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TeV blazars offer an exciting prospect for discovering cosmological magnetic fields and for probing
high energy processes, including CP violation, in the early universe. We propose a method for
reconstructing both the non-helical and the helical magnetic field correlators using observations of
cascade photons from TeV blazars.

I. INTRODUCTION

Large-scale magnetic fields with micro Gauss strength have been observed in galaxies [1, 2] and clusters of galaxies [3,
4]. Although it is assumed that such magnetic fields are the result of amplification from weak seed magnetic fields, the
origin of the seed magnetic field has not yet been understood. There are two classes of models for the seed generation
mechanism: astrophysical and cosmological models. In astrophysical models, the seeds are associated with nonlinear
structures, and are generated during structure formation through the Biermann battery effect [5], or the Weibel
instability [6]. On the other hand, seeds in the cosmological models are produced in the early universe and exist as
extragalactic magnetic fields. This class of models includes the generation mechanisms in an inflationary epoch, during
cosmological phase transitions, and at the epoch of recombination (for recent reviews, see [7–9]).
Recent gamma ray observations suggest the existence of cosmological magnetic fields stronger than ∼ 10−16 Gauss

in the voids [10–12]. Although more detailed work will be required to establish this lower limit [13–15], the suggestion
of such magnetic fields in large-scale structure voids, ∼ 100 Mpc away from non-linear structures, provides a strong
argument in favor of cosmological models. Further support in favor of an early universe origin can be obtained if the
cosmological galactic magnetic fields are “helical”, thus indicating a process of magneto-genesis that fundamentally
violates invariance under charge conjugation plus parity reflection (CP) [16].
Magnetic helicity density is defined as

h =
1

V

∫

V

d3x A ·B, (1)

where A is the vector potential of magnetic fields B with B = ∇×A. Magnetic helicity is odd under CP transforma-
tions as A and B are odd under C, while A is even but B is odd under P. Non-zero magnetic helicity is predicted in
scenarios in which cosmic baryogenesis and magneto-genesis occur concurrently during a cosmological phase transi-
tion [16–20]. Then the magnetic helicity density is related to the cosmic baryon number density and the CP violation
responsible for the excess of matter over antimatter also provides helicity to the magnetic field. Other scenarios that
can generate helical magnetic fields that are not tied to baryogenesis have been studied in Refs. [21–23]. Helicity is
also an important factor in the evolution of magnetic fields because it helps to transfer magnetic field energy from
small to large length scales, a process called an “inverse cascade”. Due to the inverse cascade, helical magnetic fields
can grow to astrophysically relevant scales at the present epoch, even though the initial scale of the magnetic field
extends only up to the much smaller cosmological horizon scale at the time of the phase transition.
The two point correlator of a stochastic, homogeneous, isotropic magnetic field contains two independent functions.

In physical space, these are the normal and helical correlation functions (MN (r) and MH(r)); in momentum space,
these are the symmetric and antisymmetric power spectra (S(k) and A(k)). There are several tools to measure the
normal correlator (or the symmetric power spectrum) of cosmological magnetic fields but measuring helicity directly
is more challenging. The detection of helicity of cosmological magnetic fields has been a primary motivation for this
work, as few other direct schemes to detect helicity have been proposed [24].
A measurement of the normal correlator itself, together with some theoretical input, provides indirect access to the

helicity of the magnetic field. This is because the presence of helicity influences the evolution of the normal correlator,
and the exponents characterizing the normal correlator can give us some information about the magnetic helicity (for
the evolution in the cosmological context, see Ref.[25–30]). The shape of the normal correlator, in particular the
existence of a peak in the distribution can also inform us about the epoch of magneto-genesis. If magnetic fields are
produced during inflation, the symmetric power spectrum can be expected to be scale invariant with significant power
on the present day horizon scale.
Direct measures of the helical power spectrum are more difficult. For astrophysical magnetic helicity, it has been

suggested that the correlation between Faraday rotation measurement and the polarization degree of radio synchrotron
emission [31–33] can be used. For cosmological magnetic helicity, Ref. [24] has shown that correlations in the arrival
momenta of very high energy cosmic rays are sensitive to the intervening magnetic helicity provided the cosmic ray
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source locations are known. Cosmic Microwave Background (CMB) anisotropy observations may also permit a measure
of the helicity through non-vanishing cross-correlation between the temperature and B-mode polarization anisotropies
and between the E-mode and B-mode polarization anisotropies [34–36].
In the present paper, we propose a scheme to measure both the normal and the helical correlation functions of

cosmological magnetic fields by using TeV blazar observations. Gamma rays with energy greater than ∼ 1 TeV can
scatter with ambient “extragalactic background light” (EBL) photons to pair produce electrons and positrons. The
generated electrons and positrons create a secondary cascade of GeV gamma rays through the Inverse Compton (IC)
scattering of CMB photons. As the electron and positron trajectories are bent due to the Lorentz force by a magnetic
field, the GeV photon cascade carries information about the structure of the cosmological magnetic field. We show that
cross-correlations between the arrival directions of the secondary cascade gamma rays at different energies are related
to the correlation function of the extragalactic magnetic fields. If we imagine the cascade photon arrival direction to
be a vector in the plane of observation, the inner product of vectors at different energies gives the normal part of the
magnetic field correlation, and the outer product gives the helical correlator.
In Sec. II we describe the basic geometry of the process and evaluate the arrival direction of cascade photons as a

function of the intervening magnetic field. In Sec. III we evaluate correlators of the arrival directions of cascade photons
and relate them to the magnetic field correlation functions. Our results are placed in the context of observations in
Sec. IV where we discuss estimators for the theoretical correlation functions we have found in Sec. III. Our analysis
uses many simplifying assumptions that we discuss together with conclusions in Sec. V. Throughout this paper, we
use natural units: ~ = 1 = c.

II. GEOMETRICAL SETUP AND DEFLECTION ANGLE

TeV gamma rays from distant sources at redshift zs cannot propagate freely over cosmological distances because,
at such energies, interaction with the EBL can produce electrons and positrons. The mean free path of a gamma ray
with energy ETeV is given by [37]

DTeV(ETeV) ∼ 80
κ

(1 + zs)2
Mpc

(

ETeV

10 TeV

)

−1

, (2)

where κ is a numerical factor which accounts for the model uncertainties of EBL. Here we take κ ∼ 1 [37]. Electrons
and positrons generated by the TeV gamma ray lose energy by the production of a secondary gamma ray cascade
through the IC scattering of CMB photons, and have a mean free path,

De ∼ 30 kpc (1 + ze)
−4

(

Ee

10 TeV

)

−1

, (3)

where ze is the typical redshift at which TeV gamma rays create pairs, and Ee ∼ ETeV/2 is the electron energy. The
up-scattered CMB photon has energy,

Eγ =
4

3
(1 + ze)

−1ǫCMB

(

Ee

me

)2

∼ 88 GeV

(

ETeV

10 TeV

)2

, (4)

where ǫCMB = 6× 10−4(1 + ze) eV is the typical energy of CMB photons. Therefore we observe cascade gamma rays
with energy ∼ Eγ , in addition to TeV gamma rays with energy ∼ ETeV.
It is believed that TeV gamma rays are beamed from distant blazars in a narrow jet of opening angle θj ∼ 5◦ [Γ/10]−1

where Γ is the Lorentz factor of the gamma ray emitting plasma. The highest energy photons are observed if we lie
within the opening angle of the jet. Denoting the angle between the source direction and the jet axis by θo, we require
θo < θj . As emphasized in Ref. [38], the most likely situation is that we are located on the edge of the cone, as depicted
in Fig. 1.
Suppose that the blazar is located at xs = Dsn̂s in the observer frame. We will assume for simplicity that the

redshift of the source is less than one and take 1+ zs ∼ 1. If there are no magnetic fields in the IGM, we will observe
cascade gamma rays due to TeV gamma rays also in the direction n̂s. However if cosmological magnetic fields are
present, the cascade gamma rays arrive from different directions. We now evaluate the arrival direction assuming a
stochastic, homogeneous, and isotropic magnetic field.
Consider an observed cascade gamma ray that resulted from a TeV gamma ray with energy ETeV that was emitted

at t = 0 at an angle θe from the line of sight as depicted in Fig. 1. The TeV gamma ray produces an electron at
the position xi at time t = ti, where ti = DTeV. The produced electron has momentum Pi whose amplitude Pi
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FIG. 1. The blazar on the left beams TeV photons within a jet of opening angle θj . The observer is most likely located at
the edge of the jet, not on the axis. TeV photons pair produce after propagating a distance DTeV. The pairs are bent by
ambient magnetic fields and up-scatter CMB photons that propagate a distance Dγ to the observer. The emission angle θe,
the observation direction Θ, the distance to the source Ds, and the pair creation and IC scattering event positions, (xLi, δxi),
(xLf , δxf ) are also shown.

corresponds to the energy Ee ≈ ETeV/2. Since the opening angle of the electron-positron pair is very small, of order
me/Ee ∼ 10−7, the direction Pi is the same as the direction of the initial TeV gamma ray.
The momentum of the electron changes on propagation due to the Lorentz force,

P (t) = Pi + q

∫ t

ti

dt′ v(t′)×B(x(t′)) (5)

where q = ±e is the electron/positron charge, x(t) and v(t) are the position and velocity of the electron (or positron),
namely v(t) = ẋ(t) where the overdot denotes differentiation with respect to time. (For convenience, from now on we
shall refer to the charged particle as being the electron.)
We will now decompose all vectors in components parallel and perpendicular to the source direction. For example,

the momentum and the position of the electron at time t is decomposed as

P (t) = PL(t) + δp(t), x(t) = xL(t) + δx(t), (6)

where the subscript L means the component parallel to the source direction (line-of-sight for TeV source). Therefore,
the vector δp(t) and δx(t) are the deviations induced by the magnetic field.
In terms of the decomposed components, Eq. (5) can be written as

PL(t) + δp(t) = PLi + δpi + q

∫ t

ti

dt′ [vL(t
′) + δv(t′)]×B(x(t′)), (7)

where PLi and δpi are the momentum components at time t = ti. Note that at this stage, instead of replacing x by
xL in the argument of B, we perform the integration along the actual path x(t). This is important if the magnetic
fields have significant power on small scales, i.e., a blue spectrum.
The bending angle of the electron is estimated as δ = De/RL ∼ 1.2 × 10−3[B/10−16 G][ETeV/10 TeV]−2 where

RL = Ee/qB is the Larmor radius. Here we have assumed a magnetic field coherence scale larger than De; otherwise
the electron trajectory would be diffusive yielding a smaller estimate for δ. Then the maximum deviation from the
source direction is δxi ∼ 90 kpc(1−DTeV/Ds)[B/10−16 G][ETeV/10 TeV]−3. Since the bending angle is small, we can
treat δp, δx and δv as perturbations. To linear order in the magnetic field strength, Eq. (7) becomes

δp(t) = δpi + q

∫ t

ti

dt′ vL(t
′)×B(x(t′)). (8)

The electron energy Ee is constant during this process, since a magnetic field does no work. Dividing Eq. (8) by
Ee, we obtain the velocity,

δv(t) = δvi +
q

Ee

∫ t

ti

dt′ vL(t
′)×B(x(t′)), (9)
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and another integration gives the trajectory,

δx(t)− δxi = δvi(t− ti) +
q

Ee

∫ t

ti

dt′′
∫ t′′

ti

dt′ vL(t
′)×B(x(t′)). (10)

At any point in the electron’s trajectory there is a probability of an IC scattering event with a CMB photon.
We simplify the present analysis by assuming that the electron travels a fixed distance De(Ee), and at final time tf
up-scatters a CMB photon. Since the electron is ultra-relativistic with Lorentz boost factor Ee/me ∼ 107, the cascade
gamma ray propagates along the momentum of the electron. Therefore the arrival direction of the cascade gamma
ray is the same as the direction of the position xf = x(tf ).
We now define the vector Θ in the observation plane by

Θ ≡
δxi − δxf

De
(11)

where δxf is δx(t) at t = tf . The magnitude, |Θ|, is the observed angle Θ shown in Fig. 1, and the direction in the
observation plane corresponds to the azimuthal direction of the original TeV gamma ray.
We will now relate Θ to the magnetic field using Eq. (10). However δvi is still unknown in Eq. (10). To evaluate

it, we first need to express the emission angle θe in terms of the observed angle Θ. Applying the trigonometric law of
sines to the triangle formed by the source, observer and electron position – recall that De ≪ Ds – we obtain

θe ≈
Dγ

DTeV

Θ ≈
Ds −DTeV

DTeV

Θ. (12)

In terms of Θ, the vector δvi can now be written as

δvi = veθeŷ = ve
Ds −DTeV

DTeV

Θ, (13)

where ve is the magnitude of the electron velocity, and ŷ is the unit vector perpendicular to the line-of-sight (see
Fig. 1).
Now Eqs. (10), (11) and (13) give,

Θ(Eγ) = −
qDTeV

EeDeDs

∫ tf

ti

dt′′
∫ t′′

ti

dt′ vL(t
′)×B(x(t′)), (14)

where we can rewrite DTeV, De, and Ee as functions of Eγ ,

DTeV(ETeV) ∼ 80 Mpc

(

Eγ

88 GeV

)

−1/2

, (15)

De ∼ 30 kpc

(

Eγ

88 GeV

)

−1/2

, (16)

Ee ∼ 10 TeV

(

Eγ

88 GeV

)1/2

. (17)

With these relations, the magnitude of Θ(Eγ) is roughly estimated as

Θ(Eγ) ≈
qDTeVDe

EeDs
vLB ≈ 7.3× 10−5

(

B

10−16 Gauss

)(

Eγ

100 GeV

)

−3/2(
Ds

1000 Mpc

)

−1

. (18)

III. CORRELATORS AND PREDICTIONS

The vector Θ(Eγ) describes the position of the observed cascade gamma ray in the observation plane but its
magnitude depends on geometrical factors such as the distance to the source (Eq. (14)). We define a rescaled vector
to remove such dependence,

Q(Eγ) ≡
EeDs

qDTeVDe
Θ(Eγ). (19)
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Now we are interested in two types of correlators of the Q(Eγ) vectors

F (E1, E2) = 〈Q(E1) ·Q(E2)〉, (20)

G(E1, E2) = 〈Q(E1)×Q(E2) · x̂〉, (21)

where E1 and E2 are two energies of the observed cascade gamma rays, and we recall that we have set up our
coordinate system so that the x−axis is along the line of sight, i.e., x̂ is normal to the observation plane.
The ensemble value 〈Qi(E1)Qi′(E2)〉, where i and i′ denote components in the observation plane, can be written

by using the magnetic field correlation function, Eq. (14),

〈Qi(E1)Qi′(E2)〉 = ǫijlǫi′j′l′v
j
L(E1)v

j′

L (E2)

∫ t1f

t1i

dt′1
De1

∫ t′
1

t1i

dt1
De1

∫ t2f

t2i

dt′2
De2

∫ t′
2

ti

dt2
De2

〈Bl(x(t1, E1))B
l′(x(t2, E2))〉, (22)

where De1 and De2 are De for the cascade gamma ray with energy E1 and E2 respectively. Note that the velocity
vL = (1, 0, 0) and tf − ti = De.
The correlation function of a stochastic, homogeneous, and isotropic magnetic field is given by [39]

〈Bi(x+ r)Bj(x)〉 = MN(r)
[

δij −
rirj
r2

]

+ML(r)
rirj
r2

+MH(r)ǫijlr
l, (23)

where MN (r), ML(r), and MH(r) are the correlation functions for the normal, longitudinal, and helical parts of the
magnetic fields. Due to the homogeneity and isotropy of the magnetic fields, these correlations depend only on the
separation distance r = |r|. The divergence-less condition gives

MN (r) =
1

2r

d

dr
(r2ML(r)). (24)

The stochastic fields are often described by power spectra in Fourier space. The magnetic field correlation function
in Fourier space is

〈B̃∗

i (k)B̃j(k
′)〉 = (2π)3δ3(k − k′)

[(

δij −
kikj
k2

)

S(k) + iǫijl
kl
k
A(k)

]

, (25)

where S(k) and A(k) are the symmetric and antisymmetric (helical) parts of the magnetic field power spectrum. The
functions S(k) and A(k) are related to the correlation functions MN (r), ML(r), and MH(r) as in [39].
Therefore the ensemble average, Eq. (22), can also be decomposed into three parts: the normal, longitudinal, and

helical parts,

〈Qi(E1)Qi′(E2)〉 = CNii′ + CLii′ + CHii′ . (26)

with each of the terms given by four integrations as in Eq. (22). The separation scale, r, appearing in the correlators
MN (r), ML(r) and MH(r) is the magnitude of the separation vector

r(t1, t2, E1, E2) ≡ x(t1, E1)− x(t2, E2). (27)

Since cosmological magnetic fields are weak, this can be approximated as

r(t1, t2, E1, E2) ≈ xL(t1, E1)− xL(t2, E2). (28)

Therefore,

r(t1, t2, E1, E2) = (DTeV(E1)−DTeV(E2) + (t1 − t1i)− (t2 − t2i))x̂. (29)

For t1 = t1f and t2 = t2f , the separation scale becomes

r(t1f , t2f , E1, E2) = DTeV(E1)−DTeV(E2) +De(E1)−De(E2). (30)

In the case with i = i′ 6= x, CLii and CHii vanish, because only the x̂ components of vL and r are non-vanishing.
However the normal correlator does not vanish and CNii is given by

CNii(E1, E2) =

∫ t1f

t1i

dt′1

∫ t′
1

t1i

dt1

∫ t2f

t2i

dt′2

∫ t′
2

ti

dt2 MN(r(t1, t2, E1, E2)). (31)
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FIG. 2. Events at two different energies sample the magnetic field in regions of size De ∼ 30 kpc (solid lines at the vertices of
the triangles). The regions themselves are separated by distance r which can be ∼ 100 Mpc depending on the energy difference
of the two events. Energy resolution of the detector translates into a lower limit on the separation at which the magnetic field
correlations can be probed.

In the case with i 6= i′, i 6= x and i′ 6= x, while CNii′ and CLii′ vanish, CHii′ has non-zero value,

CHii′ = ǫii′z

∫ t1f

t1i

dt′1

∫ t′
1

t1i

dt1

∫ t2f

t2i

dt′2

∫ t′
2

t2i

dt2 MH(r(t1, t2, E1, E2))(r(t1, t2, E1, E2) · x̂), (32)

Therefore F and G can be written directly in terms of the magnetic field correlation functions,

F (E1, E2) = 2

∫ t1f

t1i

dt′1
De1

∫ t′
1

t1i

dt1
De1

∫ t2f

t2i

dt′2
De2

∫ t′
2

ti

dt2
De2

MN (r(t1, t2, E1, E2)), (33)

G(E1, E2) = 2

∫ t1f

t1i

dt′1
De1

∫ t′
1

t1i

dt1
De1

∫ t2f

t2i

dt′2
De2

∫ t′
2

ti

dt2
De2

MH(r(t1, t2, E1, E2))(r(t1, t2, E1, E2) · x̂). (34)

It is worth pointing out that F (Eγ , Eγ) 6= 0 but G(Eγ , Eγ) = 0.
We have already seen that DTeV ≫ De independently of Eγ , and so the separation scale in the magnetic field

correlation function can be approximated as,

r(t1, t2, E1, E2) ≈ DTeV(E1)−DTeV(E2). (35)

Then recalling tf − ti = De, we can do the integrations in Eqs. (33) and (34) to get

F (E1, E2) ≈
1

2
MN (|r12|), (36)

G(E1, E2) ≈
1

2
MH(|r12|)r12, (37)

where r12 is r12 = DTeV(E1)−DTeV(E2). This shows that we can obtain both the non-helical and the helical magnetic
field correlation functions through the correlators F (E1, E2) and G(E1, E2) constructed from the arrival information
of cascade photons. This is the main result of this paper.
Note, as shown in Fig. 2, that the obtained correlator is on the scale r12 which can be much larger than the scale

De. This is because the magnetic field gets correlated at the spatial points where pair production occurs and these
can be separated by hundreds of Mpc depending on the values chosen for E1 and E2. It remains an interesting open
question if further refinements of the above method can lead to correlators on scales smaller than De ∼ 30 kpc.

IV. OBSERVATIONS AND ESTIMATORS

In the previous section, we have considered correlators in the arrival directions of cascade photons and expressed
them in terms of correlators of the intervening magnetic field. In this section we consider the problem of determining
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magnetic field correlators from the observers point of view: given cascade arrival direction data, what quantity should
be calculated that corresponds to the magnetic field correlator? The calculated quantity will at best be an estimator
for the magnetic field correlator because observations are limited in number, while the magnetic field correlator in
Eq. (23) is over an infinite ensemble of realizations.
In a more realistic setting – see simulations in Ref. [40] – observed gamma rays with some energy E are expected

to be scattered around a typical observation direction on the observational plane. The scattering is due to differences
in the magnetic field along the trajectories of different electrons and also the stochasticity of the EBL and CMB
photons. We have not considered the latter fluctuations in this paper but the variation in the magnetic field can
be smoothed out by taking the average 〈Θ(E)〉 over all observed gamma rays with the same energy E. Even if the
magnetic fields have small-scale structure, i.e., a blue spectrum, the averaging procedure should yield the correct
magnetic field correlator on scales larger than the smoothing scale, |δx| ∼ 90 kpc.
There is a second way to smooth out fluctuations in the magnetic field. This is by realizing that the correlation

functions F (E1, E2) and G(E1, E2) evaluated in the previous section depend on only one function, r(t1, t2, E1, E2).
Hence there are many choices of E1 and E2 yielding the same r, and one of the energy variables can be integrated
out. This corresponds to averaging over all pairs of energies such that the distance r remains fixed (see Fig. 2). Using
Eq. (35) we see that r(t1, t2, Eγ , Eγ + δE) is independent of Eγ provided

δE(Eγ , r) = 27 GeV





(

r

10 Mpc
−

√

88 GeV

Eγ

)−2

−
88 GeV

Eγ



 . (38)

We can now average Eqs. (36) and (37) over E1 while taking E2 = E1 + δE,

MN(r) ≈ 2

∫

dEγ

∆E
Q(Eγ) ·Q(Eγ + δE(Eγ , r)), (39)

rMH(r) ≈ 2

∫

dEγ

∆E
Q(Eγ)×Q(Eγ + δE(Eγ , r)) · x̂, (40)

where ∆E is the integration range of the observation energy. The vector Q(E) now denotes the average (rescaled)
direction vector for cascade photons with energy E.
A third way to perform the ensemble average is to use observations of many TeV blazars because cascade gamma rays

from different blazars sample magnetic fields along different path. Hence we can obtain the magnetic field correlation
function using

MN(r) ≈
2

N

N
∑

α

[

2

∫

dEγ

∆E
Q(Eγ) ·Q(Eγ + δE(Eγ , r))

]

α

, (41)

rMH(r) ≈
2

N

N
∑

α

[

2

∫

dEγ

∆E
Q(Eγ)×Q(Eγ + δE(Eγ , r)) · x̂

]

α

, (42)

where α labels the blazar.
Finally we would like to remark that the most likely observation of a TeV blazar is when we are positioned at the

edge of the jet [38], but we are even more likely to be located outside the jet opening angle. Then we will not observe
the TeV source but will still receive some cascade GeV photons. In this case, if there is reason to suppose that the
observed photons are indeed from a cascade, we can extend our correlator by replacing Q(E) in Eqs. (41), (42) by
Q(E)−Q(E∗) where E∗ is the highest energy (and least deviated) cascade photon that is observed. We can still draw
some conclusions about the magnetic field correlators though the analysis is more involved.

V. DISCUSSION AND CONCLUSIONS

Our main result is the connection between cosmological magnetic field correlators and the correlators of cascade
photons as given in Eqs. (36) and (37) together with the definitions in Eqs. (20) and (21). In the observational context,
this connection can be written as in Eqs. (41) and (42). These relations suggest that observations of cascade photons
may be used to directly study the non-helical and helical spectra of cosmological magnetic fields. There are few other
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direct ways to probe the helicity of cosmological magnetic fields and this is an important feature of the technique we
have described.

Our analysis will need further development as it has used many simplifying assumptions. For example, the stochastic
interactions of the TeV photons with the EBL photons will lead to a probability distribution for DTeV while we have
used a fixed value. Similarly there will be probability distributions for the other interactions, and the magnetic field
will have some structure on small scales. In addition, if the blazar is at high redshift, cosmological expansion will
become important. These effects can best be studied using Monte Carlo simulations similar to the ones described
in Refs. [40, 41]. The simulations should be able to confirm if the magnetic field correlators can be recovered from
realistic data, which hopefully will become available in the near future.
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