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Strong gravitational lensing of time variable sources such as quasars and supernovae creates ob-
servable time delays between the multiple images. Time delays can provide a powerful cosmographic
probe through the “time delay distance” involving the ratio of lens, source, and lens-source distances.
However, lightcurves of lensed images have measurement gaps, noise, systematics such as microlens-
ing from substructure along an image line of sight, and no a priori functional model, making robust
time delay estimation challenging. Using Gaussian process techniques, we demonstrate success in
accurate blind reconstruction of time delays and reduction in uncertainties for real data.

I. INTRODUCTION

Multiple images of a single source are dramatic evi-
dence for the effect of gravity, specifically general rel-
ativity, on light. This strong gravitational lensing not
only splits the images, but magnifies or demagnifies the
source flux and induces time delays between the images.
The time delays arise from both the geometric path dif-
ferences along the various lines of sight and the gravita-
tional potential differences traversed by the photons.

When the source is variable, such as from a quasar or
supernova, the time delays in the flux of one image rela-
tive to another can be observed. With careful modeling
of the lens mass distribution, and measurement of the
angular positions of the images, the geometric factors of
distances between observer and lens, observer and source,
and lens and source can be extracted as a ratio called the
time delay distance. Recent advances in lens modeling
[1, 2] and careful, long term flux monitoring programs
such as CosmoGrail [3] (also see [4, 5]) have matured
strong lensing time delays to an incipient cosmographic
probe.

This prospect is exciting for several reasons. Since time
delays over cosmological distances are sensitive not just
to the overall scale, or Hubble constant, but the cos-
mic energy density and its evolution with redshift, one
can constrain (combinations of) the matter and dark en-
ergy densities and dark energy equation of state. More-
over, the time delay distance acts fundamentally differ-
ently from luminosity and angular distances measured by
calibrated standard candles such as Type Ia supernovae
and rulers such as baryon acoustic oscillations. Hence
it has distinct covariances among cosmological parame-
ters and can be powerful in complementarity with the
standard distance probes [6, 7]. Finally, despite the lens
mass modeling, strong lensing time delays are a geomet-
ric probe and are tied only to the late universe, unique
except for supernovae (but with different systematics and
covariances) among all cosmological probes.

Here we address one important element of the use of
lensing time delays: accurate estimation of the actual
time delays. While great progress has been made in re-
cent years (see, e.g., [8–10]), in large part due to heroic

observing programs and improved data sets, this is not a
solved problem. Mathematically, one can consider it as
reconstructing a shift between multiple noisy, irregularly
sampled, differentially amplified data streams. We apply
a special combination of Gaussian process statistics to
this task. Such a concept for strong lensing dates back
to [11] and more recently has been shown to have reason-
able success [8]; we introduce several new features that
exhibit noticeable improvement in the state of art.

Section II outlines the challenge of reconstructing the
time delays from realistic data complete with systematics
such as microlensing. The Gaussian process methodology
is described in Sec. III, introducing the various correla-
tion function terms and accounting for systematics. We
test the method against blinded mock data, and real data
from the literature, in Sec. IV, and conclude in Sec. V.

II. TIME DELAYED LIGHTCURVES

Fluxes received from an image at several times define
a lightcurve, but the name is misleading since the data
are not continuous but discrete, and the observations are
often irregular and sparse and have measurement uncer-
tainties. The best monitoring frequency may be every
day or two, while long gaps of a few months occur due
to seasonal visibility of regions of the sky from a single
telescope. The cadence is often irregular, though ongo-
ing wide area surveys such as Dark Energy Survey (DES
[12]), Kilodegree Survey (KIDS [13]), and PanSTARRS
[14], and in the future LSST [15], may have regular ob-
servations with periods of several days.

Apart from the sparseness, the data has photomet-
ric measurement noise. Most current observations come
from small (1 meter) telescopes, and atmosphere, tele-
scope, and detector noise all contribute. With wide field
surveys, hundreds to thousands of time delay systems
may be found, enabling choice of the cleanest for use as
time delay distance probes. Since to obtain a time de-
lay distance one must have a robust model of the lens
mass distribution, galaxy lenses are preferred over clus-
ter lenses due to less complex modeling. Depending on
lens mass and geometry this implies time delays in the
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range of a few to hundred days in general.
Comparing lightcurves from different images involves

some form of cross-correlation, looking for the time delay
between them. Straightforward cross-correlation tech-
niques tend not to work well due to the noisiness and
sparseness of the data, and extrinsic contributions (see,
e.g., [16]). Instead of comparing noisy data with noisy
data, regression techniques attempt to reconstruct the
underlying true source variation and compare the image
measurements to that. We employ Gaussian processes
(GP) as the regression technique. See [17] for an example
of its application to (non-lensed) supernova lightcurves.

In addition to measurement difficulties, astrophysical
systematics contribute to the challenge of time delay es-
timation. Further time variations arise from microlens-
ing caused by passage of substructure near to the line
of sight. This affects images independently, breaking the
(delayed) coherence between them, and can occur on all
time scales. Short variations just add noise but long term
variations disrupt the relation between the lightcurves for
large portions of the data set and so can cause misesti-
mation of the time delay. These long term variations
are moderately smooth and some previous work has used
low order polynomials or splines to represent them; we
instead allow the data to determine their time scale.

Thus we have three elements entering into the light
curves: the intrinsic variation that we want to measure,
the observational noise, and the astrophysical microlens-
ing systematic (in fact our formalism would allow multi-
ple versions of the last two). The challenge of robust time
delay estimation is to reconstruct phase shifts of a source
with unknown intrinsic flux variation, for images with in-
dependent microlensing magnifications along their lines
of sight, using noisy data with irregular temporal sam-
pling. Figure 1 shows an example of real lightcurves from
four images of quasar HE 0435-1223 measured by Cos-
moGrail [18]. Conventionally observations are reported
in magnitudes (logarithmic flux units).

III. TIME DELAY ESTIMATION

For reconstructing an intrinsic function from isolated,
noisy data points, Gaussian processes offer a robust, sub-
stantially model independent statistical method with well
defined error characterization. See [19] for a thorough
discussion of GP from a statistical point of view. The
basic idea is that the function is not parametrized, but
rather the data are fit to a whole family of possible curves,
given by a Gaussian distribution with a mean function
and a covariance kernel between points.

The key choices are the form of the mean function
(which ideally does not affect the final fit but in practice
a poor mean function can lead to difficulties) and the co-
variance kernel, together with any hyperparameters used
in those functions. There is a single GP representing
the true source underlying all of the images plus the mi-
crolensing of a reference image. For a mean function we
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FIG. 1. Magnitudes (log flux) of four images of the quasar
HE 0435-1223 are plotted vs time, with an arbitrary overall
zeropoint.

adopt a constant function, then allow hyperparameters
for magnifications relative to the reference image. We
try different reference images to test for robustness.

For the covariance kernel we investigate three possibil-
ities. A damped random walk (DRW) is often adopted
to model the intrinsic quasar light curve [20–23]. While
we are here focused on extracting accurate time delays,
not modeling the quasar per se, it is natural to try the
DRW kernel

k(ti, tj) = σ2 e−|ti−tj |/l , (1)

where ti and tj are measurement times, the hyperparam-
eter σ adjusts the amplitude of the kernel and l functions
as a correlation length.

Another choice is a Matern function with index 3/2,

k(ti, tj) = σ2

(
1 +
|ti − tj |

√
3

l

)
e−|ti−tj |

√
3/l . (2)

The Matern function is commonly used in statistics [19]
and allows for greater roughness in the variation than an-
other common choice, the squared exponential or Gaus-
sian,

k(ti, tj) = σ2 e−(ti−tj)
2/(2l2) . (3)

We will compare the results for these three kernels to give
extra crosschecks on the results; generally we find that
DRW works best, once guided by an initial Matern run.

We include measurement noise and an additional
nugget term σ2

nδij , which acts as a zero lag dispersion,
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e.g. an empirical term for misestimated measurement
noise or finite realization scatter. This is distinct from
the GP amplitude σ in that σ accounts for the global
variations of the kernel whereas the nugget term σn ac-
counts for the independent dispersion of the individual
data points around the predicted GP value.

The microlensing systematic has been attempted to be
addressed in the literature by multiplying the lightcurves
by a quadratic polynomial or a cubic spline over short
time spans or within an observing season. This restricts
the allowed variations and has the potential to lead to
bias in the reconstructed time delays or simply a failed
fit. We remain within the GP framework, which does not
impose a specific model or timescale for the microlens-
ing, and account for the microlensing with a GP for each
image (other than the reference one) with zero mean
function and a squared exponential kernel of common
amplitudes σ2

µ and correlation lengths lµ. To separate
the microlensing GP from the quasar GP, we require a
long correlation length lµ (systems with the microlens-
ing timescale comparable to the intrinsic variations are
not useful for time delay measurement). We have inves-
tigated various choices of priors, for example π(lµ) > 50
days, π(lµ) > season, or π(lµ) > 3l; all give equivalent
results.

We emphasize that neither the intrinsic quasar
lightcurve nor the microlensing actually have to be (and
may not be) true GPs in themselves; all we want to test
is whether robust time delays can be estimated from this
approach.

In summary, the lightcurve predictions for our full GP
regression take the form

~y1 ∼ GPQ(~θQhp; t− t1) (4)

~y2 ∼ GPQ(~θQhp; t− t2) +GPµ2(~θµhp) + ∆m2 (5)

~y3 ∼ GPQ(~θQhp; t− t3) +GPµ3(~θµhp) + ∆m3 (6)

(7)

and so forth for each image, where ~θQhp is the hyper-

parameter vector for the quasar GP, ~θµhp is for the mi-
crolensing GP, and ∆m represents the magnification rel-
ative to the reference image 1.

The GP likelihood is [19]

2 ln p(Y |~θ) = −Y TK−1Y − ln |K| −Nd ln 2π, (8)

where Y is the vector of magnitude data, with Nd the

total number of data points, ~θ represents the fit parame-
ters, e.g. time delays, and K is the full kernel (the sum of
the quasar GP, microlensing GP, measurement noise, and
nugget) with |K| being its determinant. The likelihood
is maximized for the most likely values of the time de-
lays and magnifications, which we find using the function
minimizer routine Minuit [24] and have validated using a
Monte Carlo analysis.

In principle, we can combine all lightcurves at once,
compare two at a time, or any number of lightcurves.
Simultaneous analysis of more than two curves allows a

consistency check in the form of the triangle equality, e.g.
∆tAC = ∆tAB+∆tBC , and is our baseline approach. Us-
ing more lightcurves also has the advantage of the lever-
age of more images on simultaneously constraining the
underlying source light curve. Analysis using just a pair
has fewer hyperparameters and may deliver smaller sta-
tistical errors, but at the risk of bias. We carry out cross-
checks by trying different numbers of lightcurves in the
analysis, finding that the results from the pair analyses
can provide useful initial conditions to the simultaneous
fit. One can also use portions of data, such as selected
observation seasons, to cross check the consistency of the
results or to reduce the impact of microlensing as has
been done in the literature before. We find the results
from our approach to be robust to the number of data
points used in the analysis.

In summary, when fitting N lightcurves we have the
N −1 time delay parameters that are our goal, the N −1
magnifications ∆m, and the hyperparameters σ2, σ2

n, σ2
µ,

l, lµ.

IV. TESTS AND RESULTS

A. Blind mock data

To test the accuracy and robustness of the method
we initially created blinded mock data sets. To pre-
serve realistic sampling and data quality, one author
took lightcurve data from one image of quasar HE 0435-
1223, realized three new lightcurves using random Gaus-
sian distributions with mean zero and standard deviation
equal to the data errors, and shifted each of the result-
ing lightcurves vertically by various magnifications and
horizontally by time delays. The shifted data were then
resampled onto the original time sampling using linear
interpolation. Another author, unaware of the simulated
time delay and magnification values, was given the final
data points with error bars and carried out the GP fit.

The results are shown in Table I, with the true val-
ues of 15.0 and 25.0 day delays recovered within the 68%
confidence level by each of the three covariance functions.
Several other tests with different time delays had similar
results. The DRW kernel gives results that are signifi-
cantly more precise, but due to its allowance of high level
of variations we find that it works best when we first run
a GP with a Matern kernel, and use that result as a prior
with 10 times the Matern time delay uncertainties when
running DRW.

We find that the magnification and nugget terms are
both important to include. Time delays are also tested
for robustness by choosing different reference curves and
different multiplicities (i.e. fitting for the AB time de-
lay in isolation, or simultaneously fitting the GP to more
than two lightcurves). Quoted values reflect the central
values and uncertainties from the configuration that has
the best reduced χ2 and the smallest errors. These un-
certainties are marginalized over all the other parameters
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and hyperparameters; the distributions are sufficiently
Gaussian that the 68% CL error bars are symmetric.

Kernel ∆tAB ∆tAC ∆tBC

DRW 14.94 ± 0.14 24.99 ± 0.09 10.0 ± 0.2
Matern 14.3 ± 0.8 25.1 ± 0.9 10.8 ± 0.9
Sq Exp 13.9 ± 1.3 25.8 ± 1.4 10.6 ± 0.7

TABLE I. Blind analysis of time delays works for DRW,
Matern, and squared exponential GPs. The input to the sim-
ulation had ∆tAB = 15.0 days, ∆tAC = 25.0 days.

Figure 2 shows the 1D and 2D joint likelihood contours
for the time delay parameters in the mock data case using
the DRW GP. As a comparison, these results are obtained
using CosmoMC [25] as a generic Monte Carlo sampler,
and are wholly consistent with the Minuit results. For all
the parameters and hyperparameters we impose a very
wide flat prior and let data decide their values. The
only constraint is on the microlensing correlation length,
which as discussed should not be too small and hence
mix with the actual correlation length of the GP kernel.
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FIG. 2. Marginalized 1D and 2D likelihood contours are il-
lustrated for the two time delays in the mock data case. The
fiducial value is marked with a white plus sign.

A larger and more sophisticated series of data chal-
lenges is forthcoming as part of the LSST Dark Energy
Science Collaboration strong lensing working group. This
will provide large, sophisticated mock data sets and an
excellent opportunity for testing further development of
robust time delay estimation.

B. Actual data

The second part of testing the GP method involves us-
ing public data sets from CosmoGrail and other literature
sources [3, 4, 26–28] as inputs for time delay estimation.
These results can then be compared to the literature re-
sults obtained using a variety of different methods.

We use the two sets of CosmoGrail lightcurves pub-
licly available at [18], for quasars HE 0435-1223 and
WFI J2033-4723, and the radio lightcurves of quasar
B1608+656, courtesy of Chris Fassnacht. Table II com-
pares the results we obtain from our GP analysis using
the DRW and Matern kernels with those published in
the literature. We also have tested the square exponen-
tial kernel but this gives weaker uncertainties. The values
from our analysis and the literature are consistent with
each other, with the GP analysis tending to have smaller
uncertainties. Note the true values of the time delays
are not known, but the consistency offers an indication
of robustness.

The GP analysis not only estimates the time delays, a
key input for cosmography through time delay distances,
but provides information on the intrinsic quasar variabil-
ity, the variations around the best fit GP lightcurve, and
the microlensing systematics through the hyperparame-
ters such as the correlation lengths, GP amplitudes, and
nugget.

We find that there is no significant correlation between
the parameters. The nugget term is usually important
and has a value comparable to the errors on the data
points. We also find that including the microlensing term
is useful even when there is no significant microlensing in
the system.

The quasar HE 0435-1223 (Fig. 1) has a long obser-
vation period with distinct features in the intrinsic vari-
ability, making it fairly straightforward to compute the
time delays. The bottom curve has significant microlens-
ing variation which leads to large microlensing amplitude
σµ. The microlensing correlation length (∼ 700 days)
is completely separated from the quasar GP correlation
length (∼ 100 days). There is strong agreement between
our results, those of Literature 1 [3] that uses only the
first two observation seasons, and those of Literature 2
[27]. Our uncertainties are smaller by a factor of several.

The quasar WFI J2033-4723 has a relatively shorter
observation time but distinct features in the light curves.
There is no significant long-range microlensing and hence
σµ is very small indicating that including microlensing
terms may not be necessary (but this is not known a pri-
ori). Again, despite using several hyperparameters, our
marginalized uncertainties are smaller than the results
from [26].

The quasar B1608+656 (lightcurves shown in Fig. 3)
is an example of a challenging system with large data
gaps, relatively small intrinsic variability, and significant
microlensing, all of which make it hard to estimate the
time delays of its images. While we have successfully
derived the time delays between all the images, includ-
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Kernel ∆tAB ∆tAC ∆tAD ∆tBC ∆tBD ∆tCD

HE 0435-1223 GP-DRW −9.5 ± 0.3 −1.9 ± 0.4 −15.6 ± 0.3 8.1 ± 0.3 −6.0 ± 0.3 −13.6 ± 0.4
HE 0435-1223 GP-Mat −9.6 ± 1.1 −1.5 ± 1.1 −14.0 ± 0.9 8.1 ± 1.1 −5.0 ± 1.1 −12.3 ± 1.1
HE 0435-1223 Lit(1) [3] −8.4 ± 2.1 −0.6 ± 2.3 −14.9 ± 2.1 7.8 ± 0.8 −6.5 ± 0.7 −14.3 ± 0.8
HE 0435-1223 Lit(2) [27] −8.8 ± 2.4 −2.0 ± 2.7 −14.7 ± 2.0 6.8 ± 2.7 −5.9 ± 1.7 −12.7 ± 2.5

WFI J2033-4723 GP-DRW 35.1 ± 0.9 −24.9 ± 0.4 – −59.2 ± 2.1 – –
WFI J2033-4723 GP-Mat 36.0 ± 1.5 −26.3 ± 1.7 – −62.0 ± 2.3 – –
WFI J2033-4723 Lit [26] 35.5 ± 1.4 -27.1 +4.1/-2.3 – ? – –

B1608+656 GP-DRW 31.8 ± 2.4 −1.3 ± 1.5 −51.0 ± 6.2 −33.1 ± 2.7 −72.0 ± 4.5 −43.1 ± 3.6
B1608+656 GP-Mat 31.7 ± 2.1 −2.4 ± 2.2 −50.4 ± 6.9 −35.0 ± 4.0 −77.5 ± 7.1 −44.4 ± 5.4
B1608+656 Lit [28] 31.5 +2.0/-1.0 ? ? −36.0 ± 1.5 -77.0 +2.0/-1.0 ?

TABLE II. Time delay estimations are compared between our GP analysis and values in the literature using different recon-
struction methods. A question mark represents time delay estimates not provided by the literature, a dash indicates there is
no fourth image.

ing the cases not presented in the literature, the error
bars are relatively large. This is in part due to the fea-
tureless light curves (especially the bottom curve, D in
Table II, which is almost flat) and also due to the fact
that our errors are marginalized over other parameters.
For example, fitting the nugget term increases the errors
by at least a factor of two while its presence is relatively
unimportant for this system. We find that the probabil-
ity distributions for some of the time delays in the DRW
case have a smaller secondary peak, so comparison with
the Matern results is useful to ensure robustness.
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FIG. 3. Magnitudes (log flux) of four images of the quasar
B1608+656 are plotted vs time, with an arbitrary overall ze-
ropoint.

V. CONCLUSIONS

Accurate estimation of strong lensing time delays is an
essential element in the use of time delay distances as
a novel cosmological probe. The complementarity, sub-
stantially geometric nature, and disjoint systematics of
this technique make its use a goal worth striving for.

We have explored Gaussian processes as a regression
method that is effectively model independent and we
demonstrated robust results for both blind mock data
and actual literature data, in many cases reducing the
uncertainties of the time delay estimations. Noisy data,
gaps in the observations, and extrinsic microlensing vari-
ations can all be handled by the method.

Robustness arises not just from the technique itself,
but the ability to use multiple lightcurves simultaneously,
and test results against different combinations. Several
possibilities exist for further improvement. For example
one could weight the estimations derived from different
combination of curves or one could remove unnecessary
hyperparameters to reduce estimation uncertainty while
checking that the best fit does not shift.

Future data challenges will provide an opportunity to
further develop the technique, providing important train-
ing and assessment of the reconstruction method. And
of course one could obtain better real data. Forthcom-
ing surveys will find many more suitable lensing systems,
allowing choice of the cleanest or best observed (with
low photometric uncertainties, better cadence with fewer
gaps, etc.).

While time delay estimation is just one element in the
development of strong lensing distances as a new cosmo-
logical probe, its improvement is key to this promising
technique for mapping the Universe. Future work in-
cludes applying our GP reconstruction method to studies
of lensed supernovae or other variable sources.
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