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The Higgs mass determination from diphoton events at the LHC can be affected

by interference between the Higgs resonant and continuum background amplitudes

with the same initial and final states. For the leading order gluon fusion process,

this shift was previously found to exceed 100 MeV, with some dependence on the

diphoton mass resolution and the methods used to extract and fit the peak from

data. In this paper, I consider the mass shift for the process pp → jγγ that includes

an additional central jet in the final state. For cuts on the transverse momentum of

the jet of 25 GeV or more, the diphoton Higgs peak mass shift due to interference is

found to be very small, due in part to less interference for the gluon-gluon initiated

subprocess, and in part to a cancellation between it and the quark-gluon initiated

subprocess.

I. INTRODUCTION

The ATLAS and CMS detector collaborations at the LHC have recently established [1–4] the

existence of a resonance whose properties are consistent with those of the minimal Standard Model

Higgs scalar boson, H. The properties of this resonance are now the subject of detailed theoretical

and experimental investigations to establish its quantum numbers, couplings, and mass. Given

the absence of direct or indirect indications for a non-minimal electroweak symmetry breaking

mechanism, it will be assumed here that the resonance is indeed H.

The mass determination of H is driven primarily by the invariant mass peaks in the γγ and

ZZ∗ → ℓ+ℓ−ℓ′+ℓ′− channels. The production of H is mostly due to gg → H [5], for which a

great effort has been made to include higher order effects, notably up to next-to-next-to-leading

order (NNLO) in QCD [6–19], next-to-leading order (NLO) in electroweak couplings [20–22], and

next-to-next-to-leading logs in soft gluon resummation [23–25]. These contributions are reviewed

in [26–29]. However, because the mass measurement comes from invariant mass distributions, for

the most part it does not depend directly on the details of the Higgs production, including the
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significant remaining uncertainty on the total rate and the presence of additional hadrons. The

best experimental values for the mass combining the γγ and ZZ∗ channels at this writing are

MH = 125.5 ± 0.2+0.5
−0.6 GeV (ATLAS, [3]), (1.1)

MH = 125.8 ± 0.4± 0.4 GeV (CMS, [4]). (1.2)

In each case, the first uncertainty is statistical and the second is systematic. In the future, one

may hope to achieve much more precise values, given more statistics and reduced systematic

uncertainties. Even now, it is worth accounting for effects on the mass determination of order 0.1

GeV, since this is the last digit being reported by the experimental collaborations.

One of the issues that may need to be confronted in a precision determination of MH is the effect

of the interference between resonant Higgs production amplitudes and the continuum (non-Higgs-

mediated) amplitudes with the same initial and final states. The interference effect can produce

small shifts in the invariant mass distributions, which are in principle observable because they differ

for different parton-level processes. In particular, for the diphoton channel the interference effect

is not completely negligible because of the relatively large continuum amplitude (one-loop order)

compared to the Higgs-mediated amplitude (which is two-loop order; there are no renormalizable

couplings of the neutralH to γγ or to gg). In ref. [30], it was shown that in the leading order parton-

level process gg → γγ, interference effects can shift the position of the Higgs diphoton invariant

mass peak lower by over 100 MeV compared to where it would be ignoring the interference. Since

the latter corresponds to what should be obtained in the ZZ and vector boson fusion channels,

which will not have such a significant interference effect, this shift is observable. The magnitude

of the shift will depend on the method used to fit to the diphoton peak, and will also be greatly

affected by higher order corrections and by cuts and kinematic-dependent detector efficiencies.

In general, the diphoton mass lineshape in proton-proton collisions can be written in terms of

the invariant mass of the diphoton pair,
√
h ≡ Mγγ , as the sum of a continuum plus a Breit-Wigner

peak multiplied by functions that are approximately symmetric and antisymmetric about the Higgs

pole mass:

dσpp→γγ+X

d(
√
h)

= C(h) +
1

D(h)

[

P (h) + (h−M2
H)I(h)

]

. (1.3)
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Here, C(h), P (h), and I(h) are smooth functions of h near the resonance, and

D(h) ≡ (h−M2
H)2 +M2

HΓ2
H , (1.4)

where MH is the Breit-Wigner mass of the Higgs from the renormalized propagator, and ΓH is

the Higgs total decay width. The function C(h) arises from the continuum involving Feynman

diagrams that do not include the Higgs boson. It falls smoothly with h, and is determined by

the experimental collaborations by sideband analyses, fitting to data away from the diphoton

peak. Because this is most accurately determined experimentally, it will not be considered as

an object of theoretical computation here. The function P (h) arises mostly from the pure Higgs

resonance diagrams squared, with a small contribution from the interference. Almost all previous

studies of the Higgs diphoton signal have relied on the narrow width approximation in which

1/D(h) ≈ πδ(h−M2
H)/MHΓH , and one evaluates H +X production separately from the on-shell

decays of H, including the diphoton decay [31–36]. In that approximation, the function I(h) does

not appear. In general, the function I(h) arises only from the interference terms between Higgs

resonant and continuum amplitudes. Its importance is that it gives rise to a shift in the diphoton

mass distribution peak away from MH , since the corresponding contribution to the cross-section

is odd in
√
h − MH . The sign of the shift in the diphoton mass peak, compared to its position

if interference were neglected, is the same as the sign of I(h). The magnitude of the mass shift

depends on the relative sizes of I(h) and P (h) with kinematic cuts (to be evaluated numerically

below) and detector effects including the diphoton mass resolution.

In contrast, the effect of interference on the total cross-section is very small at leading order

[37, 38], while at next-to-leading order there is a reduction of a few per cent [38] due to the

imaginary part of the 2-loop continuum amplitude gg → γγ from light quark loops [39]. Other

studies of the effects of interference between signal and background in Higgs production in different

contexts can be found in refs. [40–44].

The leading order shift in the Higgs mass peak due to interference should be investigated with

a full NLO calculation, at least. As a precursor to this, in the present paper I will investigate

the interference between signal and background for processes contributing to diphoton production

with an additional central jet requirement imposed on the final state, pp → jγγ. The parton-level

processes Qg → Qγγ and Qg → Qγγ and QQ → gγγ are suppressed by relatively small quark

parton distribution functions, but this is counteracted in part by the fact that the continuum

amplitudes are tree-level, providing for a stronger interference with the Higgs resonant amplitudes,
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compared to the non-interference contributions. These processes have recently been investigated

in [45], where it is found that the diphoton mass distribution shift is in the opposite direction to

the leading order gg → γγ shift. I find agreement with their result, and in the present paper will

include also the gg → gγγ process, which has a mass shift with the same sign as the shift from

gg → γγ.

Previous investigations [9, 46–49] of the pp → jH signal for the LHC have considered a cut

on pjT of 30 GeV or higher. In the present paper this cut will be varied to both much larger and

much smaller values. In the limit that the pjT cut on the final-state jet is taken to be very small

(certainly for less than 15 GeV or so), the results are clearly unphysical, as the real emission of a

soft jet is subject to infrared log divergences that should be regularized and canceled against those

coming from virtual corrections to the leading-order process gg → γγ in a full NLO calculation.

Nevertheless, I will include below the experimentally unrealistic case of very low pjT cuts even below

1 GeV, since this provides a check; the result for the mass shift due to interference in this case

approaches that for the leading-order process, as the calculated production is dominated by the

leading order subdiagrams gg → γγ with a soft gluon emission attached to them.

The rest of this paper is organized as follows. In section II, the situation for the leading order

process without an extra jet is reviewed, following ref. [30], and including numerical results for the

same cuts on the photons as will be imposed later on the process with an additional jet. Section

III provides analytical formulas for the pure Higgs and interference contributions to pp → jγγ.

Numerical results are then discussed in section IV. Section V contains some summarizing remarks.

II. HIGGS INTERFERENCE IN pp → γγ

The leading order diphoton production cross-section relevant to Higgs production and interfer-

ence can be written as

dσpp→γγ

d(
√
h)

=
1

128π
√
hD(h)

∫ − ln
√
τ

ln
√
τ

dy

s
g(
√
τey, µ2

F )g(
√
τe−y, µ2

F )

∫ 1

−1
dz Θ(h, y, z)N(h, z), (2.1)

where τ = h/s, with
√
s the fixed total energy of the pp collisions at the LHC, g(x, µ2

F ) is the gluon

parton distribution function, y is the longitudinal rapidity of the partonic center-of-momentum

frame, z is the cosine of the photon scattering angle with respect to the beam axis, and Θ(h, y, z)

represents the effects of kinematic cuts. The resonant and interference contributions to N(h, z) are



5

NH +Nint,Re +Nint,Im, with

NH = h2|CgCγ |2/4, (2.2)

Nint,Re = −(h−M2
H)hRe[CgCγA

∗
ggγγ ], (2.3)

Nint,Im = −MHΓHh Im[CgCγA
∗
ggγγ ]. (2.4)

Here, the effective Higgs coupling to gluons, in the limit of a very heavy top quark and other quarks

massless, is parameterized by

Cg =
αS

3πv
, (2.5)

using a normalization where v ≈ 246 GeV is the Higgs expectation value. This Mt → ∞ effective

theory for the Higgs interactions with gluons (both Hgg and Hggg) is a good approximation

[6, 7, 32, 50] for the realistic case (with MH ∼ 125 GeV and Mt = 173 GeV) for transverse momenta

less than Mt, and will be used throughout this paper. The Higgs interaction with photons is instead

treated using the complete one-loop expression:

Cγ = − αh

4πv

[

F1(4m
2
W /h) +

∑

f=t,b,c,τ

Nf
c e

2
fF1/2(4m

2
f/h)

]

, (2.6)

where Nf
c = 3 (1) for f = quarks (leptons) with electric charge ef and mass mf , and

F1(x) = 2 + 3x[1 + (2− x)f(x)], (2.7)

F1/2(x) = −2x[1 + (1− x)f(x)], (2.8)

f(x) =

{

[arcsin(
√

1/x)]2, x ≥ 1 (for t,W ),

−1
4

[

ln
(

1+
√
1−x

1−
√
1−x

)

− iπ
]2

, x ≤ 1 (for b, c, τ).
(2.9)

(The effective Higgs couplings used in ref. [30] are related to these definitions by AγγH = Cγ

and AggH = hCg/2, and the variable ŝ there is the same as h here.) For the continuum amplitude

contribution [51–53], the heavy top and massless u, d, c, s, b approximation is also used here, leading

to

Aggγγ =
22

9
αSα

{

z ln

(

1 + z

1− z

)

− 1 + z2

4

[

ln2
(

1 + z

1− z

)

+ π2

]}

. (2.10)
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The numerical effect of including a finite top mass and non-zero bottom mass is not very large for

the interference effect as it applies to the diphoton mass shift.

For pp → γγ, the cuts on the transverse momenta and pseudo-rapidity of the photons are

pTγ > pcutTγ = 40 GeV, (2.11)

|ηγ | < ηcutγ = 2.5. (2.12)

These cuts are implemented in the numerical integration of this section (with no extra jet) simply

by imposing the restrictions that |y| < ηcutγ and that |z| is less than both
√

1− 4(pcutTγ )
2/h and

tanh(ηcutγ − |y|). The results below therefore differ from ref. [30], where these cuts on the photons

were mentioned but not directly applied. The impact of this is to reduce the mass shift due to the

interference somewhat.

For purposes of illustration, I take MH = 125 GeV and ΓG = 4.2 MeV. The parameter Cγ

is evaluated using mt = 168.2 GeV, mb = 2.78 GeV, mc = 0.72 GeV, mτ = 1.744 GeV, and

α = 1/127.5. Also, to facilitate comparison with an eventual NLO calculation, I have used MSTW

2008 NLO [54] parton distribution functions with factorization scale µF = MH , and evaluated

the corresponding strong coupling at the same renormalization scale µR = MH ; explicitly this is

αS(MH) = 0.114629. The unsmeared diphoton lineshape is shown in Figure 2.1. For
√
h very close

to MH , the lineshapes are nearly indistinguishable, but for |
√
h−MH | ∼> 50 MeV, the magnitude of

the interference term is much larger than the pure resonance contribution, due to the long tails of

the square root of the Breit-Wigner lineshape. The effect of the interference is to produce slightly

more events below MH than above MH , because the function I(h) in eq. (1.3) is negative near
√
h = MH .

The effects of detector resolution are complicated, depending on the location and type of inter-

action of photons in the detector. For simplicity, I assume a Gaussian invariant mass resolution,

with mass resolution widths σMR. For a typical case σMR = 1.7 GeV, the diphoton lineshape after

this Gaussian smearing is shown in Figure 2.2. After Gaussian smearing there remains a potentially

detectable shift in the diphoton mass distribution.

The magnitude of this shift will depend on the methods used by the experimental collaborations

to fit to the lineshape, in particular the background. In [30], one measure of this shift was described,

but a simpler and better method is to simply do a least-squares fit of the lineshapes with and

without interference to a Gaussian with the same width σMR as was used to model the mass

resolution. For the purely resonant contribution without interference included, the peak of the
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FIG. 2.1: The diphoton invariant mass distri-
bution, with and without interference included,
before including any experimental resolution ef-
fects, computed for pp → γγ at leading order as
described in section II from the partonic process
gg → γγ, for 8 TeV pp collisions at the LHC,
with pT > 40 GeV and |η| < 2.5 for the pho-
tons. Here Mγγ =

√
h is the diphoton mass.

The three panels show exactly the same results
but with different scales on the axes.

distribution is at
√
h = MH to very high accuracy. In the following, the difference between

the centers of the Gaussian fits with and without interference included will be called ∆Mγγ ≡
Mpeak

γγ −MH . The fit is performed over a range of
√
h from 115 GeV to 135 GeV, but the results

are not very sensitive to this particular choice. (Even a range 120 to 130 GeV gives nearly the

same results, except when σMR is larger than about 2.5 GeV.) The magnitude of the shift by this

measure is shown in Figure 2.3, for varying σMR used for both the smearing and the fit. The

magnitude of the shift according to this measure actually increases nearly linearly with increasing

mass resolution width σMR. For a typical average value σMR = 1.7 GeV, the shift is about

∆Mγγ = −125 MeV after cuts; it would be about −165 MeV before the photon pT and η cuts.

This is because the continuum amplitude has larger support at small scattering angles (z near ±1),

due to the logarithms in eq. (2.10), while the Higgs resonant amplitude is isotropic in the partonic

center-of-momentum frame.

The previous results were made with the somewhat arbitrary fixed scale choices µR = µF = MH .
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FIG. 2.2: The diphoton invariant mass distribution for pp → γγ at leading order, with and without interfer-
ence included, as in Figure 2.1, but now including the effects of a Gaussian mass resolution with σMR = 1.7
GeV. The two panels show the same results with different scales on the axes.
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FIG. 2.3: The shift in the invariant mass distri-
bution due to the interference effect, ∆Mγγ ≡
Mpeak

γγ − MH , for pp → γγ at leading order,
computed by a least-squares fit of the lineshape
to a Gaussian with the same width σMR used
to model the mass resolution. The solid line in-
cludes cuts pT > 40 GeV and |η| < 2.5 on the
photons, and the dashed line is what would be
obtained without these cuts.

However, variations in these scale choices for the strong coupling and the parton distribution

functions tend to nearly cancel out of ∆Mγγ , because they enter into the interference term and

the pure resonance term in the same way. The choice made here of using the NLO rather than the

LO αS(MH) makes the computed total cross sections smaller by about 33%. However, since I(h)

and P (h) are both proportional to α2
S , this dependence very nearly cancels out of the prediction

for ∆Mγγ .
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III. HIGGS INTERFERENCE IN pp → jγγ

Now consider the process of Higgs production in association with a jet, in the case where the

Higgs decays to two photons. Because the relevant parton level processes gg → gγγ and Qg → Qγγ

and Qg → Qγγ and QQ → gγγ have different initial and final states than the gg → γγ case studied

in the previous section and in [30], it will be no surprise that the interference effect on the mass

shift will be different when an extra jet is required by the selection. In fact, the processes involving

quarks have continuum amplitudes already at tree-level, which provides for a stronger interference

with the Higgs resonant amplitudes, compared to the Higgs-only cross sections. However, this

effect is mitigated by the smaller quark parton distribution functions for the relevant momentum

fractions.

Let us label the initial state partons by 1,2, and the final state jet parton by 3, and the final state

photons by 4,5. The corresponding momenta and helicities are denoted (pi, λi) for i = 1, 2, 3, 4, 5.

Amplitudes below are evaluated using the spinor helicity formalism following the conventions of

refs. [55, 56] for spinor products, and using a convention in which momenta and helicities are always

outgoing, even for initial-state particles.

The 4-momenta of the partons are parameterized in terms of the quantities: ŝ (the invariant

squared mass of the initial-state partons), h (the invariant squared mass of the two photons), χ

(related to the scattering angle of the final-state jet parton), and ω, φ (related to the angles of the

individual photons in the diphoton system rest frame), as follows. In the lab frame,

p1 = −
√
ŝ

2
(1, 0, 0, 1), (3.1)

p2 = −
√
ŝ

2
(1, 0, 0,−1), (3.2)

p3 =

√
ŝ

2
(1− h/ŝ)

(

1, 2
√

χ(1− χ), 0, 1− 2χ
)

, (3.3)

pH =

√
ŝ

2
(1− h/ŝ)

(

ŝ+ h

ŝ− h
, −2

√

χ(1− χ), 0, −1 + 2χ

)

, (3.4)

where H denotes the Higgs (or diphoton system), with pH = p4 + p5. Now (pH , p4, p5) are related

to (p′H , p′4, p
′
5) by an appropriate boost, where in the diphoton system rest frame,

p′H =
√
h(1, 0, 0, 0), (3.5)

p′4 =

√
h

2

(

1, 2
√

ω(1− ω) cosφ, 2
√

ω(1− ω) sinφ, 1− 2ω
)

, (3.6)
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p′5 =

√
h

2

(

1, −2
√

ω(1− ω) cosφ, −2
√

ω(1− ω) sinφ, −1 + 2ω
)

. (3.7)

(The boost is not written explicitly here, but is determined by the relationship of pH and p′H .) The

ranges for the angular variables are 0 ≤ χ, ω ≤ 1 and 0 ≤ φ < 2π. Also, define sij = (pi + pj)
2.

Note that

s12 = (p1 + p2)
2 = (p3 + p4 + p5)

2 = ŝ, s45 = (p4 + p5)
2 = h. (3.8)

We are interested in the diphoton line shape,

dσpp→jγγ

d(
√
h)

=

∫

dτ

∫ − ln
√
τ

ln
√
τ

dy f1(
√
τey, µ2

F )f2(
√
τe−y, µ2

F )
dσ̂12→345

d(
√
h)

(3.9)

where f1,2 are the distribution functions for the initial-state partons 1 and 2 (which should be

summed over), and now τ = ŝ/s. Including a factor of 1/2 for identical photons, the parton-level

differential cross-section is:

dσ̂

d(
√
h)

=

√
h

512π4ŝ
(1− h/ŝ)

∫ 1

0
dχ

∫ 1

0
dω

∫ 2π

0
dφ Θ

∑ |M|2. (3.10)

Here M is the reduced matrix element for 12 → 345, and
∑

denotes the average (and sum) over

initial (final) state helicities and colors, and Θ(ŝ, h, y, χ, ω, φ) represents the effects of kinematic

cuts, implemented below at parton level in a numerical integration.

A. gg → gγγ

Consider first the process

g(p1, λ1, a) + g(p2, λ2, b) −→ g(p3, λ3, c) + γ(p4, λ4) + γ(p5, λ5), (3.1)

with the momenta pi and the polarizations λi = ± taken to be outgoing, and a, b, c are color

adjoint labels. The corresponding matrix element can be written as a sum of continuum and

resonant Higgs-mediated parts:

M = Mcont +MH . (3.2)
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For the Higgs-mediated contribution in eq. (3.2), we will treat the gluon couplings to the Higgs

using the effective theory in which the top quark is taken very heavy, Mt ≫ MH . Then one finds

MH
λ1λ2λ3λ4λ5

=
g3√
2
fabcCgCγXλ1λ2λ3

Yλ4λ5
/
(

h−M2
H + iMHΓH

)

, (3.3)

with spinor-helicity factors:

X+++ = −ih2/〈12〉〈23〉〈31〉, X−−− = ih2/[12][23][31], (3.4)

X++− = i[12]3/[23][31], X−−+ = −i〈12〉3/〈23〉〈31〉, (3.5)

X+−+ = i[31]3/[12][23], X−+− = −i〈31〉3/〈12〉〈23〉, (3.6)

X−++ = i[23]3/[31][12], X+−− = −i〈23〉3/〈31〉〈12〉, (3.7)

Y++ = [45]/〈45〉, Y−− = 〈45〉/[45], (3.8)

Y+− = Y−+ = 0. (3.9)

Note that these obey 〈ij〉 ↔ [ji] when the helicities are flipped. The structure constants of the

group are normalized so that fabcfabd = Nδcd with N = 3 for QCD.

The continuum matrix element in eq. (3.2) can be given in terms of the one-quark-loop 5-

gluon partial amplitudes A
[1/2]
5;1 that were obtained by Bern, Dixon and Kosower in [57]. (These

are somewhat complicated, and so will not be reproduced explicitly here. Note that flipping all

of the helicities on A
[1/2]
5;1 can be obtained by replacing 〈ij〉 ↔ [ji] everywhere. In particular,

ε(i, j,m, n) = [ij]〈jm〉[mn]〈ni〉 − 〈ij〉[jm]〈mn〉[ni] changes sign.) One finds, for massless quarks

u, d, s, c, b circulating around the loop, and neglecting the suppressed top-quark contribution:

Mcont
λ1λ2λ3λ4λ5

=
g3√
2
fabc

(

44

9
αSα

)

Aλ1λ2λ3λ4λ5
, (3.10)

where [58, 59]:

Aλ1λ2λ3λ4λ5
= 16π2

[

A
[1/2]
5;1 (1, 2, 3, 4, 5) +A

[1/2]
5;1 (1, 2, 3, 5, 4) +A

[1/2]
5;1 (1, 2, 4, 3, 5) +

A
[1/2]
5;1 (1, 2, 5, 3, 4) +A

[1/2]
5;1 (1, 2, 4, 5, 3) +A

[1/2]
5;1 (1, 2, 5, 4, 3) +

A
[1/2]
5;1 (1, 4, 2, 3, 5) +A

[1/2]
5;1 (1, 4, 2, 5, 3) +A

[1/2]
5;1 (1, 4, 5, 2, 3) +

A
[1/2]
5;1 (1, 5, 2, 3, 4) +A

[1/2]
5;1 (1, 5, 2, 4, 3) +A

[1/2]
5;1 (1, 5, 4, 2, 3)

]

. (3.11)

The individual loop amplitudes A
[1/2]
5;1 have infrared divergences, which cancel in the sum.
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The spin and color sum/average for the reaction eq. (3.1) is

∑ ≡ 1

4

∑

λ1,λ2,λ3,λ4,λ5

1

(N2 − 1)2

∑

a,b,c

. (3.12)

Taking into account Y+− = Y−+ = 0 and 〈ij〉[ij] = −sij, it follows that:

∑ |MH |2 =
3παS

4D(h)
|CgCγ |2

(

h4 + ŝ4 + s413 + s423
ŝs13s23

)

(3.13)

∑

2Re[MHMcont∗] =
11πα2

Sα

12D(h)

∑

λ1,λ2,λ3,λ4

{

(h−M2
H)2Re[CgCγXλ1λ2λ3

Yλ4λ4
A∗

λ1λ2λ3λ4λ4
]

+MHΓH2Im[CgCγXλ1λ2λ3
Yλ4λ4

A∗
λ1λ2λ3λ4λ4

]
}

. (3.14)

In the following, we will neglect the small effects from ΓH , so that, in eq. (1.3), only eq. (3.13)

contributes to P (h) and only eq. (3.14) contributes to I(h). The pure continuum cross-section

has additional larger contributions from QQ → γγ and Qg → Qγγ, as well as from fake pho-

tons. Significant progress has been made on computing the diphoton backgrounds [60–64], but in

experimental practice these are determined by fitting to sidebands, so the pure continuum is not

considered here.

B. QQ → gγγ

Next consider the process

Q(p1, λ1, j1) + Q(p2, λ2, j2) −→ g(p3, λ3, a) + γ(p4, λ4) + γ(p5, λ5), (3.1)

where j1, j2, and a are SU(3) color indices in the anti-fundamental, fundamental, and adjoint

representations. (The notation means that there is a quark in the initial state, with physical

momentum and polarization −p1 and −λ1, opposite to the outgoing momentum and polarization,

and corresponding to an outgoing anti-quark.) The Higgs-mediated contribution to this process

has matrix element:

MH =
g3√
2
[ta]j2

j1CgCγZλ1λ2λ3
Yλ4λ5

/
(

h−M2
H + iMHΓH

)

, (3.2)
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where Cg, Cγ , and Yλ4λ5
are as given in eqs. (2.5), (2.6), (3.8), and (3.9) above, and

Z−+− = −〈13〉2/〈12〉, Z+−+ = [13]2/[12], (3.3)

Z+−− = 〈23〉2/〈12〉, Z−++ = −[23]2/[12], (3.4)

Z+++ = Z++− = Z−−+ = Z−−− = 0, (3.5)

and the generator matrices are normalized according to Tr[tatb] = δab/2. For the continuum

processes, the matrix elements can be written as:

Mcont = 8
√
2πe2Qαg3[t

a]j2
j1Bλ1λ2λ3λ4λ5

, (3.6)

where eQ = +2/3 or −1/3 is the charge of the quark Q = u, d, s, c, b. Because we are specifically

interested in interference with diphotons from the Higgs, only the matrix elements with λ4 = λ5

need to be considered. The continuum amplitude equation (3.6) vanishes if λ3 = λ4 = λ5. So,

there are only four helicity configurations that contribute to the interference. They are:

B−+−++ =
〈12〉〈13〉2

〈14〉〈15〉〈24〉〈25〉 , B+−+−− = − [12][13]2

[14][15][24][25]
, (3.7)

B+−−++ = − 〈12〉〈23〉2
〈14〉〈15〉〈24〉〈25〉 , B−++−− =

[12][23]2

[14][15][24][25]
. (3.8)

The spin and color sum/average for the reaction eq.(3.1) is

∑ ≡ 1

4

∑

λ1,λ2,λ3,λ4,λ5

1

N2

∑

ji,j2,a

. (3.9)

It follows that:

∑ |MH |2 =
8παS

9D(h)
|CgCγ |2(s213 + s223)/s12, (3.10)

∑

2Re[MHMcont∗] =
32π2e2QααS

9D(h)

∑

λ1 6=λ2,λ3 6=λ4

{

(h−M2
H) 2Re[CgCγZλ1λ2λ3

Yλ4λ4
B∗

λ1λ2λ3λ4λ4
]

+MHΓH 2Im[CgCγZλ1λ2λ3
Yλ4λ4

B∗
λ1λ2λ3λ4λ4

]
}

. (3.11)

The contribution to pp → jγγ from QQ → gγγ involving the Higgs is numerically quite small, but

is nevertheless included below. More importantly, it is useful because it is related by crossing to

the processes of the next subsection.
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C. Qg → Qγγ and gQ → Qγγ

Next consider the process

Q(p1, λ1, j1) + g(p2, λ2, a) −→ Q(p3, λ3, j3) + γ(p4, λ4) + γ(p5, λ5), (3.1)

The cross-section can be obtained by crossing from the results of the previous section, by making

the exchange 2 ↔ 3 in the spinor helicities 〈ij〉 and [ij] and in sij in eqs. (3.3)-(3.5) and (3.7)-(3.8)

and (3.10), and multiplying the right sides of eqs. (3.10) and (3.11) by 3/8 to take into account

∑ ≡ 1

4

∑

λ1,λ2,λ3,λ4,λ5

1

N(N2 − 1)

∑

ji,j3,a

. (3.2)

The cross-section for gQ → Qγγ is obtained in the same way, except making instead the exchange

1 ↔ 3; it gives the same result after integrating over the final state angular variables.

IV. NUMERICAL RESULTS

This section contains numerical results for the shift in the diphoton mass distribution, as a

function of the transverse momentum requirement on the final-state jet:

pjT > pjT,cut. (4.1)

In the numerical integration, this and other cuts are imposed at parton level. Equation (4.1) is

implemented simply by restricting the integrations over ŝ (or τ) and χ, for fixed h, to the regions

ŝ > h+ 2(pjT,cut)
2

[

1 +
√

1 + h/(pjT,cut)
2

]

, (4.2)

|2χ− 1| <
√

1− 4(pjT,cut)
2/[ŝ(1− h/ŝ)2]. (4.3)

The other cuts are fixed, and implemented within a Monte Carlo integration. The jet is required

to be central:

|ηj| < 3.0. (4.4)
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FIG. 4.1: Cross sections for pp → jH → jγγ, as a function of the cut on the transverse momentum of the
jet, pjT,cut, with other cuts and input parameters as described in the text. The portions coming from the gg

and the Qg (plus Qg) parton level processes are shown separately; the QQ-initiated process is too small to
show up on this scale. The cross section level for the leading order pp → H → γγ with no jet requirement
is also shown as the dashed line. The computation uses MSTW 2008 NLO parton distribution functions
and αS , with µR = µF = MH . The left panel is for pp collisions with

√
s = 8 TeV, and the right panel for√

s = 13 TeV.

For the photons, the cuts are

pγT (leading, sub-leading) > (40, 30) GeV, (4.5)

|ηγ | < 2.5, (4.6)

∆Rγγ ,∆Rjγ > 0.4, (4.7)

using the standard definition ∆R =
√

(∆η)2 + (∆φ)2. As in section II, I use MH = 125 GeV and

ΓH = 4.2 MeV, and MSTW 2008 NLO [54] parton distribution functions evaluated at µF = MH ,

with αS(µR = 125 GeV) = 0.114629, and other parameters listed there.

The cross sections for pp → jH → jγγ and its parton-level constituents, as a function of the

cut pjT,cut, are shown in Figure 4.1 for pp collisions with
√
s = 8 and 13 TeV. Also shown for

comparison is the cross section for the leading order pp → H → γγ with no jet requirement.

The largest contribution is from gg → gH → gγγ, especially for small pjT,cut. As expected, that

parton-level cross section diverges as pjT,cut is taken to 0. The calculated pp → jH → jγγ cross

section exceeds that of the leading order tree-level cross section for pp → H → γγ, with the same

cuts on photons, when pjT,cut < 10 GeV (at the 8 TeV LHC) or when pjT,cut < 12 GeV (at the 13

TeV LHC). The calculation is only physically realistic for larger pjT,cut, e.g. 30 GeV as in [9, 46–49].
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FIG. 4.2: The quantity MHΓHI(M2
H)/P (M2

H),
where I(h) and P (h) are the functions defined in
eq. (1.3), as a function of the cut on the trans-
verse momentum of the jet, pjT,cut, with other
cuts as described in the text, for gg → gγγ, for
Qg → Qγγ plus Qg → Qγγ, and for the com-
bined pp → jγγ, for

√
s = 8 TeV. The result for

the leading order pp → H → γγ with no jet re-
quirement is also shown as the dashed line. The
results for

√
s = 13 TeV are similar.

The partonic processes Qg → QH → Qγγ and Qg → QH → Qγγ (combined in the figure) are

subdominant, but certainly not negligible, while the process QQ → gH → gγγ is an order of

magnitude below the lower scale of the figure in each case.

A simple theoretical measure of the relative importance for ∆Mγγ of the interference compared

to the pure resonance contribution, independent of the details of experimental mass resolution, is

given by the dimensionless quantity

MHΓHI(M2
H)/P (M2

H ), (4.8)

with I(h) and P (h) as defined in eq. (1.3). Equation (4.8) is half of the ratio of the maximum

deviation from 0 of the unsmeared interference lineshape (which occurs at
√
h ≈ MH ± ΓH/2)

compared to the maximum of the pure resonant lineshape (which occurs at
√
h = MH). The mass

shift ∆Mγγ will be approximately proportional to eq. (4.8), with a constant of proportionality that

depends on mass resolution and other experimental realities including the method used to fit to

the data. The value of this ratio is shown in Figure 4.2 for gg → gγγ, and for Qg → Qγγ combined

with Qg → Qγγ, and for the combined pp → jγγ, for
√
s = 8 TeV. Note that as pjT,cut approaches

0 (the figure shows the computed values down to pjT,cut = 0.1 GeV), the result for gg → gγγ is

dominated by the log-enhanced contribution from diagrams with an extra gluon attached to the

gg → γγ diagrams, and so the ratio approaches that for the leading order pp → γγ, which is also

shown in the figure for comparison. For larger pjT,cut, the interference contribution for the gg → gγγ

process maintains the same (negative) sign but becomes relatively smaller. Furthermore, as was

already recently found in ref. [45], the sign of I(h) is positive for the Qg-initiated process. (The
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FIG. 4.3: The solid lines show the shifts in the diphoton mass peak, ∆Mγγ ≡ Mpeak
γγ −MH , for pp → jγγ,

as a function of the cut on the transverse momentum of the jet, pjT,cut, with other cuts as described in the
text, for σMR = 1.3, 1.7, and 2.1 GeV (from top to bottom on the left). The dashed lines shows the results
for pp → γγ at leading order without a jet requirement, again for σMR = 1.3, 1.7, and 2.1 GeV (from top to
bottom). The left panel is for pp collisions with

√
s = 8 TeV, and the right panel for

√
s = 13 TeV.

pp → jγγ curve is not the arithmetic sum of the gg → gγγ and Qg → Qγγ curves, because they

have different weights in the combination.) Both of these effects contribute to the fact that the

interference effect becomes much less important for finite pjT,cut, as compared to the leading order

pp → γγ process with no jet, and it has the opposite sign for pjT,cut > 25 GeV. The results shown

are for
√
s = 8 TeV; those for

√
s = 13 TeV are quite similar.

The resulting shifts in the diphoton invariant mass peak, ∆Mγγ ≡ Mpeak
γγ − MH , for both

√
s = 8 and 13 TeV are shown in Figure 4.3. These are computed as described in section II,

using representative Gaussian mass resolutions σMR = 1.3, 1.7, and 2.1 GeV. (Somewhat larger

or smaller shift magnitudes could occur for different methods of fitting the lineshape.) For any

reasonable cut pjT,cut, the magnitude of the mass shift is much less than 100 MeV, and it is slightly

positive for pjT,cut > 25 GeV at the 8 TeV LHC and for pjT,cut > 36 GeV at the 13 TeV LHC. This

is in contrast to the negative shift of about (−95,−125,−155) MeV for σMR = (1.3, 1.7, 2.4) GeV

from the leading order pp → γγ case with no jet as found in section II and [30].

As in the leading order pp → γγ calculation of section II, the choices of how to deal with

parton distribution functions and αS and scale dependences on µR and µF have a big effect on the

individual differential cross sections, but these tend to cancel out of the mass shift ∆Mγγ . In the

case of gg → gγγ, both I(h) and P (h) are proportional to α3
S , so this common dependence leads
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to only a small effect on ∆Mγγ from choosing between NLO or LO αS or varying µR. However, for

the parton-level processes involving quarks, the function I(h) is proportional to α2
S , while P (h) is

proportional to α3
S . This means that a choice of using the larger LO MSTW 2008 αS(MH) would

yield a 15% smaller contribution to the part of the shift that comes from Qg → Qγγ. A similar

effect follows from any other renormalization scale choice that uses larger αS values. This will tend

to shift the predicted value for the total ∆Mγγ down slightly from the curves shown in Figure 4.3,

without changing the conclusion that for reasonable values of pjT,cut the magnitude of the shift will

be quite small.

V. CONCLUSIONS

In this paper, I have evaluated the shift in the Higgs diphoton mass distribution for pp → jγγ

due to interference between the resonant signal and continuum background. Unlike the result

found in ref. [30] at leading order for pp → γγ with no jet, the shift in the mass distribution is

probably negligible, less than 20 MeV in magnitude for σMR = 1.7 MeV, when the cut on the

jet transverse momentum is large enough to be realistic. This is due in part to a reduction in

the relative importance of the interference for gg → gγγ as compared to gg → γγ, and in part

due to the opposite sign of the interference shift from the Qg → Qγγ process. The results for

vector boson fusion pp → jjγγ and the 4-lepton pp → ZZ∗ final state should both have very small

interference effects. It is therefore tempting to speculate that if and when the Higgs diphoton

mass measurement reaches the 100 MeV level of accuracy or better, the diphoton mass shift will

be appreciable only for the exclusive pp → γγ channel with no additional jets passing cuts like

the ones above, compared to the other classes of events contributing to the mass determination.

However, from the results of section IV, it appears that the difference between the diphoton mass

peaks for events with no additional jets (corresponding to the leading order calculation) and those

with a central jet with transverse momentum greater than 30 GeV might be as large as 150 MeV,

for σMR = 1.7 MeV. A full calculation including interference at NLO, at least, for the diphoton

mass lineshape would appear to be necessary to make a more definitive evaluation of this.
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