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Abstract

We present a comprehensive analysis of γZ interference corrections to the weak charge of the

proton measured in parity-violating electron scattering, including a survey of existing models and

a critical analysis of their uncertainties. Constraints from parton distributions in the deep-inelastic

region, together with new data on parity-violating electron scattering in the resonance region,

result in significantly smaller uncertainties on the corrections compared to previous estimates. At

the kinematics of the Qweak experiment, we determine the γZ box correction to be <e�VγZ =

(5.60 ± 0.36) × 10−3. The new constraints also allow precise predictions to be made for parity-

violating deep-inelastic asymmetries on the deuteron.
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I. INTRODUCTION

Modern low-energy experiments at the precision frontier provide important alternatives

to high-energy tests of the Standard Model currently being performed at the Large Hadron

Collider (for recent reviews, see Refs. [1–3]). One such experiment is the parity-violating

(PV) elastic electron–proton scattering measurement that was recently carried out by the

Qweak collaboration at Jefferson Lab [4], which aims to determine the proton’s weak charge

Qp
W to within 4%. At tree level, the weak charge is related to the weak mixing angle, sin2 θW ,

by Qp
W = 1 − 4 sin2 θW . By scattering low-energy polarized electrons from an unpolarized

hydrogen target, Qweak measured the asymmetry between the cross sections for right- and

left-handed electrons,

APV =
σ+ − σ−
σ+ + σ−

, (1)

where σλ is the cross section for a right-hand (helicity λ = +1) or left-hand (helicity λ = −1)

electron. At small four-momentum transfer squared t, the asymmetry is related to Qp
W by

[5]

APV =
GF

4πα
√

2
tQp

W , (2)

where GF is the Fermi constant and α is the fine structure constant. Including radiative

corrections, the proton’s weak charge can be written as [6]

Qp
W = (1 + ∆ρ+ ∆e)

(
1− 4 sin2 θW (0) + ∆

′

e

)
+�WW +�ZZ +�γZ(0), (3)

where sin2 θW (0) is the weak mixing angle at zero momentum, and the correction terms ∆ρ,

∆e and ∆
′
e are well understood and have been computed to sufficient levels of precision [6].

Similarly, the work of Refs. [7–9] has established that the electroweak box diagrams �WW

and �ZZ are known within Qweak uncertainty limits.

Until recently it was also believed that the interference γZ contribution, illustrated in

Fig. 1, was known to sufficient accuracy for the Qweak experiment. This correction is defined

in terms of the electroweak amplitudes as [10]

�γZ(0) = Qp
W

<e
(
M∗

γM
(PV)
γZ

)
<e
(
M∗

γM
(PV)
Z

) , (4)
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FIG. 1: Interference γZ box (left) and crossed box (right) diagrams. The wavy and dashed lines

represent the exchanged γ and Z bosons, with the electron, hadron and virtual photon momenta

labeled by k, p, and q, respectively.

whereMγ is the electromagnetic Born amplitude,M(PV)
Z is the parity-violating part of the

Born Z exchange amplitude, and M(PV)
γZ is the parity-violating part of the γZ interference

amplitude (including the contributions with the γ and Z interchanged). A groundbreaking

contribution was made by Gorchtein and Horowitz [11], who showed, using a dispersion

relations approach, that the �γZ term was strongly energy dependent and was much larger

at Qweak energies (∼ 1 GeV) than previous estimates had assumed [6]. More importantly,

the uncertainty on this correction was such that it could significantly affect the precision

aims of the Qweak measurement.

Subsequent analyses by Sibirtsev et al. [12] and Rislow and Carlson [13] generally agreed

with the overall scale of the correction found in Ref. [11], but disputed the magnitude of the

uncertainties. In a follow-up study, Gorchtein et al. [14] performed a more detailed analysis

of the model dependence of the �γZ contribution, correcting several errors from the original

analysis [11], but still quoted uncertainties twice as large as those in Refs. [12, 13].

Since the interpretation of the Qweak results depends on having a sound understanding of

the �γZ correction, the lack of consensus about the magnitude of its uncertainty is obviously

problematic. To move beyond this impasse, in this paper we revisit this problem with the

aim of resolving the disagreements.

We begin our discussion by outlining in Sec. II the dispersion relation formalism used to

compute the γZ corrections in terms of γZ interference structure functions. The latter are

the main input into the calculations and are reviewed in detail in Sec. III. In particular,

we discuss the uncertainties in determining the γZ structure functions from electromagnetic

data for both the resonance and nonresonant background contributions. Constraints from

parton distribution functions in the deep-inelastic scattering (DIS) region and new data from
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the parity-violating electron–deuteron scattering experiment E08-011 at Jefferson Lab [15]

in the resonance region are used in Sec. IV to limit the uncertainty range in models for the

γZ structure functions, and to provide more reliable bounds on the box corrections. The

resulting �VγZ correction is presented in Sec. V, where we contrast the revised uncertainties

with those estimated in previous unconstrained analyses. Predictions are also made for

parity-violating deuteron asymmetries in the deep-inelastic region, as well as for the recently

completed inelastic measurement by the Qweak collaboration [16]. Finally, we draw some

general conclusions from this analysis in Sec. VI and explore possibilities to further reduce

the uncertainties on the γZ corrections in the future.

II. DISPERSIVE ANALYSIS OF PARITY-VIOLATING ELECTRON-HADRON

SCATTERING

The γZ interference correction �γZ can be decomposed into two parts, arising from the

vector electron—axial vector hadron coupling to the Z boson (�AγZ), and from the axial

vector electron—vector hadron coupling to the Z (�VγZ),

�γZ(E) = �AγZ(E) + �VγZ(E). (5)

At very low energies, such as those relevant for atomic parity violation experiments [17,

18], the �AγZ term dominates, while the contribution from the �VγZ is negligible. At the

energy of the Qweak experiment, however, both terms provide significant contributions. The

�AγZ corrections were first computed some time ago by Marciano and Sirlin [7, 8] and were

updated recently within a dispersion relation framework by Blunden et al. [19, 20], with

reduced errors. The vector hadron correction, �VγZ , which is subject to significantly larger

uncertainty, will be the focus of the rest of this analysis. We will consider only the inelastic

contribution to �γZ ; the elastic contribution has previously been considered in Refs. [7, 8,

21, 22] and is strongly suppressed by an additional factor Qp
W .

For forward scattering, the dispersion relation for the real part of �VγZ is given by

<e�VγZ(E) =
2E

π
P
∫ ∞

0

dE ′
1

E ′2 − E2
=m�VγZ(E ′), (6)

where P denotes the principal value integral, and we have used the fact that �VγZ is odd

under the interchange E ′ ↔ −E ′. From the optical theorem, the imaginary part of the PV
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γZ exchange amplitude can be written as [10–12]

2=mM(PV)
γZ = −4

√
2πMGF

∫
d3k′

(2π)32Ek′

(
4πα

Q2

)
1

1 +Q2/M2
Z

LγZµν W
µν
γZ , (7)

where Q2 = −q2 represents the virtuality of the exchanged boson, and the integration

variable k′ = k − q. The γZ lepton tensor is given by

LγZµν = ū(k, λ) (geV γµ − geAγµγ5) 6k′ γν u(k, λ), (8)

where the vector and axial-vector couplings of the electron to the weak current are geV =

−(1− 4 sin2 θW )/2 and geA = −1/2, respectively, and λ is the lepton helicity. The hadronic

tensor for a nucleon initial state is defined as

W µν(p, q) =
1

2M

∑
X

〈N(p)|Jµ(0)|X(pX)〉〈X(pX)|Jν(0)|N(p)〉(2π)3δ(4)(q + p− pX), (9)

where Jµγ and JµZ are the electromagnetic and weak neutral currents, respectively, and pX

is the four-momentum of the hadronic intermediate state X. Using isospin symmetry, the

matrix elements of the vector component of the Z current for a proton target can be related

to the proton and neutron matrix elements of the electromagnetic current by

〈X|JµZ |p〉 = (1− 4 sin2 θW )〈X|Jµγ |p〉 − 〈X|Jµγ |n〉, (10)

neglecting the small contribution from strange quarks. In general, the hadronic tensor can

be decomposed in terms of the γZ interference structure functions F γZ
i as

MW µν
γZ = −gµνF γZ

1 +
pµpν

p · q
F γZ

2 − iεµνλρ pλqρ
2p · q

F γZ
3 , (11)

where p is the four-momentum of the target hadron. Note that the structure functions F γZ
1

and F γZ
2 contribute to the vector hadron contribution, while the F γZ

3 structure function ap-

pears only in the axial vector hadron correction. Combining Eqs. (8) and (11), the imaginary

part of the �VγZ correction becomes [10–12]

=m�VγZ(E) =
1

(s−M2)2

∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2 α(Q2)

1 +Q2/M2
Z

×
[
F γZ

1 +
s (Q2

max −Q2)

Q2 (W 2 −M2 +Q2)
F γZ

2

]
, (12)

where s = M2 + 2ME is the total center of mass energy squared, W 2
π = (M + mπ)2 is the

mass at the pion threshold, and Q2
max = 2ME(1 −W 2/s). Following Ref. [19], we include

in Eq. (12) the Q2 dependence in α(Q2) arising from vacuum polarization contributions.
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The most important inputs into Eq. (12) are the γZ interference structure functions

F γZ
i , which are functions of two variables, usually taken to be Q2 and the Bjorken scaling

variable x = Q2/2p · q, or alternatively Q2 and W 2. Unfortunately, these functions are not

well determined experimentally. Although there are some data on F γZ
1 and F γZ

2 at high W

and Q2, in the low-W and Q2 region, which is crucial to the dispersion integrals, there is

little or no information. Unlike the electromagnetic structure functions, which can be fit to

the ample data available, the F γZ
i must be expressed through models. Given that it can

be difficult to resolve the accuracy of the models, the controversy in the literature over the

<e�VγZ contribution is not surprising.

For later reference, we note here that the F1 and F2 structure functions, for either γZ or

electromagnetic (γγ) scattering, can be related to the transverse (σT ) and longitudinal (σL)

electroweak boson production cross sections as

F1(W 2, Q2) =

(
W 2 −M2

8π2α

)
σT (W 2, Q2), (13a)

F2(W 2, Q2) =

(
W 2 −M2

8π2α

)
ν

M(1 + ν2/Q2)

[
σT (W 2, Q2) + σL(W 2, Q2)

]
, (13b)

where ν = E −E ′ is the energy transfer. For convenience one often defines the longitudinal

structure function as the combination of F1 and F2 structure functions given by

FL =

(
1 +

Q2

ν2

)
F2 − 2xF1, (14)

where the prefactor can also be written as (1 + 4x2M2/Q2).

III. γZ INTERFERENCE STRUCTURE FUNCTIONS

Most of the uncertainty in the calculation of the �γZ correction arises from the incomplete

knowledge of the γZ structure functions. There have been extractions of F γZ
2 and xF γZ

3

from neutral current DIS by the H1 collaboration at DESY [23] at very high Q2 (60 <

Q2 < 50, 000 GeV2) and small x (0.0008 < x < 0.65) using longitudinally polarized lepton

beams at HERA. However, these data have little overlap with the region of most relevance

for the dispersion integral, which receives contributions primarily from high x and low Q2,

where there are no direct measurements. Consequently, one must appeal to models of the

interference structure functions to estimate �γZ .
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In this section we review the models used in the literature for the γZ structure functions,

before presenting our constrained model, which we refer to as the Adelaide–Jefferson Lab–

Manitoba (AJM) model. The construction of the models involves first choosing appropriate

electromagnetic structure functions F γγ
i , and then transforming these to the γZ case. In

describing the structure functions, or equivalently the virtual boson–proton cross sections

σT,L in Eqs. (13), it is convenient to separate the full range of kinematics into a resonance

part and a smooth nonresonant background,

σT,L = σ
(res)
T,L + σ

(bgd)
T,L . (15)

The σ
(res)
T,L term includes a sum over the prominent low-lying resonances, while σ

(bgd)
T,L is

determined phenomenologically by fitting the inclusive scattering data [24, 25]. Although

such a separation is inherently model dependent, as only the total cross section is physical,

it nevertheless provides a useful way to parametrize the somewhat different behaviors of the

cross sections in the low- and high-W regions.

For completeness, the following list summarizes the models for the γZ structure functions

that have been discussed in the literature:

(i) color-dipole model [26, 27], referred to as “Model I” in Gorchtein et al. (GHRM) [14];

(ii) vector meson dominance (VMD) + Regge model [28, 29], referred to as “Model II” by

GHRM [14];

(iii) Sibirtsev et al. (SBMT) model [12], based on the Regge parametrization of Capella et

al. [30];

(iv) Carlson and Rislow (CR) model [13, 31].

The models [12–14, 31] differ primarily in the treatment of the background contributions

σ
(bgd)
T,L for the γZ interference, the uncertainty on which is the main source of disagreement

between the various estimates of �γZ . For the resonance region, all of the models (with

the exception of SBMT [12]) use the Christy and Bosted (CB) parametrization [24] of the

electromagnetic structure functions at low W , but differ in how these are transformed to

the γZ case. Note, however, in both Model I and Model II of GHRM some of the resonance

parameters in the CB fit are modified to better match the choice of background contribution

[14]. In the following we discuss both the resonance and background content of these models

in more detail.
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A. Resonances

The CB parametrization [24] of F γγ
1,2 fits the resonance region electron-proton scattering

data in terms of the seven most important resonances (P33(1232), P11(1440), D13(1520),

S11(1535), S15(1650), F15(1680) and an l = 3 state with mass 1934 MeV), and generally

agrees with the data to within 5%. The CB fit is used as the basis for the resonance models

of Carlson and Rislow [31], and Gorchtein et al. [14], with the latter using slightly modified

parameters for σ
(res)
T,L in their Models I and II. Sibirtsev et al. [12], on the other hand, perform

their own fit of the data, incorporating the four resonances P33(1232), D13(1520), F15(1680)

and F37(1950), and also obtain a reasonably good description of the data.

Modifying the electromagnetic structure functions to obtain their interference analogs

involves modifying the contribution from each resonance R by a ratio that takes into ac-

count the differences between the electromagnetic and weak neutral transition amplitudes,

according to Eq. (10). For the transverse cross section GHRM define this ratio for a proton

as [14]

ξR ≡
σγZT,R
σγγT,R

= (1− 4 sin2 θW )− yR, (16)

where

yR =
Ap
R, 1

2

An
∗

R, 1
2

+ Ap
R, 3

2

An
∗

R, 3
2∣∣Ap

R, 1
2

∣∣2 +
∣∣Ap

R, 3
2

∣∣2 , (17)

with ANR,λ the transition amplitude from a proton or neutron to a resonance R with helicity

λ = 1
2

or 3
2
. The amplitudes ANR,λ are assumed by GHRM to be Q2 independent, and their

values determined from electromagnetic decays at Q2 = 0 [32]. The ratio for the longitudinal

cross section is taken to be equal to the transverse ratio in both Models I and II of GHRM.

Carlson and Rislow [31] use a similar ratio to that in Eq. (16) (which they label as CR),

but include in addition a Q2 dependence in the amplitudes derived from the MAID unitary

isobar model [33]. For comparison, CR also calculate the transition amplitudes using a

constituent quark model [13].

Finally, Sibirtsev et al. [12] use the conservation of the vector current and isospin symme-

try to set the ratio for isospin-3/2 states to (1 +Qp
W ) ≈ (2− 4 sin2 θW ). For the isospin-1/2

resonances, such as the D13(1520), SU(6) quark model wave functions are used to estimate

the ratio of couplings. The similarity of the magnitudes of the weak and electromagnetic

couplings was used by SBMT to justify approximating the ratio ξR by 1.
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B. Background

1. Electromagnetic structure functions

Although the CB parametrization [24] includes a background σ
(bgd)
T,L at low W (W <

3 GeV), to describe the nonresonant contributions to the electromagnetic structure functions

at W > 3 GeV requires a model for the background which is also valid at large W . In the

calculation of GHRM [14], the color dipole model from Cvetic et al. [26, 27] is used for

Model I, while the VMD+Regge model of Alwall and Ingelman [29] is employed for Model II.

Since the latter was shown by GHRM to introduce the largest uncertainty in �γZ , it will

be the main focus of our attention.

According to the VMD hypothesis, the interaction of a photon γ with a hadron proceeds

through transitions to vector mesons V (with V = ρ, ω or φ), with strength
√

4πα/fV , where

fV is the electromagnetic decay constant of V . The three vector mesons saturate around

80% of the total photoproduction cross section [28]. The remainder is usually attributed to

contributions from higher masses, which are modeled by a continuum of states starting at

mass m0 ≈ 1.4 GeV [28]. (In the case of the color dipole model [26, 27, 34], the photon is

assumed to interact with the hadron through coupling to uncorrelated qq̄ states instead of

mesons.) Following Ref. [29], we neglect the off-diagonal terms in the mass integral, which

is known to be a good approximation for scattering from nucleons [35]. The transverse and

longitudinal virtual photon–nucleon cross sections can then be expressed as [29]

σVMD
T = σγN

[∑
V

rV
1

(1 +Q2/m2
V )2

+ rC
1

1 +Q2/m2
0

]
, (18a)

σVMD
L = σγN

[∑
V

rV ξV
Q2/m2

V

(1 +Q2/m2
V )2

+ rC ξC

(
m2

0

Q2
ln(1 +Q2/m2

0)− 1

1 +Q2/m2
0

)]
, (18b)

where σγN is the real photon–nucleon cross section, and the constants rV ∼ 1/f 2
V represent

the relative contributions from the individual vector mesons V , with rC = 1 −
∑
V

rV being

the continuum fraction [29]. Phenomenologically, the rV values are determined as rV =

{0.67, 0.062, 0.059} for V = ρ, ω and φ, respectively [36]. As we shall see below, rC plays a

critical role in determining the uncertainty on the interference cross sections. The parameters

ξV and ξC allow for different behavior of the transverse and longitudinal components of the
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vector mesons, although in practice these are usually set equal, ξV = ξC , in order to fit the

available data. Note that despite the apparent 1/Q2 dependence in the second term of σVMD
L

in Eq. (18b), one can verify by expanding the logarithm for small Q2 that the longitudinal

cross section does in fact vanish in the Q2 → 0 limit. According to Regge theory, the real

photon cross section can be parametrized as a sum of two terms [37],

σγN = Aγ s
ε
γ +Bγ s

−η
γ , (19)

where sγ ≡ W 2, with the exponents ε and η giving the energy dependence of the Pomeron

and Reggeon terms, which have coefficients Aγ and Bγ, respectively.

In the model of SBMT, the background is parametrized according to the structure func-

tion fit of Capella et al. [30], with several parameters adjusted to better describe recent

data, as discussed in Ref. [12]. The parametrization of the F γγ
2 structure function, which is

valid for all Q2, is again given by a sum of Pomeron (P ) and Reggeon R exchange terms,

F γγ
2 (x,Q2) = AP x

−∆(1− x)n+4

[
Q2

Q2 + Λ2
P

]1+∆

+ AR x
1−αR(1− x)n

[
Q2

Q2 + Λ2
R

]αR

,

(20)

where ∆ and n are both functions of Q2, and AP, ΛP, AR, ΛR and αR are fit parameters

[30]. The F γγ
1 structure function is obtained by SBMT from a parametrization of the ratio

of longitudinal to transverse cross sections. From Eqs. (13) this can be written as

σL
σT

=

(
1 +

4M2x2

Q2

)
F2

2xF1

− 1, (21)

which is parametrized by a sum of exponentials [12].

While the above models use the same background parametrization over the entire range

of kinematics, CR [13, 31] on the other hand, divide their dispersion integral into three

distinct regions, each described by a different model. In particular, the resonance region at

low W is described in terms of the CB fit to σ
(res)
T,L and σ

(bgd)
T,L [24], while for the high-W ,

low-Q2 region, CR use the Capella et al. structure function parametrization. For high W

and high Q2, a partonic description is employed using the CT10 global fit [38] of parton

distribution functions (PDFs).
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2. γZ structure functions

To construct the nonresonant background contributions to the transverse and longitudi-

nal γZ cross sections, the electromagnetic cross sections need to be rescaled by the ratio

σγZT,L/σ
γγ
T,L, as for the resonance components. For Model II of GHRM [14], a generalization

of the VMD model is used, assuming the γZ cross section for vector meson V is given by

the analogous γγ cross section scaled by the ratio κV of weak and electric charges,

σ
γZ(V )
T,L = κV σ

γγ(V )
T,L , (22)

where

κρ = 2− 4 sin2 θW , (23a)

κω = −4 sin2 θW , (23b)

κφ = 3− 4 sin2 θW (23c)

correspond to the isovector, isoscalar and strange quark components of the electroweak

current, respectively. This allows the ratio of γZ to γγ cross sections to be written as [14]

σγZT,L
σγγT,L

=
κρ + κω R

T,L
ω (Q2) + κφR

T,L
φ (Q2) + κT,LC RT,L

C (Q2)

1 +RT,L
ω (Q2) +RT,L

φ (Q2) +RT,L
C (Q2)

, (24)

where RT,L
V is the ratio of cross sections for V and the ρ meson,

RT,L
V ≡

σ
γγ(V )
T,L

σ
γγ(ρ)
T,L

=
f 2
ρ

f 2
V

(
1 +Q2/m2

ρ

1 +Q2/m2
V

)2

. (25)

The corresponding ratio RT,L
C of the continuum to ρ contributions is given by

RT
C =

rC
rρ

(
1 +Q2/m2

ρ

1 +Q2/m2
0

)2

, (26a)

RL
C =

rC
rρ

[
m2

0

Q2
ln(1 +Q2/m2

0) − 1

1 +Q2/m2
0

]/[ Q2/m2
ρ

(1 +Q2/m2
ρ)

2

]
, (26b)

with the continuum mass parameter set to m0 = 1.5 GeV [14]. The parameters κT,LC in

Eq. (24) denote the ratios of the γZ and γγ continuum contributions to the cross section.

Unlike for the discrete vector meson terms, the VMD model does not prescribe a simple

charge ratio factor to modify the continuum part of the cross section. In view of this,
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GHRM proceed by assigning a 100% uncertainty on this contribution. As we will see below,

this assumption gives the largest contribution to the uncertainty on �γZ .

For Model I of GHRM, the same general form for the γZ cross sections is used as in

Eq. (24), but with different individual contributions RT,L
V . Whereas in Model II, the RT,L

V

are functions of Q2, in Model I these become constants with relative strengths determined

by squares of quark electric charges, with the continuum contribution associated with the

J/ψ meson [14], {ρ : ω : φ : J/ψ} = {1 : 1/9 : 2/9 : 8/9}. Similarly, a 100% uncertainty is

assumed for the J/ψ term in Model I.

In the SBMT model [12], the γZ structure functions at low x are approximated by their

electromagnetic counterparts. This is motivated by the approximate flavor independence of

sea quark distributions in the low-x region, and the similarity of the sum of the electroweak

couplings for 3 quark flavors,
(∑

q eq g
q
V

)
/
(∑

q e
2
q

)
= 2−4 sin2 θW ≈ 1 [11], where eq and gqV

are the electric and weak vector charges of quark q, respectively. At larger x (x & 0.4), how-

ever, SBMT compute F γZ
i using a ratio of leading twist (LT) structure functions computed

from the MRST parton distribution functions [39],

F γZ
i =

(
F γZ
i

F γγ
i

)LT

F γγ
i . (27)

At these x values, SBMT note that the flavor dependence of the parton distributions renders

the interference function ∼ 30% − 40% smaller than the electromagnetic, which therefore

provide an upper limit on F γZ
i .

Finally, for the CR model [13, 31] the method for modifying the γγ background cross

sections depends on the kinematic region of W and Q2. In the resonance region, CR take the

average of the high energy (x→ 0) limit (u = d = s), in which F γZ
i /F γγ

i = 2−4 sin2 θW , and

the SU(6) quark limit (u = 2d, s = 0), in which F γZ
i /F γγ

i = 5/3− 4 sin2 θW , to convert the

electromagnetic background from the CB structure function parametrization [24]. For the

low-Q2, high-W region, CR apply the same ratio to the Capella et al. [30] parametrization

as SBMT, while in the DIS region they compute the F γZ
i structure functions directly from

LT parton distributions [38].

Using these models for the resonance and nonresonant background contributions to the

γZ structure functions, the analyses of GHRM [14], SBMT [12] and CR [13] estimate the

12



�γZ correction at the Qweak energy to be

<e�VγZ = (5.4± 2.0)× 10−3 [GHRM] (28a)

<e�VγZ = (4.7 +1.1
−0.4 )× 10−3 [SBMT] (28b)

<e�VγZ = (5.7± 0.9)× 10−3 [CR] (28c)

respectively. The GHRM result for the central value of <e�VγZ is the average of Mod-

els I and II, but with the dominant background error taken from the larger of the two,

in this case Model II. The GHRM analysis also estimates the effect of the t dependence

of the �γZ correction, from t = 0 in the dispersion formalism to t = −0.03 GeV2 in the

Qweak experiment, finding a decrease of approximately 1.3%, with a similar uncertainty on

the correction at the Qweak point.

The central values of all the calculations agree within the quoted uncertainties; however,

the error on the GHRM value is twice as large as those on the SBMT and CR calculations,

even though the SBMT estimate includes a fairly conservative uncertainty on the input γγ

structure functions. Given the importance of the �γZ correction to the extraction of the

weak mixing angle from the Qweak measurement, it is vital that the origin of this difference

be understood, and ways of further reducing the uncertainty explored.

C. Adelaide–Jefferson Lab–Manitoba model

To proceed with our analysis of the γZ correction, we define here the ingredients of our

Adelaide–Jefferson Lab–Manitoba (or AJM) model, within which we will study in detail the

various contributions to <e�VγZ and their uncertainties. We draw on the valuable experience

obtained with the existing models [11–14, 31], and incorporate into the AJM model some of

the more robust features of the previous analyses. Most importantly, we consider additional

constraints from existing data on some of the model parameters which were unconstrained in

the earlier work. We will find that indeed data on PDFs near the resonance–DIS transition,

together with new results on inclusive parity-violating electron scattering asymmetries, place

significant constraints on the models, in particular on the background contribution.
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FIG. 2: (color online) Kinematic regions contributing to the �VγZ integrals in the AJM model:

Region I (blue shaded) at low W and low Q2 is described by the CB F γγ1,2 fit [24], transformed to

the γZ case; Region II (red shaded) represents the high-W , low-Q2 domain as in Ref. [29] (or the

GHRM Model II [14]), transformed to γZ; and Region III (green shaded) at high W and high Q2

is described by global PDF fits to high-energy scattering data [40].

1. γγ structure functions

Following CR [13, 31], we divide the integrals in Eq. (12) into distinct regions of W 2

and Q2, using specific models to parametrize the γZ structure functions in each region.

This is illustrated in Fig. 2, where the W 2 and Q2 divisions and the models describing

them are indicated. Although the boundaries between the regions are clearly defined, the

models themselves overlap, allowing important checks to be made on the continuity of the

descriptions across the boundaries.

For the input γγ structure functions, we use the CB parametrization [24] to describe the

low-W region (Region I) at Wπ < W < 2 GeV for all Q2 up to 10 GeV2. In fact, the strong

suppression of the resonance transition form factors with increasing Q2 results in negligible

resonance contributions already beyond Q2 ≈ 2 GeV2. Since the CB fit also describes data

up to W 2 = 9 GeV2, we use it in the higher-W region for Q2 < 2.5 GeV2, as indicated by
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FIG. 3: (color online) Proton F γγ2 structure function versus W 2 at fixed Q2 = 0.05, 0.5, 1.5 and

2 GeV2 for the CB fit [24] at low W (blue solid) and VMD+Regge parametrization [29] at high

W (red dashed). The boundary between these (corresponding to Regions I and II in Fig. 2) is

indicated by the vertical dashed line at W 2 = 9 GeV2.

the blue shaded area in Fig. 2.

At higher W , corresponding to kinematics where Regge theory is applicable, the

VMD+Regge model of Alwall and Ingelman [29] is combined with a modified CB resonance

contribution (cf. Table II of Ref. [14]) to describe the structure functions for W 2 > 9 GeV2

and Q2 < 2.5 GeV2 (Region II, red shaded area in Fig. 2). Of course, at these values of

W the resonances will contribute very little to the dispersion integral in Eq. (12), which

will be contaminated by the background contribution. This model also forms the basis for

Model II of GHRM [14]. The matching of the CB and VMD+Regge parametrizations at

the boundary between the low-W and high-W regions is illustrated in Fig. 3 for the F γγ
2

structure function as a function of W 2, at several fixed values of Q2, from Q2 = 0.05 to

2 GeV2. The agreement between the two models in the region of overlap is clearly excellent.

For the structure function in the VMD+Regge model, we have assumed a conservative 5%
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FIG. 4: (color online) Proton F γγ2 structure function versus W 2 at fixed Q2 = 2.5, 5, 8 and 10 GeV2

for the CB fit [24] at low W (blue solid) and the ABM11 PDF parametrization [40] at high W

(green dotted), with the boundary between Regions I and III at W 2 = 4 GeV2 indicated by the

vertical line. For the Q2 = 2.5 GeV2 panel, the matching with the VMD+Regge model [29] (red

dashed), corresponding to the boundary between Regions I and II, is indicated by the vertical line

at W 2 = 9 GeV2.

uncertainty, similar to that for the CB parametrization.

In the DIS region at high W and high Q2 (green shaded area in Fig. 2), the structure

functions can be computed in terms of global PDFs, for which we use the next-to-next-to-

leading order (NNLO) fit by Alekhin et al. (ABM11) [40]. This fit includes both leading twist

and higher twist contributions, allowing for descriptions of data for Q2 > 2.5 GeV2 and W >

1.8 GeV, which overlaps partially with the CB [24] and VMD+Regge [29] parametrizations.

(Other similar global fits, such as those in Refs. [41–45], give very similar results, and

differences between the parametrization generally lie within the PDF uncertainties.) The

transition between DIS kinematics (Region III) and the models describing the lower-W

and Q2 regions is illustrated in Fig. 4 for F γγ
2 at Q2 = 2.5 GeV2 (where the transitions
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FIG. 5: (color online) Proton F γγ2 structure function versus Q2 at fixed W 2 = 4, 6, 9 and 12 GeV2

for the CB fit [24] (blue solid), the ABM11 PDF parametrization [40] (green dotted), and the

VMD+Regge model [29] (red dashed), with the boundaries between Regions I, II and III indicated

by the vertical lines at fixed Q2. Note that the small disagreement between the VMD+Regge

model and the PDF parametrization for Q2 = 2.5 GeV2 appears only at larger W 2 values where

the contribution to the dispersion integral is small.

between all three parametrizations is shown at W 2 = 9 GeV2) and at higher Q2 values, up

to Q2 = 10 GeV2, for the transition between Regions I and III. Again, the models generally

match very well across these kinematic boundaries.

The boundaries between the three regions can also be displayed for fixed W 2 as a function

of Q2, as illustrated in Fig. 5. The matching of Regions I and II for W 2 = 4 GeV2 shows

excellent agreement between the CB [24] and ABM11 PDF [40] parametrizations at Q2 =

2.5 GeV2. At the highest W value at which the CB fit is valid, W 2 = 9 GeV2, the agreement

between the models describing all three regions is also quite good. For larger W (W 2 &

10 GeV2) the VMD+Regge model [29] slightly exceeds the PDF parametrization. However,

this generally occurs at the edge of the kinematic boundary between Regions II and III,
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where the contribution to the imaginary part of �γZ in Eq. (12) is very small.

2. γZ structure functions

Having detailed the forms of the electromagnetic structure functions, we now turn to

their γZ interference analogs. For the low-W/low-Q2 region dominated by the nucleon

resonances, the transverse and longitudinal γγ cross sections parametrized in the CB fit [24]

are modified using the ratio ξR in Eq. (16), with the parameter yR determined from the

proton and neutron helicity amplitudes as in Eq. (17). This follows closely the approach

adopted by GHRM [14], but, importantly, differs in the way the uncertainties on the helicity

amplitudes ANR,λ are determined.

In particular, GHRM combined the uncertainties on the amplitudes by adding extremal

values of each, which implicitly assumes a uniform error distribution rather than the standard

Gaussian one. Adding errors linearly clearly overestimates the uncertainties, and in the

AJM analysis we adopt the more conventional Gaussian distribution to add the errors in

quadrature. (When combining all of the uncertainties on the final <e�VγZ value, however,

GHRM add the errors in quadrature.) In Table I the yR values for the proton and their

uncertainties computed using both methods are shown for comparison. For completeness, we

also list the yR values for the neutron and deuteron, with uncertainties added in quadrature,

which will be needed in subsequent sections. For the isospin-3
2
P33(1232) and F37(1950)

resonances, the uncertainties on the helicity amplitudes are given by the Particle Data

Group (PDG) [46] as zero. To be conservative, however, we follow GHRM [14] and include

a 10% uncertainty on the P33(1232) and a 100% uncertainty on the F37(1950) resonance

[24, 25].

Note that in Table I and in our numerical calculations we make use of the latest values

of the helicity amplitudes from the PDG [46]. However, when comparing directly with the

GHRM analysis [14] we will refer to the earlier, 2010 PDG values [32] that were utilized by

GHRM for the D13(1520) and P11(1440) resonances. The yR ratios using these earlier values

are listed in parentheses in Table I, but with errors evaluated using Gaussian distributions.

For the nonresonant background, the models describing the electromagnetic structure

functions are transformed to the γZ case according to the kinematic region considered. For

the region of low Q2 but high W , the cross section in the VMD+Regge model [29] is modified
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TABLE I: Electromagnetic to γZ resonance cross section transformation ratios yR from Eq. (17)

for the proton, neutron and deuteron in the AJM model, compared with the proton ratio in the

GHRM model [14]. The AJM model values in parentheses use helicity amplitudes from the earlier

2010 PDG [32], as utilized by GHRM. The errors labeled with the asterisks (∗) are values corrected

[47] from those in Ref. [14].

P33(1232) P11(1440) D13(1520) S11(1535) S11(1665) F15(1680) F37(1950)

p (AJM) −1.0± 0.1 −0.67± 0.17 −0.84± 0.17 −0.51± 0.35 −0.28± 0.41 −0.27± 0.08 −1± 1

(−0.62± 0.16) (−0.77± 0.08)

p (GHRM) −1.0± 0.1 −0.62+0.19
−0.20 −0.77+0.122

−0.125
(∗) −0.516+0.35

−0.71 −0.28+0.45
−0.69

(∗) −0.27+0.10
−0.12 −1± 1

n (AJM) −1.0± 0.1 −1.50± 0.39 −0.85± 0.15 −1.96± 1.32 −3.53± 5.06 −2.50± 1.01 −1± 1

d (AJM) −1.0± 0.1 −0.92± 0.27 −0.85± 0.14 −0.81± 0.64 −0.52± 0.78 −0.49± 0.14 −1± 1

using the ratio in Eq. (24), in analogy with Model II of GHRM [14]. However, instead of

fixing the parameters κT,LC so that the γγ and γZ continuum pieces are equal [14], we allow

these to be determined by demanding that the γZ structure functions be continuous across

the boundaries of this region, that is, at W = 3 GeV and Q2 = 2.5 GeV2. As we will see in

the following section, this places strong constraints on κT,LC , leading to significantly reduced

uncertainties on the resulting value of <e�VγZ .

Finally, the γZ structure functions in the DIS region, at W 2 > 4 GeV2 and Q2 >

2.5 GeV2, are computed from the ABM11 PDF parametrization [40, 48]. The transformation

from γγ to γZ is trivial at the parton level, amounting to a replacement of the quark electric

charges eq multiplying the universal PDFs by the weak vector charges gqV . In the absence of

γZ structure function data at low Q2, the relative magnitude of the higher twist corrections

to F γZ
2 was taken [48] to be the same as for F γγ

2 . To account for this uncertainty, we therefore

assign a conservative 5% uncertainty on F γZ
1 and F γZ

2 over the entire range of kinematics

in Region III. Since it is given by a difference of the F γZ
2 and F γZ

1 structure functions (see

Eq. (14)), the longitudinal structure function F γZ
L will necessarily have a larger relative

uncertainty.
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IV. PHENOMENOLOGICAL CONSTRAINTS

As mentioned in the previous section, the central value of <e�VγZ in Ref. [14] is given

by the average of Models I and II, with the dominant nonresonant background contribution

taken from Model II. If it were possible to reduce the background uncertainty, the error on

the final <e�VγZ correction could also be lowered significantly.

In their calculation of �γZ , GHRM [14] estimate the γZ nonresonant background cross

section by transforming the γγ cross section in the VMD+Regge model [29] according to

σ
γZ(bgd)
T,L =

(
σγZT,L
σγγT,L

)
σVMD
T,L , (29)

with the electromagnetic cross sections σVMD
T,L parametrized as in Eqs. (18a) and (18b), and

the rescaling factor (σγZT,L/σ
γγ
T,L) given by Eq. (24). The uncertainties on the γZ cross section

are obtained by comparing each RT,L
V ratio in Eq. (24) with HERA data on exclusive vector

meson electroproduction [49] (cf. Fig. 13 of Ref. [14]), with the uncertainty taken to be the

difference between the two.

The final contribution to the background error comes from the values of κT,LC in Eq. (24).

In the GHRM analysis [14] this term is equated with the electromagnetic continuum piece,

assuming a 100% uncertainty. The resulting F γZ
2 structure function is illustrated in Fig. 6

as a function of both W 2 and Q2, and compared with the ABM11 global fit [40]. Note that

the uncertainty band on the GHRM VMD+Regge calculation includes only the continuum

part of the background, and will be larger once the resonant uncertainty is included. The

comparison clearly shows that the GHRM uncertainties are significantly larger than those

typically obtained from global QCD analyses, especially in the region of intermediate W and

Q2 where both descriptions should be valid. Furthermore, as suggested already in Figs. 4

and 5, the central values lie systematically above the PDF parametrizations.

Although the VMD model itself does not provide any additional constraints on the in-

terference continuum contribution, we shall examine in this section the possibility of con-

straining κT,LC using existing knowledge of parton distributions, as well as recent data on

parity-violating inelastic scattering from the Jefferson Lab E08-011 experiment [15]. These

constraints will make it possible to reduce the overall uncertainty in <e�VγZ compared with

those obtained in earlier analyses, Eq. (28).
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FIG. 6: (color online) Comparison of the proton F γZ2 structure function in the VMD+Regge

model (Model II) of GHRM [14] (red dashed) with the ABM11 global parametrization [40] (green

dotted), for fixed Q2 (top panels) and fixed W 2 (bottom panels). Note that the VMD+Regge

model only includes uncertainties from the continuum part of the background, while the ABM11

parametrization includes an overall 5% error.

A. Constraints from PDFs

In the deep-inelastic region at high W (W & 2 GeV) and Q2 (Q2 & 1 GeV2), structure

functions can be described in terms of leading twist PDFs, with corrections from target mass

and higher twist contributions included to account for residual, 1/Q2-suppressed nonpertur-

bative effects. While a PDF-based description will eventually break down at low W and

Q2, the region where the continuum contributions to the cross sections are relevant overlaps

with the typical reach of global PDF parametrizations [40–45]. One can therefore constrain

the nonresonant part of the γZ structure functions by requiring consistency of the model in

the overlap region with the PDF parametrizations.

Our fit of the parameters κT,LC involves equating the cross section ratios σγZT,L/σ
γγ
T,L in
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FIG. 7: (color online) Continuum parameters κTC (left) and κLC (right) fitted to the DIS data,

parametrized by the ABM11 global QCD fit [40], as a function of W 2 for fixed Q2 = 2.5 GeV2

(red triangles), 6 GeV2 (blue squares), and 10 GeV2 (green circles). The average values 〈κT,LC 〉 are

indicated by the solid lines, with the shaded band giving their uncertainty. Note that some of the

points have been slightly offset for clarity.

Eq. (24) with the structure function ratios computed from global QCD fits in the DIS

region (see Eqs. (13) and (14)),

σγZT
σγγT

=
F γZ

1

F γγ
1

∣∣∣∣∣
DIS

,
σγZL
σγγL

=
F γZ
L

F γγ
L

∣∣∣∣∣
DIS

, (30)

where the DIS structure functions F γγ,γZ
1,L are taken from the ABM11 parametrization [40].

As discussed in Sec. III, in fitting κT,LC in the DIS region, to be conservative we assume an

overall 5% uncertainty on F γZ
1 , and a 40% uncertainty on F γZ

L , which exceeds the uncer-

tainties quoted in Ref. [40] over the kinematics relevant for the <e�VγZ calculation.

For the constrained fit we determine the values of κT,LC that minimize the χ2 for each

point in W 2 and Q2, over a range of W 2 values at fixed Q2 near the boundary between the

DIS region (Region III) and the other regions in Fig. 2. To test the stability of the fitted

κT,LC values with respect to the matching scale, we consider several different values of Q2

(Q2 = 2.5, 6 and 10 GeV2). The resulting fits in Fig. 7 indicate relatively mild dependence

on the scale, which becomes negligible with increasing Q2 for κTC , but with the expected

larger uncertainties for κLC .

The central values of κT,LC are computed by averaging over the three sets of Q2 values,

and the uncertainty determined by taking into account both the W 2 dependence of the fits

and the PDF error. Because the κT,LC values at the different Q2 are correlated, performing a
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simple χ2 fit to all the sets may underestimate the errors. As a more reliable error estimate,

we combine in quadrature the uncertainties arising from (i) the W 2 dependence, for which

we take the average of the difference between the central values of the lowest and highest

points for the Q2 set giving the strongest W 2 dependence (namely, for Q2 = 2.5 GeV2 for

κTC , and Q2 = 10 GeV2 for κLC); and (ii) the PDF error, the uncertainty for which is given

by the data point with the largest error in the entire set (which occurs for Q2 = 2.5 GeV2

for both κTC and κLC). The final fitted values of the continuum parameters are found to be

κTC = 0.65± 0.14 , κLC = −1.3± 1.7 . (31)

Compared with the uncertainties assumed by GHRM [14] our uncertainty on the transverse

parameter κTC is about 5 times smaller, while that on the longitudinal parameter κLC is almost

two and a half times larger. However, the error on κLC has minimal effect on the γZ cross

section at these kinematics because of the relatively small contribution of the longitudinal

structure function.

The resulting F γZ
2 structure function with the constrained κT,LC values is shown in Fig. 8

for fixed Q2, ranging from Q2 = 0.05 GeV2 to 10 GeV2. The models of the γZ structure

functions are seen to match very well at the boundaries between the Regions I, II and III.

As for the interference F γZ
2 structure function in Fig. 6, only the continuum uncertainty

is included in these examples; this allows a direct comparison with the uncertainty in the

GHRM model input which dominates all other uncertainties. The comparison between

Figs. 6 and 8 at the corresponding kinematics illustrates the significant reduction in the F γZ
2

uncertainty that results from constraining the structure functions by the global QCD fits

of PDFs. A similarly large reduction in the uncertainty can be seen in Fig. 9 for F γZ
2 as a

function of Q2 at fixed W 2 values.

The remaining uncertainty on the background contribution is associated with the RT,L
ω

and RT,L
φ terms in Eq. (24). Following GHRM [14], we take the difference between these

ratios calculated in the VMD+Regge model at Q2 = 7 GeV2 and the experimental vector

meson cross sections from HERA [49], assuming RT
ω = RL

ω and RT
φ = RL

φ (see Fig. 13 of

[14]). This uncertainty is then added in quadrature with the continuum uncertainty, along

with the resonance contribution discussed in Sec. III, to obtain the total error on the γZ

structure functions used in estimating <e�VγZ .

The impact of the total uncertainty reduction is illustrated in Figs. 10 and 11 for the
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FIG. 8: (color online) Proton F γZ2 structure function versus W 2 at various fixed Q2 values for the

low-W CB fit [24] (blue solid) and the high-W VMD+Regge [29] (red dashed) and ABM11 [40]

(green dotted) parametrizations. The boundaries between the Regions I, II and III are indicated

by the vertical lines at W 2 = 4 and 9 GeV2.
24



0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

Q2 HGeV2L

F2
ΓZ

W2
= 4.0 GeV2

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

Q2 HGeV2L

F2
ΓZ

W2
= 6.0 GeV2

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

Q2 HGeV2L

F2
ΓZ

W2
= 9.0 GeV2

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

Q2 HGeV2L

F2
ΓZ

W2
= 12.0 GeV2

FIG. 9: (color online) Proton F γZ2 structure function versus Q2 at fixed W 2 = 4, 6, 9 and 12 GeV2

for the CB fit [24] (blue solid), the ABM11 PDF parametrization [40] (green dotted), and the

VMD+Regge model [29] (red dashed), with the boundaries between Regions I, II and III indicated

by the vertical lines at fixed Q2.

parity-violating inelastic asymmetry for the proton,

APV = geA

(
GFQ

2

2
√

2πα

) xy2F γZ
1 +

(
1− y − x2y2M2

Q2

)
F γZ

2 +
geV
geA

(
y − 1

2
y2

)
xF γZ

3

xy2F γγ
1 +

(
1− y − x2y2M2

Q2

)
F γγ

2

, (32)

where y = ν/E is the fractional energy transferred to the target. In addition to the vector

F γZ
1,2 structure functions, the asymmetry APV depends also on the axial-vector F γZ

3 structure

function. For the the resonance contribution to F γZ
3 we use the parametrization of the axial-

vector transition form factors of Lalakulich et al. [51–53]. For the background we follow

Ref. [31] and rescale the electromagnetic cross sections [24] by the average of the x → 0

and SU(6) quark model limits, which gives F γZ
3 = 5/3F γγ

1 . (Note that for the deuteron this

average becomes F γZ
3 = 9/5F γγ

1 .)

The asymmetries calculated in the AJM and GHRM models are shown in Fig. 10 at an
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FIG. 10: (color online) Proton parity-violating inelastic asymmetry APV/Q
2 as a function of W ,

at fixed incident energy E = 0.69 GeV and Q2 = 0.34 GeV2, for the GHRM Model II [14] (left)

and the AJM model (right). The data point at W = 1.18 GeV (black circle) is from the Jefferson

Lab G0 experiment [50].
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FIG. 11: (color online) Proton parity-violating inelastic asymmetry APV/Q
2 as a function of W ,

at fixed incident energy E = 6 GeV and Q2 = 2.5 GeV2, for the GHRM Model II [14] (left) and

the AJM model (right). The asymmetry computed directly from PDFs [40] is represented by the

green band.

incident energy E = 0.69 GeV and Q2 = 0.34 GeV2, corresponding to the kinematics of

the recent G0 measurement at Jefferson Lab near the ∆ resonance region [50]. The central

values of both models agree well with the data, although the experimental uncertainty is

too large to enable meaningful constraints to be placed on the γZ structure functions. The

constraint on the κTC value from matching to the DIS structure functions in the AJM model

renders the uncertainty band somewhat smaller than the GHRM uncertainty [14] at higher
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values of W . (Note that the uncertainty on APV is computed by taking the upper and lower

values of the input γZ structure functions, and is therefore asymmetric.)

The difference in the error bands becomes more pronounced at larger Q2, as seen in

Fig. 11 at E = 6 GeV and Q2 = 2.5 GeV2, which are representative of typical kinematics at

Jefferson Lab (see Sec. IV B below). Here the uncertainty on the GHRM model asymmetry at

W ∼ 2 GeV is around 4 times larger than the corresponding uncertainty on the constrained

AJM model asymmetry. For comparison, we also show in Fig. 11 the asymmetry computed

directly from PDFs [40] in the region W > 2 GeV where a partonic description is expected

to be valid.

The uncertainty in the PDF-based calculation is slightly smaller than, but qualitatively

similar to, that in the AJM model, while the GHRM model uncertainty is significantly

overestimated in the region of overlap. We stress that although the DIS region makes only a

modest contribution to <e�VγZ , the requirement that the γZ cross sections match across the

DIS–resonance region boundary imposes strong constraints on the γZ structure functions

also at lower W and Q2. In the following section we confront this against new data on

parity-violating electron–deuteron scattering in the resonance region.

B. Deuteron asymmetry

The E08-011 experiment [15] at Jefferson Lab recently measured the parity-violating

asymmetry in inclusive electron–deuteron scattering over a range of W and Q2 in both the

resonance and DIS regions. While the DIS region data are currently still being analyzed

[54], the available resonance region data [55] can be used to provide an independent test of

the procedure for estimating the γZ structure functions. This is particularly important for

<e�VγZ , since the integrals in Eq. (12) are dominated by Region I in Fig. 2.

The measured parity-violating asymmetry AdPV, scaled by 1/Q2, is shown in Fig. 12 at

W = 1.26, 1.59, 1.86 and 1.98 GeV, with Q2 values ranging from 0.76 GeV2 to 1.47 GeV2.

(The 1/Q2 scaling factor enables the various points to be shown on the same graph.) The

deuteron asymmetries in the AJM model are computed with the continuum parameters

constrained by the DIS region structure functions computed from global PDFs [40], as for

the proton asymmetry in the previous section (see Fig. 11). The resulting fit gives for the

transverse continuum parameter κTC(d) = 0.79±0.05, and is in excellent agreement with the
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FIG. 12: (color online) Deuteron parity-violating asymmetry AdPV/Q
2 as a function of W for

incident electron energy E = 4.9 GeV (left) and E = 6.1 GeV (right). The data points from the

Jefferson Lab E08-011 experiment [15] at W = 1.26 (green square), 1.59 (red circle), 1.86 (blue

triangle) and 1.98 GeV (black diamond) correspond to average values of Q2 = 0.95, 0.83, 0.76 and

1.47 GeV2, respectively. The AJM model uncertainties (inner dashed band) are constrained by

matching the continuum parameters κT,LC (d) to the DIS region γZ structure functions [40], and

are compared with those computed with errors on κT,LC (d) of 100% (outer dotted bands) and 25%

(inner dotted bands).

E08-011 data [15] for all kinematics, except at the ∆ region point at Q2 = 0.95 GeV2, where

it lies slightly below the data. Since the calculation of the ∆ resonance contribution to AdPV

relies only on isospin symmetry and the conservation of the vector current, its uncertainty is

smaller than that for higher-mass resonances. The discrepancy may reflect stronger isospin

dependence of the nonresonant background for ∆ production [56], although the difference

is at the . 2σ level. Also, as seen in Fig. 10 above, the models agree well with the G0 data

[50] in the ∆ region, albeit within larger errors.

By using the longitudinal structure function from the global QCD fit in Ref. [40], we find

for the longitudinal continuum parameter κLC(d) = 0.2 ± 3.4. Although the specific imple-

mentation of the CB parametrization [24] prevents this uncertainty from being propagated

directly into AdPV, we nevertheless can use the κT,LC values for the proton to ensure that

the uncertainty in the longitudinal piece is taken into account. For comparison, we also

show in Fig. 12 the uncertainty that would be obtained with a similar 100% error on the

continuum parameters as was assumed by GHRM for the proton, with the VMD+Regge
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FIG. 13: (color online) As in Fig. 12, but with the AJM model asymmetries (solid) and their

uncertainties (dashed) constrained by the E08-011 data [55]. Note the different scale on the

ordinate to that in Fig. 12.

model [29] used for the entire kinematic region [14]. In this case the uncertainties on AdPV

in the W & 1.8 GeV region are ≈ 6 times larger than the AJM model asymmetries. Using a

reduced 25% uncertainty on κTC(d) results in asymmetries with a significantly smaller error

band, which is nevertheless slightly larger than in the AJM model.

As a check, the parameter κTC(d) was also constrained by performing a χ2 fit to the E08-

011 data points. This fit constrains the dominant, transverse continuum parameter to be

κTC(d) = 0.69 ± 0.13. (Omitting the ∆ datum from the fit would yield a marginally larger

value, κTC(d) = 0.72 ± 0.13.) For the longitudinal contribution, the CB parametrization

of the deuteron structure function provides only F γγ
1 , while F γγ

L is obtained through the

longitudinal to transverse cross section ratio σγγL /σ
γγ
T (see Eq. (21)), with the deuteron ratio

assumed to be the same as for the proton. Within this parametrization, a direct constraint on

κLC(d) as for the proton case is therefore not possible. However, as for the PDF-constrained

asymmetry, we can still propagate the uncertainty on σL/σT through the final asymmetry

by including the uncertainties in the κT,LC values of the proton which serve as inputs into the

σγZL /σγZT ratio.

The resulting asymmetries are again in very good agreement with the E08-011 data, as

is seen in Fig. 13. Moreover, the uncertainties (dashed curves) are 3 − 4 times smaller

in the W & 1.8 GeV region than those obtained by assuming a 100% uncertainty on the

parameters, and remain smaller than even for the reduced, 25% uncertainty case. The
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TABLE II: Parity-violating deuteron asymmetries in the AJM model at the kinematics of the

E08-011 experiment [15]. The asymmetries are computed with the continuum parameters κT,LC (d)

constrained by the E08-011 data, or by matching to the DIS region described in terms of PDFs.

Note that the points marked with asterisks (∗) are predictions.

E W Q2 APV/Q
2 (ppm GeV−2)

(GeV) (GeV) (GeV2) PDF constraint E08-011 constraint

4.9 1.26 0.95 −93.7+8.8
−9.0 −93.1+8.8

−9.0

4.9 1.59 0.83 −82.7+9.7
−9.9 −80.1+10.1

−10.3

4.9 1.86 0.76 −86.2+6.7
−6.9 −82.4+7.9

−8.0

6.1 1.98 1.47 −84.7+6.2
−6.4 −79.2+8.6

−8.8

6.1 2.03 1.28 −84.9+6.2
−6.4

(∗) −79.7+8.4
−8.6

(∗)

6.1 2.07 1.09 −85.2+6.2
−6.4

(∗) −80.3+8.2
−8.3

(∗)

6.1 2.33 1.90 −82.7+6.3
−6.5

(∗) −76.5+9.3
−9.3

(∗)

consistency between the data and the results given by the constrained expressions gives us

confidence in the reliability of the γZ structure functions in the AJM model in the region

of low to intermediate W and Q2 that is of greatest importance for the <e�VγZ calculation.

Finally, the values of the calculated asymmetries and their uncertainties, using both the

resonance region data and the PDF constraints, are summarized in Table II at each of

the kinematic points from the E08-011 experiment [15]. In addition, we list the AJM model

predictions for AdPV at the measured DIS region points at W > 2 GeV (marked by asterisks),

which will be discussed further in the next section.

V. RESULTS

A. γZ box corrections for Qweak

The detailed examination of the γZ interference structure functions and their uncertain-

ties, constrained by data in the DIS region and parity-violating asymmetries in the resonance

region, allows us to compute the =m�VγZ correction in Eq. (12), and through the dispersion
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FIG. 14: (color online) Energy dependence of the contributions to <e�VγZ from the various regions

in W and Q2 displayed in Fig. 2 in the AJM model (top), and the breakdown of Region I into its

resonant and nonresonant background components (bottom).

relation (6) to make a reliable determination of the γZ box correction to Qp
W . The depen-

dence of <e�VγZ on the incident energy E is illustrated in Fig. 14, which also shows the

individual contributions of the various W and Q2 regions in Fig. 2.

At low energy (E . 1 GeV), the total correction <e�VγZ is dominated by the low-W ,

low-Q2 region (Region I in Fig. 2). As found in earlier analyses [11–14, 22], the resonant

contribution (mainly from the ∆(1232) resonance) peaks at around E ≈ 0.7 GeV, and grad-
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TABLE III: Contributions to <e�VγZ from various regions in W and Q2 in the AJM model (see

Fig. 2) at the Qweak energy E = 1.165 GeV.

Region <e�VγZ (×10−3)

I (res) 2.18± 0.29

I (bgd) 2.46± 0.20

I (total) 4.64± 0.35

II 0.62± 0.05

III 0.35± 0.02

total 5.60± 0.36

ually decreases at higher energies. The nonresonant and resonant components of Region I

are approximately equal at E ∼ 1 GeV, with the nonresonant part growing with increasing

energy. The higher-W , higher-Q2 regions play a relatively minor role in the �VγZ correction,

with Regions II and III contributing ≈ 20% and 10% of the total, at E = 3 GeV, respectively.

At the Qweak energy, E = 1.165 GeV, the breakdown of the <e�VγZ correction into its

individual contributions is summarized in Table III. Including uncertainties from all regions,

the total correction is found to be

<e�VγZ = (5.60± 0.22 [bgd] ± 0.29 [res] ± 0.02 [DIS])× 10−3, (33)

where the uncertainties listed are from the nonresonant background, the resonances, and the

DIS region, respectively. Adding the errors in quadrature gives <e�VγZ = (5.60±0.36)×10−3

at the Qweak energy. The ≈ 7% relative uncertainty on this correction remains largely energy

independent, even at large energies, where the contributions from larger W and Q2 become

more important; since the structure functions are constrained by DIS data, the uncertainty

in <e�VγZ does not grow with E.

The AJM model value of the γZ box correction is similar to the result, <e�VγZ = (5.40±

0.54) × 10−3, obtained using the γZ structure functions from Region II extended over all

kinematics, as in the GHRM Model II [14], but with the κT,LC parameters constrained by

matching to the DIS region structure functions [40]. This constraint renders the uncertainty

∼ 4 times smaller than that in Ref. [14], but still slightly larger than in the AJM model

calculation.
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FIG. 15: (color online) Predictions for the parity-violating deuteron asymmetry AdPV/Q
2 as a func-

tion of W (solid) for the DIS region kinematics of the Jefferson Lab E08-011 experiment [15] at

Q2 = 1.28 GeV2 (green), 1.09 GeV2 (red) and 1.90 GeV2 (blue) (see also Table II). The uncertain-

ties (dashed) are computed in the AJM model with the continuum parameters κT,LC constrained by

DIS structure functions (left), and by the E08-011 resonance region data (right). The predictions

at the experimental W values [15] are shown as pseudo-data points (open symbols).

B. Predictions for parity-violating asymmetries

The γZ structure functions can be further constrained by additional parity-violating

asymmetry data from the E08-011 experiment at Jefferson Lab [15]. The deep-inelastic

region data are currently being analyzed [54], and the predictions from the AJM model are

shown in Fig. 15 as a function of W for the three experimental Q2 values (see also Table II).

The uncertainties on the predictions are computed both by fitting the continuum parameters

κT,LC to the DIS structure functions [40] and the E08-011 resonance region data [15]. The

asymmetries with the E08-011 data constraints are marginally higher than those with the

parameters constrained by PDFs, with slightly larger uncertainties. As for the resonance

region comparison in Figs. 12 and 13, these uncertainties are ≈ 4−5 times smaller than they

would be without the constraints on κT,LC , assuming 100% errors along the lines of the proton

calculation in Ref. [14]. The upcoming data will therefore be extremely useful in determining

the uncertainties on the γZ structure functions and on the resulting <e�VγZ correction.

A further constraint will be provided by the inelastic Qweak measurement [16], which

was a special run of the Qweak experiment tuned to the inelastic region at an average W =

2.23 GeV. The AJM model prediction for the proton asymmetry ApPV and its uncertainty are

33



ìì

1.5 2.0 2.5 3.0

-10

-9

-8

-7

-6

-5

-4

-3

W HGeVL

A
PVp

Hpp
m

L

Q2 = 0.09 GeV2

FIG. 16: (color online) AJM model prediction for the proton parity-violating asymmetry ApPV as

a function of W for the Qweak inelastic measurement [16] at Q2 = 0.09 GeV2 (solid line and open

symbol). The AJM model uncertainties (dashed) are compared with those from the GHRM model

with 100% uncertainty on the continuum parameters (dotted).

shown in Fig. 16, where we find ApPV = (−7.8±0.6) ppm at the experimental Q2 = 0.09 GeV2

value. The uncertainty in the AJM model, with the continuum parameters κT,LC constrained

by the DIS structure functions, is ≈ 2 times smaller at the inelastic Qweak kinematic point

than that from the GHRM model [14] without these constraints. Note also that in the

resonance region, W ∼ 1.5 GeV, the uncertainty in the GHRM model almost doubles

by taking extrema values instead of the more conventional addition in quadrature. The

inelastic Qweak, and similar measurements of the parity-violating inelastic asymmetries, will

be valuable for constraining the γZ structure functions and the <e�VγZ corrections in the

future.

VI. CONCLUSION

We have performed a comprehensive analysis of the γZ box contribution to the forward

electron–proton elastic parity-violating asymmetry. Our primary result is a new determi-

nation of the uncertainty on <e�VγZ at the beam energy of the Qweak experiment. In

comparison with previous estimates, we report a significant reduction in this uncertainty,

driven largely by data on structure functions in the DIS region, and measurements of parity-
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violating asymmetries in the resonance region.

To isolate the dependence on the various inputs required in the evaluation of <e�VγZ , we

have divided the dispersion integral into three kinematic regions. Region I, which includes

resonance contributions at low W and Q2, is identified to totally dominate the value of

<e�VγZ . The total uncertainty is therefore largely driven by how well the γZ interference

structure functions F γZ
i can be constrained in this region.

The resonance region γZ structure functions are determined by an isospin transformation

of the corresponding γγ structure functions. The input F γγ
i functions are determined by

a fit [24] to the world’s inclusive electron–nucleon scattering data in terms of resonance

contributions and a nonresonant background. For the resonance components, the isospin

transformation can be performed using the conservation of the vector current and the isospin

dependence of the couplings, as reported by the PDG, with relatively modest contribution

to the overall uncertainty. For the background, following the approach of Ref. [14], the

transformation is estimated using a prescription based on the VMD model [29]. For the

low-mass vector meson components the isospin rotation is determined by isospin symmetry

of the electroweak interactions, while the transformation of the high-mass continuum part

is not fixed within the VMD formalism, and consequently contributes a larger uncertainty.

At larger Q2 values (Q2 > 1.5 GeV2) the continuum piece totally dominates the nonres-

onant background. We use this fact to constrain the continuum component of the isospin

rotation by matching this to the DIS structure functions in the transition region. The model

dependence from using a particular continuum form at lower Q2 (away from the PDF con-

straint) is less important, since this region is dominated by the low-mass vector mesons

ρ, ω and φ. It is the constraint on this rotation that drives the significant reduction in

uncertainty in the present AJM model as compared to that reported by GHRM [14].

Combined with the relatively well-determined contributions from Regions II and III at

higher W and Q2 (see Fig. 2), we find the final value for γZ correction to be <e�VγZ =

(5.60± 0.36)× 10−3. Importantly, this precision maintains confidence in the interpretation

of the Qweak experiment as a standard model test.

The reliability of our constraint procedure has been confirmed by a comparison with

the corresponding inclusive γZ interference asymmetries recently measured on the deuteron

by the E08-011 experiment at Jefferson Lab [55]. Conversely, using the E08-011 resonance

region data as a constraint on the γZ structure functions, the resulting asymmetries are
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found to be very similar to those in the AJM model with the PDF constraints, albeit with

slightly larger uncertainties. Upcoming data on the deuteron asymmetry in the DIS region

[54] should reduce these uncertainties.

Beyond this, the most promising means by which one could further constrain the γZ

structure functions would be to perform a systematic experimental study of parity-violating

electron scattering on hydrogen across Region I. While the recent deuterium measurements

[55] have proven useful in providing confidence in the procedure of matching to PDFs at

intermediate Q2 and W , because the deuteron requires a knowledge of the neutron structure

function as well as of the proton, this has limited value as a means to reduce the uncertainty

in F γZ
i . A dedicated study of the proton itself would directly constrain the model and lead

to a reduction in the uncertainty of the radiative correction arising from the γZ box.
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