
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Holographic mutual information at finite temperature
Willy Fischler, Arnab Kundu, and Sandipan Kundu

Phys. Rev. D 87, 126012 — Published 28 June 2013
DOI: 10.1103/PhysRevD.87.126012

http://dx.doi.org/10.1103/PhysRevD.87.126012


Holographic Mutual Information at Finite Temperature

Willy Fischlera,b, Arnab Kundua, Sandipan Kundua,b
aTheory Group, Department of Physics, University of Texas, Austin, TX 78712 and

bTexas Cosmology Center, University of Texas, Austin, TX 78712
(Dated: June 6, 2013)

Using the Ryu-Takayanagi conjectured formula for entanglement entropy in the context of gauge-
gravity duality, we investigate properties of mutual information between two disjoint rectangular
sub-systems in finite temperature relativistic conformal field theories in d-spacetime dimensions
and non-relativistic scale-invariant theories in some generic examples. In all these cases mutual
information undergoes a transition beyond which it is identically zero. We study this transition in
details and find universal qualitative features for the above class of theories which has holographic
dual descriptions. We also obtain analytical results for mutual information in specific regime of the
parameter space. This demonstrates that mutual information contains the quantum entanglement
part of the entanglement entropy, which is otherwise dominated by the thermal entropy at large
temperatures.

1. Introduction and a summary Entanglement en-
tropy measures the quantum entanglement between two
sub-systems of a given system. In a QFT, entanglement
entropy of a region A contains short-distance divergence
which scales like the area[1, 2]. Holography[3, 4] has
emerged to be a powerful technique to analyze strongly
coupled large N gauge theories. Within this context,
entanglement entropy can be computed using the Ryu-
Takayanagi (RT) conjectured formula proposed in [5]: en-
tanglement entropy of a region A is given by the area of
a minimal area surface, denoted by γA, whose boundary
coincides with the boundary of the region A: ∂γA = ∂A.
As described in [6, 7], the RT formula has passed several
non-trivial checks.

Due to its short distance divergence structure, entan-
glement entropy is a scheme-dependent quantity. This is-
sue can be avoided by introducing a new concept named
mutual information: I(A,B) = SA + SB − SA∪B , where
SY denotes the entanglement entropy of the region Y
with surroundings. Mutual information has certain ad-
vantages over entanglement entropy. It is (i) finite, (ii)
positive semi-definite, (iii) measures the total correla-
tions between the two sub-systems A and B and (iv)
it is proportional to the entanglement entropy when
B ≡ Ac, where Ac denotes the complement of A, such
that SA∪Ac = 0. As showed in [8], given an operator OA
in the region A and OB in the region B, mutual infor-
mation sets an upper bound on the connected correlator

I(A,B) ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2

2||OA||2||OB ||2
(1)

and thus encodes all possible correlations, both classical
and quantum, between the two sub-systems. Note that,
in view of eqn (1) mutual information obeys a funda-
mental bound whereas entanglement entropy may not.
Furthermore, it was also proved in [8] that mutual infor-
mation follows an area law even at finite temperature.

Let us also remark that it is possible to consider sim-
ilar physics in strongly coupled non-local field theories,
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FIG. 1. The two disjoint sub-systems A and B, each of
length l along X-direction and separated by a distance x.
The schematic diagram on the right shows the possible candi-
dates for minimal area surfaces which is relevant for comput-
ing SA∪B . The choice on top gives SA∪B = SA +SB = 2S(l);
and the choice at the bottom gives SA∪B = S(2l+ x) +S(x).

e.g. a non-commutative gauge theory. In a particular
non-commutative gauge theory that has a gravity dual,
we find[9] that mutual information is still a well-behaved
quantity but the entanglement entropy is not.

Let us imagine two disjoint sub-systems A and B, each
of “rectangular” shape with one dimension of length l
and the other as Ld−2, are separated by a distance x
along one of the spatial directions of a given CFT. This
is schematically shown in fig. 1. One can use the RT
formula to compute the entanglement entropy and hence
the mutual information between A and B. Depending on
the ratio x/l, the computation of SA∪B is determined by
different minimal area surfaces as shown in fig. 1.

This results in an intriguing first order phase transition
for the resulting mutual information for such systems[7]:

I(A,B) 6=0 , x/l ≤ ad,
=0 , x/l > ad. (2)
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Here ad is a number that depends on the dimension of the
CFT. This transition implies that for x/l > ad, the two
sub-systems A and B completely disentangle[8]. Simi-
lar phenomenon persists at finite temperature. In the
limit l → ∞, the disentangling transition takes place as
a function of temperature

I(A,B) 6= 0 , xT ≤ bd,
= 0 xT > bd, (3)

where bd is a constant and T denotes the backgrounds
temperature. Our goal here is to study this disentan-
gling transition for a class of strongly coupled conformal
(or scale-invariant) large N gauge theories in a general
dimension using holography. We will use the analytical
techniques developed in [10] and also use numerical meth-
ods to explore the disentangling transition in the (x/l)
vs (Tx) plane.

For relativistic CFTs, the area law for mutual informa-
tion at finite temperature along with dimensional analy-
sis suggests that

I(A,B) =

(
L

l

)d−2
F (x/l, xT ) , (4)

where F (x/l, xT ) is some function that depends on the
CFT. At vanishing temperature, we recover the well-
known form[11]. The two regimes where we are able to
obtain analytical results are lT � 1, xT � 1 and lT � 1,
xT � 1 respectively. When both lT � 1, xT � 1, we
can make a formal expansion of form

F (x/l, xT ) =
∑
i

(xT )igi(x/l). (5)

In the limit lT � 1, xT � 1, we can make the following
expansion

F (x/l, xT ) = (lT )
d−2∑

α

(xT )αg̃α(lT ), (6)

where gi(x/l) and g̃α(lT ) are hitherto undetermined
functions that depend on the underlying theory. We will
find that generally i ≥ 0, but α can range over positive
and negative numbers. Finally, when both lT � 1 and
xT � 1, I(A,B) = 0. Note that, here we are excluding
the possibility of any logarithmic term. In general, such
logarithmic contributions can arise; see e.g. the example
of (1 + 1)-dim CFT and the special case of hyperscaling-
violating background in later sections. Also note that,
for non-relativistic scale-invariant theories, we have to
replace with T → T 1/z, where z denotes the dynamical
exponent of the theory.

the two regimes with lT � 1 and lT � 1 contain dis-
tinct physics, and it is particularly interesting to consider
the case lT � 1. Here we get[10]

SA = SB = Sdiv + Sthermal + Sent + Scorr, (7)

where Sdiv denotes the divergent piece, Sthermal denotes
the purely thermal entropy that goes as the volume, Sent

denotes the next leading order contribution that also fol-
lows an area law and finally Scorr denotes corrections sup-
pressed by exponentials of (lT ). In this limit, mutual
information behaves in the following manner:

I(A,B)|x→0 = Idiv + Sent + Icorr, (8)

where Idiv is the divergent piece that emerges in the limit
x→ 0 and Idiv = Sdiv similar to what is observed in [11]
and Icorr are correction terms in powers of (xT ) and e−lT .
From (7) and (8), we see that apart from the diverging
piece as x → 0, mutual information does coincide with
the thermal-part-subtracted entanglement entropy at the
leading order. Thus, it truly measures quantum entan-
glement by discarding the volume-worth thermal contri-
bution in the entanglement entropy.

There are perhaps a couple of non-trivialities associ-
ated with this observation: First, note that a priori there
is no reason for the sub-leading terms of entanglement
entropy to follow an area law in the large temperature
regime. Second, there is a precise match between the nu-
merical factors as well. For a more detailed discussion of
the same physics, we will refer the reader to [12].
2. Mutual information in relativistic CFTs Let

us begin by considering a class of large N gauge theories
in d-dimensions whose dual is given by an asymptotically
AdSd+1-background. The generic bulk spacetime is given
by the AdS-Schwarzschild metric of the form

ds2 =
r2

R2

(
−fdt2 + d~x2

)
+
R2dr2

r2f
, f = 1− rdH

rd
, (9)

where rH is the location of the black hole horizon, R is
the AdS radius, ~x is a (d−1)-dimensional vector and the
boundary of the spacetime is located at r → ∞. The
temperature of the black hole is given by: T = rHd

4πR2 . We
will set R = 1.

To obtain mutual information for an arrangement
schematically shown in fig. 1, we specify the strip by

X ≡ x1 ∈
[
− l

2
,
l

2

]
, xi ∈

[
−L

2
,
L

2

]
, (10)

with L → ∞. Extremal surface is translationally invari-
ant along xi, i = 2, ..., d− 1 and the profile of the surface
in the bulk is given by X(r). Area of this surface is given
by

A = Ld−2
∫
drrd−2

√√√√r2X ′2 +
1

r2
(

1− rdH
rd

) . (11)

This action leads to the equation of motion

dX

dr
= ± rd−1c

rd+1

√(
1− r2d−2

c

r2d−2

)(
1− rdH

rd

) , (12)
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where, rc is an integral of motion and r = rc represents
the point of closest approach of the extremal surface.
Such surfaces have two branches, joined smoothly at (r =
rc, X = 0) and rc can be determined using the boundary
conditions: X(∞) = ± l

2 , which leads to

l

2
=

∫ ∞
rc

rd−1c dr

rd+1

√(
1− r2d−2

c

r2d−2

) (1− rdH
rd

)−1/2
. (13)

Special case: d = 2

In this case, it is possible to evaluate the integrals in
(13) and (11) in closed forms. This eventually leads to
the following expression for mutual information:

I(A,B) =
c

3
log

[
(sinh(πlT ))

2

sinh(πxT ) sinh(π(2l + x)T )

]
, (14)

with c = 3/(2G
(2+1)
N ). In the low temperature limit,

when lT � 1 and xT � 1, we get

I(A,B) =
c

3

[
log

(
l2

x(2l + x)

)
− 1

3
π2T 2 (l + x)

2
+ . . .

]
,

(15)

where the first term in the square bracket is just the
zero temperature mutual information. In view of (4), we
observe that there is no linear term in T . We also observe
that finite temperature reduces mutual information and
therefore promotes disentangling between the two sub-
systems.

On the other hand, in the intermediate temperature
regime, where lT � 1 and xT � 1, we get

I(A,B) =
−c
3

[
log

(
2πxT

tanh(πlT )

)
+ (πxT ) + . . .

]
,(16)

SA = Sdiv +
c

3
log (sinh(πlT )) + . . . . (17)

In the limit x→ 0, defining ε = x/2 we get that the large
temperature expansion of mutual information given in
(16) coincides exactly with the leading order large tem-
perature expansion of the entanglement entropy given in
(17). The mismatch is suppressed in exponentials of (lT ).
This is an example of what we discussed in equations (7)
and (8).

We have pictorially shown a “phase diagram” in fig. 2
corresponding to either I(A,B) 6= 0 or the I(A,B) = 0
phase. The blue-shaded region represents the regime of
parameters where there is non-vanishing correlation be-
tween the two sub-systems. From this phase diagram
it is evident that increasing temperature does indeed
disentangle the two sub-systems and entanglement re-
duces monotonically for increasing temperature. Similar
physics was studied earlier in [13].
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FIG. 2. 2-dimensional parameter space for the (1+1)-
dimensional boundary theory. The mutual informational is
non-zero only in the shaded region. A similar qualitative re-
sult holds for all other cases discussed later.

General case: d > 2

We now move on to discussing the general case of
d > 2. In this case, it is not possible to evaluate the
integrals in (11) and (12) in closed forms. We will use
the approximation scheme outlined in [10]. Now we will

define: c = Rd−1

4G
(d+1)
N

, where G
(d+1)
N is the Newton’s con-

stant in (d+ 1)-dimensional bulk theory.
In the limit T � 1

l ,
1
x , when the mutual information is

non-zero, it is given by,

I(A,B) =I(A,B)|T=0 − 2cS0S1
(

4π

d

)d
Ld−2 T d (l − x)

2
.

(18)

Here S0 and S1 are negative real numbers that depends
on the dimensions[12]. In this case, the finite tempera-
ture correction obeys an area law as generally proved in
[8].

In the limit 1
l � T � 1

x , when the mutual information
is non-zero, it is given by,

I(A,B) = cLd−2T d−2
[
−S0

1

(xT )d−2
+

(
4π

d

)d−2
Shigh

+O(xT ) + . . .] . (19)

Shigh is a numerical constant that depends on the
dimensions[12]. Mutual information indeed captures the
area-worth entanglement by subtracting off the thermal
contribution. It is an example of the generic observation
mentioned in (7) and (8). Finally for xT � 1, the two
sub-systems are completely disentangled and mutual in-
formation vanishes. The corresponding “phase diagram”
looks qualitatively similar to fig. 2.
3. Other backgrounds We will now consider generic

examples of scale-invariant (but not conformal) theories,
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which are known to have gravity dual descriptions. Such
field theories with gravity duals, assuming they exist, are
non-relativistic. Examples include the so called Lifshitz
geometry introduced in [14]; and more recently the back-
ground with hyperscaling violation in [15]. Note that, in
both [14] and [15] the approach is phenomenological or
the so called bottom-up.

Lifshitz background

In this case, the background metric is invariant un-
der the following scale transformation: t→ λzt, {x, r} →
λ{x, r}; where λ is a real number and r is the radial co-
ordinate, in which the boundary is located at r → 0. An
analytic finite temperature Lifshitz background in (3+1)-
dimensions is obtained in [16], and is given by

ds2 = R2

(
−fdt

2

r2z
+
d~x2

r2
+
dr2

fr2

)
, f = 1− r2

r2H
, (20)

for z = 2. The temperature in the dual field theory
is given by the Hawking temperature of the black hole:
T = R

2πr2H
.

At zero temperature, the mutual information is given
by

I(A,B) = −cL0L

[
2

l
− 1

x
− 1

(2l + x)

]
, c =

R2

4G
(4)
N

,

(21)
for x/l ≤ 0.618. Here L0 is a positive real number. In
the low temperature range:

√
T/R� 1

l ,
1
x , we get

I(A,B) = I(A,B)|T=0 − 2cL0L1
L T

R
x+ . . . , (22)

where L1 is a positive real number. In this case, in ad-
dition to the familiar area law, we do observe a linear
correction in temperature as a small temperature is in-
troduced. In the limit 1

l �
√
T/R� 1

x , we get:

I(A,B) = cL

√
T

R

[
L0

√
R

T

1

x
− Lhigh

]
,

√
T

R
x ≤ 0.261,

= 0 ,

√
T

R
x > 0.261. (23)

Here Lhigh = 2.671 is a numerical constant. We find
that in this regime mutual information coincides with the
thermal-part-subtracted entanglement entropy. Finally
for

√
T/R � 1

x , I(A,B) = 0 identically. The corre-
sponding 2-dimensional “phase diagram” takes a similar
form as observed in fig. 2.

Hyperscaling-violating background

In this case, the metric is covariant under the Lifshitz-
type scale transformation and the metric[15] has the fol-
lowing property: ds2 → λ2θ/(d−1)ds2, where θ is known

as the hyperscaling violation exponent. In the presence
of a black hole, the metric takes the following form[17]

ds2 = r2θ/(d−1)
(
−fdt

2

r2z
+
dr2

r2f
+
d~x2

r2

)
,

f = 1−
(
r

rH

)γ
, (24)

where γ is a real-valued constant which we will keep un-
specified for now, rH is the location of the horizon and d
is the spacetime dimension of the boundary dual theory.
We have also set the curvature of the space R = 1. The
boundary is located at r → 0. The backgrounds temper-
ature is given by: T = γ

4πrzH
. We will consider the case

when d− θ− 2 ≥ 0, which typically exhibits an area law
for entanglement entropy with the exception of logarith-
mic violation for θ = d − 2. We will present the results
in the intermediate temperature regime only.

General case: θ 6= d− 2

In the regime xT 1/z � 1, lT 1/z � 1, when the mutual
information is non-zero, it is given by

I(A,B) = −cLd−2
[
C(θ, d)

xd−θ−2
− h3T

d−θ−2
z + . . .

]
, (25)

where C and h3 are numerical constants. We note
that mutual information coincides with the thermal-part-
subtracted entanglement entropy at large temperature.
The large temperature behaviour is similar to the ones
observed before.

Special case: θ = d− 2

Let us now consider the special case of θ = d−2, where
logarithmic violation of the area law shows up. In the
regime xT 1/z � 1, lT 1/z � 1, the mutual information for
the d−dimensional boundary theory (for d− θ − 2 = 0),
is given by

I(A,B) = cLd−2
[
2 ln

(
1

xT 1/z

)
+ k2 + . . .

]
, (26)

where k1, k2 and k3 are three real numbers. In this case,
irrespective of the value of γ, mutual information does in-
deed capture the thermal-part-subtracted entanglement
entropy. Finally, this also yields a similar “phase transi-
tion”.
4. Conclusions and Outlook In this article, we

have explored the disentangling transition between two
sub-systems by studying mutual information in the con-
text of holography. We have considered a class of large N
relativistic gauge theories as well as generic examples of
non-relativistic scale-invariant theories. We have found
an universal qualitative behaviour in the corresponding
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“phase diagram” in (x/l) vs (xT )-plane. We have also
observed that at large temperature, when the mutual
information is non-zero, it coincides with the thermal-
part-subtracted entanglement entropy for all the cases
considered above.

Let us note that the sharp transition of mutual infor-
mation is a consequence of large N limit. In this limit,
the inequality in (1) is trivially satisfied since the right
hand side is always 1/N -suppressed[7]. At finite N , how-
ever, mutual information should not vanish identically.
Hence, the 1/N -corrections to the RT formula perhaps
do not contain a simple geometric interpretation as an
area functional in the bulk geometry.

In quantum many-body systems, mutual information is
emerging as an useful order parameter for certain phase
transitions, such as the ones described in [18]. Within
the context of AdS/CFT correspondence or the gauge-
gravity duality, it will be interesting to explore what role
mutual information plays in similar contexts.
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