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I. INTRODUCTION

It is by now well known that the behavior of elementary excitations in various condensed matter systems can be
described, under some approximation, by an effective theory of massless scalars (phonons) propagating on a fictitious
curved spacetime according to a covariant Klein-Gordon equation [1, 2]. This curved spacetime, which has nothing to
do with the real physical spacetime on which the underlying condensed matter theory is defined, is determined by the
background features of the condensed matter system. In particular, curvature is associated with inhomogeneities of
the system. The approximation, which is at the core of this condensed-matter analogy, is typically a hydrodynamical
approximation whose validity requires one to consider the system on scales much larger than the typical length
associated with the microscopic (atomic) structure of the system.

It is of particular interest to consider configurations for which the associated curved spacetime metric describes
what in gravity would be called a black hole, BH. This happens, for example, in a stationary flow when the speed of
sound varies with position in such a way that there is both a subsonic and a supersonic region with the direction of
flow from the subsonic towards the supersonic region. The surface separating the subsonic from the supersonic regime
acts as a sort of “acoustic horizon” since sound waves in the supersonic region (the ”acoustic” BH) are trapped inside
this horizon being unable to propagate upstream towards the subsonic part, mimicking the trapping of light (and
everything else) inside the horizon of a gravitational BH.

There is therefore the concrete possibility of investigating in these condensed matter configurations the analogue
of one of the more exotic processes foreseen in theoretical physics, namely BH quantum evaporation as predicted
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by Hawking in 1974 [3]. This process, despite what one would naively think, is not peculiar to gravity. It is
completely kinematical as it relies only on the presence of a horizon in the underlying metric on which the quantum
fields propagate. As such it is expected to occur in condensed matter analogue systems when the associated curved
spacetime has a BH form [1, 2].

Hawking evaporation is a general pair creation process in which quantum vacuum fluctuations are converted into
real on shell quanta. One quantum (the positive energy one) is emitted outside the horizon and propagates to infinity
where it is characterized by a thermal spectrum at the Hawking temperature, the other member of the pair (the
negative Killing energy quantum), called its “partner” [4], propagates inside the horizon and remains trapped there.
It is this compensation of positive and negative energy which allows the process to occur in stationary, even static
configurations.

For a gravitational BH the Hawking temperature associated with this emission process is extremely low TH ∼
10−7(MSun/M)K, where M is the BH mass. This makes Hawking evaporation astrophysically irrelevant and im-
possible to detect for stellar mass or larger black holes since the signal is completely overwhelmed by other sources
including the 2.7 K cosmic microwave background radiation. In principle Hawking radiation from primordial BHs [5, 6]
with small enough masses could be detected [7, 8], but no BHs of this type have been discovered.

Thus analogue systems appear today as the only realistic hope of finding experimental verification of Hawking’s
prediction. But even in this context the experimental situation is difficult due to competing effects such as thermal
fluctuations and quantum noise.1 These effects can mask the signal even in the most favorable situations where the
associated Hawking temperature is as high as 1/10 of the background temperature.

A way to bypass this critical problem was proposed in [10] where it was shown that the Hawking process encodes
characteristic correlations between the quanta and their partners that can be measured in analogue systems, allowing
for clear identification of the Hawking process. This kind of left-right correlation is not of physical interest for a
gravitational BH since external observers have no access to the interior BH region (where the partners live). For
acoustic BHs the region inside the horizon is simply the supersonic part of a flow and hence is physically accessible
for measurements. The relationships between the equal-time correlations studied in analogue BHs [10, 11] and the
space-time correlation pattern found in relativistic theories are discussed in [12].

A Bose-Einstein condensate,BEC, is one of the most highly studied systems which can be used to create an analogue
black hole [13]. A BEC is an ensemble of sufficiently cold atoms, the vast majority of which are in the ground state of
the system [14]. The small fraction of the atoms which are in excited states can be described as (quantum) excitations
above a classical (c number) condensate field.

In Ref. [10], using the condensed matter - gravity analogy, the correlations associated with Hawking radiation in a
BEC elongated in one spatial direction undergoing a BH-like flow were computed using the standard tools of quantum
field theory, QFT, in curved space. Two approximations were made to simplify the calculations. The first was to
reduce the mode equation from a 4-D form to a 2-D form. In the dimensional reduction process there is a potential
that appears in the 2-D mode equation which causes backscattering of the modes to occur. The second approximation
was to neglect this potential. Without it the modes propagate freely as 2-D plane waves.

It was found that if a sonic horizon is present then there is a negative correlation peak in the density density
correlation function when one point is inside and one point is outside the horizon. No such peak occurs if there
is no horizon. In [11] ab initio full condensed matter calculations of the density-density correlation function were
made. The calculations were based on Monte Carlo simulations within the full microscopic quantum description of
the Bose-Einstein condensate. Comparisons were made with the analytic calculation in [10] and it was found that the
two calculations are in approximate agreement for both the size of the peak and the width of the peak so long as the
flow varies smoothly on scales compared to the condensate healing length.

The analytic calculation in [10] was carried out only for the case in which one point is inside and one point is
outside the horizon. However, it can be generalized in a straight-forward way to consider all possible pairings of the
two points. When this is done the only other structure found is the usual peak that occurs when the two points come
together. The calculation of the density density correlation function in [11] showed a richer structure. In particular a
negative correlation peak was found in the case that both points are inside the horizon. This is a second effect which
depends on the existence of a horizon. A third, positive correlation peak was also found [11, 15, 16] when one point
is inside and one point is outside the horizon. It was found that this peak occurs even if the horizon is not present.

Because the calculation in [10] neglected the potential in the 2-D mode equation it is natural to ask whether
this potential has any important effects. In this paper we answer that question by numerically computing the
density density correlation function when the potential is included in the mode equation. We find that the resulting
backscattering of the modes leads to a more complex structure for the correlation pattern which fits very well with

1 A recent experiment in which these contributions are disentangled is described in Ref. [9].
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the one obtained in [11].
In Sec. II the relevant properties and equations for a BEC are reviewed. In Sec. III the specific model we consider

is discussed. In Sec. IV the Unruh state which we use for our calculations is discussed and formulas for the relevant
Bogolubov coefficients are derived. In Sec. V the derivation of the specific expressions for the density density correlation
function that are used in our numerical calculations are given. Sec. VI contains a derivation of the specific mode
equations which we solve. In Sec. VII the numerical computation of the density density correlation function is
discussed. The results of the numerical calculations are given in Sec. VIII and our conclusions are given in Sec. IX.

II. BOSE-EINSTEIN CONDENSATES AND THE ASSOCIATED ANALOGUE METRIC

Here we shall briefly review the basic equations describing a BEC and how these lead, under the hydrodynamical
approximation, to the context of an acoustic metric effectively governing the propagation of the fluctuations.

In the Bogoliubov theory the basic bosonic-field operator Ψ̂ describing the atoms is split into a classical mean field
Ψ0 describing the macroscopic occupied low energy state of the system (the condensate) and a part describing the
quantum fluctuation above this classical state

Ψ̂ = Ψ0(1 + φ̂) . (2.1)

The evolution of the condensate is governed by the Gross-Pitaevskii equation

i~∂TΨ0 =

(
− ~2

2m
~∇2 + Vext + g|Ψ0|2

)
Ψ0 , (2.2)

where m is the mass of one of the atoms, g the coupling and Vext the external potential confining the atoms. The

field operator φ̂ describing the noncondensed part satisfies the Bogoliubov-de Gennes, BdG, equation

i~∂T φ̂ = −

(
~2~∇2

2m
+

~2

m

~∇Ψ0

Ψ0

~∇

)
φ̂+ ng(φ̂+ φ̂†), (2.3)

where n ≡ |Ψ0|2 is the condensate density.
The BdG equation (2.3) can be manipulated to obtain a curved space wave equation as follows. One rewrites the

condensate wave function Ψ0 and the basic field operator Ψ̂ in the so called density-phase representation, namely

Ψ0 =
√
neiθ ,

Ψ̂ =
√
n+ n̂1 e

i(θ+θ̂1) ' Ψ0(1 +
n̂1

2n
+ iθ̂1) . (2.4)

In this representation the BdG equation becomes a pair of equations of motion for the density fluctuation n̂1 and the

phase fluctuation θ̂1

~∂T θ̂1 = −~~v0
~∇θ̂1 −

mc2

n
n̂1 +

mc2

4n
ξ2~∇[n~∇(

n̂1

n
)] = 0 , (2.5)

∂T n̂1 = −~∇(~v0n̂1 +
~n
m
~∇θ1) , (2.6)

where ~v0 = ~∇~θ/m is the condensate flow velocity and c =
√
ng/m the local speed of sound which will play a

critical role in our construction. ξ ≡ ~/mc is the so called healing length, it is the fundamental scale in describing
the microscopic quantum structure of the BEC.

If we limit ourselves to scales much bigger than ξ, i.e. within the so called hydrodynamical approximation, the last
term in Eq. (2.5) can be neglected namely

n̂1 ' −
~n
mc2

[
~v0
~∇θ̂1 + ∂T θ̂1

]
. (2.7)

Substituting this equation into Eq. (2.6) then decouples the system of equations (2.5, 2.6) yielding the equation

−(∂T + ~∇~v0)
n

mc2
(∂T + ~v0

~∇)θ1 + ~∇ n

m
~∇θ1 = 0 , (2.8)
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which can formally be rewritten as

�̂θ̂1 = 0 , (2.9)

where

� =
1√
−g

∂µ(
√
−ggµν∂ν) , (2.10)

and gµν is the inverse of the 4× 4 matrix

gµν =
n

mc

(
−(c2 − ~v2

0) −vi0
−vj0 δij

)
. (2.11)

Here g is the determinant of gµν and Latin indices range from 1 to 3 and are used for spatial components.
Eq. (2.8) therefore has the form of the covariant Klein-Gordon equation for a massless scalar field propagating in

a fictitious curved spacetime whose line element is

ds2 = gµνdx
µdxν =

n

mc

[
−c2dT 2 + (d~x− ~v0dT )(d~x− ~v0dT )

]
. (2.12)

This is the core of the analogy: within the hydrodynamical approximation, the Bogoliubov theory of phase fluctuations
in a BEC is equivalent to QFT in curved spacetime for a massless scalar field. Looking at the metric (2.11) we see that
for condensate configurations for which the flow turns supersonic, i.e. admitting a region where |~v0| > c, the associated
analogue metric describes what gravitational physicists would call a BH in Painvlevé-Gullstrand coordinates.

On the basis of the analogy one expects this kind of BEC configuration to show a Hawking-like process in the form
of emission of correlated pairs of phonons on opposite sides of the horizon. The study of these correlations will be
performed using the tools of QFT in curved spacetime for an idealized flow profile.

The results will show the validity of this much simpler theoretical scheme to handle a complex system like a
supersonic flowing BEC provided the profiles v0(x) and c(x) vary on scales much larger than ξ.

III. THE MODEL

Our model consists in an infinite elongated (along the x axis) condensate whose transverse size l⊥ is constant and
much smaller than ξ. So the dynamics is frozen in the transverse direction and the problem becomes basically one
dimensional. The flow is stationary and directed along x, from right to left, i.e. ~v0 = −v0x̂ with v0 a positive constant.
The sound speed is adjusted (see below) so that for x > 0, it is v0 < c(x), while for x < 0, v0 > c(x). So x = 0 plays
the role of the horizon and the supersonic (x < 0) region is the BH region.

We will call the region x > 0 the R region and the region x < 0 the L region. A Penrose diagram for the acoustic
metric is given in Fig. 1. We refer to Ref. [17] for the details of the construction. We further assume the density to
be constant. Our nontrivial configuration for the sound speed can be obtained by changing the coupling constant g
(and hence the speed of sound) along x by means of a spatially varying magnetic field in the vicinity of a Feshbach
resonance [14].

Quantization is performed expanding the hermitian quantum operator θ̂1 in terms of creation and annihilation
operators satisfying usual bosonic commutation rules. Symbolically

θ̂1 =
∑
i

[âifi + â†if
∗
i ] , (3.1)

where the fi and their complex conjugates are a complete set of solutions to the mode equation

�̂fi = 0 , (3.2)

with �̂ is given in Eq. (2.10). The choice of the set of solutions {fi} selects the vacuum state for the field as âi|0〉 = 0.
The appropriate vacuum to describe Hawking radiation is discussed in the following section. The equation (3.2) once

expanded has the same form as (2.8) with θ̂1 replaced by fi, ~v0 = −v0x̂ with v0 and n positive constants. The modes
fi are assumed to be functions only of T and x. Our assumption regarding the scale of the transverse dimensions
(l⊥ � ξ) forbids excitations with transverse momenta.
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FIG. 1: Penrose diagram for an acoustic black hole metric.

In order to solve the mode equation a sequence of coordinate transformations, familiar in BH physics, will be
performed to simplify it. First we introduce a “Schwarzschild-like” time t as follows:

t = T −
∫ x

x1

dy
v0

c2(y)− v2
0

(3.3)

in the R region, while in the L region

t = T −
∫ x

x2

dy
v0

c2(y)− v2
0

+ a . (3.4)

The constants x1, x2 and a are arbitrary.
One can then write the mode equation as

(�(2) + V )θ̂
(2)
1 = 0 , (3.5)

where θ̂
(2)
1 is related to θ̂1 by

θ̂1 =

√
mc

n~`2⊥
θ̂

(2)
1 , (3.6)

and

�(2) ≡
[
− c

c2 − v2
0

∂2

∂t2
+
c2 − v2

0

c

∂2

∂x2
+
dc

dx

(
1 +

v2
0

c2

)
∂

∂x

]
, (3.7)

V ≡ 1

2

d2c

dx2

(
1− v2

0

c2

)
− 1

4c

(
dc

dx

)2

+
5v2

0

4c3

(
dc

dx

)2

. (3.8)



6

Note that �(2) is the covariant d’Alambertian for the two dimensional metric

ds2 = −c
2 − v2

0

c
dt2 +

c

c2 − v2
0

dx2 . (3.9)

Examination of (3.9) shows that unlike the coordinate T which is always timelike, the coordinate t is timelike in the
R region and spacelike in the L region. It approaches the value −∞ on the past horizon, H−, and the value +∞ on
the future horizon H+.

It is useful to define in both the R and L regions the “tortoise” coordinate x∗. In the R region the definition is

x∗ =

∫ x

x3

dy
c(y)

c2(y)− v2
0

. (3.10)

In the L region the definition is the same but with a different, in general, lower limit which we will call x4. In the R
region x∗ ranges from −∞ on the past and future horizons (H±) to +∞ in the limit x→ +∞. In the L region x∗ is
again −∞ on the past and future horizons and increases to +∞ in the limit x→ −∞. It thus acts as a typical time
coordinate, as can be seen rewriting the metric as

ds2 =
c2 − v2

0

c
(−dt2 + dx∗ 2) . (3.11)

The utility of this tortoise coordinate is that the wave equation for the modes takes the form(
− ∂2

∂t2
+

∂2

∂x∗ 2
+ Veff

)
θ̂

(2)
1 = 0 , (3.12)

with

Veff =
c2 − v2

0

c
V . (3.13)

With these definitions we can define in both the R and L regions the retarded and advanced null coordinates respec-
tively

u = t− x∗ ,
v = t+ x∗ . (3.14)

Because the mode functions propagate across the future horizon I+, it is useful to have v be a continuous variable
across that horizon. This is accomplished by choosing the constant a in Eq. (3.4) to be

a = −
∫ x1

x2

dy
1

c(y) + v0
−
∫ x2

x4

dy
c(y)

c2(y)− v2
0

+

∫ x1

x3

dy
c(y)

c2(y)− v2
0

. (3.15)

For later use we introduce another set of retarded and advanced coordinates called Kruskal coordinates which are
defined as

UK = −e−κu/κ , (3.16a)

VK = eκv/κ , (3.16b)

in R region, while

UK = e−κu/κ , (3.17a)

VK = eκv/κ , (3.17b)

in L region. Therefore UK = 0 on the future horizon H+ and VK = 0 on the past horizon H−. The parameter κ is
the surface gravity of the horizon; in our acoustic setting it is

κ =
dc

dx x=0
. (3.18)

For the hydrodynamical description to be valid the condition κ ξ � 1, with ξ the healing length, must be satisfied [18].
In Ref. [10], the term containing Veff in the mode equation (3.12) was neglected with the result that the mode solutions
can be written in terms of the simple plane waves (e−iwu and e−iwv) that propagate freely without being scattered.
Here the full equation (with Veff included) will be solved (numerically) to also take into account the backscattering
which in the 4-D case is caused by the effective curved geometry (i.e. the inhomogeneities of the BEC medium) and
in the 2-D case is caused by the effective potential.
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IV. THE UNRUH STATE

To proceed further one has to select the quantum state for the field φ̂ encoding the formation of the acoustic BH
which is the process which triggers Hawking radiation.

However if one limits our analysis to sufficiently late times after the BH formation, the features of the emitted
Hawking quanta are completely independent on the details of the formation process, being determined only by the
properties of the resulting stationary horizon, more specifically its surface gravity κ. So one can avoid discussing the
complicated physics underlying the dynamics of the formation process and simply impose on the past horizon H− of
our stationary BH metric the appropriate, but universal, boundary conditions which mimic the formation of a horizon
in the distant past.

This is the spirit of the so called Unruh state [19]. Technically Hawking radiation is superimposed on our stationary
background by requiring the retarded modes originating from the past horizonH− to be positive frequency with respect
to the Kruskal coordinate UK which is an affine parameter along H−.

For this state there is a flux of radiation which comes through the past horizon, H− while at past null infinity, i.e.

I−R , there is no radiation. To obtain this behavior the scalar field θ̂
(2)
1 is expanded in terms of two sets of modes so

that

θ̂
(2)
1 =

∫ ∞
0

dωK

[
aK(ω)uKH(ω, x) + a†K(ω)uK ∗H (ω, x)

]
+

∫ ∞
0

dω
[
b(ω)uRI (ω, x) + b†(ω)uR ∗I (ω, x)

]
. (4.1)

Here both sets of creation and annihilation operators obey the usual commutation relations and both sets of modes
are solutions to the mode equation (

− ∂2

∂t2
+

∂2

∂x∗ 2
+ Veff

)
u(ω, x) = 0 . (4.2)

The modes uRI originate at I−R . They are positive frequency with respect to the time coordinate t and on I−R have the

form uRI ∼ e−iωv. Because of the potential term in Eq. (4.2) they are partly transmitted towards I+
L and partially

reflected to I+
R and I+

L , see Fig. 2.
The modes uKH which come through H− are, on H−, positive frequency with respect to the Kruskal null coordinate

UK . There they have the form uKH ∼ e−iωKUK . They are partially transmitted to I+
R or I+

L and partially reflected to

I+
L , see Fig. 3.

Note that these behaviors on I−R and H− define the state because it is always possible to fix the mode function and
its first derivative in any way that one wishes on a Cauchy surface. Different ways of fixing these initial conditions
lead to different states for the field.

The modes are normalized using the scalar product [20]

(φ1, φ2) = −i
∫

Σ

φ1(x)
↔
∂ µ φ

∗
2(x)

√
−gΣ(x)nµdΣ , (4.3)

with Σ a Cauchy surface and nµ a future directed unit vector which is perpendicular to Σ. The normalization condition
is

(u(ω, x), u(ω′, x)) = δ(ω − ω′) . (4.4)

Normalization of the uI modes is done on the surface I−R . Technically one needs a Cauchy surface. A full Cauchy

surface for the R region would consist of I−R along with the part of H− which bounds this region. Then one could
add to this a spacelike or null surface covering the rest of the spacetime. What is chosen is unimportant because the
modes which originate on I−R are zero on the past horizon and along the above mentioned surface. On the surface I−R ,
the normalization condition is

(uout
I (ω, x), uout

I (ω′, x)) = −i
∫ ∞
−∞

dv uout
I (ω, x)

↔
∂ v u

out ∗
I (ω′, x) = δ(ω − ω′) . (4.5)

The result is that on I−R ,

uout
I (ω, x) =

e−iωv√
4πω

. (4.6)
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FIG. 2: Incoming modes uR
I from I−R .

Normalization of the the uKH modes is done along H− which is a Cauchy surface. The normalization condition is

(uKH(ωK , x), uKH(ω′K , x)) = −i
∫ ∞
−∞

dUK u
K
H(ωK , x)

↔
∂UK uK ∗H (ω′K , x) = δ(ωK − ω′K) . (4.7)

The result on H− is

uKH(ω, x) =
e−iωKUK√

4πωK
. (4.8)

Although one can define initial data for the uKH modes on H−, it is difficult to evolve these modes because in the
Kruskal coordinates UK and VK the mode equation is not separable and in the t and x coordinates it is not easy
to express the initial conditions for these modes. The mode solutions discussed above that begin on I−R are zero on
H−. However, there exists a set of solutions to the mode equation (4.2) which are positive frequency with respect
to t and which pass through the part of H− which intersects the R region. On that horizon they have the behavior
uRH ∼ e−iωu.

These solutions are zero on both I−R and the part of H− which borders the L region. They are normalized on H−

using the condition

(uRH(ω, x), uRH(ω′, x)) = −i
∫ ∞
−∞

duuRH(ω, x)
↔
∂ u u

R ∗
H (ω′, x) = δ(ω − ω′) , (4.9)

with the result that on H−,

uRH(ω, x) =
e−iωu√

4πω
, (4.10)

see Fig. 4.
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H from H−.

For the part of H− which serves as a boundary for the L region one has a complete set of modes which on H−

are positive frequency with respect to the time coordinate x∗. They are zero on the part of H− which borders the R
region. On the other part of H− they have the form uLH− ∼ eiωu and are normalized using the condition (4.9) with
the result that on the part of H− which borders the L region,

uLH(ω, x) =
eiωu√
4πω

, (4.11)

see Fig. 5.
All that remains is to express the modes uKH in terms of the modes uLH and uRH . This is done through Bogolubov

transformations whose coefficients can be computed using the scalar product evaluated on the past horizon H−. We
can write

uKH(ωK , x) =

∫ ∞
0

dω
[
αLωKωu

L
H(ω, x) + βLωKωu

L ∗
H (ω, x)

]
+

∫ ∞
0

dω
[
αRωKωu

R
H(ω, x) + βRωKωu

R ∗
H (ω, x)

]
. (4.12)

The coefficients can be obtained by using the scalar product evaluated on H−. Recalling that uRH− = 0 on the part

of H− which borders the L region and uLH− = 0 on the part of H− which borders the R region we have

αRωK ω = (uKH(ωK , x), uRH(ω, x)) , (4.13a)

βRωK ω = −(uKH(ωK , x), uR ∗H (ω, x)) , (4.13b)

αLωK ω = (uKH(ωK , x), uLH(ω, x)) , (4.13c)

βLωK ω = −(uKH(ωK , x), uL ∗H (ω, x)) . (4.13d)
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FIG. 4: Outgoing modes uR
H , defined in the exterior region (x > 0).

Using the expressions (4.8) and (4.10) and evaluating the scalar product on H− one finds

αRωK ω =
−i

4π
√
ωK ω

∫ 0

−∞
dUK exp

[
−iωKUK − i

ω

κ
log(−UK)

] [ iω

κ(−UK)
+ iωK

]
. (4.14a)

Making the change of variables Z = −UK allows one to compute the integral in terms of Gamma functions with the
result that

αRωK ω =
1

2πκ

√
ω

ωK
Γ(−iω/κ)(−iωK)iω/κ . (4.14b)

In a similar way one finds

βRωK ω =
i

4π
√
ωK ω

∫ 0

−∞
dUK exp

[
−iωKUK + i

ω

κ
log(−UK)

] [ −iω
κ(−UK)

+ iωK

]
=

1

2πκ

√
ω

ωK
Γ(iω/κ)(−iωK)−iω/κ , (4.14c)

αLωK ω = − i

4π
√
ωK ω

∫ ∞
0

dUK exp
[
−iωKUK + i

ω

κ
log(UK)

] [ iω

κUK
+ iωK

]
=

1

2πκ

√
ω

ωK
Γ(iω/κ)(iωK)−iω/κ , (4.14d)

βLωK ω =
i

4π
√
ωK ω

∫ ∞
0

dUK exp
[
−iωKUK − i

ω

κ
log(UK)

] [ −iω
κUK

+ iωK

]
=

1

2πκ

√
ω

ωK
Γ(−iω/κ)(iωK)iω/κ . (4.14e)
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FIG. 5: Outgoing modes uL
H , defined in the interior region (x < 0).

V. DENSITY CORRELATIONS

The equal time density density correlation function, which is the basic object of our investigation, is formally defined
as

G2(T, x;T ′, x′) = lim
T→T ′

〈n̂1(T, x)n̂1(T ′, x′)〉 . (5.1)

Writing n̂1 in terms of the phase operator Eq. (2.7) one can relate G2 to the symmetric two-point function of the

field Θ̂
(2)
1

G2(T, x;T ′, x′) =
~n

2m`⊥c2(x)c2(x′)
lim
T ′→T

D
√
c(x)c(x′) 〈{θ̂(2)

1 (t, x), θ̂
(2)
1 (t′, x′)}〉 , (5.2a)

D ≡ ∂T∂T ′ − v0∂x∂T ′ − v0∂T∂x′ + v2
0∂x∂x′ . (5.2b)

where {, } is the anticommutator. Here one should use the definition (3.3) for t in the R region and the comparable
definition in the L region.

The two point function, computed using Eqs. (4.1), can be mathematically split into two parts such that

〈{θ̂(2)
1 (t, x), θ̂

(2)
1 (t′, x′)}〉 = I + J , (5.3a)

I =

∫ ∞
0

dωK
[
uKH(ωK , t, x)uK ∗H (ωK , t

′, x′) + uK ∗H (ωK , t, x)uKH(ωK , t
′, x′)

]
, (5.3b)

J =

∫ ∞
0

dω
[
uRI (ω, t, x)uR ∗I (ω, t′, x′) + uR ∗I (ω, t, x)uRI (ω, t′, x′)

]
. (5.3c)

This leads to two separate contributions to the density density correlation function. However, only the full density
density correlation function has physical meaning. Substituting Eq. (4.12) into Eq. (5.3b) and using Eqs. (4.14) one
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finds 16 integrals of the form

1

4π2κ2

∫ ∞
0

dωK

∫ ∞
0

dω

∫ ∞
0

dω′
√
ωω′

ωK
Γ(±iω/κ)Γ(±iω′/κ)

(±iωK)±iω/κ(±iωK)±iω
′/κu1(ω, t, x)u2(ω′, t′, x′) (5.4)

with all combinations of ± and u1 and u2 being various combinations of uLH , uRH , and their complex conjugates. The
integral over ωK can be computed. With the change of variable z = (lnωK)/κ the result is proportional to either
δ(ω−ω′) or δ(ω+ω′). Given the limits of integration terms containing δ(ω+ω′) integrate to zero. Using the relation

Γ

(
iω

κ

)
Γ

(
−iω
κ

)
=

πκ

ω sinh
(
πω
κ

) , (5.5)

one finds that

I =

∫ ∞
0

dω
1

sinh
(
πω
κ

) {uLH(ω, t, x)uRH(ω, t′, x′) + uL∗H (ω, t, x)uR∗H (ω, t′, x′)

+uRH(ω, t, x)uLH(ω, t′, x′) + uR∗H (ω, t, x)uL∗H (ω, t′, x′)

+ cosh
(πω
κ

) [
uLH(ω, t, x)uL∗H (ω, t′, x′) + uL∗H (ω, t, x)uLH(ω, t′, x′)

+uRH(ω, t, x)uR∗H (ω, t′, x′) + uR∗H (ω, t, x)uRH(ω, t′, x′)
]}

(5.6)

Peaks in the density density correlation function are a manifestation of the entanglement existing between modes
of the quantum field. Mathematically they occur when the phase of one or more terms in the two point function is
stationary [18]. When both the points x and x′ are far from the horizon the peaks occur for all nonzero products of
modes in Eqs. (5.3c) and (5.6). The locations of the peaks reveal the space-time properties of the correlations between
the created particles and their partners [10, 11], see also [21–23].

As discussed in Sec. IV, the Unruh vacuum we have constructed, i.e. the state annihilated by the operators âK and

b̂ in Eq. (4.1) describes Hawking radiation at late times. The created quanta appear at late times as the three types
of modes which are depicted in Figs. 6, 7, and 8.

The first mode (Fig. 6) at late times for x→∞ has form e−iwu√
w

and describes phonons propagating towards x→ +∞
with velocity V = (c+− v0) > 0 where c+ ≡ c(x = +∞). The second mode (Fig. 7) at late times for x→ −∞ has the

form eiwu√
w

and describes phonons propagating inside the BH towards x→ −∞ with velocity V = (c−− v0) < 0 where

c− ≡ c(x = −∞). These are the so called partners (negative Killing frequency). The last one (Fig. 8) also describes
modes propagating inside the BH, this time with velocity V = −(c− + v0) < 0; their asymptotic (x → −∞) form is
e−iwv√

w
(positive frequency).

Two-point correlations related to Hawking radiation are between these modes. There are therefore three kinds of
relevant correlations. The first is L−R and correlates quanta between the modes in Fig. 6 and Fig. 7, i.e. modes on
opposite sides of the horizon, see Fig. 9. This occurs in the (x, x′) plane along the line

x′

c− − v0
=

x

c+ − v0
+ C1 , (5.7)

with x′ < 0 and x > 0. with C1 a constant that depends on the arbitrary constants x1, x2, x3, and x4 in the definitions
of t and x∗ (see Eqs. (3.3), (3.4),and (3.10)).

There is another correlation of the L−R form which correlates quanta between the modes in Fig. 6 and Fig. 8, see
Fig. 10. The peak is along

x′

(c− + v0)
= − x

c+ − v0
+ C2 , (5.8)

where C2 is a different combination of the same arbitrary constants that comprise C1.
Finally there is an L− L correlation (both modes inside the horizon) of the modes in Fig. 7 and Fig. 8, see Fig.

11. The peak this time is along

x′

(c− + v0)
= − x

c− − v0
+ C3 , (5.9)

where both x, x′ < 0 and C3 depends on the same arbitrary constants that C1 and C2 depend on.
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FIG. 6: Phonons (Hawking quanta) created in the exterior (subsonic) region.

VI. MODE FUNCTIONS

It is next necessary to obtain explicit expressions for the mode functions. Their normalization has been described
above. For each of them the mode equation can be solved using separation of variables. The result is

uLH(ω, t, x) =
1√
4πω

eiωtχLH(x) (6.1a)

uRH(ω, t, x) =
1√
4πω

e−iωtχRH(x) (6.1b)

uRI (ω, t, x) =
1√
4πω

e−iωtχRI (x) . (6.1c)

In all cases the part of the mode function that depends on the coordinate x obeys the equation

d2χ

dx∗ 2
+ ω2χ+ Veffχ = 0 . (6.2)

This equation must be solved numerically in general. If c → constant as x → ±∞, then Veff → 0 in these limits.
Further, because c→ v0 at the horizon (x = 0), Veff → 0 at the horizon as well. This aids in determining the boundary
conditions on χ.

The easiest case to consider is χLH . In the L region, x∗ is the time coordinate. Thus on both the past and future

horizons (which are both at x = 0) one has χ = e−iωx
∗
. Since χLH enters the L region from the past horizon H− the

modes are initially right moving. This is the reason for the factor of eiωt in Eq. (6.1a). For numerical purposes it
is useful to break χLH into real and imaginary parts. Thus we define χLc to be the solution to Eq. (6.2) which in the
limit x→ 0− has the behavior

χLc → cos(ωx∗) . (6.3a)
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FIG. 7: Negative frequency phonons (partners) created in the interior (supersonic) region.

Similarly in this limit we define

χLs → sin(ωx∗) . (6.3b)

Then

χLH = χin
c + iχin

s . (6.3c)

The numerical computation of χLc and χLs is described in more detail in the next section.
In the R region the situation is more complicated. It is useful to define two solutions to Eq. (6.2) by their behavior

in the large x limit:

χRc → cos(ωx∗) , (6.4a)

χRs → sin(ωx∗) . (6.4b)

Near x = 0 these solutions will have the form

χRc → A cos(ωx∗) +B sin(ωx∗) , (6.5a)

χRs → C cos(ωx∗) +D sin(ωx∗) . (6.5b)

Using these, one can define solutions which correspond to right moving and left moving waves in the large x limit as

χ∞r = χRc + iχRs , (6.6a)

χ∞` = χRc − iχRs . (6.6b)

Near x = 0 these solutions will have both right and left moving parts so that

χ∞r → Ere
iωx∗ + Fre

−iωx∗ , (6.7a)

χ∞` → E`e
iωx∗ + F`e

−iωx∗ . (6.7b)
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FIG. 8: Positive frequency phonons created in the interior (subsonic) region.

One easily finds that

Er =
1

2
[A+D − i(B − C)] , (6.8a)

Fr =
1

2
[A−D + i(B + C)] , (6.8b)

E` =
1

2
[A−D − i(B + C)] , (6.8c)

F` =
1

2
[A+D + i(B − C)] . (6.8d)

For the modes which enter the R region from the past horizon, the normalization occurs at that horizon while the
boundary condition on χRH is that the mode function should be a right moving wave in the limit x→∞. Thus

χRH = Nχ∞r , (6.9)

The normalization constant N is determined through the normalization condition (4.10) on H−. Near x = 0 it is the
right moving part of χRH which corresponds to the part of the mode function coming from H−. Using Eqs. (6.1b)
and (6.7a) one finds that

N =
1

Er
. (6.10)

To find the behavior of χRH for x < 0 we note that it is the left moving part near x = 0+ which goes through the
future horizon. Then by continuity of the total mode function uRH across the future horizon one finds that for x < 0

χRH =
Fr
Er

(
χLc − iχLs

)
. (6.11)
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FIG. 9: Left-Right correlations between phonons in Figs. 6, 7.

Finally we discuss the modes uRI which originate on I− in the R region. The normalization for these modes occurs
on I− and is given in Eq. (4.6). Because of backscattering part of the mode function reaches I+. Therefore,

χRI = χ∞` +Kχ∞r , (6.12)

with K a constant. The boundary condition is that on H−, uRI = 0. This is accomplished by having χRH be a left
moving wave in the limit x→ 0+, that is

χRI = Ge−iωx
∗
, (6.13)

with G another constant. Using Eqs. (6.7) in Eq. (6.12) and setting the result equal to (6.13) gives

K = −E`
Er

(6.14a)

G = FL −
E`Fr
Er

. (6.14b)

For x < 0 we again use continuity of the mode function at H+ to obtain

χRI =

(
F` −

E`Fr
Er

)(
χLc − iχLs

)
. (6.15)

This ends the derivation of the equations necessary for the computer program. We used the algebraic manipulation
program Mathematica to combine them to give expressions for the density-density correlation function in terms of
the modes χLc , χLs , χRc , χRs and their derivatives and also in terms of the constants A, B, C, D. All of these quantities
are numerically computed.

VII. NUMERICAL COMPUTATIONS

In this section we discuss the numerical computation of the density density correlation function. This involves
numerical computations of the mode functions in both the L and R regions. The results are substituted into the
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FIG. 10: Left-Right correlations between phonons in Figs. 6, 8.

expressions for the density density correlation function which involve integrals over the frequency ω. Because of the
different behaviors of the mode functions in the L and R regions there are different specific expressions for the density
density correlation function in terms of the mode functions and their derivatives depending on where the two points
are located. These have been obtained using the algebraic manipulation program Mathematica but they are too long
to be shown here.

There is a problem that arises in computing the mode integrals in all but one case. That is that the process of
computing the integrals over ω and computing the derivatives of the two point function necessary to obtain the density
density correlation function do not commute. The point is that for the two point function the integrals over ω are
well defined and converge in the limit ω →∞ so long as the points are separated. However, if one takes the relevant
derivatives first and thus obtains an integral over derivatives of the mode functions, then the resulting integrals over
ω are not well defined. This is discussed in more detail in Sec. VII B where it is shown that a subtraction procedure
can be used to overcome this problem. Note that there is also the usual infrared divergence of the two point function
in two dimensions, but this can be taken care of with a judicious choice of infrared cutoff, which in itself is reasonable
because of the finite dimensions of the physical system being modeled.

A. Numerical Calculations of the Radial Mode Functions

In both the L and R regions the numerical computation of the radial mode functions can be accomplished by
computing the functions χc and χs for these regions. In the R region these mode functions asymptotically approach
cosωx∗ and sinωx∗ as x → ∞. In the L region they have the same asymptotic behaviors in the limit x → 0−. The
starting values for these modes can be made arbitrarily accurate by starting at a large enough value of x for the R
modes and a value of x close enough to zero for the L modes.

The only other task that needs to be accomplished before the mode functions are substituted into the expressions
for the density density correlation function is that the parameters A, B, C, and D must be numerically determined.
This is accomplished by matching the numerically computed mode functions χRc and χRs to Eqs. (6.5). One way to
do this is to do the matching at a number of values of x with 0 < x� 1 and then use a linear extrapolation routine
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FIG. 11: Left-Left correlations between phonons in Figs. 7, 8.

to find the values that A, B, C, and D in the limit that x→ 0.

B. Numerical Computation of the Mode Integrals

The computation of the mode integrals in the density density correlation function would be a straight-forward
numerical exercise if they converged. However there are two problems. One is that because we are working with an
effective relativistic two dimensional quantum field theory there is an infrared divergence in the two point function
and therefore there are infrared divergences in the density density correlation function. The other is related to the
fact mentioned previously that strictly speaking one must compute the mode integral in the two point function and
then take the required derivatives of it to obtain the density density correlation function.

Infrared divergences

The simplest way to numerically remove the infrared divergence is to impose a lower limit cutoff λ` on the mode
integrals. From Eqs. (5.3a), (5.3c), (5.6), (6.1), and (6.2) one can see that the two point function has infrared
divergences which go like both 1/λ` and log(λ`) for a small enough infrared cutoff λ`. As shown in Eq. (5.2) the
density density correlation function is composed of terms containing two derivatives of the two point function. Each
time derivative brings down a factor of ω while each space derivative results in one term in which a factor of ω is
brought down, one term in which one or more derivatives of the sound speed c(x) are found, and one term in which a
derivative of the spatial part of one of the mode functions occurs. If the sound speed at the point where the spatial
derivative is taken is constant then in all surviving terms a factor of ω is brought down. If the sound speed is not
constant then there are one or more terms in which either no factor of ω or only one factor of ω are brought down by
the spatial derivatives. Thus if both points of the density density correlation function are in regions where the sound
speed is constant (and therefore the effective potential is zero) then there are no infrared divergences in the density
density correlation function. Otherwise infrared divergences of the types discussed above occur.
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Even if there are no infrared divergences, the finite physical size of the system means that there will be an infrared
cutoff. As discussed above for low enough values of the cutoff there will be terms containing the cutoff which go like
1/λ` and log(λ`). However if a higher value is given to the cutoff then oscillatory behavior in the density density
correlation function is generated by the cutoff. To see why this occurs one can look at the behaviors of the mode
functions when the effective potential is zero. Then it is not hard to show that there will be terms which go like
ci(λ`∆u), ci(λ`∆v), and so forth. If one point is outside the horizon near one end of the BEC and the other is inside
the horizon near the other end of the BEC then roughly speaking ∆u ∼ ∆v ∼ ∆x, with ∆x the size of the BEC.
Since the sound speed is of order unity in the models we consider it is clear that in this case the arguments of the
cosine integral functions are of order unity. This leads to oscillatory behavior in terms of the dependence on the value
of the cutoff λ`. However, the approximations we are using assume a BEC of infinite length and so are not expected
to be valid near the edges of the BEC where other effects that are being neglected may be important. Therefore we
shall restrict consideration to much smaller values of ∆x such that |∆x|/λ` � 1. The effects of the infrared cutoff on
the density density correlation function when this restriction is satisfied are discussed further in Sec. VIII.

Large frequency behavior

When computing the density density correlation function numerically one must first find numerical values for the
mode functions and their derivatives and then substitute these into the appropriate expression for the correlation
function and numerically compute the integrals. However, if this is done one finds that some of the resulting integrals
do not converge. Instead for large values of the frequency ω their integrands oscillate in ω but with either growing
or approximately constant amplitudes. An illustration of what is happening can be obtained from the cosine integral
function.

ci(λx) = −
∫ ∞
λ

dω
cosxω

ω
. (7.1)

If one computes the derivative with respect to x of both sides and interchanges the order of integration and differen-
tiation on the right hand side then

cos(λx)

x
=

∫ ∞
λ

dω sin(xω) . (7.2)

The right hand side of this equation is clearly not well defined since the amplitude of the integrand is constant in the
limit ω →∞.

One way around this problem is to evaluate the integrands for the integrals in the density density correlation
function in the large ω limit. Then the terms that are poorly behaved at large ω can be identified and subtracted off.
Because it is the large ω limit, this can be done analytically and then the specific terms that are subtracted off can
be added back and treated analytically. A simple example of how this works would be∫ ∞

λ

dω
cos(ωx)√

1 + ω2
=

∫ ∞
λ

dω

(
cos(ωx)√

1 + ω2
− cos(ωx)

ω

)
− ci(λx) . (7.3)

Then if one wanted the first derivative of this with respect to x one would have

d

dx

∫ ∞
λ

dω
cos(ωx)√

1 + ω2
= −

∫ ∞
λ

dω

(
ω

sin(ωx)√
1 + ω2

− sin(ωx)

)
+

cos(λx)

x
. (7.4)

In this case the integral on the right hand side has an integrand that oscillates but with an amplitude that vanishes
in the limit ω →∞. It can therefore be computed numerically.

To evaluate the large ω behaviors of the integrands of the integrals that occur in the density density correlation
function one can examine the behaviors of solutions to the mode equation in this limit. It turns out that these can be
obtained by using a Volterra series to find solutions for the mode functions in the L and R regions. To solve Eq. (6.2)
in terms of a Volterra series one first notes that Veff vanishes in the limit x→ 0. If χL0 is any solution to the equation
when Veff = 0 then a formal solution to the full equation is

χL(x) = χL0 (x)− 1

ω

∫ x∗

−∞
dy∗ sin[ω(x∗ − y∗)]Veff(y∗)χL(y∗) . (7.5)
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This equation can be solved by iteration. After the first iteration one finds

χL(x) = χL0 (x)− 1

ω

∫ x∗

−∞
dy∗ sin[ω(x∗ − y∗)]Veff(y∗)χL0 (y∗) . (7.6)

In the R region Veff vanishes in the limit x → ∞. In this case if χR0 is a solution when Veff = 0 then the formal
solution is

χR(x) = χR0 (x) +
1

ω

∫ ∞
x∗

dy∗ sin[ω(x∗ − y∗)]Veff(y∗)χR( y
∗) , (7.7)

After one iteration

χR(x) = χR0 (x) +
1

ω

∫ ∞
x∗

dy∗ sin[ω(x∗ − y∗)]Veff(y∗)χR0 (y∗) . (7.8)

To obtain the large ω limit of the mode functions we note that if Veff = 0 then

χLc = cos(ωx∗) , (7.9a)

χLs = sin(ωx∗) , (7.9b)

χRc = cos(ωx∗) , (7.9c)

χRs = sin(ωx∗) . (7.9d)

Substituting these expressions into Eqs. (7.6) and (7.8), and using simple trigonometric identities one finds that to
O(1/ω)

χLc = cos(ωx∗)− sin(ωx∗)

2ω

∫ x

0

dyV (y) , (7.10a)

χLs = sin(ωx∗) +
cos(ωx∗)

2ω

∫ x

0

dyV (y) , (7.10b)

χRc = cos(ωx∗) +
sin(ωx∗)

2ω

∫ ∞
x

dyV (y) , (7.10c)

χRs = sin(ωx∗)− cos(ωx∗)

2ω

∫ ∞
x

dyV (y) . (7.10d)

One can use these results to obtain the large ω limits of the matching parameters in Eqs. (6.5). However from
Eqs. (6.8) it can be seen that what one really needs are the sums and differences of A and D, and of B and C. To
O(ω0) one finds that A = D = 1 and B = C = 0. To O(ω−1) the sums and differences are

A+D = 2 ,

A−D = 0 ,

B + C = 0 ,

B − C =
1

ω

∫ ∞
0

dyV (y) . (7.11)

These results can be substituted into the integrals for the density density correlation function in terms of the modes
χ and the matching parameters A, B, C, and D to obtain an approximate expression which is valid in the large ω
limit. This is then subtracted from the density density correlation function and added back on. The part that is added
back on is computed analytically by first computing the approximate two point function and then taking the relevant
derivatives. In the rest one has integrals which can now be computed numerically because they are well behaved in
the limit ω →∞.

VIII. NUMERICAL RESULTS

Numerical computations of the density-density correlation function have been carried out for the sound speed profile

c =

√
c21 +

1

2
(c22 − c21)

[
1 +

2

π
tan−1

(
x+ b

σv

)]
(8.1)
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with

b = σv tan

[
π

c22 − c21

(
v2

0 −
1

2
(c21 + c22)

)]
. (8.2)

The values used for some of the constants were

v0 =
3

4
,

c1 =
1

2
,

c2 = 1 .

(8.3)

This is the same type of profile as that used in Ref. [11] where numerical calculations of the density density correlation
function were carried out in the context of condensed matter physics. It was chosen so that our results could be
compared with those of Ref. [11]. However for those calculations c1 = 1 and c2 = 1/2 so that the BEC was moving
to the right, not the left [24]. Also b = 0 so that the horizon was not at x = 0.

Calculations were done for several values of the parameter σv ranging from 1/4 to 8. Typical values used for the
infrared cutoff λ in the integrals over the frequency ω ranged from 2× 10−6 to 2× 10−3. All of the plots shown here
have an infrared cutoff of ω = 2× 10−4.

A careful analysis of (8.1) shows that the derivatives of c(x) are larger near the horizon for smaller values of σv.
The hydrodynamic approximation that we are using is valid only if the derivatives of c(x) are relatively small. For
the profile in (8.1) the hydrodynamical approximation was shown in [11] to be valid when σv >∼ 4. Thus while we have
computed the density density correlation function for smaller values of σv we display our results only for σv = 8.

In all cases the modes functions uLH , uRH and uRI entering the correlation function were computed assigning the
values x1 = −x2 = 1 to the arbitrary constants in the definitions of the coordinate t in the L and R regions (see
Eqs. (3.3), and (3.4)). The constants x3 and x4 were chosen so that x∗(x = 1) = 1 in the R region and x∗(x = −1) = 1
in the L region (see Eq. (3.10) and the discussion below it). Continuity of the coordinate v = t+ x∗ across the future
horizon is obtained using Eq. (3.15).2

As can be seen in Eqs. (5.3) and (5.6), the two point function can be written in terms of an integral (I) over the
mode functions uLH and uRH and an integral (J) over the mode functions uRI . Thus the density density correlation
function can also be separated into terms containing integrals over uLH and uRH and terms containing integrals over
uRI .

In Ref. [10] the density density correlation function was computed analytically with the following assumptions and
restrictions: It was computed with one point inside the horizon and one point outside. The assumption was made that
the point inside was in a region where the sound speed was constant and the point outside was in a region where the
sound speed was also constant but had a different value. Having neglected the effective potential Veff in Eq. (3.12)
and hence the backscattering, the computed correlation corresponds to that in Fig. 9 (between the modes in Fig. 6
and Fig. 7). The main result of that paper is the existence of a negative correlation peak (i.e. a trough) in the
correlation function which would not be there if there was no horizon.

In Ref. [11] a fully quantum mechanical computation of the density density correlation function was done and a
comparison was made with the result of [10]. The existence of the negative correlation peak when one point is inside
and one point is outside the horizon was confirmed. The peak value of the correlation function along with the full
width at half maximum of the peak were compared when the points were far enough from the horizon that the sound
speed was effectively constant. They were found to be in approximate agreement only for σv >∼ 3. Also found were two
other correlation peaks, both of which are substantially weaker than the one found in [10]. One of these correlation
peaks is negative (between the modes in Fig. 7 and Fig. 8 modes, see Fig. 11). It occurs when both points are
inside the horizon. The other is a very weak (positive) correlation peak which occurs when one point is outside and
one point is inside the horizon (between the modes in Fig. 6 and Fig. 8, see Fig. 10).

Our results for the density density correlation function when σv = 8 are shown in Fig. 12. When both points are
inside or both points are outside the horizon there is a divergence in the correlation function when the points come
together. Also the correlation function is symmetric about the point separation. Finally the coordinate system we
are using is singular at the horizon, x = 0, so we were not able to compute the density density correlation function
for points which are on the horizon.

2 As can be seen in Eq. (2.12), the spacetime metric is independent of the time T . Thus since the density density correlation function is
computed for equal values of this time it must also be independent of T .
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FIG. 12: The density density correlation function is shown for σv = 8. The expectation values are computed in the Unruh
vacuum, described in Sec. IV. The lab time T is the same for both points and and an infrared cutoff in the frequency integrals
of λ = 2 × 10−4 has been used. Because the coordinate system used for the calculations is singular at the horizon it was not
possible to compute the density density correlation function near the horizon. The excluded region is covered by the horizontal
and vertical white bands. Also the two point function and hence the density density correlation function is singular when the
points come together thus it was not computed in this limit either. The excluded region is covered by the thin diagonal white
line in the middle of the dark diagonal band. The large negative correlation peak that occurs when one point is inside and the
other is outside the horizon is clearly visisble. The weaker negative correlation peak that occurs when both points are inside
the horizon is also visible.

When both points are outside the horizon the only feature we observed in the density density correlation function
is the divergence as the two points come together.

When one point is inside and one point is outside the horizon we find the same negative correlation peak that was
found when the potential is zero. It it interesting in this case to look separately at the contributions of the I and J
terms in Eq. (5.3) to the density density correlation function. These are shown in Fig. 13. Note that the contribution
from the J term is actually a positive correlation peak. However, it is significantly smaller in magnitude than the
negative correlation peak from the I term. The effect on the magnitude of this negative correlation peak by including
the effective potential in the mode equations and including the contribution from the J term was small with changes
of less than 10% for values of σv ranging from 1 to 8.

As can be seen in the bottom plot of Fig. 13 there is also a small positive correlation peak which occurs when
one point is inside and the other point is outside the horizon. This one lies closer to the horizon than the larger
negative one and its maximum value is significantly smaller in magnitude than that of the main peak. This appears to
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FIG. 13: The separate contributions to the density density correlation function from the terms I and J in the two point correlation function in Eq. (5.3) are shown

for σv = 8. The plot on the left shows the contribution from I, that on the right shows the contribution from J, and the bottom plots shows the combination but with a

smaller vertical scale. Note that the plot on the left has a strong negative correlation peak and a weak positive correlation peak when one point is inside and the other is

outside the horizon. The plot on the right has instead a very weak positive correlation peak and a weak negative correlation peak respectively. When the two contributions

are combined the result is a strong negative correlation peak and a very weak positive correlation peak. When both points are inside the horizon all three plots have

negative correlation peaks. Note that the range of the bottom plot is smaller than that of the top plots and in particular its minimum value is larger. Thus there are more

points in the negative correlation peaks which are outside of the range being plotted in the bottom plot and so the band looks wider. Similar effects can be seen when

comparing with the plots in Figs. 12 and 14.
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correspond to the correlator between the modes in Fig. 6 and Fig. 8, see Fig. 10. Examination of the top two plots
in Fig. 13 shows that the contribution to this peak from the term I in the two point function is a positive correlation
peak and the contribution from the term J is a negative correlation peak. However, the two only partially cancel
when added together and the result is the small positive correlation peak seen in the bottom plot.

In Fig. 12 there is also a negative correlation peak which occurs when both points are inside the horizon. This
corresponds to the correlator between the modes in Fig. 7 and Fig. 8, see Fig. 11. As shown in Fig. 14 (where
the vertical scale has been decreased by more than an order of magnitude to show more detail) the density density
correlation function reaches a maximum value on either side of the negative correlation peak. The outer maximum
appears to be due to the existence of the negative correlation peak just mentioned and also the approach to −∞ that
occurs when the points come together. There must be a maximum in between. Something similar may happen for
the other maximum which is in between the negative correlation peak and the horizon. However, we are not able to
numerically compute the density density correlation function when one point is on the horizon so we don’t know its
value there.

As mentioned above, when one point is inside and one point is outside the horizon, a quantitative comparison of
our numerical results with the analytic calculation in [10] gives agreement to better than 10% for the size of the
negative correlation peak for values of σv ranging from 1 to 8. The comparison of the numerical computations done
in [11] with the analytic calculation in [10] showed approximate agreement for σv >∼ 3. For smaller values the size
of the peak predicted by the analytic calculation becomes much larger than that found in the numerical calculations
in [11]. Since our numerical results take the effective potential Veff in the mode equation into account, they give the
correct quantum field theory in curved space prediction for the density density correlation function. Our numerical
calculations thus confirm that the discrepancy is due to the fact that the hydrodynamical approximation breaks down
for σv <∼ 3 due to the rapid variation of the sound speed near the horizon for those values.

From the above discussion it is clear that our numerical results reproduce all of the same late time peaks in the
correlation function that were found in [11, 15, 16]. This is true even for σv <∼ 3. In [11] only the results for the
negative correlation peak when one point is inside and one point is outside the horizon were shown for more than one
value of σv. For the other peaks the results shown in [11, 15, 16] were only shown for the case σv = 1/2. However, we
have been given access [24] to some of the numerical data that was generated for [11]. This has allowed quantitative
comparisons to be made between our numerical results and those numerical results for the other correlation peaks.

In the numerical data we were given [24] we could only unambiguously identify the weak positive correlation peak
when one point is inside and one point is outside the horizon for σv ≤ 4 although there was evidence for it for larger
values of σv. For our calculations, as discussed below, the effects of the infrared cutoff are large enough that the size
of weak positive correlation peak can be significantly affected by changing the infrared cutoff.

For the negative correlation peak which occurs when both points are inside the horizon we find that for σv >∼ 4
there is agreement to better than 50% between the two data sets with that agreement being better for larger values
of σv as expected.3

As mentioned above, and as seen in Fig. 14, when both points are inside the event horizon we find evidence for a
maximum in the density density correlation function on either side of the negative correlation peak. In the numerical
data we were given [24] the maximum that is farther from the horizon than the negative peak is always seen. There
is also always evidence for the maximum we see that is closer to the horizon but for σv ≥ 2 an actual maximum is
not seen. Instead the value of the correlation function just keeps increasing as one point approaches the horizon (and
the other point remains far from the horizon). For σv = 1 a maximum is seen. Neither maximum was seen in [11]
but both of them can be seen in [15], although only the larger, inner one is identified as a correlation peak.

As discussed previously the infrared cutoff that we use does have an effect on the value of the density density
correlation function and will have a strong effect for values of the cutoff that are either too large or too small.
Different values of the infrared cutoff were considered for some of our calculations. It was found, for example, for
σv = 8 that when a comparison was made between calculations with a cutoff of λ = 2× 10−4 and a calculation with
a cutoff of λ = 2× 10−6 that the differences were typically in the range (2− 4)× 10−6. This is small enough that the
negative correlation peaks are not significantly affected. However, the positive correlation peak and the two maxima
discussed above are close enough to zero that their values can be affected. A similar comparison between the cutoffs
of λ = 2× 10−3 and λ = 2× 10−4 yields differences that typically range from (1− 4)× 10−5 which is about an order
of magnitude higher. Thus a cutoff of λ = 2× 10−3 is probably too high.

3 The comparisons were made with the values for one point ranging from about −126 to −110 while the values of the other point ranged
from about −20 to −17. They were done for σv = 4 , 6, and 8. It is important to note that the calculations for [11] are time dependent.
Our results should correspond to the late time limit of those calculations. We were given the results at some relatively late time [24]
but of course not at an infinitely late time.
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FIG. 14: The density density correlation function is shown for σv = 8 with the vertical scale significantly smaller than the plot
in Fig. 12 to more clearly show the maxima on either side of the negative correlation peak when both points are inside the
horizon.

IX. CONCLUSIONS

We have developed a method to numerically compute the density density correlation function for a BEC which
serves as an analogue black hole. In the process we have shown that it is necessary to incorporate an infrared cutoff
in the frequency. So long as this cutoff is small in the sense that its product with the point separation is small, then
it does not significantly affect the main peaks or troughs in the correlation function. However it does significantly
affect the value of the correlation function in regions where the magnitude of that function is small.

In order to correctly compute the correlation function it is necessary to consider modes of arbitrarily high frequencies.
This is exactly what one expects when working with an effective field theory [25]. Unless this is done ultraviolet cutoff
effects dominate the structure of the correlation function.

To take these modes into account it was found that a type of regularization must be used in order to compute
the correlation function numerically. One must subtract off terms whose amplitude grows or stays the same as the
frequency increases. Then these terms are added back again and the integral over ω is computed formally by starting
with an integral of the form

ci ∼
∫
dω cos(ωu)/ω (9.1a)
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or

si ∼
∫
dω sin(ωu)/ω (9.1b)

and taking derivatives with respect to u. This reason for this is related to the fact that for the original correlation
function one must first compute the integral over the mode frequencies and then take the derivatives necessary to
compute the density density correlation function. These two operations do not commute. But if one performs a
regularization as just described then there is no problem in first computing the derivatives and then integrating over
the frequencies. This is the desired order of operations for numerical computations.

Our numerical results show that for the models considered the size and location of the main negative peak in the
correlation function when one point is inside and one point is outside the horizon is not changed significantly by
including the potential. However, including the potential does correctly reproduce the features which were found in
the condensed matter calculations in [11], namely a negative correlation peak which occurs when both points are
inside the horizon and a small positive correlation peak that occurs when one point is inside and the other point is
outside the horizon. Finally we find two maxima which occur on either side of the negative correlation peak when
both points are inside the horizon. These maxima do not appear on the plots of Ref. [11], but they do appear in the
plot in [15] although only the one closer to the horizon is identified as a correlation peak.

In cases where the hydrodynamical approximation is valid there is reasonably good quantitative agreement with
the calculations described in Ref. [11] which used sophisticated numerical condensed matter simulations. The late
time features found in those calculations can be reproduced using just the gravity analogy and quantum field theory
in curved space techniques.
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