
due to the treatment of the structure functions,FγZ

1,2,3(x,Q
2). Currently,FγZ

1,2,3(x,Q
2) at low Q2 andW 2 must be

approximated through the modification of existing fits to electromagnetic structure function data. We motivate
and describe the modification used to obtainFγZ

1,2(x,Q
2) in our previous work. We also describe an alternative

modification and compare the result to our original calculation. Finally, we present a new modification proce-
dure to acquireFγZ

3 (x,Q2) in the resonance region and calculate the axial contribution to theγZ-box diagram.
Details of these modifications will illuminate where discrepancies between the groups arise and where future
improvements can be made.

I. INTRODUCTION

Parity violating e-p scattering experiments performed at
momentum transfers away from theZ-pole are used to test
the Standard Model prediction of the running of sin2θW .
The Qweak experiment at Jefferson Lab [1] aims to perform
a 0.3% measurement of sin2θW at a momentum transfer of
Q2 = 0.026 GeV2. To obtain this desired precision, all radia-
tive corrections must be known to an even higher precision.
Up to one loop order, the weak charge of the proton at zero
momentum transfer is given by [2]

Qp
W = (1+∆ρ +∆e)

(

1−4sin2 θW (0)+∆′
e

)

+�WW +�ZZ +Re�γZ. (1)

Here,∆e and∆′
e are electron vertex corrections,∆ρ is the

W and Z mass renormalization, and 1−4sin2 θW (0) is the one
loop value of the weak mixing angle evaluated atQ2 = 0. The
WW andZZ box diagrams,�WW and�ZZ , are dominated by
large momentum exchange and can be calculated using pertur-
bative QCD. A different technique is required to calculate the
γZ-box diagram due to lowQ2 contributions. Gorchtein and
Horowitz [3] used a dispersion relation to evaluate theγZ-box
diagram at zero momentum transfer and obtained a result that
was larger than expected [2]. Sibirtsevet al. [4] used the same
technique and found an analytic result that was greater by a
factor of 2. This discrepancy inspired a third calculation [5]
that agreed with the Sibirtsevet al. result. After reevaluating
their work, Gorchteinet al. [6] confirmed the factor of 2. All
three groups now agree on the analytic form of theγZ-box.
The imaginary vector portion is

Im�
V
γZ(E) =

αem

(2ME)2

∫ s

W 2
π

dW 2

×
∫ Q2

max

0
dQ2 FγZ

1 (x,Q2)+AFγZ
2 (x,Q2)

1+Q2/M2
Z

, (2)

where

A =
(2ME)2−2ME(W 2−M2+Q2)−M2Q2

Q2(W 2−M2+Q2)
. (3)

In the above equationsM is the mass of the proton,E is
the lab energy of the incoming electron,s = M2 + 2ME,

W 2
π = (M +mπ)

2, mπ is the mass of the pion, andQ2
max =

(s−M2)(s−W 2)/s. The fine structure constantαem(Q2 = 0)
is used because the integral receives most of its support from
low Q2. The dispersion relation that relates Im�V

γZ to Re�V
γZ

is

Re�V
γZ(E) =

2E
π

∫ ∞

νπ

dE ′

E ′2−E2 Im�
V
γZ(E

′) (4)

whereνπ = (W 2
π −M2)/2M.

The Qweak experiment ran at an incoming electron energy
of E = 1.165 GeV. Table I shows the numerical Re�

V
γZ re-

sults obtained by each group at this energy. The differences
occur because of the models used for theFγZ

1,2 structure func-
tions. Currently, there are no data for these structure func-
tions at lowQ2 andW 2 and each group performed calcula-
tions using their own modifications to electromagnetic struc-
ture functions. The PVDIS experiment [8] at Jefferson Lab
has several data points for the deuteron’sFγZ

1,2,3 in the reso-
nance region. These data will be insufficient to produce a
model-independent fit, but provide a first step in testing the
validity of the modifications [9].

TABLE I: Re�V
γZ ×103 evaluated at E = 1.165 GeV.

Sibirtsevet al. [4] 4.7+1.1
−0.4

Rislow and Carlson [5] 5.7±0.9

Gorchteinet al. [6] 5.4±2.0

Hall et al. [7] 5.60±0.36

The axial contribution to theγZ-box has also recently un-
dergone analysis. The axial contribution to Im�γZ is

Im�
A
γZ(E) =

1
(2ME)2

∫ s

M2
dW 2

×
∫ Q2

max

0
dQ2αem(Q

2)
ge

V (Q
2)

ge
A

BFγZ
3 (x,Q2)

1+Q2/M2
Z

, (5)

where

B =
2ME

W 2−M2+Q2 −
1
2
. (6)
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TABLE II: Re�A
γZ ×103 evaluated at E = 1.165 GeV.

Blundenet al. [10] 3.7±0.4

This Work 4.0±0.5

The weak couplings for the electron are given byge
V = T 3

e −
2Qesin2θW (Q2), andge

A = T 3
e . The axial integral receives sup-

port from highQ2 and we allow bothαem and sin2 θW to run.
The dispersion relation that relates Im�A

γZ to Re�A
γZ is

Re�A
γZ(E) =

2
π

∫ ∞

νπ
dE ′ E ′

E ′2−E2 Im�
A
γZ(E

′). (7)

Blundenet al. [10] obtained axial results of the same order
of magnitude as Re�V

γZ. Repeating a similar analysis we have

also calculated Re�A
γZ . The two results for the axial contri-

bution at theQweak energy are reported in Table II. As with
the Re�V

γZ calculation, differences between the axial results
occur because of the structure function treatment.

The goal of our paper is to describe our modifications to the
electromagnetic structure functions. In Section II we present
the steps taken to obtainFγZ

1,2 in the resonance region. We fo-
cus attention on this region since most of the support for the
vectorγZ-box integral comes from lowQ2. These steps were
not described in detail in our previous work and will allow a
more thorough assessment of our Re�

V
γZ calculation. In Sec-

tion III we describe an alternative modification for obtaining
FγZ

1,2 in the resonance region. This modification is similar to
the one used by Gorchteinet al. [6] and the close agreement
to our original Re�V

γZ result suggests both modifications are
equally valid, at least for theQweak kinematics. In Section
IV we present our calculation ofFγZ

3 in the resonance region

that parallels the analysis of Section II. We compareFγZ
3 and

Re�A
γZ values to those obtained by Blundenet al. Concluding

remarks are contained in Section V.

II. MODIFICATION OF THE STRUCTURE FUNCTIONS
Fγγ

1,2(x,Q
2)→ FγZ

1,2(x,Q
2) IN THE RESONANCE REGION.

In our previous work we modified the Christy and Bosted
fit to electromagnetic data [11] in the the resonance regionQ2

< 8 GeV2 and W< 2.5 GeV. Their fits forFγγ
1 , σT , andσL

account for the contributions of seven resonances as well asa
smooth background. Their description and computer code for
their fit allowed us to separately modify the resonances and
the background.

To obtain the resonance part ofFγγ
1 , Christy and Bosted

sum the contribution of each resonance,Fγγ
1 |res. The reso-

nance part ofFγZ
1 can be calculated by modifying the summa-

tion by the insertion of corrective prefactors:

FγZ
1 = ∑

res
Cres ×Fγγ

1 |res. (8)

The prefactors are simply a ratio of structure functions for

each of the resonances,

Cres =
FγZ

1

Fγγ
1

∣

∣

∣

∣

res
. (9)

We next convertCres into a ratio of helicity amplitudes. Fol-
lowing the normalization of the Particle Data Group [12], the
resonant parts of these structure functions can be expressed as
a product of the polarization vector,εµ

+ = 1/
√

2(0,−1,−i,0),
and hadronic tensors:

Fγγ(γZ)
1

∣

∣

∣

res
= εµ∗

+ εν
+W γγ(γZ)

µν

= (2)∑
λ

∫

d4zeiqz〈N,s
∣

∣ε∗+ · Jγ(Z,V )†(z)
∣

∣res,λ
〉

×
〈

res,λ
∣

∣ε+ · Jγ(0)
∣

∣N,s
〉

, (10)

whereN is a nucleon,λ ands are the spin projections of the
resonance and nucleon, respectively, andγ (Z,V) is the elec-
tromagnetic (neutral vector) current. The factor of 2 is present
in γZ-exchange to account for the different orderings.

The above amplitudes can be evaluated by considering
ε+ · J as a quark operator embedded betweenSU(6) wave
function representations of the nucleon and resonances [13].
This operator ignores the spatial wave functions,ψ , and acts
only on the flavor,φ , and spin,χ , wave functions. Because the
colorless portion of the total hadronic wave function is sym-
metric, we are free to operate only on the third components of
φ andχ and multiply the result by three. The amplitude can
be expressed as

〈

res,λ
∣

∣ε+ · Jγ(Z,V )
∣

∣N,s
〉

= 3〈ψresφresχλ
∣

∣e(3)q
(

gq(3)
V

)

ūk′,λ ′ε+ · γuk,s′
∣

∣ψNφN χs〉,
(11)

wherek (k′) ands′ (λ ′) are the initial (final) momentum and
spin projection for the struck quark. The superscript (3) over
the quark electromagnetic and weak vector couplings,eq and
gq

V , indicates that the operators are acting only on the third
quark.

Using unit normalized quark spinors,

up,s =

√

E +mq

2mq

(

ξs
~σ ·~p
2mq

ξs

)

, (12)

and choosing a frame where the gauge boson is propagating
in the z-direction, the current reduces to

ūk′,λ ′ε+ · γuk,s′ =

√
2

2mq
ξ †

λ ′ [P++ qzS+]ξs′ , (13)

wheremq is the constituent quark mass,P+ = k1+ ik2, S+ =
1/2(σ1+ iσ2), qz is the momentum of the boson, andξs are
the usual two spinors. The Wigner-Eckart Theorem allows
us to calculate a matrix element ofP+ as a constant times a
matrix element ofL+.

After absorbing the spatial and momentum information, as
well as the quark mass coefficient, into parameters A and B,
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Eq.(10) becomes

Fγγ(γZ)
1

∣

∣

∣

res
=

3〈ψNφN χs
∣

∣e(3)q
(

2gq(3)
V

)

[AL++BS+]
†
∣

∣ψresφresχλ 〉
×3〈ψresφresχλ

∣

∣e(3)q [AL++BS+]
∣

∣ψNφN χs〉. (14)

In terms of helicity amplitudes,

Fγγ(γZ)
1

∣

∣

∣

res
= Aγ

λ (2AZ
λ )

×Aγ
λ . (15)

where the helicity amplitudes are given by

Aγ
λ (2AZ

λ ) = 3〈ψNφN χs
∣

∣e(3)q
(

2gq(3)
V

)

[AL++BS+]
†
∣

∣ψresφresχλ 〉,
(16)

andλ is the spin projection of the resonance along the direc-
tion of the gauge boson momentum,γ(Z) is the exchanged
boson.

The prefactor can now be expressed as

Cres = 2
∑λ Aγ

λ AZ
λ

∑λ (A
γ
λ )

2
. (17)

In general, to calculate these amplitudes we operated the
Hamiltonian on theSU(6) spatial (ψ), flavor (φ ), and spin
(χ) wave functions of protons and resonances described by
Close [13]. As examples, the proton andD13(1520) resonance
are members of the(28,56) and (28,70) multiplets respec-
tively and can be written as

|28,56〉= 1√
2

ψS
L=0,LZ=0

(

φM,SχM,S
SZ=±1/2+φM,AχM,A

SZ=±1/2

)

(18)

|28,70〉= ∑
JZ=SZ+LZ

〈J = 3/2 JZ |LLZ ,SSZ〉

× 1
2

[

ψM,S
LLZ

(

φM,SχM,S
SZ

−φM,AχM,S
SZ

)

+ψM,A
LLZ

(

φM,SχM,A
SZ

+φM,AχM,S
SZ

)]

. (19)

M,(A)S indicates a wave function with two elements that are
(anti)symmetric.

Inserting the Hamiltonian into the proton toD13(1520) he-
licity amplitudes gives

Aγ(Z)
λ=1/2 = 3× e(3)q

(

gq(3)
V

)

〈ψresφresχ+1/2

∣

∣[AL++BS+]
∣

∣ψNφN χs〉

=
1√
6

(

−A10

[

eu(g
u
V )− ed(g

d
V )
]

−
√

2B10

[

5
3

eu(g
u
V )+

1
3

edgd
V )

]

)

(20)

and

Aγ(Z)
λ=3/2 = 3× e(3)q

(

gq(3)
V

)

〈ψresφresχ+3/2

∣

∣[AL++BS+]
∣

∣ψNφN χs〉

=− 1√
2

A10

[

eu(g
u
V )− ed(g

d
V )
]

, (21)

The subscripts ofA10 andB10 indicate the angular momentum
dependence of the resonance’s wave function.

ObtainingA10 andB10 without relying on hadronic wave
function requires additional phenomenological information.
Data for both of theD13(1520) andF15(1680) resonances [14,
15] show that the polarization ratio

A =
|Aγ

1/2|2−|Aγ
3/2|2

|Aγ
1/2|2+ |Aγ

3/2|2
(22)

is close to−1 for photoproduction, and approaches+1
at higher Q2 as theAγ

1/2 amplitude dominates (in accord
with perturbative QCD). Looking at the expressions for the
D13(1520), we conclude that

A10(Q
2 = 0) =−

√
2B10(Q

2 = 0) (23)

and expectingAγ
1/2 to dominate by a power ofQ2 at highQ2,

we choose a form with the correct limits

A10(Q2)

B10(Q2)
=−

√
2 f1(Q

2) =−
√

2
1

1+Q2/Λ2
1

. (24)

We can now expressA10 in terms of f1 andB10. Substitut-
ing this new value ofA10 into Eqs. (20) and (21) leads to the
prefactor ofD13(1520):

CD13 =
(1

3 − f1)(1− f1)+3 f 2
1

(1− f1)2+3 f 2
1

+Qp,LO
W , (25)

whereQp,LO
W = 1−4sin2 θW (0). A parallel analysis gives

CF15 =
2
3(1− f2)

(1− f2)2+2 f 2
2

+Qp,LO
W . (26)

We usedΛ2
1 = Λ2

2 = 0.2 GeV2 in [5]. As a check, we can
compare our fits constructed using Close’s analysis with am-
plitude fits from Mainz (MAID) [16]. Better agreement can be
obtained by settingΛ2

1 = 0.256 GeV2 andΛ2
2 = 0.635 GeV2,

but this more thorough analysis does not change the overall
Re�V

γZ result by more than half a percent.
Table III summarizes the helicity amplitudes and prefactors

for each resonance in the Christy and Bosted fit. The Roper
resonance,P11(1440), belongs to the same multiplet as the
proton. AL+ does not contribute to the amplitude since both
the Roper and proton have zero orbital angular momentum.
Consequently, the amplitude is only proportional toB00 and
the Roper prefactor isQ2-independent. For resonances with
non-zero orbital angular momentum,Cres is Q2-dependent.
The twoS11 states belong to the sameSU(6) multiplet as the
D13(1520), so A10 andB10 are the same for all three states,
for valid SU(6) symmetry. TheS11 states can mix. We have
written above the results for the unmixed case. The unmixed
γ p amplitude for theS11(1650) is zero when the values of the
quark charges are inserted; this is the Moorhouse selection
rule [17]. If we neglect this amplitude also for theZ-boson
case, the amplitude listed for theS11(1535) gives a ratio

CS11 =
1
3 +2 f1
1+2 f1

+Qp,LO
W . (27)
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Electroproduction of theS11(1650) occurs because of mixing
with the bareS11(1535), and the above ratio is the same for
both theS11’s. We have checked that including mixing makes
little numerical difference.

Cres for I = 3/2 resonances are calculated by considering
only the∆I = 1 portion of the current. This term is propor-
tional to (eu − ed). By substituting vector charges,Cres for
I = 3/2 resonances is found to be(1+Qp,LO

W ).
The Christy-Bosted fit lies within 3% of nearly all electro-

magnetic data points. Our modification undoubtedly increases
the uncertainty. To be conservative we estimated our modifi-
cations increased the uncertainty to 10%.

The Christy-Bosted fit also accounts for a smooth back-
ground. To model theγZ-box background we considered two
limiting cases. In the low x limit, the light quark distributions
are expected to be equal and the corrective coefficient is

Cbkgd |x→0 =
∑q=u,d,s 2eqgq

V fq(x)

∑q=u,d,s(eq)2 fq(x)
= 1+Qp,LO

W . (28)

In the limit where there are only valence quarks

Cbkgd |valence quarks=
∑q=u,u,d 2eqgq

V fq(x)

∑q=u,u,d(eq)2 fq(x)
=

2
3
+Qp,LO

W . (29)

We used these limits as error bounds and their average as the
background correction. Approximately half of the total con-
tribution to Re�V

γZ from the Christy-Bosted fit is due to this
background modification.

Fγγ
2 is related toFγγ

1 by

Fγγ
2 =

Q2

p ·q

(

1+
σL

σT

)

Fγγ
1

1+ M2Q2

(p·q)2
. (30)

We substitutedFγZ
1 into the above expression to obtainFγZ

2 .
We also assumed the modifications were the same for both the
transverse and longitudinal cross sections.

Bosted and Christy [18] also have a fit for deuteron and
neutron electromagnetic data which we used to modify the
deuteron structure functions in [9]. The corrective ratiosfor
the deuteron resonances are listed in Table III. Following the
above analysis for the proton background, the limits to the
deuteron background are 1+Qp,LO

W and 4/5+Qp,LO
W .

III. ALTERNATIVE MODIFICATION OF
Fγγ

1,2(x,Q
2)→ FγZ

1,2(x,Q
2) IN THE RESONANCE REGION

The corrective prefactors for the Christy-Bosted fit can be
modeled using a different technique. The vector contribution
to the Z-boson transition amplitudes can be isospin rotated
into a sum of electromagnetic transition amplitudes,pγ → N∗

p
andnγ → N∗

n . Neglecting strange quark contributions, these
amplitudes are

〈N∗
p|J

γ(Z,V )
µ |p〉= eu(g

u
V )〈N∗

p|ūγµu|p〉+ ed(g
d
V )〈N∗

p |d̄γµd|p〉
(31)

and

〈N∗
n |J

γ
µ |n〉= eu〈N∗

n |ūγµu|n〉+ ed〈N∗
n |d̄γµd|n〉. (32)

After performing an isopin rotation the neutron amplitude be-
comes

〈N∗
n |J

γ
µ |n〉= eu〈N∗

p|d̄γµd|p〉+ ed〈N∗
p |ūγµ u|p〉. (33)

Further algebra on these amplitudes reveals

〈N∗
p|JZ,V

µ |p〉= 1
2
(1−4sin2θW (0))〈N∗

p |J
γ
µ |p〉−

1
2
〈N∗

n |J
γ
µ |n〉.

(34)
Cres can now be written as

Cres = Qp,LO
W − ∑λ Aγ,p

λ Aγ,n
λ

∑λ (A
γ,p
λ )2

(35)

Here,p andn identify the nucleon as a proton or neutron, re-
spectively. Gorchteinet al. [6] constructed theirCres expres-
sions using photoproduction amplitudes listed in the Particle
Data Group [12]. Thus, their corrective prefactors lackQ2-
dependence. To account for the amplitudes’Q2-dependence,
fits from MAID [16] can also be used.

Fig. 1 shows Re�V
γZ calculated using both the quark model

and MAID treatments of the structure functions. Better agree-
ment between MAID and the quark model was naively ex-
pected as the MAID fits were used to parameterizeΛ2

1,2. The
overall smaller value for Re�V

γZ calculated by MAID is al-
most entirely due to the Roper resonance. For the Roper, the
quark model calculates a constant corrective prefactors while
the MAID ratio rapidly approachesQp,LO

W as Q2 increases.
The differences in the Roper resonance corrective prefactors
were also the primary cause for the different deuteron asym-
metry predictions in [9].

Another notable feature of Fig. 1 is that Re�
V
γZ hardly

changes when the corrective ratios are calculated using PDG
photoproduction amplitudes in place of theQ2-dependent
quark model. Re�V

γZ calculated using the quark model also
remains relatively unchanged when using different values for
Λ2

1,2 values. Both features are due to lowQ2 values domi-
nating the integral. Indeed, an analysis of the integral indi-
cates that the meanQ2 value is 0.4 GeV2. In applications with
higherQ2, such as the calculation of the deuteron asymmetry
in [9], the quark model and photoproduction corrective pref-
actors give quite different values.

It is important to note that Gorchteinet al. [6] do not use
the Christy-Bosted background in their analysis. For the back-
ground they instead use the average of two Generalized Vector
Dominance (GVD) models [19, 20], isospin rotated for appli-
cation to theγZ-box and extrapolated down to the resonance
region. This averaging is the largest source of uncertaintyfor
the Gorchteinet al. calculation. Recently, it has been claimed
that this background uncertainty has been overestimated [7].



5

TABLE III: The seven Christy-Bosted resonances along with their electromagnetic helicity amplitudes along and corresponding corrective
prefactors for both the proton and deuteron. The (pZ → N∗

p) helicity amplitudes are calculated by substitutingeq → gq
V = T 3

q −2eqsin2θW .

The (nγ → N∗
n ) and (nZ → N∗

n ) helicity amplitudes are calculated by exchangingeu ↔ ed andgu
V ↔ gd

A, respectively, in the proton analysis.
The corrective prefactor for the background is also included.

resonance proton electroproduction amplitudes Cp
res Cd

res

P33(1232) Aγ
1/2 ∝ (eu −ed) 1+Qp,LO

W 1+Qp,LO
W

S11(1535) Aγ
1/2 =

1√
6

(√
2A10(eu −ed)−B10

(

5
3eu +

1
3ed

))

1/3+2 f1
1+2 f1

+Qp,LO
W 2 (1+2 f1)(1/3+2 f1)

(1+2 f1)2+(1/3+2 f1)2 +Qp,LO
W

D13(1520)
Aγ

1/2 =
1√
6

(

A10(eu −ed)+
√

2B10

(

5
3eu +

1
3ed

))

(1− f1)(1/3− f1)+3 f 2
1

(1− f1)2+3 f 2
1

+Qp,LO
W

2(1− f1)(1/3− f1)+6 f 2
1

(1− f1)2+(1/3− f1)2+6 f 2
1
+Qp,LO

W
Aγ

3/2 =
1√
2

A10(eu −ed)

F15(1680)
Aγ

1/2 =
√

2
5A20(2eu +ed)+

√

3
5B20

( 4
3eu − 1

3ed
)

2/3(1− f2)
(1− f2)2+2 f 2

2
+Qp,LO

W 4 1− f2
3(1− f2)2+6 f 2

2+4/3
+Qp,LO

W
Aγ

3/2 =
2√
5

A20(2eu +ed)

S11(1650) Aγ
1/2 =−

√

2
27B10(eu +2ed)

1/3+2 f1
1+2 f1

+Qp,LO
W 2 (1+2 f1)(1/3+2 f1)

(1+2 f1)2+(1/3+2 f1)2 +Qp,LO
W

P11(1440) Aγ
1/2 = B00

( 4
3eu − 1

3ed
)

2/3+Qp,LO
W 12/13+Qp,LO

W

F37(1950) Aγ
1/2 ∝ (eu −ed) 1+Qp,LO

W 1+Qp,LO
W

Background 5
6 +Qp,LO

W
9
10 +Qp,LO

W
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FIG. 1: Re�V
γZ as a function of incoming electron energy. The black

curve is the result from our previous work and uses helicity ampli-
tudes given by the quark model. The blue, dot dashed curve is the
result using corrective ratios from the PDG. The red, dashedline is
the result from using corrective ratios constructed with MAID helic-
ity amplitudes. The dashed, vertical line indicates the energy of the
Qweak experiment. All three models use the same modifications for
isospin 3/2 resonances and the smooth background.

IV. MODIFICATION OF STRUCTURE FUNCTION
Fγγ

3 (x,Q2)→ FγZ
3 (x,Q2) AND THE CALCULATION OF

Re�A
γZ

Blundenet al. [10] split their Re�A
γZ analysis into elastic

(W 2 = M2), resonance (W 2
π ≤ W 2 ≤ 4 GeV2), and deep in-

elastic scaling (W 2 > 4 GeV2) regions. To allow for an easier
comparison between our analysis and theirs, we used the same
energy regions.

As previously mentioned, the averageQ2 value within the
Re�V

γZ integral is about 0.4 GeV2. In contrast, the averageQ2

value within the Re�A
γZ integral is about 80 GeV2. Thus, the

axial contribution to theγZ-box diagram is less sensitive to
the modifications of the structure functions in the resonance
region. Because the axial box integral, Eq.(5), receives strong
support from highQ2, we follow the example of Blundenet
al. and use one loop running values ofα(Q2) and sin2 θW (Q2)
in its evaluation. Both running values are calculated in theMS
renormalization scheme.

In the scaling regionFγZ
3 can be directly calculated using

parton distribution functions

FγZ
3 (x,Q2) =∑

q
2eqgq

A

(

q(x,Q2)− q̄(x,Q2)
)

. (36)

Blundenet al. use PDFs from [21]. We chose PDFs given by
CTEQ [22]. CTEQ’s uncertainty for the up quark is about 5%
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and 10% for the down quark. To once again be conservative,
we considered a 10% uncertainty for this fit.

ForQ2 < 1 GeV2 andW 2 > 4, we used the Model I modifi-
cation to the PDFs discussed by Blundenet al., with Λ2 = 0.7
GeV2 andQ2

0 = 1 GeV2. Blundenet al. found an uncertainty
of 10% in this fit by varyingΛ2 within a reasonable range. For
the elastic contribution, we also follow the technique usedby
Blundenet al. [10].

The most significant departure from the Blundenet al. anal-
ysis is in the resonance region. In this region Blundenet al.
constructedFγZ

3 using axial current parameters of Lalakulich
et al. [23]. Lalakulichet al. obtained their parameters through
a PCAC analysis of pionic decays of baryons. Their fit ac-
counts for four resonances but makes no attempt at estimating
a smooth background, defering the determination of its form
to future experiments. As an aside, Lattice QCD calculations
have reached a sufficient level of accuracy to calculate axial
form factors [24, 25].

Instead of repeating the Blundenet al. resonance region
analysis, we constructedFγZ

3 by once again modifying the
Christy-Bosted fit. Not only does this modification provide
a smooth background, it also accounts for three more reso-
nances. In our analysis of the resonance region we repeated
the technique outlined in Sec. II. In the non-relativistic limit,
|~k|<< mq, the axial current becomes

ū(k′,λ ′)ε+ · γγ5u(k,s′) =
√

2ξ †
λ ′S+ξs′ . (37)

Continuing the use of the parameters in Sec. II,FγZ
3 can be

expressed as

FγZ
3

∣

∣

∣

N→res
=

3
2ν
qz

〈ψNφN χs
∣

∣

(

2gq(3)
A

)

[

2mq

qz
BS+

]†
∣

∣ψresφresχλ 〉

×3〈ψresφresχλ
∣

∣e(3)q [AL++BS+]
∣

∣ψNφN χs〉, (38)

whereν is the energy of the exchanged boson. For our cal-
culation we took the mass of the struck quarkmq to be 0.3
GeV. Table IV summarizes the corrective prefactors to obtain
FγZ

3 . As with the corrective prefactors forFγZ
1,2, we estimate

the uncertainty of theFγZ
3 prefactors to be 10%.

The smooth background is once again modified by taking
the low x and valence quark limits. For low x, a quark and
anti-quark are equally likely to be struck. Thus,

Cbkgd |x→0 =
∑q=u,d,s 2eqgq

A fq(x)
1
2 ∑q=u,d,s(eq)2 fq(x)

= 0. (39)

In the limit where valence quarks are equally likely to be
struck

Cbkgd |valence quarks=
∑q=u,u,d 2eqgq

A fq(x)
1
2 ∑q=u,u,d(eq)2 fq(x)

=
10
3
. (40)

These limits were taken as the uncertainty bounds and their
average as the modification for the smooth background.

Black= Elastic
Blue= Model I

Red= Resonance
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FIG. 2: Elastic (black, solid curve), resonance (red, dashed curve),
and model I (blue, dot dashed curve) contributions to the axial box.

Vector+ Axial

Axial

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.002

0.004

0.006

0.008

0.010

0.012

ELab HGeVL

R
e
�
Γ
ZA
HE

La
bL

FIG. 3: The axial box. We also add the axial box to our previous
vector calculation [5] to obtain the total box. The dashed, vertical
line indicates the energy of theQweak experiment.

We also calculatedFγZ
3 for the deuteron in [9]. The correc-

tive ratios for the deuteron resonances are listed in Table IV.
Following the above analysis for the proton background, the
limits to the deuteron background are 0 and 18/5.

Figs. 2 and 3 display the results for Re�
A
γZ . As can be seen,

the scaling region dominates. At theQweak energy, Re�A
γZ =

0.0040±0.0005.

V. CONCLUSIONS

Adding the axial box to our original vector box calcula-
tion [5], our constituent quark model yields a totalγZ-box
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TABLE IV: The seven Christy-Bosted resonances along with their axial helicity amplitudes and corrective prefactors for both the proton and
deuteron. The neutron amplitude is calculated by exchanging gu

A ↔ gd
A.

resonance proton axial current amplitudes Cp
res Cd

res

P33(1232) AZ,A
1/2 ∝ (gu

A −gd
A)

4mqν
q2

z
24mqν

q2
z

24mqν
q2

z

S11(1535) AZ,A
1/2 =− 1√

6
B10

(

5
3gu

A +
1
3gd

A

)

4mqν
q2

z

1
3(2 f1+1)

16mqν
3q2

z

(1+2 f1)+(1/3+2 f1)
(1+2 f1)2+(1/3+2 f1)2

16mqν
3q2

z

D13(1520)
AZ,A

1/2 =
√

2
6B10

(

5
3gu

A +
1
3gd

A

)

4mqν
q2

z
1− f1

( f1−1)2+3 f 2
1

16mqν
3q2

z

(1− f1)−( f1−1/3)
(1− f1)2+( f1−1/3)2+6 f 1

1

16mqν
3q2

z
AZ,A

3/2 = 0

F15(1680)
AZ,A

1/2 =
√

3
5B20

( 4
3gu

A − 1
3gd

A

) 4mqν
q2

z
(1− f2)

(1− f2)2+2 f 2
2

20mqν
3q2

z

(1− f2)+2/3
(1− f2)2+2 f 2

2+4/9
20mqν

3q2
z

AZ,A
3/2 = 0

S11(1650) Aγ
1/2 =−

√

2
27B10

(

gu
A +2gd

A

) 4mqν
q2

z

1
3(2 f1+1)

16mqν
3q2

z

(1+2 f1)+(1/3+2 f1)
(1+2 f1)2+(1/3+2 f1)2

16mqν
3q2

z

P11(1440) AZ,A
1/2 = B00

( 4
3gu

A − 1
3gd

A

) 4mqν
q2

z

20mqν
3q2

z

100mqν
13q2

z

F37(1950) AZ,A
1/2 ∝ (gu

A −gd
A

4mqν
q2

z
24mqν

q2
z

24mqν
q2

z

Background 5
3

9
5

value of

Re�γZ(E = 1.165 GeV)|total = (9.7±1.4)×10−3. (41)

The errors from both the axial and vector calculations were
added directly. If added in quadrature, the uncertainty reduces
to 1×10−3.

The totalγZ-box value from Blundenet al. [10] is

Re�γZ(E = 1.165 GeV)|total = (8.4+1.1
−0.6)×10−3. (42)

These two calculations are in agreement within uncertain-
ties. Each calculation also has error bounds below the error
budget of theQweak experiment.

The question remains which calculations theQweak collabo-
ration should use in their analysis. The disagreement between
the various calculations is largely due to the treatment of the
γZ structure functions in the resonance region. We believe
the collaboration will be equally well-served by either Re�

A
γZ

calculation. Re�A
γZ is not very sensitive to the resonance re-

gion modifications since its integrals get much of their support
from highQ2. FγZ

3 in the scaling region can be constructed us-
ing fits to parton distribution data.

Which Re�V
γZ calculation to use is more open to debate.

The vector integrals receive much of their support from the
resonance region and are thus sensitive to the modification
Fγγ

1,2 → FγZ
1,2. In Sec. III we showed that there is little differ-

ence between modifying the Christy-Bosted resonance fits us-
ing our constituent quark model [5] or photoproduction am-

plitudes from the Particle Data Group (as in [6]). Differ-
ences arise between [5] and [6] because of the treatments of
the resonance region background. We continue modifying the
Christy-Bosted background fit while Gorchteinet al. modify
two GVD fits to low Q2, highW 2 data and extrapolate them
down to the resonance region. We believe our modification is
more satsifactory since it does not involve any extrapolations.
We cannot comment on the vector calculation of [4] since they
provide few details of their model.
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