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The details are presented of a new evolution algorithm for the characteristic initial-boundary value
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I. INTRODUCTION

There has been important progress in computing accurate gravitational waveforms by means of Cauchy-
characteristic extraction (CCE) [1], whereby data from a Cauchy simulation provides the inner boundary data for a
characteristic evolution extending to future null infinity I+, where the waveform is defined unambiguously. CCE has
become an important tool for gravitational wave data analysis [2]. It has been applied to compute waveforms from
simulations of binary black hole inspiral and mergers [3–5], from rotating stellar core collapse [6, 7], to explore the
memory effect [8] and to study the effect of spin on gravitational waves from precessing binary black holes [9].
A CCE module [10] has been prepared for public use as part of the Einstein toolkit [11]. The module is based

upon the PITT null code [12, 13], which implements the worldtube-nullcone version [14] of the Bondi-Sachs [15,
16] characteristic initial-boundary value problem. There are technical complications in applying the Bondi-Sachs
formulation to CCE arising from the use of an areal radial coordinate to parametrize the outgoing null geodesics.
This paper considers an alternative approach to the worldtube-nullcone problem which replaces the areal coordinate
by an affine parameter. The details of an evolution algorithm for the affine system of Einstein equations are presented.
The comparative advantages with the Bondi-Sachs version for application to CCE are discussed.
Recent success in simulating general relativistic astrophysical systems has been achieved by Cauchy codes, which

evolve the spacetime metric inside an artificially constructed outer boundary. In doing so, it is common practice to
compute the gravitational waveform from data on an extraction worldtube inside the outer boundary, using pertur-
bative methods based upon introducing a Schwarzschild background in the exterior region. This has been carried
out using the Regge-Wheeler-Zerilli [17, 18] treatment of the perturbed metric, as reviewed in [19], and also by
calculating the Newman-Penrose [20] Weyl curvature component Ψ4, as first done for the binary black hole problem
in [21–24]. In this approach, errors arise from the finite size of the extraction worldtube, from nonlinearities and from
gauge ambiguities involved in the arbitrary introduction of a background metric. The gauge ambiguities might seem
less severe in the case of Ψ4 (vs metric) extraction, but there are still delicate problems associated with the choices
of a preferred null tetrad and preferred worldlines along which to measure the waveform (see [25] for an analysis).
In order to properly approximate the waveform at I+ the extraction worldtube must be sufficiently large but at

the same time causally and numerically isolated from errors propagating in from the outer boundary. Considerable
improvement in the perturbative approach has resulted from techniques for dealing with large outer boundaries and
extrapolating the extracted waveform to infinity. However, this is not an ideally efficient approach. It is especially
impractical in simulations of stellar collapse, where it is most strategic to restrict the computational domain to just
outside the stellar surface. CCE is a different approach which is specifically tailored to study radiation at I+.
In problems with isolated sources, the radiation zone can be compactified inside a finite grid boundary with the

metric rescaled by 1/r2 as an implementation of Penrose’s [26] conformal boundary at I+. Because I+ is a null
hypersurface, no extraneous outgoing radiation condition or other artificial boundary condition is required. In CCE,
Cauchy data on the extraction worldtube provides the inner boundary data for a characteristic evolution extending to
a compactified I+, where the waveform is defined unambiguously by geometric methods. This eliminates waveform
error due to asymptotic approximations and gauge ambiguities introduced by the choice of extraction worldtube.
In addition, the extraction worldtube can be placed in the near zone surrounding the sources in order to enhance
computational efficiency. See [27] for a review.
High accuracy waveforms from a binary inspiral and merger are important for the design of the detection templates
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that are critical for the success of gravitational wave astronomy. This has stimulated efforts to increase the accuracy of
characteristic evolution for use in CCE. Another global approach applicable to isolated systems is to base the Cauchy
problem itself on the analogue of the hyperboloidal Cauchy hypersurfaces in Minkowski space, which asymptote to
I+. This approach, first extensively developed by Friedrich [28], is potentially the basis for a very attractive numerical
approach to simulate gravitational wave production. For reviews of progress on the numerical implementation see [29–
31]. In spite of the attractiveness of the hyperboloidal approach and its recent success with model problems [32–35],
considerable work remains to make it applicable to systems of astrophysical interest.
The Cauchy evolution codes have incorporated increasingly sophisticated numerical techniques, such as mesh re-

finement, multi-domain decomposition, pseudo-spectral collocation and high order (in some cases eighth order) finite
difference approximations. Work has begun to incorporate such techniques in characteristic codes [36]. However, such
high accuracy methods cannot by themselves cure some of the major complications and sources of error arising in
CCE. The timelike extraction worldtube T at the inner boundary of CCE is constructed from a coordinate sphere
x2 + y2 + z2 = R2, R = const, cut out from the Cartesian Cauchy grid. However the radial grid points of the
Bondi-Sachs system are based upon an areal coordinate r, with the angular grid lying on the spheres r = R = const.
As a result, the extraction worldtube T does not lie on the gridpoints of the Bondi-Sachs system (except for special
cases such as spherical symmetry). This necessitates the introduction of an auxiliary characteristic coordinate system
in the neighborhood of T in which the radial coordinate is replaced by an affine parameter λ along the outgoing null
rays. By taking advantage of the affine freedom, T can then be parametrized by λ = 0. The Cauchy data is first
transformed into the affine characteristic system and expanded about λ = 0 to a sufficient power of λ to determine
data for the inner r-grid points of the Bondi-Sachs system in the neighborhood of T . This is a complicated proce-
dure which introduces interpolation error and has even led to inconsistent inner boundary conditions in the initial
implementation of CCE (see [10] for a discussion).
In view of this, the question naturally arises: Why not use the affine-null system in the first place for the char-

acteristic evolution algorithm and grid? The history behind this choice goes far back. It has to do with the simple
hierarchical structure that the Einstein equations take in the Bondi–Sachs system, but which is seemingly broken in
the affine system. We explain this in Sec. II.
The difference in behavior between an areal coordinate r and an affine parameter arises from focusing effects on

the null rays. The affine coordinate λ only becomes singular at caustics whereas the areal coordinate r also becomes
singular at points where the expansion of the null rays vanish. We deal here with the vacuum Einstein equations,
where such focusing effects do not arise in the spherically symmetric case and the areal coordinate is also an affine
parameter along the radial null geodesics. However, there is another important application of characteristic coordinates
to cosmology where, due to the lensing effect of matter, even in spherical symmetry the areal coordinate is not affine.
The natural role of the past null cone in astronomical observations has been incorporated into to a new approach to
cosmology [37, 38]. Bishop and his collaborators [39–41] have initiated a program to implement this null cone version
of observational cosmology by means of a characteristic evolution code based upon the Bondi-Sachs formalism. In
principle, data obtained from observations on the past null cone could be evolved backward in time to obtain the
earlier history of the universe. At present, their simulations have been confined to the spherically symmetric case but
they recognized that an areal coordinate would limit the approach to the region of the universe prior to refocusing.
They developed a stable, convergent characteristic evolution code in which the areal coordinate was replaced by an
affine parameter. The techniques developed in the present paper could be easily generalized to include matter and
applied to extend their treatment to anisotropic cosmologies.
In Sec III, we discuss the details of the Einstein equations in the affine-null system and show how the hierarchical

structure of the evolution system can be restored. This provides the basis for a new worldtube-nullcone evolution
algorithm.

II. NULL SPHERICAL COORDINATE SYSTEMS

The coordinates of both the Bondi-Sachs system and null-affine system are based upon a family of outgoing null
hypersurfaces emanating from the spherical cross-sections of a timelike worldtube T , where the null coordinate u
labels these hypersurfaces and the angular coordinates xA (A = 2, 3) label the spherical set of null geodesic rays. In
the Bondi-Sachs system, the surface area coordinate r labels the points along the outgoing null rays. In the resulting
xα = (u, r, xA) coordinates, the metric takes the Bondi-Sachs form [15, 16]

ds2 = −
(

e2β
V

r
− r2hABU

AUB

)

du2 − 2e2βdudr − 2r2hABU
BdudxA + r2hABdx

AdxB , (2.1)

where det(hAB) = det(qAB) = q(xC), with qAB(x
C) some standard choice of unit round-sphere metric. The fields β,

UA, V and hAB are functions of (u, r, xA). Here hAB is the metric of the topological 2-spheres (u = const, r = const)
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after conformal rescaling by 1/r2 to surface area 4π. Its inverse is defined by hAChCB = δAB.
The affine-null system is similarly based upon the outgoing null hypersurfaces u = const emanating from T with

coordinates xA labeling the null rays but now an affine parameter λ is used to coordinatize points along the rays. The
affine freedom

λ → A(u, xA)λ+B(u, xA)

is used to prescribe the normalization (∇au)∇aλ = −1 and set λ = 0 on T . In the resulting xα = (u, λ, xA)
coordinates, the metric takes the form

ds2 = −(V − gABW
AWB)du2 − 2dudλ− 2gABW

AdudxB + gABdx
AdxB (2.2)

In addition, we again set gAB = r2hAB, where dethAB = det qAB with qAB(x
C) a unit round-sphere metric. However,

r is now a metric function of (u, λ, xA) along with WA, V and hAB.
At the metric level, such affine-null coordinates were introduced by Sachs [42] in formulating a double-null initial

value problem. They are also the natural coordinates adopted in the Newman-Penrose [20] formulation of the Einstein
equations in terms of a null tetrad and the associated Weyl tensor components. The affine coordinate λ is singular
only at caustics whereas the areal coordinate r is also singular at points where the expansion of the null rays vanish. In
particular, this occurs at the points on a stationary event horizon. As a result, codes based upon an areal coordinate
have poor accuracy in tracking the late time tail preceding black hole formation, cf. [43] for a discussion in the
context of black hole perturbation theory. The affine null metric and and the Bondi-Sachs metric are related by the
transformation λ(u, r, xA) determined by

∂rλ(u, r, x
A) = e2β. (2.3)

However, the simplicity of this transformation is misleading because the surfaces r = const which determine the
partial derivatives ∂A and ∂u in the Bondi-Sachs system differ from the λ = const surfaces that determine the partial
derivatives ∂A and ∂u in the affine-null system. It is important to keep this distinction in mind in the following
comparison of the corresponding evolution systems.
The role of the different components of the Einstein equations in formulating a characteristic initial value prob-

lem can be best described in terms of an orthonormal null tetrad (La, Na,Ma, M̄a), corresponding to the metric
decomposition

gab = −L(aNb) +M(aM̄b), NaLa = −2, MaM̄a = 2. (2.4)

We choose La = −ua to be the future pointing normal to the null hypersurfaces (so that La is tangent to the outgoing
rays) and choose Ma to be a complex spatial vector tangent to the null hypersurfaces. This uniquely determines Na.
Then the vacuum Einstein equations Gab = 0 decompose into the main equations

LbGab = 0 (2.5)

MaM bGab = 0 (2.6)

and the supplementary equations

N bRab = 0, Gab = Rab −
1

2
gabR. (2.7)

It is a consequence of the Bianchi identities that if the main equations are satisfied then N bRab satisfies a first
order ordinary differential equation along the null rays. As a result, if the main equations are satisfied and the
supplementary equations N bRab = 0 are satisfied on the worldtube T then they will be satisfied everywhere. This
result was first demonstrated for the Bondi-Sachs system in [15, 16] but it also holds for the affine-null system.
See [44] for a recent discussion of the supplementary equations as a system of worldtube conservation laws that
impose symmetric hyperbolic constraints on the worldtube data. In CCE, the worldtube data is supplied by solutions
of the Einstein equations determined by the Cauchy evolution and it is assumed this data is consistent with the
supplementary equations. Thus we concentrate here on the main equations.
First consider the Bondi-Sachs equations. In that case, following the formalism developed in [45], the main equations

(2.5) take the schematic form of hypersurface equations

β,r = Nβ[hCD] (2.8)

(r4e−2βhABU
B
,r ),r = NU [hCD, β] (2.9)

V,r = NV [hCD, β, UC ], (2.10)
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where a “comma” denotes partial derivatives, e.g. β,r = ∂rβ, and the main equations (2.6) take the form of evolution
equations

MAMB(rhAB,u),r = Nh[hCD, β, UC , V ]. (2.11)

Here the N -terms on the right hand sides of (2.8) – (2.11) can be calculated from the values of their arguments on
a given u = const null hypersurface. Moreover, each N -term only depends upon previous members in the sequential
order [hCD, β, UC , V ]. Because of this hierarchical structure of the system, given hAB on an initial null hypersurface
u = 0, the main equations can be integrated radially in sequential order to determine the initial values of β, UA, V
and hAB,u at u = 0 in terms of their integration constants on T , i.e.

β|T , UA|T , UA
,r |T , V |T , hAB,u|T . (2.12)

In addition, the location of the worldtube, specified by r|T = R(u, xA), is another essential part of the data. After
determining hAB,u at u = 0, the hypersurface data hAB can be advanced to u = ∆u by a finite difference procedure.
Given the worldtube data (2.12), this procedure can be iterated to form a worldtube-nullcone evolution algorithm.
This evolution algorithm is extremely simple and economical compared to Cauchy evolution algorithms. It is the
algorithm underlying the PITT null code.
Now consider the affine-null system, for which the main equations take the schematic form,

r−1r,λλ = Hr[hCD] (2.13)

(r4hABW
B
,λ ),λ = HW [hCD, r] (2.14)

(

2(r2),u − V(r2),λ
)

,λ

= HV [hCD, r,WC ] (2.15)

MAMB(rhAB),uλ = Hh[hCD, r,WC ,V ], (2.16)

where the H-terms on the right hand sides of (2.13) – (2.16) can again be calculated from the values of their arguments
on a given u = const null hypersurface.
As in the Bondi-Sachs case, the H-terms depends upon the metric functions in sequential order, in this case in the

order [hCD, r,WC ,V ]. However, the hierarchical structure of the radial integration scheme is broken by the appearance
of the term (r2),u term on the left hand side of (2.15 ). Thus (2.15) is not a pure hypersurface equation and the radial
integration scheme does not produce an evolution algorithm in the same was as for the Bondi-Sachs system. This was
this reason that the affine-null formulation was not chosen in building the PITT null code.
However, by reformulating the hypersurface equation (2.15) by the introduction of an auxiliary variable, the pure

hypersurface form of the radial integration scheme can be restored. This new formulation is described in Sec. III after
presenting the details of the main equations of the null-affine system.

III. THE NULL AFFINE EVOLUTION SYSTEM

In presenting the details of the Einstein equations for the affine-null system, we begin with some useful formula for
describing the metric (2.2) and its associated connection and curvature. We then proceed to describe the construction
a numerical evolution algorithm.

A. Calculation of the Einstein tensor

The contravariant components of the metric (2.2) are given by

guλ = −1, guu = guA = 0, gλA = −WA, gλλ = V , gAB = r−2hAB. (3.1)

It is convenient to introduce a dyad vector mA to represent the 2-metric by

hAB = m(Am̄B) , hAB = m(Am̄B) , mA = hABmB hABm
AmB = 2. (3.2)

For that purpose, we chose the vector Ma forming the null tetrad (2.4) to lie tangent to the surfaces (u = const, r =
const), so that it has components Ma = (0, 0,MA). We then set MA = r−1mA. Here we raise and lower indices
of 2-dimensional vector and tensor fields on the sphere with hAB and hAB, e.g. WA = hABW

B . We recall that
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dethAB = det qAB, where qAB(x
C) is some standard choice of unit round-sphere metric. The determinant condition

implies

hABhAB,u = mAm̄BhAB,u = 0, hABhAB,λ = mAm̄BhAB,λ = 0. (3.3)

We fix the spin rotation freedom in the dyad mA → eiϕ(u,λ,xC)mA by requiring

m̄AmA,λ = 0 (3.4)

and

m̄AmA,u|λ=0 = 0. (3.5)

Note that the determinant condition (3.3) also implies

m̄AmA,λ +mAm̄A,λ = 0. (3.6)

The spin rotation freedom then reduces to a phase factor ϕ(xA), which is determined by the choice of conventions at
(u = 0, λ = 0). Given these conventions, hAB and mA are in one-to-one correspondence.
As an example, for stereographic coordinates xA = (η, ρ) on the unit round-sphere with metric

qABdx
AdxB =

√
q(dη2 + dρ2),

√
q =

4

1 + η2 + ρ2
, (3.7)

the rescaled metric on the general curved topological sphere can be represented as

hAB =
√
q

(

e2γ cosh 2α sinh 2α
sinh 2α e−2γ cosh 2α

)

, (3.8)

hAB =
1√
q

(

e−2γ cosh 2α − sinh 2α
− sinh 2α e2γ cosh 2α

)

. (3.9)

where γ and α represent the two degrees of freedom. A specific choice of polarization dyad associated with this
representation is

mA = q1/4
(

eγ(coshα+ i sinhα), ie−γ(coshα− i sinhα)

)

, (3.10)

mA = q−1/4

(

e−γ(coshα− i sinhα), ieγ(coshα+ i sinhα)

)

. (3.11)

The components of the Einstein tensor can be calculated in terms of the metric functions hAB, r, W
A, V from the

components of the curvature tensor

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ceΓ
e
bd − Γa

deΓ
e
bc , Rab = Rc

acb, (3.12)

where

Γa
bc =

1

2
gad(∂bgcd + ∂cgbd − ∂dgbc) (3.13)

are the Christoffel symbols. The components of the Christoffel symbols in terms of the metric functions are given in
Appendix A. We denote 2-dimensional covariant derivatives of tensor fields on the sphere with respect to hAB by a
“colon”, e.g.

WA
:B = ∂BW

A + (h)ΓA
BCW

C (3.14)

where

(h)ΓA
BC =

1

2
hAD(∂BhCD + ∂ChBD − ∂DhBC) (3.15)
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is the Christoffel symbol associated with hAB.
In terms of these conventions and notation, the main affine-null equations (2.13) – (2.16) have the specific form

0 = Rb
λu,b =

2r,λλ
r

− 1

4
hCD
,λ hCD,λ (3.16)

0 = Rb
Au,b = − 1

2r2
(r4hABW

B
,λ),λ + (

r,λ
r
),A − (

r,B
r

)hBChAC,λ − 1

2
hBChAC,λ:B (3.17)

0 = hABRAB = (2)R+

(

2(r2),u − V(r2),λ
)

,λ

+

(

1

r2
(r4WA),λ

)

:A

− (ln r2):A:A − r4

2
hABW

A
,λW

B
,λ (3.18)

0 = mAmBRAB = mAmB{r(rhAB),uλ − 1

2
(r2VhAB,λ),λ + rr:CW

ChAB,λ + (r2WA:B),λ

+
r2

4
hAB,λm̄CmD(WC:D −WD:C) +

r2

2
WChAB,λ:C − r4

2
hAChBDWC

,λW
D
,λ }. (3.19)

B. Restoration of the hypersurface equation hierarchy

The strategy now is to use the auxiliary variable

Y = V − 2r,u
r,λ

(3.20)

to eliminate the explicit appearance of the r,u derivative in (3.25) and reexpress it as a hypersurface equation for Y.
In that process, substitution of Y for V in the evolution equation (3.19) leads to the intermediate expression

mAmB{r(rhAB),uλ − 1

2
(r2VhAB,λ),λ} = rmAmB{rhAB,u − rr,u

r,λ
hAB,λ},λ −mAmB 1

2
(r2YhAB,λ),λ (3.21)

or, using (3.4),

mAmB{r(rhAB),uλ − 1

2
(r2VhAB,λ),λ} = r{mAmBr(hAB,u − r,u

r,λ
hAB,λ)},λ −mAmB 1

2
(r2YhAB,λ),λ. (3.22)

When (3.22)is inserted back into (3.19) it gives a hypersurface equation for a combination of the time derivatives
mAmBhAB,u and r,u. In order to complete an evolution system, we need an additional radial equation for r,u. This
is obtained from the u-derivative of the Raychauduri equation (3.16), which determines the rate of change of the
expansion of the outgoing rays. In order to formulate a hierarchical radial integration scheme, we introduce the
auxiliary variables

ρ = r,u. (3.23)

and

kAB = hAB,u. (3.24)

Then the u-derivative of (3.16) gives

ρ,λλ =
ρ

8
hCD
,λ hCD,λ +

r

4
hBC
,λ kBC,λ, (3.25)

where the determinant condition implies that the undifferentiated kAB terms vanish, i.e.

hBDhCE
,λ hED,λkBC = 0. (3.26)
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In assembling the foregoing results into a radial integration hierarchy, simplifications result from using the spin-
weighted scalars

σ =
1

4
mAmBhAB,λ =

1

2
mAmA,λ , (3.27)

κ =
1

4
mAmBkAB , kAB = κm̄Am̄B + κ̄mAmB (3.28)

and

J = 4(r,λκ− ρσ) = r,λm
AmBhAB,u − r,um

AmBhAB,λ. (3.29)

Then (3.22) becomes

mAmB{r(rhAB),uλ − 1

2
(r2VhAB,λ),λ} = r

(

rJ

r,λ

)

,λ

−mAmB 1

2
(r2YhAB,λ),λ (3.30)

and (3.25) becomes

ρ,λλ = −ρσσ̄ − rσ̄κ,λ − rσκ̄,λ

= − ρ

r,λ
(rσσ̄),λ − 2rσσ̄(

ρ

r,λ
),λ − rσ̄

4
(
J

r,λ
),λ − rσ

4
(
J̄

r,λ
),λ (3.31)

where, from (3.16) and(3.27),

rσσ̄ = −r,λλ. (3.32)

C. The evolution algorithm

By assembling the results in Sec. III B, the main equations (3.16) - (3.19), along with (3.31), now take the desired
form desired form

r−1r,λλ = −σσ̄ = Hr[hCD] (3.33)

(r4hABW
B
,λ),λ = 2r2(

r,λ
r
),A − 2rr,Bh

BChAC,λ − r2hBChAC,λ:B

= HW [hCD, r] (3.34)
(

Y(r2),λ
)

,λ

= (2)R+

(

1

r2
(r4WA),λ

)

:A

− (ln r2):A:A − r4

2
hABW

A
,λW

B
,λ

= HY [hCD, r,WC ] (3.35)
(

rJ

r,λ

)

,λ

= mAmB{ 1

2r
(r2YhAB,λ),λ − r:CW

ChAB,λ − 1

r
(r2WA:B),λ

− r

4
hAB,λm̄CmD(WC:D −WD:C)− r

2
WChAB,λ:C +

r3

2
hAChBDWC

,λW
D
,λ }

= HJ [hCD, r,WC ,Y] (3.36)
(

ρ

r,λ

)

.λλ

= − r

4r,λ

(

σ̄(
J

r,λ
),λ + σ(

J̄

r,λ
),λ

)

= Hρ[hCD, r, J ] , (3.37)

where the H-terms can be calculated from the values of their arguments on a u = const null hypersurface. Given
hAB(u, λ, x

C), the system (3.33) – (3.37) forms a hierarchy of radial hypersurface equations which can be integrated
to determine the remaining variables in the sequential order [r,WA,Y, J, ρ].
This gives rise to the following initial-boundary value problem. Specify the initial hypersurface data

[hAB, r] , u = 0, λ ≥ 0 (3.38)

and the initial boundary data

[r,λ,W
A,WA

,λ,Y, J, ρ, ρ,λ] , u = 0, λ = 0, (3.39)
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subject to the constraint (3.33), which constitutes an ordinary differential radial equation. On the boundary, specify

[WA,WA
,λ,Y, J, ρ, ρ,λ] , u > 0, λ = 0, (3.40)

subject to the conditions (2.7). Using the initial data, integrate (3.33) – (3.37) to determine the initial values of
[r,WA,Y, J, ρ].
Given this initialization and the boundary data, the evolution system can be integrated by a finite difference

approximation. The initial values ρ(0, λ, xA) and J(0, λ, xA) determine the values of r and hAB at u = ∆u through
(3.23) and (3.29). Using the boundary data, (3.34) – (3.37) can then be integrated in sequential order to determine
[WA,Y, J, ρ] at u = ∆u. Now [hAB, r,W

A,Y, J, ρ] are known at u = ∆u and this process can be repeated to provide
a finite difference evolution algorithm. If the algorithm converges as ∆u → 0 then it produces a solution to the
affine-null initial-boundary value problem for Einstein’s equations.

IV. DISCUSSION

We have constructed an evolution algorithm based upon the affine-null system which, like the Bondi-Sachs system,
is based upon a hierarchy of radial equations along the outgoing characteristics. It has the additional advantage of the
flexibility in describing an arbitrary inner worldtube boundary as a coordinate surface. This is especially important for
application to CCE, where the inner boundary, which is constructed in terms of the Cauchy coordinates, generically
differs from the r = const Bondi-Sachs worldtubes. As a result, the affine-null algorithm offers the possibility of
increased economy and accuracy.
The formal solution of the null-affine problem constructed in Sec. III C yields an exact solution provided the finite

difference approximation converges as ∆u → 0. A necessary condition for this is the well-posedness of the underlying
analytic initial-boundary value problem. Well-posedness, i.e. the existence of a unique solution which depends
continuously on the data, is a necessary condition for a successful numerical treatment. Although characteristic
evolution codes based upon the Bondi-Sachs formalism have been demonstrated to be stable in a large number of
test cases [13, 46], there remains some lingering doubt because well-posedness of the analytic problem has not yet
been established. Rendall [47] has shown that the affine-null problem is well-posed in the double null case where
the inner boundary is also a null hypersurface. However, Rendall’s approach cannot be applied to the corresponding
problem where the inner boundary is a timelike worldtube. The well-posedness of the worldtube-nullcone characteristic
initial-boundary value problem for Einstein’s equations remains an outstanding issue.
The only source of error in CCE which does not decrease with numerical resolution arises from the mismatch

between the initial Cauchy data and initial characteristic data. This results because the radius R2 of the outer
Cauchy boundary is larger than the radius R1 of the inner worldtube boundary of the characteristic evolution.
Whereas the Cauchy data in the region R1 ≤ R ≤ R2 is chosen, say, by some constraint solver for binary black hole
initial data, the characteristic initial data for R ≥ R1 is chosen to suppress the initial radiation content by requiring
that the Newman-Penrose Weyl component Ψ0 = 0. This mismatch between the initial Cauchy and characteristic
data leads to an extraneous error in the extracted waveform which is related to the spurious radiation content in the
Cauchy data. This error decreases as R2 → R1 but present day Cauchy codes require that the outer boundary be
in the far zone of a binary black hole to avoid incoming radiation generated by the outer boundary condition. As a
result, the full potential of CCE is not realized.
This mismatch can be eliminated by Cauchy-characteristic matching (CCM) [48]. CCE is one of the pieces of CCM

in which the characteristic worldtube data is extracted from the Cauchy evolution. In CCM, data on the outer Cauchy
boundary is in turn obtained from the characteristic evolution. In doing so, it is possible to place the radius R2 of the
Cauchy boundary just outside the radius R1 of the characteristic extraction worldtube. In fact, in a finite difference
implementation of CCM for a model scalar wave problem [49], it has been possible to arrange that R2 → R1 in
the continuum limit. This resulted in a seamless interface between the Cauchy and characteristic evolutions with no
mismatch in the initial data.
The success of CCM depends upon the proper mathematical and computational treatment of the initial-boundary

value problem (IBVP) for the Cauchy evolution. At present, the only successful 3D application of CCM in general
relativity has been to the linearized matching problem between a characteristic code and a Cauchy code based upon
harmonic coordinates [50]. Considerable work remains to apply it to astrophysical systems. The linearized harmonic
code satisfied a well-posed initial-boundary value problem, which seems to be a critical missing ingredient in earlier
attempts at CCM in general relativity. More recently, a well-posed initial-boundary value problem has been established
for fully nonlinear harmonic evolution [51, 52], which should facilitate the extension of CCM to the nonlinear case.
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Appendix A: Christoffel symbols

The calculation of the Ricci tensor

Rαβ = Γν
αβ,ν − Γν

να,β + Γρ
αβΓ

ν
ρν − Γρ

ναΓ
ν
ρβ (A1)

which enter the main equations can be carried out explicitly in terms of the Christoffel symbols for the affine-null
metric (2.2). The components are listed according to the notation (x0, x1, xA) = (u, λ, xA).

Γα
αν = ∂ν ln(r

2√q) (A2)

Γ0
1α = 0 (A3)

Γα
11 = 0 (A4)

Γ0
AB = rr,λhAB +

r2

2
hAB,λ (A5)

Γ1
AB =

r2

2
(hACW

C
:B + hBCW

C
:A + hAB,u − VhAB,λ) + rhAB(r,CW

C + r,u − Vr,λ) (A6)

ΓC
AB = rr,λW

ChAB +
1

2
r2WChAB,λ +

1

r
(r,Bδ

C
A + r,Aδ

C
B − r,DhCDhAB) +

(h)ΓC
AB (A7)

Γ0
0A = −r2

2
(hAB,λW

B + hABW
B
,λ)− rr,λhABW

B (A8)

Γ1
10 =

1

2
V,λ − r2

2
hABW

AWB
,λ (A9)

Γ1
1A =

r2

2
hABW

B
,λ (A10)

Γ0
00 = −1

2
V,λ +

1

2
(r2hABW

AWB),λ (A11)

ΓC
A1 =

1

r
r,λδ

C
A +

1

2
hCDhAD,λ (A12)

Γ1
00 =

1

2
W,0 +

1

2
(r2hAB),0W

AWB +
1

2
V(V − r2hABW

AWB),λ − 1

2
WA(V − r2hBCW

BWC),A (A13)
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Γ1
0A =

1

2
W,A +

1

2
V(r2hABW

B),λ − rr,BW
BhACW

C − r2

2
WB(hBCW

C
:A + hACW

C
:B)−

1

2
WB(r2hAB),0 (A14)

ΓB
0A = −1

2
WB(r2hACW

C),λ +
1

2
gBC(r2hAC),0 −

r,A
r

WB − 1

2
WB

:A +
r,D
r

hBDhACW
C +

1

2
hBChADWD

:C (A15)

ΓA
01 = −r,λ

r
WA − 1

2
hAB(hBCW

C).λ (A16)

ΓA
00 = −1

2
WAV,λ +

1

2
WA(r2hBCW

BWC),λ − 2WA r,u
r

− hAB(hBCW
C),u +

1

2r2
hABV,B

− r,B
r

hABhCDWCWD − 1

2
hAB(hCDWCWD),B. (A17)
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