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Abstract

We obtain constraints on parameters of the Yukawa-type corrections to Newton’s gravitational

law from measurements of the gradient of the Casimir force between surfaces coated with ferro-

magnetic metal Ni and from measurements of the Casimir force between Au-coated sinusoidally

corrugated surfaces at various angles between corrugations. It is shown that constraints following

from the experiment with magnetic surfaces are slightly weaker than currently available strongest

constraints, but benefit from increased reliability and independence of systematic effects. The con-

straints derived from the experiment with corrugated surfaces within the interaction region from

11.6 to 29.2 nm are stronger up to a factor of 4 than the strongest constraints derived from other

experiments. The possibility of further strengthening of constraints on non-Newtonian gravity by

using the configurations with corrugated boundaries is proposed.

PACS numbers: 14.80.-j, 04.50.-h, 04.80.Cc, 12.20.Fv
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I. INTRODUCTION

In the last few decades corrections to Newton’s law of gravitation and constraints on them

have become the subject of considerable study (see the monograph [1] and reviews [2–5]).

From the experimental standpoint, it is of most importance that at separations between the

test bodies below 0.1mm Newton’s law is not confirmed by measurements with sufficient

precision. Theoretically, many extensions of the Standard Model of elementary particles

and their interactions predict corrections to the Newton law of power- and Yukawa-type due

to exchange of light and massless elementary particles [6–10]. On the other hand, similar

corrections are predicted by the extra-dimensional physics with a low-energy compactifica-

tion scale [11–15]. This makes the search for such corrections, or at least constraining their

parameters, interesting for the problems of dark matter and unification of gravitation with

other fundamental interactions.

A lot of successful work has been done on constraining the power- and Yukawa-type

corrections to Newton’s law of gravitation from gravitational experiments of Eötvos- and

Cavendish-type [1–4, 16, 17]. Although the most strong constraints on the power-type

corrections were obtained in this way, it was found that the resulting constraints on the

Yukawa-type corrections become much weaker in the interaction range below a few microm-

eters. This is explained by the fact that at sufficiently small separations between the test

bodies the van der Waals [18] and Casimir force [19] becomes the dominant background

force in place of gravitation. The two names belong to a single force of quantum origin

caused by the zero-point and thermal fluctuations of the electromagnetic field. They are

usually used at short and relatively large separations, respectively, where the effects of rel-

ativistic retardation are immaterial or, on the contrary, are influential and should be taken

into account.

The possibility to constrain corrections to Newton’s law from the van der Waals and

Casimir force was proposed long ago [20, 21] for the cases of Yukawa-type and power-type

corrections, respectively. At that time, however, reasonably precise measurements of the van

der Waals and Casimir force were not available. Things have changed during the last 15 years

when a lot of more precise experiments on measuring the Casimir force between metallic,

dielectric and semiconductor bodies have been performed (see reviews [22–25]). The measure

of agreement between the measurement data of these experiments and theoretical description

2



of the Casimir force in the framework of the Lifshitz theory resulted in the strengthening of

previously known constraints on the parameters of Yukawa-type corrections up to a factor

of 2.4 × 107 [5, 19, 26]. Using different experiments on measurement of the Casimir force,

the strongest constraints on the corrections to Newton’s law were obtained over a wide

interaction region from about 1 nm to a few micrometers. Note that for shorter interaction

regions the strongest constraints on the Yukawa-type corrections follow from precise atomic

physics [27], whereas starting from a few micrometers the gravitational experiments [1–

4, 16, 17] remain the most reliable source of such constraints.

In this paper we obtain constraints on the Yukawa-type corrections to Newton’s gravita-

tional law from two recently performed experiments on measuring the Casimir interaction by

means of an atomic force microscope (AFM). Each of these experiments is highly significant,

as compared with all earlier measurements of the Casimir interaction. In the first [28] the

dynamic AFM was used to measure the gradient of the Casimir force between a plate and a

sphere both coated with the ferromagnetic metal Ni with no spontaneous magnetization. As

a result, the predictions of the Lifshitz theory generalized for the case of magnetic materials

more than 40 years ago [29] were experimentally confirmed. The distinguished feature of

the experiment with two magnetic surfaces is also that it allows to shed light on the role of

some important systematic effects (see Sec. II for details) and, thus, remove any doubt in

the reliability of constraints obtained.

In the second experiment of our interest here [30] the static AFM was used to measure

the Casimir force between a plate and a sphere both with sinusoidally corrugated surfaces

coated with nonmagnetic metal Au. The unusual feature of this experiment, as compared

with earlier performed experiments with corrugated surfaces, is that the Casimir force was

measured at various angles between the longitudinal corrugations on both bodies. This

introduced into the problem an additional parameter (the angle between corrugations) that

can be chosen to obtain the most strong constraints from the measure of agreement between

the experimental data and theory of the Casimir force for corrugated surfaces based on the

derivative expansion [31–33].

The constraints on corrections to Newton’s law obtained by us from the experiment with

magnetic surfaces are in agreement with those obtained earlier [34] for smooth Au surfaces

by means of dynamic AFM [35], but slightly weaker due to different densities of Au and Ni.

The advantage of constraints following from the experiment with Ni surfaces is that they

3



are not only fully justified on their own, but add substantiation to the constraints obtained

from the experiments with nonmagnetic metal surfaces. As to constraints obtained from the

experiment with corrugated surfaces, they are stronger up to a factor of 4 than the most

strong constraints reported so far [26, 36, 37] in the interaction region from 11.6 to 29.2 nm.

The paper is organized as follows. In Sec. II we present the exact expression for the

Yukawa-type interaction in the experimental configuration of Ref. [28] and derive the re-

spective constraints on corrections to Newton’s gravitational law. The advantages of using

magnetic materials are elucidated. Section III is devoted to the experiment with corrugated

surfaces [30]. Here, we derive an expression for the Yukawa-type force in configurations with

different angles between corrugations. The obtained expression is used to find the stronger

constraints on corrections to Newton’s law. Some modifications in the setup are proposed

allowing further strengthening of the constraints in configurations with corrugated surfaces.

In Sec. IV the reader will find our conclusions and discussion.

II. CONSTRAINTS FROM THE GRADIENT OF THE CASIMIR FORCE

BETWEEN TWO MAGNETIC SURFACES

We begin with the standard parametrization of the spin-independent Yukawa-type correc-

tion to Newton’s gravitational law [1–5] (for spin-dependent corrections see Refs. [38, 39]).

The total gravitational potential between the two point-like masses m1 and m2 spaced at a

separation r takes the form

V (r) = VN(r) + VYu(r) = −
Gm1m2

r

(

1 + αe−r/λ
)

, (1)

where VN(r) and VYu(r) are the Newtonian part and the Yukawa-type correction, respec-

tively. Here, G is the Newtonian gravitational constant, and α and λ are the strength

and interaction range of the Yukawa-type correction. Similar to Ref. [40] it can be shown

that at separations below a few micrometers the Newtonian gravitational force between the

test bodies V1 and V2 in experiments under consideration is much smaller than the error

in measurements of the Casimir force. Because of this, in all subsequent calculations the

Newtonian potential can be neglected, and the Yukawa-type addition to it is considered on

the background of the measured Casimir force. Then the gravitational force acting between

the test bodies at short separations can be obtained by the integration of the Yukawa-type
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correction VYu(r) defined in Eq. (1) over the volumes of both bodies

VYu(a) = −Gα

∫

V1

d3r1ρ1(r1)

∫

V2

d3r2ρ2(r2)
e−|r1−r2|/λ

|r1 − r2|
. (2)

Here, a is the closest separation between the test bodies and ρ1(r1) and ρ2(r2) are the

respective mass densities (note that ρ1 and ρ2 are not constant because in the experiments

used below each test body consists of several homogeneous layers of different densities). The

gravitational force due to the Yukawa-type correction and its gradient are given by

FYu(a) = −
∂VYu(a)

∂a
,

∂FYu(a)

∂a
= −

∂2VYu(a)

∂a2
. (3)

In the experiment [28] the gradient of the Casimir force was measured between a Ni-

coated plate and a Ni-coated hollow microsphere attached to the tip of an AFM cantilever

operated in the dynamic regime [19, 22]. The silicon plate (V1) of a few millimeter diameter

and thickness can be considered as having an infinitely large area and an infinitely large

thickness when we have to deal with the submicrometer region of λ. The density of Si is

ρSi = 2.33×103 kg/m3. For technological purposes the Si plate was coated first with a layer

of Cr having a thickness ∆
(1)
Cr = 10 nm and density ρCr = 7.15× 103 kg/m3 and then with a

layer of Al having a thickness ∆
(1)
Al = 40 nm and density ρAl = 2.7× 103 kg/m3. Finally the

plate was coated with an outer layer of magnetic metal Ni with a thickness ∆
(1)
Ni = 250 nm

and density ρNi = 8.9 × 103 kg/m3. The hollow microsphere (V2) was made of glass with

density ρg = 2.5 × 103 kg/m3. The thickness of the spherical envelope was ∆
(2)
g = 5µm.

The sphere was also coated with successive layers of Cr, Al and Ni having the thicknesses

∆
(2)
Cr = ∆

(1)
Cr, ∆

(2)
Al = ∆

(1)
Al , and ∆

(2)
Ni = 210 nm. The outer radius of the sphere with all the

coatings included is R = 61.7µm.

The exact integration over the volumes of a plate and a sphere in Eq.(2) with account

of their layer structure can be performed like in Ref. [41]. Then, substituting the obtained

result in Eq. (3), we arrive at

∂FYu(a)

∂a
= 4π2Gαλ2e−a/λX(1)(λ)X(2)(λ), (4)
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where the following notations are introduced:

X(1)(λ) = ρNi − (ρNi − ρAl)e
−∆

(1)
Ni/λ

− (ρAl − ρCr)e
−(∆

(1)
Ni+∆

(1)
Al )/λ

− (ρAl − ρSi)e
−(∆

(1)
Ni+∆

(1)
Al+∆

(1)
Cr)/λ, (5)

X(2)(λ) = ρNiΦ(R, λ)− (ρNi − ρAl)Φ(R −∆
(2)
Ni , λ)e

−∆
(2)
Ni/λ

− (ρAl − ρCr)Φ(R −∆
(2)
Ni −∆

(2)
Al , λ)e

−(∆
(2)
Ni+∆

(2)
Al )/λ

− (ρCr − ρg)Φ(R −∆
(2)
Ni −∆

(2)
Al −∆

(2)
Cr, λ)e

−(∆
(2)
Ni+∆

(2)
Al+∆

(2)
Cr)/λ

− ρgΦ(R−∆
(2)
Ni −∆

(2)
Al −∆

(2)
Cr −∆(2)

g , λ)e−(∆
(2)
Ni+∆

(2)
Al+∆

(2)
Cr+∆

(2)
g )/λ,

and the following notation is introduced

Φ(r, λ) = r − λ+ (r + λ)e−2r/λ. (6)

The constraints on the parameters (λ, α), which are often referred to as the parameters of

non-Newtonian gravity, can be obtained from the comparison between the measurement data

for the gradient of the Casimir force F ′
C(a) and respective theory. In Ref. [28] it was found

that within the entire separation region from 223 to 550 nm there is an excellent agreement

between the data and theoretical predictions of the Lifshitz theory of the van der Waals

and Casimir force [18, 19] with omitted relaxation properties of conduction electrons (the

so-called plasma model approach). The predictions of the Lifshitz theory with included relax-

ation properties of free charge carriers (the so-called Drude model approach) were excluded

by the measurement data at a 95% confidence level within the separation region from 223 to

350 nm (in the end of this section we provide a brief discussion of different approaches to the

Lifshitz theory which is essential for obtaining constraints on non-Newtonian gravity). The

measure of agreement with the adequate theory is characterized by the total experimental

error ∆F ′

C
(a) in the measured gradient of the Casimir force determined at a 67% confidence

level [28]. Keeping in mind that within the limits of this error no additional interaction of

Yukawa-type was observed, the constraints on the parameters λ and α can be obtained from

the inequality
∣

∣

∣

∣

∂FYu(a)

∂a

∣

∣

∣

∣

≤ ∆F ′

C
(a). (7)

We have substituted Eqs. (4)–(6) in Eq. (7) and analyzed the resulting inequality at differ-

ent separations. It was found that for λ . 200 nm the strongest constraints are determined at
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the shortest separation a = 223 nm where ∆F ′

C
= 1.2µN/m [28]. For 200 nm . λ . 315 nm

and 315 nm . λ . 630 nm the strongest constraints follow at a = 250 and 300 nm, respec-

tively (with respective ∆F ′

C
= 1.05 and 0.89µN/m). Finally, at λ > 630 nm the strongest

constraints are obtained at a = 350 nm (∆F ′

C
= 0.81µN/m). The resulting constraints are

shown by the solid line in Fig. 1. Here and below the region of (λ, α) plane above each line is

prohibited and below is allowed by the results of respective experiment. In the same figure

by the dashed line we show the constraints obtained in Ref. [34] from measurements of the

gradient of the Casimir force between two Au-coated surfaces by means of dynamic AFM

[35]. The dotted line shows the constraints obtained [34] from the experiment on measuring

gradient of the Casimir force between an Au-coated sphere and a Ni-coated plate [42] using

the same setup. As can be seen in Fig. 1, the constraints indicated by the solid line are

slightly weaker than those shown by the dashed and dotted lines. This is caused by the fact

that density of Ni is smaller than density of Au and by different experimental errors. Note

also that our constraints shown by the solid line can be obtained in a simpler way by using

the proximity force approximation [19, 22]

FYu(a) = 2πREYu(a), (8)

to calculate the gradient of the Yukawa-type force, where EYu(a) is the energy per unit

area of Yukawa-type interaction between two plane-parallel plates having the same layer

structure as our test bodies. According to the results of Refs. [41, 43], this is possible under

the conditions
λ

R
≪ 1,

∆
(2)
Au +∆

(2)
Al +∆

(2)
Cr +∆

(2)
g

R
≪ 1, (9)

which are satisfied in our experimental configuration with a wide safety margin. In this case

the function Φ(r, λ) with any argument r can be approximately replaced with R.

It would be interesting also to compare the constraints on non-Newtonian gravity obtained

here from the experiment with two Ni surfaces (solid line in Fig. 1) with the strongest

constraints obtained so far using the alternative setups. For this purpose in Fig. 2 we

reproduce the solid line of Fig. 1 as the solid line 1. The solid line 2 in Fig. 2 was obtained

[26] from measurements of the thermal Casimir-Polder force between 87Pb atoms belonging

to the Bose-Einstein condensate and a SiO2 plate [44], and the solid line 3 was obtained [45]

from measurements of gradient of the Casimir force between an Au sphere and a rectangular

corrugated semiconductor (Si) plate by means of a micromachined oscillator [46]. Next, the
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solid line 4 in Fig. 2 was found from an effective measurement of the Casimir pressure

between two parallel Au plates by means of a micromachined oscillator [36, 37], and the

dashed line was obtained from the Casimir-less experiment [47]. As can be seen in Fig. 2,

various constraints obtained using quite different setups are consistent with the constraints

of line 1 obtained from the most recent experiment with two magnetic surfaces.

In the end of this section it is pertinent to note that the experiment with two magnetic

surfaces [28] plays the key role in the test of validity of the Lifshitz theory. Keeping in

mind that constraints on non-Newtonian gravity are derived from the measure of agreement

between the measurement data and theory, this experiment is also important to validate

the reliability of constraints obtained. As mentioned above, the Lifshitz theory is in agree-

ment with the plasma model approach to the Casimir force, which disregards the relaxation

properties of free charge carriers, and excludes the Drude model approach taking these prop-

erties into account (see the experiments of Refs. [35–37] and earlier experiments reviewed

in Refs. [19, 22]). This is against expectations of many and gave rise to the search of some

systematic effects which could reverse the situation. After several unsuccessful attempts

(see Ref. [48] for a review) the influence of large surface patches was selected as the most

probable systematic effect which could bring the data in agreement with the Drude model

approach [49]. In two experiments on measuring the Casimir force between Au surfaces

[50, 51] hypothetical large patches were described by models with free fitting parameters

and used in respective fitting procedures. In these experiments, which are not independent

measurements of the Casimir force, an agreement of the data with the Drude model approach

has been claimed (see Refs. [52–56] for a critical discussion).

The crucial point to underline here is that for nonmagnetic metals the Drude model

approach leads to smaller gradients of the Casimir force than the plasma model approach

[19, 22, 35–37]. Thus, the effect of large patch potentials (which leads to an attraction

similar to the Casimir force) is added to the predictions of the Drude model approach

and might make the total theoretical force compatible with the measurement data [49].

By contrast, for two magnetic metals the Drude model approach leads to larger gradients

of the Casimir force than the plasma model approach [28, 57, 58]. Thus, if the effect of

patches were important in this case, it would further increase the disagreement between the

predictions of the Drude model approach and the measurement data observed in Ref. [28].

This confirms that surface patches do not play an important role in precise experiments
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on measuring the Casimir force in accordance with the model of patches [59] predicting a

negligibly small effect from patches [19, 22]. Recently the patches on Au samples used in

measurements of the Casimir force were investigated by means of Kelvin probe microscopy

[60]. The force originating from them was found to be too small to affect the conclusions

following from precise measurements of the Casimir force. It is the matter of fact that the

experimental data of all independent measurements of the Casimir interaction between both

nonmagnetic and magnetic metals are in excellent agreement with the predictions of the

Lifshitz theory combined with the plasma model approach and exclude the Drude model

approach. Although the fundamental reasons beyond this fact have not yet been finally

understood, the constraints on non-Newtonian gravity obtained on this basis can be already

considered as reliable enough.

III. CONSTRAINTS FROM THE CASIMIR FORCE BETWEEN TWO CORRU-

GATED SURFACES

In Sec. II we have used the most recent measurement of the Casimir interaction where the

material dependence played a major role in theory-experiment comparison. Another recent

experiment [30] is of quite a different nature. In Ref. [30] the normal Casimir force acting

perpendicular to the surface was measured between the sinusoidally corrugated surfaces of a

sphere and a plate. The corrugated boundary surfaces have long been used in measurements

of the Casimir force (see Refs. [22, 23] for a review). For example, the normal Casimir force

between a rectangular corrugated semiconductor (Si) plate and a smooth Au sphere has

been measured by means of a micromachined oscillator and compared with theory based

on the exact scattering approach [46]. The obtained constraints on non-Newtonian gravity

are discussed in Sec. II (see solid line 3 in Fig. 2). A further example is the lateral Casimir

force between a sinusoidally corrugated plate and a sinusoidally corrugated sphere, both

coated with Au, which was measured and compared with exact theory in Refs. [61, 62].

This experiment resulted in the maximum strengthening of constraints on non-Newtonian

gravity from the Casimir effect by a factor of 2.4 × 107 discussed in Sec. I. In experiments

with corrugated surfaces the nontrivial geometry plays a major role in the theory-experiment

comparison whereas different approaches to the description of material properties cannot be

differentiated due to the lower experimental precision.
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The specific feature of the experiment of Ref. [30] is that the normal Casimir force between

a sinusoidally corrugated Au-coated plate and a sinusoidally corrugated Au-coated sphere

was measured at various angles between corrugations using an AFM. The plate in this

experiment is the diffraction grating with uniaxial sinusoidal corrugations of period Λ =

570.5 nm and amplitude A1 = 40.2 nm. The grating was made of hard epoxy with density

ρe = 1.08 × 103 kg/m3 and coated with an Au layer of thickness ∆
(1)
Au = 300 nm. The

corrugated plate was used as a template for the pressure imprinting of the corrugations on

the bottom surface of a sphere. The polystyrene sphere has a density ρp = 1.06×103 kg/m3.

It was coated with a layer of Cr of thickness ∆
(2)
Cr = 10 nm, then with a layer of Al of thickness

∆
(2)
Al = 20 nm and finally with a layer of Au of thickness ∆

(2)
Au = 110 nm. The outer radius of

the coated sphere is R = 99.6µm. The imprinted corrugations on the sphere have the same

period as on the plate and the amplitude A2 = 14.6 nm. The size of an imprint area was

measured to be Lx ≈ Ly ≈ 14µm, i.e., it is much larger than Λ. In Ref. [30] the Casimir

force between the sphere and the plate was measured at the following angles between the

axes of corrugations on both bodies: θ = 0◦, 1.2◦, 1.8◦, and 2.4◦.

Now we calculate the Yukawa-type force in the experimental configuration of Ref. [30].

For this purpose we first consider the Yukawa-type energy per unit area in the configuration

of two plane-parallel plates spaced at a separation a having the same layer structure as a

plate and a sphere in the experiment. The result is [41]

EYu(a) = −2πGαλ3e−a/λX(1)(λ)X(2)(λ), (10)

where now

X(1)(λ) = ρAu − (ρAu − ρe)e
−∆

(1)
Au/λ, (11)

X(2)(λ) = ρAu − (ρAu − ρAl)e
−∆

(2)
Au/λ

− (ρAl − ρCr)e
−(∆

(2)
Au+∆

(2)
Al )/λ

− (ρCr − ρp)e
−(∆

(2)
Au+∆

(2)
Al+∆

(2)
Cr)/λ.

Next, we introduce corrugations at an angle θ on the parallel plates and find their effect by

means of the geometrical averaging [19, 22]

Ecorr
Yu (a) =

1

LxLy

∫ Lx/2

−Lx/2

dx

∫ Ly/2

−Ly/2

dy EYu

(

z(a, x, y)
)

. (12)
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Here, EYu is the energy per unit area defined in Eq. (10) calculated at different separations

z between the corrugated plates which are assumed parallel to the (x, y) plane

z(a, x, y) = a+ A1 cos
2πx

Λ
− A2 cos

2πx′

Λ
. (13)

Note that there is no phase shift between the corrugations on both plates, so that x′ =

x cos θ − y sin θ.

Finally, to obtain the Yukawa-type force between a corrugated plate and a corrugated

sphere, we apply the proximity force approximation (8) taking into account different radii of

separate spherical layers. After an easy calculation using Eqs. (10)–(13), the Yukawa-type

force between a corrugated plate and a corrugated sphere takes the form

F corr
Yu (a) = −4π2Gαλ3e−a/λX(1)(λ)X̃(2)(λ)X(λ, θ), (14)

where

X̃(2)(λ) = RρAu − (ρAu − ρAl)(R−∆
(2)
Au)e

−∆
(2)
Au/λ

− (ρAl − ρCr)(R−∆
(2)
Au −∆

(2)
Al)e

−(∆
(2)
Au+∆

(2)
Al )/λ (15)

− (ρCr − ρp)(R−∆
(2)
Au −∆

(2)
Al −∆

(2)
Cr)e

−(∆
(2)
Au+∆

(2)
Al+∆

(2)
Cr)/λ

and the function X(λ, θ) is defined as

X(λ, θ) =
1

LxLy

∫ Lx/2

−Lx/2

dx

∫ Ly/2

−Ly/2

dy e−[A1 cos(2πx/Λ)−A2 cos(2πx′/Λ)]/λ. (16)

For zero angle between corrugations at both surfaces (θ = 0) one arrives to a more simple

representation

X(λ, 0) =
1

Lx

∫ Lx/2

−Lx/2

dxe−[(A1−A2) cos(2πx/Λ)]/λ. (17)

The integral in Eq. (17) can be evaluated analytically using the formula 2.5.10(3) in Ref. [63]

if there is an integer n such that nΛ = Lx. In this case

X(λ, 0) = I0

(

A1 − A2

λ

)

, (18)

where I0(z) is the Bessel function of imaginary argument. If nΛ+ η = Lx where 0 < η < Λ,

Eq. (18) is satisfied only approximately. If in the interaction region of our interest (see

Fig. 4 below) it occurs (A1 − A2)/λ ≫ 1, the maximum error arising from the use of

Eq. (18) achieves 5%. In the case (A1 − A2)/λ ∼ 1 this error is equal to ≈ 2%. In the
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general case of an arbitrary θ the quantity X(λ, θ) can be computed numerically. In Fig. 3

the computational results are plotted by the solid lines as functions of λ at θ = 0◦, 1.2◦,

1.8◦, and 2.4◦ used in the experiment of Ref. [30] from bottom to top, respectively, to a

logarithmic scale.

The measurement data of Ref. [30] for the normal Casimir force between corrugated sur-

faces were compared with the results of numerical computations based on the derivative

expansion approach [31–33] and a good agreement was found within the limits of the ex-

perimental errors ∆FC
(a) determined at the 67% confidence level (minor disagreement at

the shortest separations in Fig. 3 of Ref. [30] comes from the use of an oscillator model in

place of the optical data for the complex index of refraction). Then the constraints on the

parameters λ and α of the corrections to Newton’s law were found from the inequality

|FYu(a)| ≤ ∆FC
(a), (19)

where FYu(a) is given by Eq. (14) with the notations in Eqs. (11), (15) and (16). We have

numerically analyzed Eq. (19) at different separations a and with different values of the angle

θ between corrugations. The strongest constraints were obtained at the shortest separation

a = 127 nm where ∆FC
= 0.94 pN. They are shown by the solid lines in Figs. 4(a)–4(d) at

the values of θ = 0◦, 1.2◦, 1.8◦, and 2.4◦, respectively. For comparison purposes, the dashed

lines 1 and 2 in Figs. 4(a)–4(d) show the strongest constraints obtained earlier [26] within

this interaction region from measurements of the lateral Casimir force between sinusoidally

corrugated surfaces [61, 62] and from effective measurements of the Casimir pressure between

metallic plates by means of a micromachined oscillator [36, 37]. As can be seen in Fig. 4, at

any θ measurements of the normal Casimir force between sinusoidally corrugated surfaces

result in stronger constraints within some interaction region than were known so far. Thus at

θ = 0◦ the strengthening of previously available constraints up to a factor 1.8 holds within

the interaction region 14.3 nm ≤ λ ≤ 19.5 nm with the largest strengthening achieved at

λ = 17.2 nm [see Fig. 4(a)]. At θ = 1.2◦ and 1.8◦ the strengthening up to factors 2.8 and

3.5 occurs for 13.8 nm ≤ λ ≤ 25.1 nm and 12.9 nm ≤ λ ≤ 27.5 nm , respectively. The

maximum strengthening up to a factor 4 (achieved at λ = 17.2 nm) within the interaction

region 11.6 nm ≤ λ ≤ 29.2 nm takes palce at the angle between corrugations θ = 2.4◦.

The obtained stronger constraints following from measurements of the normal Casimir

force between sinusoidally corrugated surfaces can be further strengthened at the expense

12



of some modification of the experimental setup. Thus, it would be useful to switch from

a static AFM mode used in this experiment to the dynamic mode used in Refs. [28, 35,

42]. This results in a higher experimental precision though makes it necessary to perform

measurements at larger separation distances. As an example, we calculate the prospective

constraints on λ, α which can be obtained from dynamic measurements of the gradient of the

Casimir force between corrugated surfaces at a = 170 nm. In so doing we assume that the

total experimental error obtainable at this experiment is ∆F ′

C
= 0.62µN/m. For the sake of

simplicity we consider the case θ = 0◦ which does not lead to the maximum strengthening

of the respective constraints. Then from Eq. (14) one obtains

∂F corr
Yu (a)

∂a
= 4π2Gαλ2e−a/λX(1)(λ)X̃(2)(λ)X(λ, 0). (20)

Substituting Eq. (20) in the left-hand side of Eq. (7) adapted for the case of corrugated

surfaces, we arrive at the prospective constraints shown by the dotted line in Fig. 5. In the

same figure the strongest constraints obtained [26] from measurements of the lateral Casimir

force between sinusoidally corrugated surfaces [61, 62], from effective measurements of the

Casimir pressure between metallic plates by means of a micromachined oscillator [36, 37],

and from the Casimir-less experiment [47] are indicated by the dashed lines 1, 2, and 3,

respectively. As can be seen in Fig. 5, the prospective constraints shown by the dotted line

are stronger than the strongest current constraints over a wide interaction region from 12 to

160 nm. At the moment three different experiments are used to constrain the Yukawa-type

corrections to Newton’s law within this interaction region. The maximum strengthening up

to a factor of 12.6 occurs at λ = 17.2 nm.

IV. CONCLUSIONS AND DISCUSSION

In the foregoing we have obtained constraints on the parameters of Yukawa-type correc-

tions to Newton’s law of gravitation following from two recent experiments on measuring

the Casimir interaction. Each of these experiments is of particular interest, as compared

with all previous work in the field. The experiment of Ref. [28] pioneered measuring the

gradient of the Casimir force between two magnetic surfaces and confirmed the predictions

of the Lifshitz theory combined with the plasma model approach. In this way it was demon-

strated that magnetic properties of the material boundaries influence the Casimir force.

13



The outstanding property of magnetic materials is that the force gradients predicted by

the Drude model approach are larger than those predicted by the plasma model approach

(just opposite to the case of nonmagnetic metals). Thus, it was confirmed that such a

widely discussed systematic effect as the patch potentials cannot be used for the reconcili-

ation of the measurement data with the Drude model approach leading to further support

of constraints on non-Newtonian gravity obtained from the measure of agreement between

experiment and theory. Although constraints following from the experiment with magnetic

surfaces are slightly weaker than the previously known ones (this is due to smaller density

of Ni as compared to Au), the increased reliability can be considered as an advantage.

The experiment of Ref. [30] pioneered measurements of the normal Casimir force between

metallized sinusoidally corrugated surfaces at various angles between corrugations. It was

demonstrated that the Casimir force depends on these angles in accordance with theory us-

ing the derivative expansion. We have calculated the Yukawa-type force in the experimental

configuration with corrugated surfaces and obtained the respective constraints on its param-

eters. It was shown that the strength of constraints increases with increasing angle between

corrugations. The maximum strengthening up to a factor of 4, as compared to the strongest

previously known constraints, was shown to occur within the interaction range from 11.6

to 29.2 nm. We have also proposed some modification in the measurement scheme allow-

ing strengthening of the previously known constraints up to a factor of 12.6 within a wide

interaction region presently covered using the results of three different experiments. This

means that measurements of the Casimir interaction retain considerable potential for further

strengthening of constraints on the Yukawa-type corrections to Newton’s gravitational law

in submicrometer interaction region.
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[37] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepa-

nenko, Eur. Phys. J. C 51, 963 (2007).

[38] B. A. Dobrescu and I. Mocioiu, JHEP 0611, 005 (2006).

[39] L. Hunter, J. Gordon, S. Peck, D. Ang, and J.-F. Lin, Science 339, 928 (2013).

[40] M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. D 62,

011701(R) (2000).

[41] R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D. López, and V. M. Mostepa-
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FIG. 1: Constraints on the parameters of Yukawa-type corrections to Newton’s gravitational law

obtained in this work from measurement of the gradient of the Casimir force between two Ni

surfaces (solid line), between two Au surfaces (dashed line) and between an Au and a Ni surfaces

(dotted line). Here and in Figs. 2, 4 the regions of (λ, α) plane below each line are allowed and

above each line are prohibited (see text for further discussion).
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FIG. 3: The quantity X(λ, θ) defined in Eq. (16) is plotted by the solid lines as a function of λ at

θ = 0◦, 1.2◦, 1.8◦, and 2.4◦ from bottom to top, respectively.
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FIG. 2: Constraints on the parameters of Yukawa-type corrections to Newton’s gravitational law

obtained in this work (solid line 1), in Ref. [26] from measurements of the thermal Casimir-Polder

force [44] (solid line 2), in Ref. [45] from measurements of the gradient of the Casimir force be-

tween metallic and corrugated semiconductor surfaces [46] (solid line 3), in Refs. [36, 37] from

measurements of the gradient of the Casimir force between two metallic surfaces (solid line 4), and

in Ref. [47] from the Casimir-less experiment (dashed line).
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FIG. 4: Constraints on the parameters of Yukawa-type corrections to Newton’s gravitational law

obtained in this work (solid line), in Ref. [26] from measurements of the lateral Casimir force

between sinusoidally corrugated surfaces [61, 62] (dashed line 1), and from effective measurements

of the Casimir pressure between metallic plates by means of a micromachined oscillator [36, 37]

(dashed line 2). The angle between the axes of corrugations is equal to (a) θ = 0◦, (b) θ = 1.2◦,

(c) θ = 1.8◦, and (d) θ = 2.4◦.
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FIG. 5: Prospective constraints on the parameters of Yukawa-type corrections to Newton’s gravi-

tational law which can be obtained from dynamic measurement of the gradient of the Casimir force

between sinusoidally corrugated surfaces are shown by the dotted line. For comparison purposes

the dashed lines 1, 2, and 3 indicate the strongest current constraints obtained in Ref. [26] from

measurements of the lateral Casimir force between sinusoidally corrugated surfaces [61, 62], from ef-

fective measurements of the Casimir pressure between metallic plates by means of a micromachined

oscillator [36, 37], and in Ref. [47] from the Casimir-less experiment, respectively.
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