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Gravitational-wave searches for signals from inspiralling compact binaries have relied on matched
filtering banks of waveforms (called template banks) to try to extract the signal waveforms from
the detector data. These template banks have been constructed using four main considerations, the
region of parameter space of interest, the sensitivity of the detector, the matched filtering bandwidth,
and the sensitivity one is willing to lose due to the granularity of template placement, the latter
of which is governed by the minimal match. In this work we describe how the choice of the lower
frequency cutoff, the lower end of the matched filter frequency band, can be optimized for detection.
We also show how the minimal match can be optimally chosen in the case of limited computational
resources. These techniques are applied to searches for binary neutron star signals that have been
previously performed when analyzing Initial LIGO and Virgo data and will be performed analyzing
Advanced LIGO and Advanced Virgo data using the expected detector sensitivity. By following
the algorithms put forward here, the volume sensitivity of these searches is predicted to improve
without increasing the computational cost of performing the search.

∗ drew.keppel@ligo.org



2

I. INTRODUCTION

For the past decade, large scale interferometric gravitational-wave (GW) detectors have operated, allowing searches
for signals from inspiralling compact binaries to be performed [1–18]. These searches have thus far detected no GW
signals, however once the detectors are upgraded to their advanced configurations, multiple events are expected to be
detected each year [19].

Searches for inspiral signals in detector data depend on matched filtering the data with template waveforms to
produce signal-to-noise ratio (SNR) time-series, the maxima of which are used to produce GW “triggers”. Important
criteria in constructing banks of template waveforms (i.e., template banks) for these searches are the region of pa-
rameter space to be searched, the sensitivity of the detector, the lower and upper frequency cutoffs associated with
matched filtering the data, and the maximum fractional loss of SNR (the complement of which is more commonly
know as the minimal match) that one is willing to tolerate due to granularity of the template placement. Of these
criteria, one is free to tune the lower frequency cutoff and the minimal match due to sensitivity and computational
cost considerations.

In [20], the authors discuss the issue of balancing computational cost versus SNR gain while decreasing the lower
frequency cutoff. However, they do not venture so far as to derive the optimal choices. Instead, they choose to set
the lower frequency cutoff at a level such that one would lose less than 1% of the SNR by the cutoff being different
from 0. In addition, they choose the minimal match of the template bank to be MM = 95%; large enough that the
metric estimate of the fractional SNR loss is still valid but small enough for computational cost considerations. Recent
searches for GW from inspiralling compact binaries have chosen a larger value for the minimal match, MM = 97%,
so that less than 10% of the signals at the worst mismatch locations of the template bank would be lost.

In this paper, we further investigate the effects of different lower frequency cutoff and minimal match choices. In
Sec. III we look at how decreasing the lower frequency cutoff both increases the amount of raw SNR one is able to
extract from a signal and increases the trials factor by increasing the number of templates required to search for the
waveforms. Sec. IV goes on to describe how to choose the optimal combination of lower frequency cutoff and minimal
match for a fixed computational cost. Examples of both these choices are given in Sec. V where the methods are
applied to previous and future searches of GW detector data.

II. PRELIMINARIES

In searching for signals from inspiralling compact objects in GW data, a commonly used event identification
algorithm relies on matched filtering, where the data is “whitened” and filtered with the template waveform being
searched for. Specifically, the square SNR is given by

ρ2 =
(s|hc)2 + (s|hs)2

σ2
, (1)

where s is the data from a detector that may contain a GW signal of unknown strength, hc and hs are the target
waveforms associated with the same source and differ in phase by π/4, σ2 := (hc|hc) is the sensitivity of our detector
to a waveform at a reference distance, typically chosen to be 1 Mpc, and the inner product (x|y) is defined as

(x|y) := 4<
∫ fhigh

flow

x̃ỹ∗

Sn(f)
df. (2)

Here x̃ is the Fourier transform of x, ()∗ denotes the complex conjugate operator, and Sn(f) is the one-sided power
spectral density (PSD) of the detector’s noise.

As can be seen from (2), the SNR recovered when there is a signal present in the data will depend on the limits of
the integration. The upper frequency cutoff fhigh is set by the lower of either the Nyquist frequency of the data or
the maximum frequency of the template waveform. In contrast, the lower frequency cutoff flow is a parameter that
can be tuned in optimizing the search algorithm.

To search a region of parameter space, many template waveforms from points spread throughout the region need
to be matched filtered. The locations of these points are chosen by constructing a metric on the parameter space
gij [21–24]. This metric describes the distance between points based on the fractional loss of SNR associated with
matched filtering a signal waveform from one point in parameter space with a template waveform from another point.
To second order in the parameter differences ∆λi, the fractional loss of SNR, or mismatch m, is given by

m =
1

2
gij∆λ

i∆λj , (3)
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where the metric is given by projecting out dimensions of the parameter space from normalized Fisher matrix,

gµν :=
(∂µh|∂νh)

(h|h)
, (4)

that are associated with extrinsic parameters, which can be maximized either analytically or efficiently. Here ∂µ is the
partial derivative with respect to parameter λµ. The density of templates is then governed by the maximum amount
of mismatch one is willing to tolerate, or the complement of this, referred to as the minimal match MM = 1−m.

III. SIGNAL POWER VERSUS TRIALS FACTOR: OPTIMIZING THE LOWER FREQUENCY
CUTOFF FOR MAXIMUM SENSITIVITY

The goal of designing a search is to maximize the volume at which we are sensitive to signals for a fixed false alarm
probability (FAP). The first parameter we tune with this in mind is the lower frequency cutoff. We start with the
distance out to which we can see an inspiral signal with a fixed SNR ρ,

D =
σ

ρ
. (5)

Changing the lower frequency cutoff changes the power of the signal that we could possibly recover. If one were to
recover a signal with the same SNR, the distance to which one could see a signal would vary when the lower frequency
cutoff was changed from fref to flow,

D(flow)

D(fref)
=
σ(flow)

σ(fref)
. (6)

Let us now look at how the observable distance of a signal is affected when the signal is recovered with a mismatched
template. The observed SNR ρ will be reduced from the SNR obtained by a template that matches the signal ρref by

ρ = ρref(1−m), (7)

where m is the mismatch between the template that recovers the signal and the actual signal. Eq. 5 implies that the
distance to which such a signal will be observable is reduced by the same factor

D(fref ,m)

D(fref , 0)
= (1−m). (8)

So far we have focused on the obserable distance of a signal at fixed SNR. However it is actually the obserable
distance of a signal at fixed FAP that we are interested in. The FAP associated with a single observation of SNR ρ
is given by

FAP ∝ exp[−ρ2]. (9)

The recovered FAP is subject to a trials factor related to the number of independent trials N we use in looking for a
signal,

FAP′ = 1− (1− FAP)N ≈ NFAP. (10)

We can translate a single observation of ρobserved among N independent trials to a reference SNR ρref among a different
number of trials Nref at the same FAP by combining (9) and (10).

ρ2
observed = ρ2

ref + ln
N

Nref
. (11)

When searching a non-zero measure region of parameter space, additional trials are accrued proportional to the
volume of the parameter space. The volume of parameter space is in turn given by the number of templates needed
to cover the parameter space Mtemplates [25],

Ntrials ∝
∫ √

|g|dλd =
Mtemplatesm

d/2

θ
(12)
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where
√
|g| is the square root of the determinant of the metric on the space, θ is a geometrical quantity associated with

how the template bank tiles the parameter space, m = 1−MM is maximum mismatch allowed in the template bank
covering the parameter space, and d is the dimensionality of the parameter space being tiled (i.e., two for templates
associated with waveforms from non-spinning objects that are laid out in the two dimensional mass space).

Since the metric (4) is defined in terms of the inner products from (2), the full metric itself is a function of the
lower frequency cutoff, which in turn implies that the metric density of the mass subspace is also a function of flow,

√
|g| =

√
|g(flow)|. (13)

The total volume we can observe is proportional to the cube of the distance, thus the ratio of the volume we can
observe for a mismatched signal at a given value of flow to the volume we could observe a matched signal with a
reference lower frequency cutoff fref is found by combining (6), (8), (11), (12), and (13),

V (flow,m)

V (fref , 0)
=
σ3(flow)

σ3(fref)

× (1−m)3

(
1 + 1

ρ2(fref )
ln

[ ∫ √
|g(flow)|dλd∫ √
|g(fref )|dλd

])3/2
. (14)

We call this the relative volume. For two-dimensional template banks, a hexagonal covering of templates following the
A∗2 lattice will result in a distribution of mismatches that is essentially flat between 0 and the maximum mismatch [25].
Using this fact, the average relative volume is found to be

〈V (flow,m)〉
〈V (fref , 0)〉

=
σ3(flow)

σ3(fref)

×

〈
(1−m)

3
〉

(
1 + 1

ρ2(fref )
ln

[ ∫ √
|g(flow)|dλd∫ √
|g(fref )|dλd

])3/2
, (15)

where the average of the mismatch term in the numerator is given by
〈

(1−m)
3
〉

= 1− 3

2
m+m2 − 1

4
m3. (16)

The average relative volume can be maximized with the proper choice of flow for a fixed value of the template bank
maximum mismatch.

IV. WIDER OR DENSER?: MAXIMIZING SENSITIVITY AT FIXED COMPUTATIONAL COST

In the face of limited computational resources, we must consider not only how to maximize the sensitivity of a search
through the choice of the lower frequency cutoff, but we must also ensure that our choices of the lower frequency
cutoff and the minimal match satisfy the constraint on the total computational cost Ctotal. This constraint can be
viewed as a combination of two effects: the computational cost of filtering the data with a single template waveform
Cfilter multiplied by the computational cost associated with Ntemplates such filters

Ctotal(flow) =Ntemplates(flow)Cfilter(flow)

=Cfilter(flow)θm−d/2
∫ √

|g(flow)|dλd. (17)

Using this constraint, we seek to maximize the constrained average relative volume

〈V (flow)〉
〈V (fref)〉

=
σ3(flow)

σ3(fref)

〈
(1−m(flow))

3
〉

〈
(1−m(fref))

3
〉

× 1
(

1 + 1
ρ2(fref )

ln

[ ∫ √
|g(flow)|dλd∫ √
|g(fref )|dλd

])3/2
, (18)
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with the proper choice of flow and m(flow).
Assuming one is able to computationally preform the search for a given combination of lower frequency cutoff fref

and maximum mismatch m(fref), the maximum mismatch at any other choice of lower frequency cutoff flow satisfying
the constraint on the computational cost can be solved for easily,

m(flow) = m(fref)

(
Cfilter(flow)

∫ √
|g(flow)|dλd

Cfilter(fref)
∫ √
|g(fref)|dλd

)2/d

(19)

The computational cost of filtering data with a single template will depend intrinsically on the implementation of a
search. As a first example, it could be independent of the choice of flow, as is the case in the FINDCHIRP algorithm [26]
where data is processed with fast Fourier transforms using fixed length chunks.

In a different algorithm where data is analyzed in the time domain using finite impulse response (FIR) filters, the
computational cost would be set by the number of taps in the FIR filter. This is proportional to the length of the
waveform T , given to Newtonian order by

T (flow) =
5

256M5/3

[
(4πflow)−8/3 − (4πfhigh)−8/3

]
, (20)

where M = (m1m2)3/5(m1 +m2)1/5 is the chirp mass of the binary system.
Alternatively, if one were able to change the sampling rate associated with the template filter continuously, one could

reduce the computational cost by filtering the data with a changing local sampling rate such that the frequency of the
signal at any time was always equal to the local Nyquist frequency of the filter. In this approach, the computational
cost would be proportional to the number of cycles in the signal waveform,

Ncycles(flow) =
1

64π8/3M5/3

(
f
−5/3
low − f−5/3

high

)
. (21)

Finally, as an application of this method to a pipeline proposed to search for binary neutron star (BNS) signals
with low latency in the Advanced LIGO (aLIGO) sensitive band, we consider the computational cost of the LLOID
algorithm [27]. The LLOID algorithm partitions the waveforms into S time-slices and filters the waveform portions
of slice s at a power of two sampling rate fs such that the Nyquist frequency of the slice is just greater than the
largest frequency of any of the portions of the waveform in that slice. In addition, for each slice, the LLOID algorithm
decomposes the Ntemplates template waveform portions into Lsbases basis vectors using singular value decomposition
(SVD) [28]. These basis vectors are used as FIR filters of Ns

taps taps for slice s. The computational cost of filtering a
bank of waveforms with this algorithm is dominated by the filtering costs of the basis vectors and the reconstruction
costs of turning the basis filter outputs into outputs of template filters,

NFLOPS = 2

S−1∑

s=0

fsLsbases(N
s
taps +Ntemplates). (22)

Let us look at how the different pieces of LLOID’s computational cost will change with varying flow. For a particular
slice, as flow is reduced, the template waveforms that go into the SVD matrix will more densely cover the region of
parameter space, resulting in a larger number of waveforms that will need to be reconstructed (i.e., Ntemplates will
increase). However, the number of bases Ns

bases needed reconstruct the template waveforms to a specific accuracy is
invariant for the minimal matches we are interested in [29]. Finally, the number of slices kept will depend on flow

as each slice covers a different frequency range of the waveforms. Thus, the total computational cost of the LLOID
algorithm can be written as

NFLOPS = A(flow)Ntemplates +B(flow), (23)

where A(flow) and Bs(flow) are defined appropriately with respect to (22). For this algorithm, (19) takes a different
form,

m(flow) = m(fref)




A(flow)Nref

∫ √
|g(flow)|dλd∫ √
|g(fref )|dλd

A(fref)Nref +B(fref)−B(flow)




2/d

, (24)

where Nref := Ntemplates(flow).
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FIG. 1: (a) shows different PSDs associated with different eras of the H1 LIGO detector. (b) shows different PSDs
associated with different eras of the Virgo detector. (c) shows different PSDs associated with detector networks from

different eras. The H1H2L1V1 network PSD associated with the S5/VSR1 era is given by the harmonic sum of
individual detectors’ PSDs. For the S6/VSR2-3 and aLIGO/AdV eras, an H1L1V1 network is used.

V. EXAMPLES

In this section we apply the methods from Secs. III and IV to the (expected) sensitivities of several past and future
detectors. In particular, we investigate the LIGO and Virgo PSDs from S5/VSR1 [30], S6/VSR2-3 [31, 32], and the
expected advanced detector PSDs for aLIGO [33] and AdV [34]. We also consider joint detector analyses where the
individual detectors PSDs are combined by taking the harmonic sum, which yields the same combined SNR as either
the coherent network SNR or the sum-of-squares SNR associated with a coincident search [35, 36]. These PSDs can
be seen in Fig. 1. The parameter space we focus on for these comparisons is that associated with searches for BNS
signals from non-spinning objects. Using the stationary phase approximation, we expand the template waveforms to
Newtonian order in the amplitude and 3.5 post-Newtonian (PN) order in the phase. The metric for these waveforms
is given in [24]. With this focus, we approximate the ratio of the integrated metric density by a point estimate such
that the mass of each object is 1.4 M�,

∫ √
|g(flow)|dλd∫ √
|g(fref)|dλd

≈

√
|gBNS(flow)|
|gBNS(fref)|

. (25)

It should also be noted that, in this approximation, we assume that the effects from the bulk of parameter space
dominate over effects from the boundaries. For parameter spaces where the effects of the boundaries are non-negligible,
more care will be needed in computing the ratio of the integrated metric densities and how they relate to the trials
factor and computational cost.
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Era Detector f standard
low foptimal

low Volume Gain

S5 H1 40Hz 37.3Hz 6.4 × 10−5

VSR1 V1 60Hz 38.1Hz 1.9 × 10−2

S5/VSR1 H1H2L1V1 40Hz 37.8Hz 4.9 × 10−5

S6 H1 40Hz 43.7Hz 2.5 × 10−5

VSR2-3 V1 50Hz 16.8Hz 1.5 × 10−1

S6/VSR2-3 H1L1V1 40Hz 34.0Hz 7.0 × 10−4

aLIGO H1 10Hz 9.6Hz 1.3 × 10−5

AdV V1 10Hz 17.6Hz 1.7 × 10−3

aLIGO/AdV H1L1V1 10Hz 10.1Hz 8.6 × 10−7

TABLE I: We show the increase in the average relative volume (15) that can be achieved by switching from the
standard lower frequency cutoff to the optimal lower frequency cutoff. The minimal match in either case is set to be

3%. The volume increase compared to the standard choice is very small, except for the V1 VSR1 PSD, where a
higher than normal lower frequency cutoff was employed.

A. Choice of flow

First we optimize the choice of the lower frequency cutoff of an inspiral search for different detectors without
regard to the computational cost. Table I summarizes the results for all of the detector combinations mentioned,
compared to the “standard” choice of the lower frequency cutoff. For the most part, this is a very small effect, as can
be anticipated through the logarithmic dependence of the effect of the trials factor in (15). The largest differences
between the standard choice and the optimal choice occur for the Virgo detector during VSR1, which increases the
sensitivity of the search by 15%. This seems to be attributed to a rapid decrease in the recoverable SNR that is seen
between about 55Hz and 60Hz.

Era Detector fminimum
low foptimal

low Volume Gain

S5 H1 30Hz 37.3Hz 2.0 × 10−6

VSR1 V1 10Hz 38.1Hz 3.5 × 10−5

S5/VSR1 H1H2L1V1 10Hz 37.8Hz 1.7 × 10−4

S6 H1 40Hz 43.7Hz 2.5 × 10−5

VSR2-3 V1 10Hz 16.8Hz 1.1 × 10−3

S6/VSR2-3 H1L1V1 10Hz 34.2Hz 5.5 × 10−3

aLIGO H1 9Hz 9.6Hz 2.5 × 10−6

AdV V1 10Hz 17.6Hz 1.7 × 10−3

aLIGO/AdV H1L1V1 9Hz 10.1Hz 2.2 × 10−5

TABLE II: Similar to Table I, we show the increase in the average relative volume (15) that can be achieved by
switching to the optimal lower frequency cutoff. However, here the reference lower frequency cutoff is set to the

minimum frequency at which a detector’s PSD is reported.

Table II makes a similar comparison, although here the standard lower frequency cutoff choice is replaced by the
minimum reported frequency associated with a particular PSD. It is particularly interesting to see the trials factor
effect associated with the Virgo detector during VSR1. In that case, the difference between the minimum choice of
10Hz and the optimal choice of 38.1Hz is a few parts in 105. What is interesting about this comparison is the large
difference in the lower frequency cutoff choices. As Virgo detector’s PSD from VSR1 had a very shallow slope at the
low frequency end, it provides a good example of how the effect of the trials factor can grow more quickly than the
SNR gain as the lower frequency cutoff is lowered. More detailed sensitivity comparisons can be found in Figs. 2-4,
which separately show the effect of varying lower frequency cutoff on the recovered SNR and on the trials factor effect
as a function of the lower frequency cutoff. The example described above associated with the Virgo VSR1 PSD can
be seen in Fig. 2b.
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FIG. 2: (a) shows the average relative volume Vtotal as a function of lower frequency cutoff for the H1 LIGO
detector during the S5 era. (b) and (c) show the same for the Virgo detector and H1H2L1V1 detector network for

the VSR1 and S5/VSR1 eras, respectively. Each panel also contains traces for the contributions to the average
relative volume from the recoverable SNR Vσ and the trials factor Vtrials.
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FIG. 3: (a) shows the average relative volume as a function of lower frequency cutoff for the H1 LIGO detector
during the S6 era. (b) and (c) show the same for the Virgo detector and H1L1V1 detector network for the VSR2-3

and S6/VSR2-3 eras, respectively. Each panel also contains traces for the contributions to the average relative
volume from the recoverable SNR Vσ and the trials factor Vtrials.
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FIG. 4: (a) shows the average relative volume as a function of lower frequency cutoff for the proposed H1 LIGO
detector during the aLIGO era. (b) and (c) show the same for the proposed Virgo detector and H1L1V1 detector
network for the AdV and aLIGO/AdV eras, respectively. Each panel also contains traces for the contributions to

the average relative volume from the recoverable SNR Vσ and the trials factor Vtrials.
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Detector Era Cost f standard
low , mstandard

max foptimal
low , moptimal

max Volume Gain

S5 H1 Fixed 40Hz, 3% 49.1Hz, 2.4% 4.5 × 10−3

VSR1 V1 Fixed 60Hz, 3% 50.1Hz, 2.8% 6.2 × 10−3

S5/VSR1 H1H2L1V1 Fixed 40Hz, 3% 50.2Hz, 2.3% 5.3 × 10−3

S6 H1 Fixed 40Hz, 3% 55.7Hz, 2.6% 3.5 × 10−3

VSR2-3 V1 Fixed 50Hz, 3% 37.8, 6.2% 1.8 × 10−2

S6/VSR2-3 H1L1V1 Fixed 40Hz, 3% 51.2Hz, 2.2% 7.9 × 10−3

aLIGO H1 Cycles 10Hz, 3% 14.4Hz, 1.1% 2.1 × 10−2

AdV V1 Cycles 10Hz, 3% 22.0Hz, 0.56% 3.7 × 10−2

aLIGO/AdV H1L1V1 Cycles 10Hz, 3% 15.0Hz, 1.0% 2.3 × 10−2

aLIGO/AdV H1L1V1 LLOID 9.7Hz, 3% 14.2Hz, 0.84% 2.8 × 10−2

TABLE III: We show the gain in the constrained average relative volume (18) that can be obtained by changing
from the standard choice of lower frequency cutoff and maximum mismatch to the optimal choice. The

computational cost for each of these calculations is set using the algorithm listed under “Cost”. Most of these
searches are optimized by increasing the lower frequency cutoff and decreasing the maximum mismatch (i.e.,

increasing the density) of the template bank.

Era Detector Cost fprevious
low , mprevious

max foptimal
low , moptimal

max Volume Gain

S5 H1 Fixed 57.8Hz, 5% 58.4Hz, 4.9% 5.3 × 10−5

VSR1 V1 Fixed 60.0Hz, 5% 50.1Hz, 5.4% 6.8 × 10−4

S5/VSR1 H1H2L1V1 Fixed 60.0Hz, 5% 59.7Hz, 5.0% 3.2 × 10−7

S6 H1 Fixed 67.1Hz, 5% 63.2Hz, 5.7% 2.0 × 10−3

VSR2-3 V1 Fixed 44.7Hz, 5% 43.4Hz, 5.2% 3.0 × 10−4

S6/VSR2-3 H1L1V1 Fixed 62.8Hz, 5% 60.3Hz, 5.3% 6.7 × 10−4

aLIGO H1 Cycles 17.0Hz, 5% 19.5Hz, 3.1% 9.7 × 10−3

AdV V1 Cycles 28.8Hz, 5% 31.3Hz, 3.7% 5.1 × 10−3

aLIGO/AdV H1L1V1 Cycles 18.0Hz, 5% 20.8Hz, 3.1% 1.1 × 10−2

TABLE IV: We show the gain in the constrained average relative volume (18) that can be obtained by changing
from the choice of lower frequency cutoff and maximum mismatch proposed in [20] to the optimal choice. Again, the
computational cost for each of these calculations is set using the algorithm listed under “Cost”. The choices of [20]
are close to optimal, although the advanced detector network search can be improved by of order one percent when

switching to the optimal choices.

B. Fixed Computational Cost

We now consider the task of choosing optimal values for both the lower frequency cutoff and the minimal match
of the template bank subject to the constraint of fixed computational cost. Table III shows a comparison between
the standard values and the optimal values chosen using the algorithm proposed in this paper. In addition to the
detector/era associated with a particular PSD and the standard and optimal choices for the minimal match and lower
frequency cutoff, this table also lists the computational cost algorithm that is appropriate for a given search.

We see that including the constraint on the computational cost produces a larger effect than optimizing the lower
frequency cutoff alone without the constraint. It is interesting to note that for the majority of the cases investigated,
the optimal choice involves reducing the computational cost through raising the lower frequency cutoff and then
reinvesting the computational savings into increasing the density of the template bank.

As before, we also show a more detailed comparison of the constrained optimization of the lower frequency cutoff
and minimal match as a function of the lower frequency cutoff. This can be found in Figs. 5-8. In this situation, the
largest increase in sensitivity is a few percent, coming from the proposed AdV detector’s PSD. Figure 7b shows that
the majority of the effect here is coming from decreasing the maximum mismatch (i.e., increasing the minimal match)
of the template bank from 3% maximum mismatch to 0.56% maximum mismatch. In this situation, the drive toward
larger lower frequency cutoffs seems to come from the reduction in the computational cost per template associated
with the total number of cycles contained in the waveform, as opposed to reducing the trials factor effect.
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(c) H1H2L1V1 S5/VSR1 Harmonic Sum PSD

FIG. 5: (a) shows the constrained average relative volume as a function of lower frequency cutoff for the H1 LIGO
detector during the S5 era. (b) and (c) show the same for the Virgo detector and H1H2L1V1 detector network for

the VSR1 and S5/VSR1 eras, respectively. The computational cost of the searches associated with these eras is
given by the fixed cost algorithm. Each panel also contains traces for the contributions to the constrained average

relative volume from the recoverable SNR Vσ, the trials factor Vtrials, and the average template bank mismatch 〈Vm〉.

Finally, we also compare the previous choice of lower frequency cutoff and minimal match suggested in [20] (i.e.,
mmax = 5% and lower frequency cutoff such that fractional SNR loss is 1%) to the optimal choice at the same
computational cost. This comparison can be found in Table IV. This choice is closer to the optimal choice, although
the optimal choice still provides sensitivity gains as large as one percent for the aLIGO/AdV detector network.
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(a) H1 S6 PSD
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(c) H1L1V1 S6/VSR2-3 Harmonic Sum PSD

FIG. 6: (a) shows the constrained average relative volume as a function of lower frequency cutoff for the H1 LIGO
detector during the S6 era. (b) and (c) show the same for the Virgo detector and H1L1V1 detector network for the

VSR2-3 and S6/VSR2-3 eras, respectively. The computational cost of the searches associated with these eras is
given by the fixed cost algorithm. Each panel also contains traces for the contributions to the constrained average

relative volume from the recoverable SNR Vσ, the trials factor Vtrials, and the average template bank mismatch 〈Vm〉.
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(b) V1 AdV PSD
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FIG. 7: (a) shows the constrained average relative volume as a function of lower frequency cutoff for the proposed
H1 LIGO detector during the aLIGO era. (b) and (c) show the same for the proposed Virgo detector and H1L1V1

detector network for the AdV and aLIGO/AdV eras, respectively. The computational cost of the searches associated
with these eras is given by the cycles cost algorithm, (21). Each panel also contains traces for the contributions to

the constrained relative average volume from the recoverable SNR Vσ, the trials factor Vtrials, and the average
template bank mismatch 〈Vm〉.
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FIG. 8: We show the constrained average relative volume as a function of low frequency cutoff for the proposed
H1L1V1 detector network during the aLIGO/AdV era. The computational cost of this search is given by the LLOID

algorithm. The contributions to the constrained average relative volume from the recoverable SNR Vσ, the trials
factor Vtrials, and the average template bank mismatch 〈Vm〉 are also shown. It is interesting to see that the optimal
choices for this search are similar to that of a search where the computational cost is given by the number of cycles

in the template waveform.
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VI. CONCLUSION

We have presented an analysis of the two tunable variables that affect searches for inspiral signals in GW data. We
find that with the minimal match of the template bank held fixed, there is an optimal choice for the lower frequency
cutoff below which reducing this parameter reduces the sensitivity of a search that employs a maximum likelihood
ratio estimate of the SNR. This could be seen as the following inverse result. Even though decreasing the lower
frequency cutoff does not gain significant amounts of SNR, it still provides discriminating power in determining the
parameters, thus increasing the trials factor associated with a fixed region of parameter space.

In addition, through careful balancing of the computational cost associated with the lower frequency cutoff and the
minimal match of the template bank, we show that improved performance can be achieved at fixed computational
cost. This is the first work that has laid out a procedure for determining the optimal choice of these parameters for
searches for BNS GW signals from non-spinning objects. As searches for inspiral GW signals from other systems
can involve additional waveform parameters, and thus larger computational cost, it will be important to apply this
method to other parameter spaces (e.g., the parameter space of waveforms from binary systems that including effects
from the objects’ spins) in order to maximize the sensitivity of those searches.
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