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The 21 cm signatures induced by moving cosmic string loops are investigated. Moving cosmic
string loops seed filamentary nonlinear objects. We analytically evaluate the differential 21 cm
brightness temperature from these objects. We show that the brightness temperature reaches
200 mK for a loop whose tension is about the current upper limit, Gµ ∼ 10−7. We also calcu-
late the angular power spectrum, assuming scaling in loop distribution. We find that the angular
power spectrum for Gµ > 10−8 at z = 30 or Gµ > 10−10 at z = 20 can dominate the spectrum
of the primordial density fluctuations. Finally we show that a future SKA-like observation has the
potential to detect the power spectrum due to loops with Gµ = 10−8 at z = 20.

PACS numbers:

I. INTRODUCTION

Cosmic strings are topological defects that could be produced at phase transitions in the early universe [1] (for
reviews, see Refs. [2, 3]). Therefore, a detection or a constraint of cosmic strings can give us direct access to high
energy particle physics and the early universe.
Cosmic strings can produce various observational phenomena, such as CMB anisotropies [4–18], CMB spectral dis-

tortions [19, 20], early large scale structure formations [21–25], early reionization [26–29] and gravitational waves [30–
37]. Since most observational effects due to strings are gravitational, we can set observational constraints on the
strength of gravitational interactions of strings which is parametrized by the dimensionless number Gµ, where G is
Newton’s constant and µ is the mass per unit length (or tension) of string. The current limit on Gµ is obtained from
CMB anisotropy observations. WMAP and SPT data provide the limit Gµ < 1.7× 10−7 [16]. Recently Planck data
updated the limit to Gµ < 1.5× 10−7 [18].
Cosmological 21 cm observation is expected as one of the new observational windows for cosmic strings. Since

the intensity of the redshifted 21 cm lines of neutral hydrogen is sensitive to the number density and temperature
of neutral hydrogen, cosmological 21 cm observation has the potential to probe the high redshift Universe through
the epoch of reionization (8 < z < 20) to the dark ages (z > 20) (for reviews, see Refs. [38, 39]). Additionally,
choosing the observational frequency, we can obtain the three-dimensional map of the redshifted 21 cm intensity [40].
Therefore, cosmological 21 cm observation is suitable for searching the signatures of the structure formations due to
cosmic strings. Currently, there are some ongoing and future projects for measuring the cosmological 21 cm radiation;
MWA1, LOFAR2, GMRT3, PAPER4, SKA5 and Omniscope [41].
Cosmological 21 cm signatures due to cosmic strings have been investigated in several papers [42–46]. It is well-

known that a cosmic string produces overdense regions by inducing gravitational collapse of baryons onto the string
wake. Moreover, if the tension of the cosmic string exceeds a critical value, the collapsed gas is heated by the collapse
shock. As a result, the cosmic wake can produce strong signature in redshifted 21 cm maps, even if the tension of the
string is smaller than the current constraint, Gµ ∼ 10−7 [44, 46]. The angular 21 cm power spectrum due to string
wakes has also been investigated in Ref. [45].
In this paper, we study cosmological redshifted 21 cm signature and its angular power spectrum due to cosmic

string loops. Loops are produced through self-interactions and intercommunications of long strings. Since loops can
create gravitational fields, they serve as seeds for nonlinear structures. The 21 cm signature due to a static loop have
been studied in Ref. [47]. A loop induces a spherical gravitational collapse of matter and produces a bright spot on
a redshifted 21 cm map. The brightness temperature of the spot reaches 1 K for Gµ ∼ 10−7. However loops are
expected to have relativistic initial velocity when they are produced [48, 49]. The non-zero initial velocity makes the
collapsed object have a filamentary structure. Compared with the spherical collapse case due to a static loop, the
density contrast inside the object is small, and the resultant shock heating at the collapse is not efficient. However the

1 http://www.haystack.mit.edu/ast/arrays/mwa/
2 http://www.lofar.org/
3 http://gmrt.ncra.tifr.res.in
4 http://astro.berkeley.edu/dbacker/
5 http://www.skatelescope.org/
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signature is elongated on a map. We compute the gas temperature in the filament due to a moving loop and evaluate
the 21 cm signature. We also calculate the angular power spectrum, assuming scaling in loop distribution [50–52].
This paper is organized as follows. In Sec. II, we briefly review the the accretion onto a moving loop. In Sec. III, we

investigate the differential brightness temperature of redshifted 21 cm lines induced by a loop. In Sec. IV, assuming
the loop number density distribution, we evaluate the angular 21 cm power spectrum. We show the angular power
spectrum for different values of Gµ and redshifts. We conclude in Sec. V. Throughout this paper, we use natural units
(~ = c = 1), and assume ΛCDM cosmology with ΩM = 0.26, ΩB = 0.05 and h = 0.7, which are consistent with the
WMAP 9-year results [53].

II. ACCRETION ONTO A MOVING LOOP

A loop can become a seed of structure formations. Matter accretes onto a loop, following the gravitational field
due to the loop. In this section, we briefly review the evolution of the structure produced by a loop (for details, see
Ref. [2]).
First we assume that a loop is formed at time ti with length L = αti and an initial velocity vi. Since loops are

non-relativistic objects, their velocity evolution is given by

v(t, ti) = vi
ai
a(t)

, (1)

where a(t) is the scale factor and the subscript i denotes the value at ti. Throughout this paper, we take the values,
α = 0.1 and vi = 0.3, suggested by simulations [64]. The matter accretion occurs in the matter dominated era, while,
in the radiation dominated era, the accretion is prevented because of the radiation pressure. Therefore, the mater
accretion starts at time

ts(ti) =

{

teq, for ti < teq
ti, for ti > teq

, (2)

where teq is the time of matter-radiation equality.
When the loop length L is smaller than the horizon scale, the gravitational field due to the loop at time t is described

as the field due to the point mass with mass µL and velocity v(t, ti). Accordingly the accretion is axially symmetric
along the direction of the velocity, and the resultant overdense structure is like a filament. The comoving length of
the filament structure, ll, corresponds to the comoving length of the loop trajectory after ts,

ll(t, ti) = 3
vsts
as

(

1−
√

as
a(t)

)

, (3)

where the subscript s denotes the value at ts. In Fig. 1, we plot the dependence of ll on the initial redshift zi = z(ti)
at which a loop with length αti is produced. As the redshift zi increases, the length of the filament ll decreases. In
particular, the length ll is strongly suppressed for loops which are produced at zi > zeq, because such loops do not
have large velocities at time ts, where matter accretion starts.
The accretion evolution on a loop with the initial velocity has been studied by using the Zel’dovich approximation

in the cylindrical coordinates (r, φ, l), where the l–axis corresponds to the direction of the velocity. The turnaround
surface rt on the r–axis is obtained by solving the equation where rt appears on both sides [54],

rt = 2d(ti)f(t, ti)gr(rt, ti, l). (4)

Here

d(ti) = 3vsts, f(t, ti) =
1

5

GµL

v2sd(ti)

a(t)

as
, gr(r, ti, l) =

Rf −Ri

r
+
ld(ti)

rRi
, (5)

where Ri = (r2 + l2)1/2 and Rf = [r2 + (l − d(ti))
2]1/2. For our region of interest of (t, ti), f(t, ti) is much less than

one. In this limit, the solution of Eq. (4) is given by an approximated analytic form,

rt(t, ti, l) =
√

4f(t, ti)d(ti)(d(ti)− l)/as. (6)

Fig. 2 shows the dependence of rt on zi. As the universe evolves, the turnaround surface becomes large. In Eq. (6),
Gµ dependence appears only in f(t, ti). Therefore rt is proportional to

√
Gµ. The resultant filament structure is very

elongated because

ll(t, ti)

rt(t, ti)
∼ 1000

(

Gµ

10−8

)

−1/2

at t(z = 30). (7)
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FIG. 1: The comoving length of the filament ll as a function of the redshift zi corresponding to the time ti at which loops with
L = αti are formed. The dotted, solid and dashed lines represent ll at z = 20, z = 30 and z = 40, respectively.
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FIG. 2: The comoving turnaround surface of the filament rt as a function of the redshift zi. In this figure, we set Gµ = 10−8

and l = ll/2. The dotted, solid and dashed lines represent rt at z = 20, z = 30 and z = 40, respectively. The turnaround
surface rt is proportional to

√
Gµ.

The accreted mass at time t corresponds to the mass inside rt(t) along the trajectory ll(t) in the comoving frame,

M(t, ti) ≈ ρM

∫ d

0

πrt(t)
2dl =

3

5
µL

a(t)

as
, (8)

where ρM is the comoving matter density. Eq. (8) tells us that the accreted mass is proportional to Gµ. We plot the
accreted mass in Fig. 3. The accreted mass grows as the universe evolves. Since the mass depends on the loop length

L, the mass is proportional to z
3/2
i . However, since the loop generated before zeq cannot produce the filament until

zeq, the resultant filament mass is suppressed for z > zeq.
The gas inside the turnaround surface rt collapses and is virialized. The collapsed object shrinks to about half of

the physical turnaround surface scale. Although dark matter condenses in the center of the object, baryon suffers the
virialization shock due to the collapse. As a result, the baryon distribution is almost homogeneous and isothermal at
the virial temperature. The virial temperature of the filament structure is given by [55]

Tvir ≈
1

2
mpGλfil. (9)
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FIG. 3: The filament mass dependence on zi. In this figure, we set Gµ = 10−8. The dotted, solid and dashed lines represent
the filament mass at z = 20, z = 30 and z = 40, respectively. The mass of the filament is proportional to Gµ.

10000

5000

2000

3000

1500

15000

7000

100 200 500 1000 2000 5000

zi

z = 30

z = 40

z = 20

Gö = 10à8

50

T
v
ir
[K

]

FIG. 4: The virial temperature of the filament as a function of the redshift zi In this figure, we set Gµ = 10−8. The dashed,
solid and dotted lines represent Tvir at z = 40, z = 30 and z = 20, respectively. The virial temperature is proportional to Gµ.

Here mp is the proton mass and λfil is a linear mass density of the filament structure,

λfil ∼
M(t, ti)

a(t)ll(t, ti)
, (10)

where a(t)ll(t, ti) represents the physical length scale of the filament. Since M is proportional to Gµ and ll does not
depend on Gµ, Tvir is proportional to Gµ. We plot the evolution of the virial temperature of the filament in Fig. 4.
We assume that the virialized radius is half of the physical turnaround surface scale. Accordingly, the matter

density contrast inside the filament is

ρf = 4ρM , (11)

where ρM is the background matter density. Although the turnaround surface depends on l as shown Eq. (6), for
simplicity, we introduce the typical turnaround surface r̄t which corresponds the turnaround surface at l = ll/2.

III. 21 CM SIGNATURE FROM THE ACCRETED FILAMENT

As shown in the previous section, the gas density and temperature inside a filament are different from those of
background values. This difference makes the optical depth of the 21 cm transition in the filament different from
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FIG. 5: The spin temperature of the filament as a function of zi. The dashed, solid and dotted lines represent Ts at z = 40,
z = 30 and z = 20 with Gµ = 10−8, respectively. We also plot Ts at z = 30 with Gµ = 10−9 as the gray line.

one in the intergalactic medium (IGM). As a result, we can observe the filament due to the loop in the differential
brightness temperature map of the redshifted 21 cm line.
The optical depth of a filament to the photon at the frequency ν along the Line Of Sight (LOS) is calculated as

the one of a virialized object [63],

τ(ν) =
3A10

32πkν2
∗

∫

dR
xHI(R)nH(R)

Ts(R)
φ(ν), (12)

where ν∗ is the hyperfine transition frequency, ν∗ = 1420.4 MHz, A10 = 2.85× 10−15s−1 is the spontaneous emission
rate, xHI is the neutral fraction of hydrogen, Ts is the spin parameter, and φ(ν) is the intrinsic line profile.
Now we focus on the filament whose virial temperature is smaller than 104 K. When the virial temperature exceeds

104 K, the atomic cooling is efficient enough to cause the further collapse and the star formations occur in the filament
structure. Once stars form, they ionize the surrounding hydrogen by emitting UV photons. However, below 104 K,
no sources of UV photons are produced inside. Therefore, we set the neutral fraction xHI = 1 inside the filament.
The spin temperature is related to the ratio between the neutral hydrogen number density in the excited and ground

states of the hyperfine structure. Without stars, the excitation or de-excitation of the hyperfine structure is caused
by the thermal kinetic collision at the virial temperature, the spontaneous emission and the stimulated emission by
CMB photons. Therefore the spin temperature of the filament is obtained as [59, 60]

Ts =
Tγ + ykTvir

1 + yk
. (13)

Here yk is the kinematic coupling term [61],

yk =
T∗nHfκ

A10Tvir
, (14)

where T∗ = 0.068 K, κ is the effective single-atom rate coefficient; κ = 3.1× 10−11T 0.357 exp(−32/T )cm3s−1, and nHf

is the neutral hydrogen number density of the filament, nHf = ρfΩB/(mpΩM ).
The integration in Eq. (12) is performed along the LOS. Since our filament model is isothermal and has the uniform

density profile, the integration can be replaced by the column density of the filament along the LOS. As discussed
in the previous section, the loop with length L produces the filament whose comoving typical radius is (1/2)r̄t. We
define the impact parameter b from the symmetrical axis in the unit of (1/2)r̄t. The width of the filament along the
LOS depends on the impact parameter and the angle between the LOS direction and the symmetrical axis of the
filament, ψ. Therefore, the column hydrogen number density of the filament at redshift z with the impact parameter
b is written as

NH(b) = nHf
ar̄t
sinψ

√

1− b2

a2
, (15)
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where a is the scale factor at z. Note that, since the filament has the finite length, the column number density cannot
exceed anHf ll. Therefore we set this upper limit on the column number density.
With the column hydrogen number density, the optical depth of the filament to the photon at the frequency ν along

the LOS with the impact parameter b = 0 and sinψ = 1 is given by

τ0(ν) =
3A10

32πν2
∗

NH(0)

kBTs
φ(ν). (16)

The intrinsic line profile is broadened by the Doppler effect, because the gas inside the filament has high temperature.
We adopt the Doppler broadened form,

φD(ν) = (∆ν
√
π)−1 exp

[

−(ν − ν∗)
2/∆ν2

]

, (17)

with ∆ν = ν∗
√

2kBTvir/mH. The Hubble flow also causes the line broadening as considered in Ref. [47]. The redshift
difference along the LOS is given as δν = 2Haxt/ sinψ. As a result, the intrinsic line profile broadened by the Hubble
flow is [47]

φH(ν) =

{

1/δν |ν − ν∗| < δν/2
0 otherwise

. (18)

We take into account only the largest effect between them. In most of our cases, the Doppler effect dominates the
Hubble flow effect.
The observable quantity is the differential brightness temperature of the 21 cm signal. In the case with τ ≪ 1, the

differential brightness temperature of the filament with b = 0 and sinψ = 1 at z is given by

δTb0(νobs) =
Ts − Tγ(z)

1 + z
τ0(νobs(1 + z)), (19)

where νobs is the observation frequency; νobs = (1 + z)ν∗. We plot the brightness temperature δTb0 in Fig. 6.
The loops produced from z ∼ 100 to 1000 can create the signal δTb0 ∼ 150 mK around z = 30. As Gµ increases,

the signal becomes stronger. Although the filaments due to large loops have larger spin temperature, their differential
brightness temperature δTb0 is strongly damped. Since such filaments have large virial temperature, the Doppler
broadening is effective enough to suppress δTb0.
It is worth pointing out that our values are smaller than the ones in Ref. [47] in which a loop produces the brightness

temperature as high as 1 K for Gµ ∼ 10−7. This is because they have considered static loops. Static loops produce
spherical collapsed objects. The density contrast in such objects is roughly 64, while the one in the filament object is
4. Therefore, a static loop can produce larger signal than a moving loop.
According to Eq. (19), the sign of δTb0 depends on the difference between Ts and Tγ . As shown in Fig. 5, most of

the filaments due to loops with Gµ = 10−8 have spin temperature larger than the CMB temperature. Therefore, the
21 cm signals from such filaments are observed as emissions for the CMB, namely δTb0 > 0. On the other hand, the
loops with Gµ = 10−9 produce filaments whose spin temperature is lower than Ts for Gµ = 10−8. In particular, the
spin temperature of the filaments produced by small loops generated before zeq is strongly suppressed. As a result,
the spin temperature becomes smaller than the CMB temperature, and the signal of the filaments which have such
lower temperatures are observed as absorptions for the CMB.
Following Eq. (15), we can extend Eq. (19) to the differential brightness temperature with the impact parameter b

and the angle ψ,

δTb(νobs, b, ψ) =
δTb0(νobs)

sinψ

√

1− b2

a2
. (20)

Since filaments due to loops have non-zero differential brightness temperature, the filaments are observable by
21 cm observations. We can observe the filament as a projection on the 2-D angular map of the celestial sphere. The
projected filament with the angle ψ of the LOS at the redshift z is a rectangle with the angular scales of the sides,
θx = rt/(2DA) and θy = ll sinψ/DA where DA is the comoving angular diameter distance to z. For the redshift
z = 30, θx corresponds to ∼ 1′′. The angular resolution of the current design of the planned cosmological 21 cm
observations is much larger than this angle scale. Therefore, it is difficult to resolve an individual filament due to a
loop by the 21 cm observations.
However filaments can contribute to the angular power spectrum on the observable scales of the 21 cm observations

as the tail of the angular power spectrum of the filaments on large scales. In the next section, we evaluate the angular
power spectrum of the 21 cm signals from the filaments due to loops.
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FIG. 6: The brightness temperature of the filament δTb0 as a function of zi. The dashed, solid and dotted lines represent δTb0

at z = 40, z = 30 and z = 20 with Gµ = 10−8, respectively. We also plot δTb0 at z = 30 with Gµ = 10−9 as the gray line.

IV. ANGULAR POWER SPECTRUM

In order to calculate the angular power spectrum of 21 cm signals from the filaments due to loops, we follow the
analytical approach to calculate the the Sunyaev–Zel’dovich effect due to large-scale filament structures [57]. The
total angular power spectrum due to nonlinear structures can be separated into two parts [62]. The first component is
a Poisson term which is the contribution from the correlation between two points in the same structure. The second
is a clustering term due to the correlations between different structures. We assume that the spatial distribution
of loops is totally random, and there is no correlations between different filaments. Therefore, the angular power
spectrum due to loops can be expressed only by the Poisson term,

Cℓ =

∫

dz
dV (z)

dz

∫

dL

∫

dψ
dn(L, z)

dL
f(ψ)W (νobs, z)

2P (ℓ, L, ψ), (21)

where V (z) is a comoving volume element per steradian at a redshift z, dn(L, z)/dL is the comoving number density
per unit length of loops of length L at z, f(ψ) is the probability function for the angle between the LOS and the
symmetrical axis of the filament, ψ, and P (ℓ, L, ψ) is the 2-dimensional power spectrum of the 21 cm signal from a
single filament produced by a loop of length L and angle ψ, which we shall discuss later. In Eq. (21), W (νobs, z) is a
response function associated with bandwidth of the experiment. Generally, W (νobs, z) is a function of the frequency
centered at the observed frequency νobs. Since there is one to one correspondence between the frequency and the
redshift, the response function W (νobs, z) has a peak at the redshift z which satisfies νobs = ν∗/(1+z). For simplicity,
we take W (νobs, z) to be flat with the width ∆z = 1 in redshift space. We set f(ψ) = (1/2) sinψ, which is based on
the assumption that the probability is proportional to the solid angle element.
The comoving number density of cosmic string loops of length L in comoving volume at the matter dominated

epoch is [2]

dn(L, z)

dL
=

κL
(1 + z)3p

CL

t(z)2L2
, (22)

where κL ∼ 2 [64], p 6 1 is the reconnection probability, CL is
√

teq/L for L < αteq and 1 for L > αteq. In Eq. (22)
we ignore the decay of the loops due to gravitational radiation because this is not important for the loops which we
consider in this paper.
The 2-D spectrum of a single filament can be calculated from Eq. (20). Since the angular size of the projected

filament on a 21 cm map is small, we consider the projected filament on a small flat sky patch (θx, θy) where the θx (or
θy) axis is normal to (or along) the symmetrical axis of the projected filament as shown in Fig. 7. The angular power
spectrum of the filament corresponds to the 2-D Fourier power spectrum in the flat space in this approximation. The
profile of the 21 cm brightness temperature of the filament on the small flat sky patch is given by

δTb(θx, θy) =
δTb0
sinψ

√

1− 4D2
Aθ

2
x

r2t
Θ

(

rt
2DA

− |θx|
)

Θ

(

ll sinψ

2DA
− |θy|

)

, (23)
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FIG. 7: The projected filament on the flat sky patch (θx, θy) is represented in gray. The observer is at the right end on the
LOS. The filament has an inclination angle ψ between the symmetrical axis (the l–axis) and the LOS.

where Θ(x) is the unit step function. Depending on the filament length and the angle ψ between the LOS and the
symmetrical axis of the filament, the distance between the head and tail of the filament in the redshift direction
may be larger than the width of the response function. In this case, the whole filament cannot be observed in the
same redshift bin, and we must take into account this effect in Eq. (23). However, we confirmed that most of the
contributions to the angular power spectrum are due to small filaments whose sizes are smaller than the width ∆z = 1.
Therefore, Eq. (23) is valid in our calculation with ∆z = 1.
We perform the Fourier transform of Eq. (23) in the 2-D flat space and we obtain the Fourier component,

δT̃b(ℓx, ℓy) =
2πδTb0
ℓxℓy sinψ

J1

(

ℓxrt
2DA

)

sin

(

ℓyll sinψ

2DA

)

. (24)

Accordingly, the 2-D spectrum is simply given by

P2(ℓx, ℓy) =

[

2πδTb0
ℓxℓy sinψ

J1

(

ℓxrt
2DA

)

sin

(

ℓyll sinψ

2DA

)]2

. (25)

In order to get the power spectrum P (ℓ, L, ψ) at a given ℓ, we must take into account the contributions from all
(ℓx, ℓy) which satisfy ℓ2 = ℓ2x + ℓ2y,

P (ℓ, L, ψ) =
1

ℓ

∑

(ℓx,ℓy)

P2(ℓx, ℓy). (26)

Using Eq. (21), we calculate the angular power spectrum for different Gµ. We represent the results of the angular
power spectra in Fig. 8.
The amplitude of the spectrum depends on Gµ. Larger Gµ produces higher amplitude of the angular power

spectrum. The angular power spectrum due to loops does not have a strong redshift dependence. At small ℓ, the
spectrum ℓ2Cℓ is proportional to ℓ. However, the slope becomes shallow with increasing ℓ, and the spectrum is almost
constant at large ℓ. The multipole at which the slope changes corresponds to the typical length scale of the filaments.
For larger Gµ, since even small filaments can contribute to the spectrum, the multipole at which the slope changes
shifts to larger ℓ.
We found that most contributions come from filaments produced by small strings generated z > zeq. The length

of such filaments is smaller than the width of the response function, ∆z = 1. Hence, as mentioned above, Eq. (23) is
valid in our calculation.
The promising signal of the cosmological 21 cm fluctuations is provided by the primordial density fluctuations. For

reference, we plot the angular power spectrum due to the primordial density fluctuations obtained through CAMB for
the sharp window function [66]. At z > 30, the angular power spectrum for Gµ > 10−8 can dominate the primordial
fluctuations. Although the angular power spectrum induced by loops is almost independent of the redshift, the
amplitude due to the primordial fluctuations becomes small as the redshift decreases. As a result, the spectrum due
to loops dominate the primordial density fluctuations at low multipoles ℓ < 1000 at z = 20 even for Gµ = 10−10.
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FIG. 8: The angular power spectrum due to loops. In the left panel, we plot the spectra with Gµ = 10−7, Gµ = 10−8 and
Gµ = 10−10 as the dot-dashed, solid and dashed lines, respectively. In the right panel, the solid line represents the total angular
power spectrum for Gµ = 10−9, and the dashed and the dot-dashed lines show contributions from emission and absorption
components, respectively. From top to bottom in both panels, we set νobs corresponding to z = 30, and z = 20. For comparison,
we show the spectrum due to the primordial density fluctuations with the dotted line. We also plot the noise power spectrum
of the SKA-like observation as the gray line.

In the power spectrum for Gµ > 10−8, most of the contributions are emission signals. On the other hand, the
absorption signals dominate for Gµ = 10−10. This is because small Gµ cannot produce massive filaments in which
the filament gas heats up to the virial temperature larger than the CMB temperature. For Gµ = 10−9, absorption
and emission contributions are comparable. Since the filament virial temperature grows with time, the absorption
contribution becomes large at low redshifts. The 21 cm signals due to the primordial density fluctuations before the
epoch of reionization are absorption signals. Hence the separation between the emission and absorption signals in a
21 cm map can facilitate measurement of the power spectrum due to loops with up to Gµ ∼ 10−9.
In order to access the detectability, we also plot the instrumental noise power spectrum based on the SKA design

in Fig. 8. The instrumental noise power spectrum including the beam effects is given by [67]

N21
ℓ =

2π

tobs∆ν

(

λTsys
fcoverD

)2

exp

[

ℓ(ℓ+ 1)

ℓ2b

]

, (27)

where Tsys is the system temperature, fcover is the a covering fraction of the effective collecting area to the total
collecting area, tobs is the observation time, ∆ν is the frequency bandwidth, D is the length of the baseline and ℓb
is given by ℓb = 4

√
ln 2/θfw with the resolution θfw ∼ λ/D. We set the system temperature to the sky temperature

in the region of the minimum emission at high Galactic latitude; Tsys = 180(ν/180MHz)−2.6K. We choose ∆ν
corresponding to the redshift width ∆z = 1 and set tobs = 1 year. The current design of SKA is fcover = 0.02 and
D = 6 km. However, we take fcover = 0.2 in this paper.
The noise power spectrum strongly depends on the redshift. At high redshift (z = 30), the noise power spectrum

totally overdominates the spectrum due to loops. However, at low redshift (z = 20), the noise power spectrum in
low multipoles becomes smaller than the spectrum for Gµ = 10−8, and is comparable to the one for Gµ = 10−9.
Therefore, we conclude that the power spectrum due to loops with Gµ = 10−8 can be detected via 21 cm observations
with high signal to noise ratio at low redshifts.
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V. CONCLUSION

We have investigated the 21 cm signatures induced by cosmic string loops in this paper. We have taken into account
that the loops have the initial relativistic velocities. A loop with an initial velocity can form a filament structure. We
have evaluated the gas temperature inside a filament due to a loop and calculated the differential 21 cm brightness
temperature profile. We have shown that a filament can induce an observable signal. The brightness temperature can
reach 200 mK for a loop with Gµ ∼ 10−7.
We have also calculated the angular power spectrum of 21 cm fluctuations due to loops with a scaling loop number

density distribution. The larger Gµ is, the higher the spectrum amplitude due to loops becomes. The power spectrum
is proportional to ℓ on large scales, while it is scale-invariant on small scales. The scale where the slope of the spectrum
changes corresponds to the typical length scale of the filaments. The spectrum does not strongly depend on the
observation redshift.
We found that the amplitude of the spectrum due to the loops is larger than the one due to long strings evaluated

in Ref. [45]. Therefore, the angular power spectrum of 21 cm fluctuations can give the limit on Gµ by measuring the
spectrum due to loops. At z = 30, the angular power spectrum for Gµ > 10−8 can dominate the spectrum of the
primordial density fluctuations. The amplitude due to the primordial fluctuations becomes smaller as the redshift
decreases. Hence, the amplitude of the spectrum even for Gµ = 10−10 can be larger than for the primordial density
fluctuations at z = 20. However, first galaxies formed around z ∼ 20 produce the larger 21 cm fluctuations through
the Ly-α flux and X-ray heating [68, 69].
Comparing with the noise power spectrum of the 1 year SKA-like observation, we have found that the power

spectrum for Gµ = 10−8 dominates the noise power spectrum at low multipoles (ℓ < 1000). Therefore, it is expected
that the SKA-like observation can measure the spectrum for Gµ > 10−8 with high signal to noise ratio.
The amplitude of the spectrum depends on the loop number density distribution which is not completely understood.

For example, the analytical work, Ref. [65], suggested scaling loop distribution with small loop production. Because
of the difference in the distributions, we found that the angular power spectrum will be reduced by ∼ 0.1 with the
distribution in Ref. [65].
Since the filaments produced by loops are gravitationally unstable, they will fragment into beads, which subsequently

merge into larger beads as considered in Ref. [29]. Although we have not taken into account this effect in this paper,
the fragmentation of the filaments decreases the amplitude of the spectrum on large scales and enhances on small
scales. The evaluation of the power spectrum with the fragmentation effect requires a detailed study including
numerical simulations. However, in order to evaluate the fragmentation effect roughly, we simply assume that the
filaments collapse into beads with the filament width size which corresponds to the fastest growing instability mode
and following mergers of beads makes the length of the beads ten times larger. Under this assumption, we found that
the amplitude of the spectrum is decreased by 0.1 on large scales and enhanced roughly by 6 on small scales.
In our calculation of the angular power spectrum, we have only considered the contributions of small filaments

whose virial temperature is below 104 K. In massive filaments with the virial temperature larger than 104 K, stars can
be formed and ionize the surrounding IGM gas [29]. The ionized gas can produce additional large 21 cm fluctuations.
We will study the 21 cm power spectrum due to massive filaments in future work.
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