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1 Introduction and summary

Understanding black holes microstates from a D-brane or fundamental string perspective is
a long-standing theme in string theory. The original observation that vibrating strings quali-
tatively resemble a black hole [1, 2] was followed by a quantitative worldvolume derivation of
black hole entropy for certain BPS states [3]. This relationship eventually became a funda-
mental aspect of the holographic duality between gauge and gravity degrees of freedom [4].
According to this duality, microstates of a black hole are in one-to-one correspondence with
microstates of a strongly-coupled gauge theory. This duality also applies to time-dependent
processes such as black hole formation and evaporation, leading to the viewpoint that these
processes should be unitary, contrary to [5].

To gain insight into black hole formation, and a better understanding of the microstructure
of the resulting black hole, in this paper we study the process of bound state formation
from two perspectives: perturbative gauge theory and supergravity. In perturbative gauge
theory a D-brane bound state can be formed through a process of open string creation. In
supergravity we will see that open string creation is not possible, and one instead forms a
bound state through the gravitational or closed-string process of black hole formation.

The perturbative gauge theory and supergravity calculations of bound state formation do
not have an overlapping range of validity. But we will show that they agree qualitatively at
an intermediate value of the coupling, in accord with the correspondence principle introduced
by Horowitz and Polchinski [6]. This suggests that there is a smooth transition between the
process of open string creation at weak coupling and black hole formation at strong coupling.

As a first test of these ideas, in §2 we study bound state formation in D0-brane collisions
and show that the sizes of the bound states match at the correspondence point. In §3 we
extend this analysis to general Dp-branes.

Next we consider the time development of the bound states after they have formed. In §4 we
show that the weakly-coupled gauge theory has a parametric resonance which exponentially
amplifies the number of open strings present, and we identify the timescale for the production
of additional open strings at weak coupling. In the gravitational description, a perturbed
black hole approaches equilibrium on a timescale determined by the quasinormal frequencies.
In §5 we compare these two timescales and show that they agree at the correspondence point.

In §6 we compare properties of the bound state as initially formed to equilibrium properties
of the black hole, and show that at the correspondence point the bound state is created in a
state of near-equilibrium. In §7 we study a different initial configuration, in which a bound
state is formed by collapse of a spherical shell of D0-branes, and show that the picture of
a smooth transition between open string production and black hole formation continues to
hold. We conclude in §8.
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Figure 1: Colliding stacks of 0-branes with relative velocity v and impact parameter b.

The present work is related to several studies in the literature. In gauge – gravity duality,
a black hole on the gravity side is dual to a thermal state of the gauge theory, where all
O(N2) degrees of freedom are excited [7, 8]. There have been many studies of 0-brane black
hole microstates from matrix quantum mechanics, along with their associated thermaliza-
tion process. Some previous studies of 0-brane black holes from matrix quantum mechanics
include [9, 10, 11, 12, 13, 14, 15]. Also see [16, 17] for studies of black hole formation from
the gravity perspective, and [18, 19, 20, 21, 22, 23] for studies from the gauge theory per-
spective. In particular parametric resonance has been discussed in relation to thermalization
in the closely related work [21]. Open string production has been studied as a mechanism
for trapping moduli at enhanced symmetry points in [24], while open string production in
relativistic D-brane collisions has been studied in [25].

2 Bound state formation in 0-brane collisions

Consider colliding two clusters of 0-branes as shown in Fig. 1. We’d like to understand
whether a bound state is formed during the collision. Two mechanisms for bound state
formation have been discussed in the literature.

1. In a perturbative description of D-brane dynamics, open strings can be produced and
lead to formation of a bound state. This occurs for impact parameters b .

√
vα′ [26].

This can be understood as the condition for violating the adiabatic approximation.
For a review of the calculation see appendix A.

2. At large N and strong coupling the D-brane system has a dual gravitational description
[27]. In this description, according to the hoop conjecture of Thorne [28, 29, 30], a
black hole should form if the two D-brane clusters are contained within their own
Schwarzschild radius.

Our goal is to understand in what regimes these two mechanisms for bound state formation
are operative, and whether they are connected in any way.
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It will be convenient to work in terms of a radial coordinate U with units of energy,
U = r/α′. Here r is the distance between the clusters, r =

√
b2 + v2t2. The ’t Hooft

coupling of the M(atrix) quantum mechanics is λ = g2
YMN , which in string and M-theory

units can be expressed as
λ = gsN/`

3
s = R3N/`6

11 . (1)

Here gs is the string coupling, `s is the string length, R is the radius of the M-theory circle,
and `11 is the M-theory Planck length. The mass of a single D0-brane is

m0 =
1

gs`s
=

1

R
. (2)

2.1 Perturbative string production

We work in the center of mass frame, with momenta

p1 =
N1

R
v1 p2 =

N2

R
v2 p1 + p2 = 0 (3)

We consider a fixed total energy E, which determines the asymptotic relative velocity v.

1

2

N1

R
v2

1 +
1

2

N2

R
v2

2 = E ,

⇒ v = v1 − v2 ∼
(
NER

N1N2

)1/2

=

(
λEl4s
N1N2

)1/2

. (4)

In terms of the U coordinate, the asymptotic relative velocity is

U̇ =

(
λE

N1N2

)1/2

. (5)

As reviewed in appendix A, open string production sets in when

U ∼
√
U̇ =

(
λE

N1N2

)1/4

. (6)

Note that the radius at which open strings are produced depends on how we split the total
D-brane charge. The radius is minimized when N1 = N2 = N/2, which gives the minimum
radius for open string production as

U0 ∼
(
λE

N2

)1/4

. (7)

This is the case which is interesting for matching to supergravity.
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There are some checks we should perform to make sure this perturbative result is valid.
As discussed in [31], the effective action has a double expansion in λ/U3 and U̇2/U4. The
expansion in powers of λ/U3 is the Yang-Mills loop expansion, which is valid provided
U0 > λ1/3. From (7) this requires

E > N2λ1/3 (8)

At the critical point where the loop expansion breaks down, U0 ∼ λ1/3, the inequality (8) is
saturated.

The expansion in powers of U̇2/U4 is the derivative expansion, which is valid when U̇2 < U4.
Note that the derivative expansion breaks down at the point where open strings are produced.

Up to this point, i.e. for U >
√
U̇ , one can trust the two-derivative terms in the effective

action, which means the asymptotic velocity (4) is a good approximation to the actual
velocity.1 So the only condition for the validity of the perturbative description of open string
production is (8).

2.2 Bound state formation in gravity

At large N the M(atrix) quantum mechanics has a dual gravitational description at strong
coupling, meaning for U < λ1/3. So let’s imagine the 0-brane clusters approach to within
this distance, and study whether a bound state can form.

At first, one might think a bound state could form via open string production. As noted in
[27], the metric factors cancel out of the Nambu-Goto action, and even in the supergravity
regime the mass of an open string connecting the two clusters of D-branes is mW ∼ U . The
adiabatic approximation breaks down, and these open strings should be produced, if U̇/U2 >
1. However this velocity cannot be attained in the regime where supergravity is valid, since
it violates the causality bound [32, 33]. This can be seen in the probe approximation, where
the DBI action for a probe is (see, for example, [9])

S =
1

g2
YM

∫
dt
U7

λ

1−

√
1− λU̇2

U7

 (9)

Thus causality bounds the velocity of the probe,

λU̇2

U7
< 1 . (10)

Rather remarkably, the probe has to slow down significantly as U → 0. In any case, in the
supergravity regime we have U̇2

U4 <
U3

λ
, and since U3

λ
< 1 at strong coupling, open strings can

never be produced.

1As we will see, this is not the case in the supergravity regime.
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This means black hole formation is the only way to form a bound state in the supergravity
regime. Since open string production is ruled out, we reach the sensible conclusion that the
formation of a horizon is a purely gravitational closed-string process. The hoop conjecture
states that a black hole will form if the energy E is contained within its own Schwarzschild
radius. For a 10-dimensional black hole with N units of 0-brane charge, the Schwarzschild
radius is

U0 =

(
λ2E

N2

)1/7

(11)

This 10-D supergravity description is only valid if the curvature and string coupling are small
at the horizon, which requires

λ1/3N−4/21 < U0 < λ1/3 (12)

For smaller U0 one must lift to M-theory; for larger U0 the M(atrix) quantum mechanics is
weakly coupled. At the outer radius where the supergravity approximation breaks down,
U0 ∼ λ1/3, eq. (11) tells us that E ∼ N2λ1/3.

2.3 Correspondence point

We’ve found that open string production is only possible at weak coupling, while black hole
formation can only occur within the bubble where supergravity is valid. One could ask if
the two phenomena are smoothly connected. Is there a correspondence point where both
descriptions are valid?

From the perturbative point of view, the transition happens when the condition (8) is
saturated, E = N2λ1/3. In this case open strings are produced, but at a radius U0 ∼ λ1/3

where the system is just becoming strongly coupled.

From the supergravity point of view, the transition happens when the energy of the black
hole is E = N2λ1/3, corresponding to a Schwarzschild radius U0 ∼ λ1/3. In this case the
black hole fills the entire region where supergravity is valid.

This suggests that open string production and black hole formation are indeed continuously
connected. Since the transition between the two descriptions happens when the curvature
at the horizon is of order string scale,

α′R ∼ (λ/U3)−1/2 ∼ 1 , (13)

this is an example of the correspondence principle of Horowitz and Polchinski [6]. Note that
for a given black hole energy, one can view the condition of being at the correspondence
point, E = N2λ1/3, as fixing the total 0-brane charge,

N =

(
E3`3

s

gs

)1/7

. (14)
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3 Dp-brane collisions

In this section we generalize our 0-brane results and consider Dp-branes wrapped on a p-torus
of volume Vp. We first record some general formulas then analyze particular cases.

The Yang-Mills coupling is g2
YM = gs/`

3−p
s and the ’t Hooft coupling is λ = g2

YMN . In
terms of U = r/α′, the effective dimensionless ’t Hooft coupling is

λeff =
λ

U3−p . (15)

The Yang-Mills theory is weakly coupled when λeff < 1. It has a dual gravitational descrip-
tion at large N when λeff > 1 [27].

Imagine colliding two stacks of wrapped Dp-branes at weak coupling, with a fixed energy
density ε as measured in the Yang-Mills theory. The mass of a wrapped p-brane is Vp/gs`

p+1
s ,

so in the center of mass frame the relative velocity is

U̇ =

(
λε

N1N2

)1/2

. (16)

Open string production sets in when

U ∼
√
U̇ ∼

(
λε

N1N2

)1/4

. (17)

The radius at which open strings are produced depends on how we divide the total D-brane
charge. The radius is minimized by setting N1 = N2 = N/2, which gives the minimum
radius for open string production as

U0 ∼
(
λε

N2

)1/4

. (18)

This is the case which is interesting for comparison to supergravity.

Just as for 0-branes, open string production is not possible in the supergravity regime.
The DBI action for a probe brane is

S =
1

g2
YM

∫
dp+1x

U7−p

λ

1−

√
1− λU̇2

U7−p

 (19)

Thus the causality bound is U̇2/U4 < U3−p/λ = 1/λeff [32], which rules out open string
production (at least in the probe approximation). Instead we have the process of black hole
formation, with a horizon radius U0 = (g4

YMε)
1/(7−p) [27].

Further analysis depends on the dimension of the branes.
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p = 0, 1, 2

For p < 3 the Yang-Mills theory is weakly coupled when U > λ1/(3−p) and has a dual
gravitational description when U < λ1/(3−p). Thus open string production is possible at
large distances, while black hole formation is possible at small distances. The correspondence
point, where the two descriptions match on to each other, occurs when

ε = N2λ
1+p
3−p

U0 = λ1/(3−p)

At this energy density open string production occurs just as the Yang-Mills theory is be-
coming strongly coupled. From the supergravity perspective, the resulting black brane fills
the entire region in which supergravity is valid.

p = 3

In this case the Yang-Mills theory is conformal and dual to AdS5 × S5 [4]. The ’t Hooft
coupling is dimensionless. For λ . 1 open string production is possible, while for λ & 1
black holes can form. The two descriptions match on to each other at the correspondence
point λ = 1. Note that, unlike other values of p, the correspondence point is independent of
the energy density ε.

As a test of this idea, note that the radius at which open strings form is

U0 = (λε/N2)1/4 (20)

while for p = 3 the horizon radius is

U0 = (g4
YMε)

1/4 (21)

These two expressions for U0 agree when λ = 1. This suggests that the process of open
string production for λ . 1 smoothly matches on to black hole formation for λ & 1.

p = 4, 5, 6

For p > 3 the Yang-Mills theory is strongly coupled in the UV and has a dual supergravity
description (modulo some subtleties described in [27]). In the IR the Yang-Mills theory
is weakly coupled. Black hole production is possible in the supergravity regime, where
U > λ1/(3−p), while open string production is possible for U < λ1/(3−p). The correspondence
point where the two descriptions match is at

ε = N2λ
1+p
3−p (22)

U0 = λ1/(3−p) (23)
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4 Parametric resonance in perturbative SYM

In this section we study the evolution of a bound state formed at weak coupling by open
string creation. We show that the number of open strings increases exponentially with
time due to a parametric resonance in the gauge theory. For simplicity we consider 0-brane
collisions; the generalization to Dp-branes is straightforward and will be mentioned in §5.2.

Suppose a cluster of N1 incoming 0-branes collides with a stack of N2 coincident 0-branes
at rest. We assume weak coupling but do not require large N . In the collision suppose n
open strings are produced. These open strings produce a linear confining potential, so the
system will begin to oscillate. The conserved total energy is

E =
1

2
mv2 + nτx (24)

Here we’re adopting a non-relativistic description, appropriate to the form of the D0-brane
quantum mechanics, while m is the mass of the incoming 0-branes, v is their velocity, n is
the number of open strings created, τ = 1/2πα′ is the fundamental string tension, and x is
the length of the open strings. The period of oscillation is

∆t = 4
(m

2

)1/2
∫ E/nτ

0

dx√
E − nτx

∼
√
mE

nτ
(25)

So up to numerical factors, the frequency of oscillation is

Ω =
nτ√
mE

(26)

while the amplitude of oscillation (the maximum value of x) is

L =
E

nτ
(27)

We introduce this as a classical M(atrix) background by setting X i = X i
cl + xi where

X1
cl =

(
L sin Ωt 1N1 0

0 0

)
X2

cl = · · · = X9
cl = 0 , (28)

We have decomposed the N × N matrix into blocks; 1N1 is the N1 × N1 unit matrix. Ex-
panding to quadratic order in the fluctuations, the M(atrix) Lagrangian2

LYM =
1

2g2
YM

Tr

(
Ẋ iẊ i +

1

2
[X i, Xj][X i, Xj]

)
(29)

2We are setting 2πα′ = 1 and A0 = 0.
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reduces to

LYM =
1

2g2
YM

Tr
(
ẋ1ẋ1

)
+

1

2g2
YM

9∑
i=2

Tr
(
ẋiẋi + [xi, X1

cl][x
i, X1

cl]
)

(30)

Note that the potential for x1 vanishes. We also have the Gauss constraint associated with
setting A0 = 0, namely ∑

i

[X i, Ẋ i] = 0 (31)

To quadratic order this reduces to [X1
cl, ẋ

1] = [Ẋ1
cl, x

1] which only constrains x1. The simplest
solution is to set x1 = 0.

To study the remaining degrees of freedom we decompose

xi =

(
ai bi†

bi ci

)
(32)

where ai is an N1 × N1 matrix, bi is an N1 × N2 rectangular matrix and ci is an N2 × N2

matrix. We will often suppress the index i = 2, . . . , 9. To quadratic order the a and c
entries have trivial dynamics, since [xi, X1

cl] does not involve a and c. On the other hand,
the equation of motion for b is

b̈+ L2 sin2(Ωt) b = 0 (33)

Defining s = Ωt this reduces to Mathieu’s equation,

d2b

ds2
+ (a− 2q cos 2s) b = 0 (34)

with the particular values a = 2q = L2/2Ω2. Mathieu’s equation admits Floquet solutions

b(t) = eiγΩtP (Ωt) (35)

where P (·) is a periodic function with period π. As a function of a and q there are intervals
where γ has a negative imaginary part and the solution grows exponentially. These intervals
correspond to band gaps in the Bloch interpretation of Mathieu’s equation. The imaginary
part of γ is plotted as a function of a = 2q in Fig. 2. There are clearly many intervals where
the solution is unstable, with a typical exponent |Imγ| ∼ 0.25.

This instability corresponds to an exponential growth in the number of open strings present.
Note that in our case3

a = 2q ∼ mE3/n4 (36)

After the initial collision the energy E in the oscillating background will decrease as the
system begins to thermalize, while the number n of open strings gets larger. So we expect

3Restoring units, we would have L2 → L2τ2 in (33) and a = 2q ∼ mE3/n4τ2 in (36).
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Figure 2: The imaginary part of the Mathieu characteristic exponent as a function of a = 2q.

the value of a to decrease with time. This means the system will scan across the different
instability bands available to it.

To summarize, we have found that the oscillating background resulting from a 0-brane col-
lision is unstable. The 16N1N2 real degrees of freedom contained in bi for i = 2, . . . , 9 behave
as parametrically-driven oscillators. Their amplitude grows exponentially, on a timescale

tYM ∼ 1/Ω ∼
√
mE/nτ (37)

Here m is the mass of the N1 incoming 0-branes, E is the total energy of the system, n is the
number of open strings present in the off-diagonal block b and τ is the fundamental string
tension.

5 Comparison of timescales

We compare the timescale associated with parametric resonance to the quasinormal modes
of a black hole. We consider parametric resonance for D0-branes in §5.1, generalize to Dp-
branes in §5.2, and compare to quasinormal modes in §5.3.

5.1 0-brane parametric resonance

As we saw in §4, the timescale for parametric resonance is determined by the period of
oscillation. In a 0-brane collision this is given by

tYM ∼ 1/Ω ∼
√
mE/nτ (38)

For N1 incoming D0-branes the mass is m = N1/R, where R = gsls is the radius of the
M-theory circle. Also E is the total energy of the system, n is the number of open strings
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and τ ∼ 1/l2s is string tension. We consider the case N1 ∼ N2 ∼ N , with N large to compare
to supergravity. Then the off-diagonal block b contains O(N2) elements, so as shown in
appendix A O(N2) open strings are created by parametric resonance.

Using R = gs`s, τ ∼ 1/`2
s, n ∼ N2 and gs ∼ g2

YM`
3
s we obtain

tYM ∼
√
NE

R

1

nτ
∼
√
E

λ1/2N
. (39)

At the correspondence point
E ∼ N2λ1/3 (40)

which means
tYM ∼ λ−1/3 . (41)

At the correspondence point the timescale for parametric resonance is independent of N and
is set by the ’t Hooft scale. As we will see in §5.3, the same holds true for the quasinormal
frequencies of a black hole at the correspondence point.

5.2 p-brane parametric resonance

It’s straightforward to extend this result to Dp-branes. First, the mass of a single D0-brane
in the previous section is replaced by the mass of Dp-brane wrapped on a volume Vp. So we
should replace

1/R→ Vp/gsl
p+1
s . (42)

The energy of the incoming Dp-branes is related to the energy density ε by

E = εVp . (43)

The tension of the strings is the same, τ ∼ 1/`2
s. So for Dp-branes, in place of (38), the

oscillation timescale is

tYM ∼
√
mE

nτ
→ Vp

√
Nε

gsl
p+1
s

1

nτ
. (44)

The number of open strings n is modified. As shown in appendix A, for N1 ∼ N2 and p 6= 3,
the number density of open strings at the correspondence point is set by the ’t Hooft scale.
Thus

n ∼ N2Vpλ
p

3−p . (45)

Using this together with gsN = g2
YMN`

3−p
s = λ`3−p

s we obtain

tYM ∼ Vp

√
Nε

gs`
p+1
s

1

nτ
∼ λ−

p
3−p
√
ε

λ1/2N
. (46)
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From (22) the energy density at the correspondence point is

ε ∼ N2λ
1+p
3−p (47)

so the timescale is
tYM ∼ λ−

1
3−p . (48)

Just as for 0-branes, the timescale for parametric resonance is independent of N and set by
the ’t Hooft scale.

3-branes are a special case since the ’t Hooft coupling is dimensionless. The correspondence
point is defined by λ ∼ 1. As shown in appendix A, for N1 ∼ N2 the number of open strings
at the correspondence point is

n ∼ N2V3U
3
0 (49)

where U0 is the horizon radius of the black brane. The energy density at the correspondence
point is ε ∼ N2U4

0 , so the parametric resonance timescale is

tYM ∼ Vp

√
Nε

gs`
p+1
s

1

nτ
∼ 1

U0

(50)

Thus for D3-branes the parametric resonance timescale is 1/U0, which also happens to be
the inverse temperature of the black brane.

5.3 Comparison to quasinormal modes

Quasinormal modes for non-extremal Dp-branes were studied in [34, 35] following earlier
work on AdS-Schwarzschild black holes [36]. The basic idea is to solve the scalar wave
equation in the near-horizon geometry of N coincident non-extremal Dp-branes, with a
Dirichlet boundary condition at infinity and purely ingoing waves at the future horizon.
This gives rise to a discrete set of complex quasinormal frequencies, whose imaginary parts
govern the decay of scalar perturbations of the black hole. It was found that the quasinormal
frequencies are proportional to the temperature, with a coefficient of proportionality that
was found numerically in [34].

Recall that the temperature, energy density and entropy density of these black branes are
related to their horizon radius U0 by [27, 34]

T ∼ 1√
λ
U

(5−p)/2
0

ε ∼ N2

λ2
U7−p

0

s ∼ N2

λ3/2
U

(9−p)/2
0

12



Assuming p 6= 3, at the correspondence point we have U0 ∼ λ1/(3−p) so that

T ∼ λ
1

3−p

ε ∼ N2λ
p+1
3−p

s ∼ N2λ
p

3−p

These quantities all obey the expected large-N counting, and since the ’t Hooft coupling λ
has units of (energy)3−p, these results could have been guessed on dimensional grounds. In
the special case p = 3 the ’t Hooft coupling is dimensionless and the correspondence point
is defined by λ = 1. At the correspondence point the horizon radius U0 remains arbitrary,
with

T = U0

ε = N2U4
0

s = N2U3
0

Again these results could have been guessed on dimensional grounds.

As we saw in §5.1 and 5.2 the timescale for parametric resonance is

tYM ∼
{
λ−1/(3−p) for p 6= 3
1/U0 for p = 3

(51)

For all p this matches the inverse temperature of the black brane, tYM ∼ 1/T . Thus at the
correspondence point the timescale for parametric resonance matches the timescale for the
decay of quasinormal excitations of the black brane.

6 Comparison to equilibrium properties

It’s interesting to compare the properties of the bound state as initially formed to the equilib-
rium properties of the black hole. This will show us that, at the correspondence point, very
little additional evolution is required to reach equilibrium – perhaps just a few e-foldings of
parametric resonance will suffice.

First, in a 0-brane collision, note that the total number of open strings produced is ∼
N1N2. With equal charges N1 = N2 = N/2 the number of open strings is O(N2). At the
correspondence point these strings have a mass ∼ λ1/3, so the total energy and entropy in
open strings is

E ∼ N2λ1/3

S ∼ N2
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This matches the equilibrium energy and entropy of the black hole, suggesting that black
hole formation at the correspondence point is a simple one-step procedure, in which the
open strings that are formed in the initial collision essentially account for the equilibrium
properties of the black hole. The analogous result for p-branes is that the number of open
strings at the correspondence point is, for p 6= 3,

n ∼ N2Vpλ
p

3−p (52)

where we have used (66) and the fact that U ∼ λ
1

3−p . Since the open strings have a mass
∼ U , this corresponds to a total energy and entropy in open strings

E ∼ N2Vpλ
p+1
3−p

S ∼ N2Vpλ
p

3−p

which again matches the equilibrium energy and entropy of the black brane. This again
suggests that the black hole is essentially fully formed in the initial collision, with very little
additional evolution required to reach equilibrium.4

Another quantity we can compare at the correspondence point is the size of the bound
state. At weak coupling, after n open strings have been formed, the amplitude of oscillation
of the resulting bound state is, from (27),

L =
E

nτ
(53)

At the correspondence point for general p we have

E ∼ N2VpU
p+1
0 (54)

while the initial number of open strings created is

n ∼ N2VpU
p
0 (55)

Thus the initial amplitude of oscillation as measured in the U coordinate is

L/`2
s = E/n ∼ U0 (56)

In other words, the initial oscillation amplitude matches the equilibrium horizon radius of
the black brane. Again this suggests that after the initial collision, only a small amount of
additional evolution is required to reach equilibrium.

4When p = 3 the matching is n ∼ N2V3U
3
0 , E ∼ N2V3U

4
0 , S ∼ N2V3U

3
0 .
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Figure 3: A collapsing shell of 0-branes. Initially the 0-branes are spread uniformly over an
S8 with velocities toward the center.

7 Shell Collapse

So far we have studied bound state formation in a collision between two clusters of D-branes,
in the geometry shown in Fig. 1. Here we study a different initial configuration, in which N
D0-branes are uniformly distributed over a collapsing spherical shell as in Fig. 3. We will
see that the correspondence principle applies and a similar outcome is obtained in this case.

We consider an initial configuration in which the 0-branes are uniformly spread over an
S8 of radius U in 9 spatial dimensions. The 0-branes are localized but uniformly distributed
over the sphere, with velocities directed toward the center. Intuitively we argue as follows.
Since the total volume of the sphere scales as U8, each 0-brane occupies a volume ∼ U8/N ,
and the distance between nearest-neighbor 0-branes scales as U/N1/8. This means virtual
open strings connecting nearest-neighbor 0-branes are quite light, with a mass ∼ U/N1/8

that goes to zero at large N . However the typical open string is much heavier, with a mass
∼ U that is independent of N . We expect these typical open strings to dominate the bound-
state formation process, and therefore expect to have a well-defined correspondence point at
large N .

To argue this in more detail, it is useful to consider a 0-brane located at the south pole and
study the number of virtual open strings as a function of the angle θ to the other 0-brane.
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Figure 4: The 0-branes are spread over an S8 of radius U . The green S7 has radius U sin θ
and the red W boson has length 2U sin θ/2.

See Fig. 4. The number of distinct open strings dn in the interval (θ, θ + dθ) is

dn =
N

32π4U8

105

× π4

3
(U sin θ)7 × Udθ (57)

The first factor N/(32π4U8

105
) is the number density of 0-branes on the S8, the second factor

π4

3
(U sin θ)7 is the volume of an S7 located at an angle θ from the south pole. Thus the

number density of open strings is

dn

dθ
=

35

32
N sin7 θ (58)

We can also find the mass density of open strings dm
dθ

. Since an open string subtending an
angle θ has a mass 2U sin θ/2, this is given by

dm

dθ
=
dn

dθ
· 2U sin

θ

2
=

35

16
NU sin7 θ sin

θ

2
(59)

The W-boson number density 1
N
dn
dθ

and mass density 1
NU

dm
dθ

are plotted in Fig. 5.

As can be seen in the figure, there are light open strings at large N . However the number of
these strings is tiny, since dn

dθ
∼ θ7 at small angles.5 Most of the W-bosons are concentrated

around θ = π/2. Therefore a spherical shell is basically the same as having W-bosons

5This is due to the fact that the 0-branes are spread on an S8. The distribution would be less sharply
peaked in lower dimensions, with dn

dθ ∼ θ
d−1 on an Sd.
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Figure 5: On the left, the W-boson number density 1
N
dn
dθ

. On the right, the W-boson mass
density 1

NU
dm
dθ

.

distributed in the interval θ0 < θ < π − θ0, where θ0 is determined by the fraction of 0-
branes pairs we neglect. For example, if we neglect dn

dθ
≤ 10−7N , then θ0 ∼ 0.1. Since the

masses of the W-bosons near θ = π/2 are all O(U), we can simply approximate the entire
W-boson spectrum by taking mW ∼ U .

We now consider what happens when we give the shell of 0-branes some velocity toward
the origin. The analysis is almost identical to the colliding clusters considered in §2. Given
N D0-branes with total energy E, the asymptotic relative velocity is

E ∼ mass× v2 ∼ N

R
v2

⇒ v ∼
(
ER

N

)1/2

=

(
Eλl4s
N2

)1/2

(60)

In terms of the U coordinate, this becomes

U̇ =

(
Eλ

N2

)1/2

(61)

This matches the result in §2 for N1 = N2 ∼ N . Since the W-boson masses are concentrated
around mW ∼ U , open string production again sets in when

U ∼
√
U̇ ∼

(
Eλ

N2

)1/4

(62)

At the correspondence point, where the effective gauge coupling becomes order one, we have

U ∼ λ1/3 (63)

and therefore
E ∼ N2λ1/3 . (64)
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Just as in §2, this matches the radius and energy energy of a black hole at the correspondence
point.

8 Conclusions

In this paper we studied D-brane collisions. We argued that the process of open string cre-
ation, which leads to formation of a D-brane bound state at weak coupling, smoothly matches
on to a process at strong coupling, namely black hole formation in the dual supergravity.
The transition happens at an intermediate value of the coupling, given by the correspon-
dence principle of Horowitz and Polchinski. The size of the bound state, the timescale for
approaching equilibrium, and the thermodynamic properties of the bound state all agree
between the two descriptions. The latter agreement happens quickly, which suggests that
the bound state is formed by the initial collision in a near-equilibrium configuration.

We considered two types of initial configurations, namely colliding clusters of wrapped
Dp-branes and a collapsing shell of D0-branes. The main difference between the two con-
figurations was that the shell had a tail of light open strings which we argued could be
neglected. In fact, this distinction between the two configurations is somewhat artificial,
since with somewhat more generic initial conditions the 0-branes which make up the clusters
could have some small random relative velocities. One would then expect a bit of open
string production within the clusters, which would put the two examples on much the same
footing.

In the examples we studied the powers of N were fixed by large-N counting, so at the
correspondence point there was essentially only a single length scale in the problem, namely
the ’t Hooft scale (for p 6= 3) or the horizon radius (when p = 3). In a sense this guaranteed
the matching between perturbative gauge theory and gravity results, just on dimensional
grounds. To explore this further it would be interesting to study multi-charged black holes,
or to deform the background in a way which introduces another length scale, and ask whether
there is still a simple transition between perturbative worldvolume dynamics and black hole
formation.

A step in this direction would be to consider 0-brane collisions but with N1 6= N2. In this
case, as we saw in §6, the matching between perturbative gauge and gravity results must be
more complicated, because the energy and entropy in open strings that are created in the
initial collision do not match the equilibrium energy and entropy of the black hole. This
means further dynamical evolution is required before the bound state reaches equilibrium.
It would be interesting to study this, perhaps by going beyond the linearized approximation
made when studying parametric resonance in §4. There are several related interesting ex-
amples to consider, for example a situation in which several concentric layers of shells are
collapsing.
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Another direction would be to use the present results to better understand the microstruc-
ture of black holes. The picture that emerges, that a black hole is a thermal bound state
of D-branes and open strings, is reminiscent of the fuzzball proposal [37]. However the real
question, relevant for understanding firewalls [38] or the energetic curtains of [40], is whether
this thermal state could be a dual description of the interior geometry of the black hole.
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A String production in a D-brane collision

We review the process of open string production in a D-brane collision, following [26, 39].

Consider colliding two 0-branes with relative velocity v and impact parameter b. Setting
2πα′ = 1, the virtual open strings connecting the two 0-branes have an energy or frequency
ω =

√
v2t2 + b2. As long as this frequency is changing adiabatically open strings will not

be produced. The adiabatic approximation breaks down when ω̇/ω2 & 1. The peak value
of this quantity is ω̇/ω2 ∼ v/b2 when vt ∼ b, so (restoring units) open strings are produced
for b .

√
vα′. In terms of the radial coordinate U = r/α′, where r is the distance between

0-branes, the energy of an open string is mW = U/2π. So the adiabatic approximation
breaks down and open strings are produced when U̇/U2 ∼ 1.6

Now consider colliding two p-branes wrapped on a torus of volume Vp, with relative velocity
v and impact parameter b in the transverse dimensions. Consider a virtual open string that
connects the two p-branes and has momentum k along the p-brane worldvolumes. Setting
2πα′ = 1, this virtual open string has an energy or frequency

ω =
√
k2 + v2t2 + b2

If k = 0 then the condition for open string production is just what it was for 0-branes,
b .
√
v. Having non-zero k increases ω and suppresses open string production. Effectively

there is a cutoff, that open strings are produced up to a maximum momentum k ∼ b ∼
√
v.

Restoring units, the maximum momentum is k ∼
√
v/α′ = U̇1/2. This cutoff corresponds to

6In principle we should distinguish between the asymptotic relative velocity U̇ = v/α′ and the actual
time-dependent value U̇ = v

α′
vt√

b2+v2t2
. But at vt ∼ b this distinction can be ignored.
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a number density of open strings on the p-brane worldvolume

# open strings

volume
∼ U̇p/2

Again these open strings are produced when U̇/U2 ∼ 1.

If we collide two stacks of Dp-branes with charges N1 and N2 respectively, it’s easy to
estimate the total number of open strings that are produced. At weak coupling the individual
brane collisions are independent events. So for 0-branes the total number of open strings
produced is

n ∼ N1N2

while for p-branes the total number of open strings produced is

n ∼ N1N2VpU̇
p/2 (65)

or equivalently, in terms of the radius at which open string production takes place

n ∼ N1N2VpU
p (66)

There is, however, an important consistency check on this result: we need to make sure
the incoming D-branes have enough kinetic energy to produce this number of open strings.
Equivalently, we need to make sure that the back-reaction of open string production on the
velocities of the D-branes is under control. Given the number of open strings (66), the energy
in open strings is

Estring = nU = N1N2Vp

(
λε

N1N2

) p+1
4

where we have used (17). On the other hand the kinetic energy of the incoming branes is

E = εVp

Thus the ratio
Estring

E
= λ

(
λε

N1N2

) p−3
4

(67)

and the consistency condition Estring/E < 1 is equivalent to

λUp−3 < 1

This is nothing but the condition λeff < 1. Thus at weak coupling energy conservation does
not limit the number of open strings that are produced and the simple estimate (66) can be
trusted.

20



References

[1] L. Susskind, “Some speculations about black hole entropy in string theory,”
arXiv:hep-th/9309145 [hep-th].

[2] A. Sen, “Extremal black holes and elementary string states,” Mod.Phys.Lett. A10
(1995) 2081–2094, arXiv:hep-th/9504147 [hep-th].

[3] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,”
Phys.Lett. B379 (1996) 99–104, arXiv:hep-th/9601029 [hep-th].

[4] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Adv.Theor.Math.Phys. 2 (1998) 231–252, arXiv:hep-th/9711200
[hep-th].

[5] S. Hawking, “Breakdown of predictability in gravitational collapse,” Phys.Rev. D14
(1976) 2460–2473.

[6] G. T. Horowitz and J. Polchinski, “A correspondence principle for black holes and
strings,” Phys.Rev. D55 (1997) 6189–6197, arXiv:hep-th/9612146 [hep-th].

[7] E. Witten, “Anti-de Sitter space and holography,” Adv.Theor.Math.Phys. 2 (1998)
253–291, arXiv:hep-th/9802150 [hep-th].

[8] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge
theories,” Adv.Theor.Math.Phys. 2 (1998) 505–532, arXiv:hep-th/9803131
[hep-th].

[9] N. Iizuka, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Probing black holes in
nonperturbative gauge theory,” Phys.Rev. D65 (2002) 024012,
arXiv:hep-th/0108006 [hep-th].

[10] N. Kawahara, J. Nishimura, and S. Takeuchi, “Phase structure of matrix quantum
mechanics at finite temperature,” JHEP 0710 (2007) 097, arXiv:0706.3517
[hep-th].

[11] S. Catterall and T. Wiseman, “Towards lattice simulation of the gauge theory duals to
black holes and hot strings,” JHEP 0712 (2007) 104, arXiv:0706.3518 [hep-lat].

[12] K. N. Anagnostopoulos, M. Hanada, J. Nishimura, and S. Takeuchi, “Monte Carlo
studies of supersymmetric matrix quantum mechanics with sixteen supercharges at
finite temperature,” Phys.Rev.Lett. 100 (2008) 021601, arXiv:0707.4454 [hep-th].

[13] M. Hanada, A. Miwa, J. Nishimura, and S. Takeuchi, “Schwarzschild radius from
Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum
mechanics,” Phys.Rev.Lett. 102 (2009) 181602, arXiv:0811.2081 [hep-th].

21



[14] M. Hanada, Y. Hyakutake, J. Nishimura, and S. Takeuchi, “Higher derivative
corrections to black hole thermodynamics from supersymmetric matrix quantum
mechanics,” Phys.Rev.Lett. 102 (2009) 191602, arXiv:0811.3102 [hep-th].

[15] S. Catterall and T. Wiseman, “Extracting black hole physics from the lattice,” JHEP
1004 (2010) 077, arXiv:0909.4947 [hep-th].

[16] S. Bhattacharyya and S. Minwalla, “Weak field black hole formation in asymptotically
AdS spacetimes,” JHEP 0909 (2009) 034, arXiv:0904.0464 [hep-th].

[17] D. Garfinkle and L. A. Pando Zayas, “Rapid thermalization in field theory from
gravitational collapse,” Phys.Rev. D84 (2011) 066006, arXiv:1106.2339 [hep-th].

[18] G. Festuccia and H. Liu, “The arrow of time, black holes, and quantum mixing of large
N Yang-Mills theories,” JHEP 0712 (2007) 027, arXiv:hep-th/0611098 [hep-th].

[19] N. Iizuka and J. Polchinski, “A matrix model for black hole thermalization,” JHEP
0810 (2008) 028, arXiv:0801.3657 [hep-th].

[20] N. Iizuka, T. Okuda, and J. Polchinski, “Matrix models for the black hole information
paradox,” JHEP 1002 (2010) 073, arXiv:0808.0530 [hep-th].

[21] D. Berenstein and D. Trancanelli, “Dynamical tachyons on fuzzy spheres,” Phys.Rev.
D83 (2011) 106001, arXiv:1011.2749 [hep-th].

[22] C. Asplund, D. Berenstein, and D. Trancanelli, “Evidence for fast thermalization in
the plane-wave matrix model,” Phys.Rev.Lett. 107 (2011) 171602, arXiv:1104.5469
[hep-th].

[23] C. T. Asplund, D. Berenstein, and E. Dzienkowski, “Large N classical dynamics of
holographic matrix models,” arXiv:1211.3425 [hep-th].

[24] L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister, et al., “Beauty is
attractive: Moduli trapping at enhanced symmetry points,” JHEP 0405 (2004) 030,
arXiv:hep-th/0403001 [hep-th].

[25] L. McAllister and I. Mitra, “Relativistic D-brane scattering is extremely inelastic,”
JHEP 0502 (2005) 019, arXiv:hep-th/0408085 [hep-th].

[26] C. Bachas, “D-brane dynamics,” Phys.Lett. B374 (1996) 37–42,
arXiv:hep-th/9511043 [hep-th].

[27] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S. Yankielowicz, “Supergravity and
the large N limit of theories with sixteen supercharges,” Phys.Rev. D58 (1998)
046004, arXiv:hep-th/9802042 [hep-th].

22



[28] K. Thorne, “Nonspherical gravitational collapse: A short review.” In J.R. Klauder,
Magic Without Magic (San Francisco, 1972) pp. 231-258.

[29] G. Gibbons, “Birkhoff’s invariant and Thorne’s hoop conjecture,” arXiv:0903.1580

[gr-qc].

[30] M. Cvetic, G. Gibbons, C. Pope, G. Gibbons, and C. Pope, “More about Birkhoff’s
invariant and Thorne’s hoop conjecture for horizons,” Class.Quant.Grav. 28 (2011)
195001, arXiv:1104.4504 [hep-th].

[31] K. Becker, M. Becker, J. Polchinski, and A. A. Tseytlin, “Higher order graviton
scattering in M(atrix) theory,” Phys.Rev. D56 (1997) 3174–3178,
arXiv:hep-th/9706072 [hep-th].

[32] D. N. Kabat and G. Lifschytz, “Gauge theory origins of supergravity causal
structure,” JHEP 9905 (1999) 005, arXiv:hep-th/9902073 [hep-th].

[33] E. Silverstein and D. Tong, “Scalar speed limits and cosmology: Acceleration from
D-cceleration,” Phys.Rev. D70 (2004) 103505, arXiv:hep-th/0310221 [hep-th].

[34] N. Iizuka, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Stretched horizons,
quasiparticles and quasinormal modes,” Phys.Rev. D68 (2003) 084021,
arXiv:hep-th/0306209 [hep-th].

[35] K. Maeda, M. Natsuume, and T. Okamura, “Quasinormal modes for nonextreme
Dp-branes and thermalizations of super-Yang-Mills theories,” Phys.Rev. D72 (2005)
086012, arXiv:hep-th/0509079 [hep-th].

[36] G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of AdS black holes and the
approach to thermal equilibrium,” Phys.Rev. D62 (2000) 024027,
arXiv:hep-th/9909056 [hep-th].

[37] S. D. Mathur, “The fuzzball proposal for black holes: An elementary review,”
Fortsch.Phys. 53 (2005) 793–827, arXiv:hep-th/0502050 [hep-th].

[38] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black holes: Complementarity or
firewalls?,” JHEP 1302 (2013) 062, arXiv:1207.3123 [hep-th].

[39] M. R. Douglas, D. N. Kabat, P. Pouliot, and S. H. Shenker, “D-branes and short
distances in string theory,” Nucl.Phys. B485 (1997) 85–127, arXiv:hep-th/9608024
[hep-th].

[40] S. L. Braunstein, S. Pirandola, and K. Zyczkowski, “Entangled black holes as ciphers
of hidden information,” Phys.Rev.Lett. 110 (2013) 101301, arXiv:0907.1190
[quant-ph].

23


