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Sources of isocurvature perturbations and large non-Gaussianities include field degrees of free-
dom whose vacuum expectation values are smaller than the expansion rate of inflation. The inho-
mogeneities in the energy density of such fields are quadratic in the fields to leading order in the
inhomogeneity expansion. Although it is often assumed that such isocurvature perturbations and
inflaton-driven curvature perturbations are uncorrelated, this is not obvious from a direct computa-
tional point of view due to the form of the minimal gravitational interactions. We thus compute the
irreducible gravitational contributions to the quadratic isocurvature-curvature cross-correlation. We
find a small but non-decaying cross-correlation, which in principle serves as a measurable prediction
of this large class of isocurvature perturbations. We apply our cross-correlation result to two dark
matter isocurvature perturbation scenarios: QCD axions and WIMPZILLAs. On the technical side,
we utilize a gravitational Ward identity in a novel manner to demonstrate the gauge invariance of the
computation. Furthermore, the detailed computation is interpreted in terms of a soft-ζ theorem and
a gravitational Ward identity. Finally, we also identify explicitly all the counterterms that are neces-
sary for renormalizing the isocurvature perturbation composite operator in inflationary cosmological
backgrounds.

I. INTRODUCTION

As physics beyond the Standard Model is expected to contain many fields in addition to the inflaton, there are
many candidates for isocurvature perturbations in the context of inflationary cosmology, including those of the dark
matter. Indeed, the current data is consistent with the existence of an O(5%) isocurvature component [1–8]. Fur-
thermore, it is well known that quadratic isocurvature perturbations (i.e. the vacuum expectation value of the field
is much smaller than the Hubble expansion rate) are one of the very few ways to generate measurably large local
non-Gaussianities [9–40] in the context of the slow-roll inflationary paradigm. The only nontrivial requirement that
the isocurvature field degree of freedom must possess is that it be light enough to be excited by the inflationary
quasi-de Sitter (dS) background and that it not be conformally invariant. In the literature [41–43], quadratic isocur-
vature perturbations are often assumed to have negligible cross-correlations with the curvature perturbations (which
corresponds to the inflaton field degree of freedom dressed by gravity). However, the gravitational interactions lead
to a minimum cross-correlation, which in principle can be observationally important. We present a computation of
this minimal gravitational cross-correlation in this paper.

As explained below, the form of the gravitational interaction between the curvature and isocurvature perturba-
tions naively suggests that there can be cross correlators which do not vanish in the long wavelength limit. If this
was true, the cross correlation can dominate over the isocurvature two-point function in the observables since the
latter vanishes in the long wavelength limit for a massive field. By an explicit rigorous computation, we show that
the cross correlator vanishes in the long wavelength in such a way that the cross correlation induced by gravity never
dominates over the isocurvature two-point function, given that the curvature inhomogeneity perturbation is char-
acterized by a strength of order 10−5. We explain this qualitatively as well using a combination of a soft-ζ theorem
[44–61] and a Ward identity associated with a spatial dilatation diffeomorphism. We also check the gauge invariance
of our computation using a Ward identity.

Among the possible isocurvature candidates, thermal dark matter is usually produced copiously by the inflaton
decay products, which typically leads to a large suppression of isocurvature effects. On the other hand, nonthermal
dark matter that is not produced by the inflaton decay can easily generate large isocurvature effects that survive
until today. Hence, as an illustration, we apply our computation of the cross correlation to two different nonthermal
dark matter models: QCD axions and WIMPZILLAs. In both cases, we find a cross-correlation characterized by
the parameter |β| ∼ O(10−5) (the parameter definition is given in Eq. (29)) which is below the boundary value of
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O(10−2) when the cross correlation becomes competitive with the isocurvature two-point function. In principle, β
can be measured and is a generic prediction of this class of nonthermal dark matter quadratic isocurvature models.
Note that even though the nonthermal dark matter fields can be identified with the isocurvature degrees of freedom,
this scenario is consistent with the WIMP dark matter scenario since the isocurvature perturbations can be as small
as an order 10−5 fraction of the total dark matter and still leave an isocurvature imprint on the CMB spectrum.

The order of presentation is as follows. In Section II, we present our assumptions about the inflationary cosmology,
review gauge invariant variables in the perturbation theory, and summarize the observational constraints on the
isocurvature scenario relevant to our paper. One of the most important aspects of this section is our review of
features of the β variable that we compute. In Section III, we first explain two naive estimates, one leading to the
wrong observationally large result, and the other leading to the correct suppressed result. In explaining the correct
estimate (which requires assumptions that cannot be known without the justification of a full computation), we
present the interpretation in terms of a soft-ζ theorem and a Ward identity. The rigorous explicit computation at
one loop is then presented, demonstrating how the correct naive estimate result is achieved. We also present in this
section how gauge invariance is achieved for these quadratic isocuvature computations using a gravitational Ward
identity. Next, we apply these results to the axion and the WIMPZILLA scenarios in Section IV. This section contains
a detailed explanation for choosing nonthermal dark matter to illustrate the computations of our paper instead of
thermal dark matter. Finally, we summarize our results in Section V. In appendices, we collect technical details and
also supplementary computational results: the radiation transfer functions is derived in Appendix A, a brief review
of the gravitational Ward identity used for the gauge invariance computation is given in Appendix B, the ADM
formalism is reviewed in Appendix C, the details about the Pauli-Villars regulator is explained in Appendix D, and
the two point function computation in the uniform curvature gauge is presented in Appendix E.

II. A CLASS OF CURVATURE AND ISOCURVATURE PERTURBATIONS

Inflation through quantum correlator dynamics generates “classical” initial conditions for superhorizon cosmolog-
ical fluid perturbations [62–65]. The resulting initial conditions for the classical equations governing classical fluid
variables (which are set during radiation domination before the CMB last scattering time) are categorized into two
types: adiabatic and isocurvature [66–69]. An adiabatic initial condition is intuitively characterized by all species
composing the fluid having the same initial number overdensities. In the context of inflation, if there is a single dy-
namical degree of freedom φ during inflation such that after a few efolds of inflation, the quantum vacuum boundary
can be approximated as Bunch-Davies initial conditions (for a discussion of number of efold requirement see e.g.
[70]), and if all the degrees of freedom during radiation domination come from the inflaton decay, then this adiabatic
condition is the resulting approximate classical boundary condition during radiation domination era of the universe.
An isocurvature initial condition intuitively corresponds to setting nonzero the initial difference of the number over-
densities of at least one pair of fluid element species while setting to zero the total energy density inhomogeneity
on long wavelength scales. Because these two types of initial conditions are linearly independent, a generic initial
condition to the linearized perturbation equations can be written as a linear combination of them.

In this paper, we are concerned with the following physical system which is generic for isocurvature scenarios.
One real scalar slow-roll inflaton degree of freedom φ dominates the energy density during inflation. During this
time period, there exists also another light degree of freedom σ which has no coupling to φ stronger than gravity.
We assume that this system carries an approximately conserved discrete charge (such as Z2 broken at most by
a model dependent non-renormalizable operator) such that the one particle states are stable and can act as dark
matter. Note that since we do not require all of the dark matter to come from σ, this system is consistent with the
existence of the weakly interacting massive particle (WIMP) dark matter. If WIMP dark matter exists, the parameter
ωσ ≡ Ωσ/ΩCDM < 1 will play a role, and this scenario can yield interesting isocurvature signatures for ωσ as small
as 10−5 [30]. The action of this system can thus be written as

S[φ, σ, {ψ}] =
ˆ
(dx)

{
1
2

M2
pR + [−1

2
gµν∂µφ∂νφ−V(φ)] + [−1

2
gµν∂µσ∂νσ−U(σ)]

}
+ Srh[φ, {ψ}] (1)

where R is the Ricci scalar, M2
p = 1

8πG , (dx) = d4x
√
|det(gµν)|, and Srh corresponds to the action of the reheating

degrees of freedom {ψ}. We assume that {ψ} is heavy during inflation such that it can be integrated out or if {ψ} are
light, they are conformal such that they are not excited during inflation. After inflation ends, we assume {ψ} fields
are light, leading to a successful reheating scenario. The only special initial condition dependent assumption that we
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make in this isocurvature scenario is that 〈σ〉 � H/(2π) during inflation even when ∂2U(σ)/∂σ2 � H. 1 Because
〈σ〉 = 0 during inflation, σ by itself does not spontaneously break time translation invariance and therefore does
not mix with δφ in forming the gauged time translation Nambu-Goldstone boson ζ. Hence, we can treat the scalar
fluid variable ζ(δgµν, δφ) as the curvature degree of freedom and δS(σ, ζ) as the isocurvature degree of freedom. (As
we will show in detail below, the isocurvature degree of freedom δS will be quadratic in σ and will involve ζ as a
difference).

Thus, the basic physics picture of the classical fluid that we are concerned with in this paper is the following.
To predict CMB temperature fluctuation 〈∆T∆T〉, we must compute the cross correlation 〈δSζ〉 since at the lin-
earized level, Einstein-Boltzmann equations give the relationship ∆T/T ∼ c1ζ + c2δS for computable order unity
(for long wavelengths) coefficients ci. Up until this paper, there has never been an explicit computation of the
〈δSζ〉/

√
〈ζζ〉〈δSδS〉 coming from irreducible gravitational interactions.2 What will emerge is a clean universal result

that applies to a wide range of isocurvature models including those of the QCD axions (in a particular initial condi-
tion regime) and WIMPZILLAs. We find that 〈δSζ〉 contribution is generically subdominant to 〈δSδS〉 in the case of
pure gravitational interactions.

In the following, we establish our conventions in describing this isocurvature degree of freedom carrying the
non-adiabatic initial condition information. In the process, we review the gauge invariant construction of these
cosmological perturbations and the current CMB observational constraint, which represents the strongest constraint
on the isocurvature initial condition derived from inflation.

A. Gauge Invariant Construction

The cosmological inhomogeneity perturbation variables are generally spacetime coordinate gauge-dependent be-
cause of the coordinate dependent definition of fictitious background metric slices. From the perspective of matching
classical equation initial conditions to inflationary quantum correlator computations, identifying gauge invariant
combinations is helpful [71–73]. On the other hand, the gauge freedom involved in computing gauge invariant
quantities facilitates the quantum computation. Hence, understanding the gauge dependences of the correlation
computations is helpful. In this subsection, we review the gauge invariant variable construction and establish our
notation. For a more general discussion, see for example [71, 72, 74–84].

In (t,~x) coordinates, we parameterize the metric as gµν = ḡµν + δg(S)µν where the scalar metric perturbation is

δg(S)µν =

( −E aF,i
aF,i a2[Aδij + B,ij]

)
, (2)

the background metric is ḡµν ≡ diag{−1, a2(t), a2(t), a2(t)}, and derivatives are denoted as usual as X,i ≡ ∂X/∂xi.
Under the diffeomorphism x → x + ε where

εµ = (ε0, a−2∂i(ε
S)), (3)

the scalar metric perturbation components transform as

∆A = −2Hε0, ∆B = − 2
a2 εS, (4)

∆E = −2ε̇0, ∆F =
1
a
(ε0 − ε̇S + 2HεS) (5)

which is obtained from δg(S)µν → δg(S)µν + ∆(δg(S)µν ) with ∆(δg(S)µν ) = −Lεµ∂µ
ḡµν.

1 Note that even with a Gaussian distributed values of 〈σ〉 on an inflationary patch with a Gaussian width H/(2π), there is about a 2/3 probability
that such initial condition configurations can be found. Also, an unbroken discrete symmetry such as Z2 : σ→ −σ can stabilize the VEV. In the
context of supergravity, generic terms in the effective potential however can appear leading to 〈σ〉 6= 0 during inflation. In the end, whether or
not 〈σ〉 = 0 is model dependent, but it is not fine tuned.

2 As we will later explain, we do not compute 〈δSζ〉 analytically fully beyond the time of the end of inflation. However, the importance of the
isocurvature cross correlation can be generically predicted by 〈δSζ〉/

√
〈ζζ〉〈δSδS〉 which is insensitive to the post-inflationary evolution for

superhorizon modes.
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Similarly, we parameterize the perfect fluid stress tensor for a fluid element a as

T(a)
µν = T̄(a)

µν + δT(a)
µν (6)

where T̄(a)
µν ≡ diag{ρ̄a, P̄a, P̄a, P̄a} contains the average energy density and pressure seen by a comoving observer,

δT(a)
ij = P̄aδg(S)ij + a2δijδPa, δT(a)

i0 = P̄(a)δg(S)i0 − (ρ̄a + P̄a)δU(a)
i (where δU(a)

i is the velocity perturbation), and δT(a)
00 =

−ρ̄aδg(S)00 + δρa. Under the diffeomorphism of Eq. (3), the energy density perturbation transforms as

∆δρa = −ε0 ˙̄ρa. (7)

In practice, gauge-invariant variables are constructed by combining metric perturbations and other perturbations,
such as densities. A popular choice is

ζa ≡
A
2
− H

δρa
˙̄ρa

. (8)

For example, the first-order gauge-invariant perturbation associated with the inflaton φ is usually defined as

ζφ ≡
A
2
− H

δρφ

˙̄ρφ
(9)

(see for example Ref. [73] and references therein). Now, one can form a quantity that is conserved through reheating
by defining

ζtot ≡∑
i

riζi (10)

where

ri ≡
ρ̄i + P̄i

∑n ρ̄n + P̄n
. (11)

Because there must be reheating dynamical degrees of freedom, ζtot must involve at least 2 degrees of freedom by
the end of inflation of any single field slow-roll model. In single field slow-roll scenarios, what is done in practice is
to argue that the reheating degrees of freedom are integrated out during inflation and then integrated back in at the
end of inflation due to the different location of the inflaton VEV at the end of inflation. Alternatively, another often
used assumption is that the main reheating degree of freedom are conformal such that no isocurvature fluctuations
are appreciably excited during inflation. This means that in single field models, we have

ζtot ≈ ζφ (12)

up to ambiguities in how one hides the reheating degrees of freedom.
One reason why the combination of Eq. (10) is convenient is because the superhorizon mode of this is approx-

imately conserved through reheating if this mode object can be shown to obtain an initial conditions of what is
sometimes referred to as the adiabatic solution [45, 73] and there are no non-adiabatic processes that mix super-
horizon modes of isocurvature degrees of freedom with ζtot. Such classical adiabatic solution initial conditions are
generated by the Bunch-Davies quantum fluctuations for ζφ, and we will restrict the couplings of the isocurvature
degrees of freedom (discussed below) such as to avoid non-adiabatic mixing. This means that Eq. (12) ensures that
ζtot is approximately conserved if ρ̄φ + P̄φ dominates over others. More explicitly, as discussed in the introduc-
tion to this section, suppose there exists only one isocurvature field degree of freedom which we call σ during the
inflationary period.3 The total curvature perturbation can be written as

ζtot = ζφ + rσ(ζσ − ζφ) (13)

3 The species σ will later be identified dark matter candidates such as the axions and WIMPZILLAs.
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with the sum over n runs over φ and σ (assuming that ψ has been integrated out during inflation). However, one
can estimate that the coefficient of ζσ during inflation is

rσ .
1

(2π)2 ∆2
ζ ∼ 10−11 (14)

which makes the approximation of ζtot ≈ ζφ accurate, just as in the single field case of Eq. (12). Thus just as in
the single field scenarios without σ, ζtot acquires an approximately adiabatic boundary condition from the Bunch-
Davies vacuum field fluctuations.

To complete the examination of how ζtot is used in the scenario of concern in this paper, let’s look at the time
period surrounding the reheating transition when the universe reaches radiation domination. Near the time of the
completion of the reheating, the variable ζtot is approximately

ζtot ≈ rφζφ + ∑
i

rψi ζψi (15)

such that after the inflaton decays, we have rφ = 0 and

ζtot ≈∑
i

rψi ζψi . (16)

4 (The approximation used in Eq. (15) neglects the rσ contribution because of Eq. (14).) It is also a standard assump-
tion that

ζψi = ζtot, (17)

which is rigorously true if one relativistic species dominate the fluid (e.g. rψ1 ≈ 1) or if the decay process does
not redistribute the spatial inhomogeneities of ψi in a distinct configuration from that of φ. 5 This justifies the usual
statement in the literature that ζtot defined in Eq. (10) is primarily useful for arguing how a combination of quantities
involving the inflaton and the reheating decay products remain unchanged through the reheating phase transition.
Here, we have merely described how this argument is not changed by the presence of σ because of the smallness of
rσ in Eq. (14) during the primordial periods of interest.

In summary, as long as boundary conditions for the classical fluid equation are evaluated at a time when rσ is
small (compared to the accuracy desired), we can neglect the rσ contribution from ζtot both through reheating and
until the time that boundary conditions for the classical fluid equations are imposed. Hence, if ζtot remains constant
on long wavelengths (due to the initial conditions set by the Bunch-Davies vacuum), Eqs. (13) and (14) imply that
the effective curvature perturbation during this early primordial epoch is given by Eq. (12). Hence, in the discussion
below, we will drop the φ subscript and write

ζ ≡ ζφ ≈ ζtot. (18)

During this radiation dominated early primordial time tp, the relationship between super horizon A(tp,~k) and the
value of ζ(te,~k) evaluated at the end of inflation time te is

A(tp,~k)
2

≈ 2
3

ζ(te,~k) (19)

in the Newtonian gauge (B = F = 0) and the presence of ζσ gives a small error controlled by rσ.
At the same radiation dominated era6 when initial condition is set by ζtot ≈ ζ, the inhomogeneity of the small

mixture of dark matter component σ can be related to the isocurvature perturbation ζσ. Conventionally, this infor-
mation is parameterized by the gauge-invariant isocurvature perturbation [67, 69, 76]

δS(t,~k) ≡ 3
(

ζσ(t,~k)− ζtot(t,~k)
)

. (20)

4 In the case that ψi is integrated back in at the end of inflation, we have made the assumption that this does not change ζtot
5 However this need not be true for more general reheating scenarios.
6 During this time period, there is possibly a population of thermal dark matter components such as thermal WIMPs.



6

The physical interpretation of this quantity can be see by noting that when σ particles are dominantly non-relativistic
and the universe is radiation dominated, this expression becomes

δS(t,~k) =
δρσ(t,~k)

ρ̄σ
− 3

4
δργ(t,~k)

ρ̄γ
(21)

where ργ represents the photon energy densities. This clearly represents the difference in number densities of σ

and γ.7 Assuming that the radiation inhomogeneity is characterized by ζ as explained in Eqs. (17) and (18) during
radiation domination, we have

δS(t,~k) ≈ 3(ζσ(t,~k)− ζ(te,~k)) (22)

Similarly to the case of ζtot, long wavelength limit of ζσ generated from Bunch-Davies initial conditions simplify
(partly because of causality) in the absence of non-adiabatic processes mixing of ζσ with other superhorizon degrees
of freedom. The ζσ mode for a comoving wave vector~k becomes constant once |~k/a| � H and mσ � H because the
mode functions involved in ζσ are governed by the Hubble friction once these conditions are satisfied.

Although the key correlator computation result of this paper involving β evaluated at the end of inflation is in-
dependent of the transfer function evolving the isocurvature degrees of freedom after the end of inflation, because
its immediate phenomenological application to CMB requires a transfer function describing this post-inflationary
evolution, we will restrict our illustration in Section IV to the situation when the chemical reaction rates that mix
σ and the radiation components are negligible. We will discuss in more detail the cross section constraint for this
condition in Appendix IV A.

B. Observational Constraints on Isocurvature Perturbation

The current observational data shows that the CMB power spectrum is consistent with the adiabatic initial condi-
tions. However, it does not rule out mixed boundary condition contributions from CDM isocurvature perturbations.
Schematically, the temperature fluctuations depend linearly on ζ and δS initial conditions as

∆T
T

= c1ζ + c2δS (23)

where ci ∼ O(1). Hence, the CMB temperature correlation data constrains

k3

2π2

ˆ
d3 p
(2π)3 〈

∆T(~p)
T

∆T∗(~k)
T
〉 = ∆2

ζ(k)
[
|c1|2 + |c2|2

α

1− α
− 2<

(
c∗1c2β

√
α

1− α

)]
(24)

where [2]
ˆ

d3 p
(2π)3 〈ζ(~p)ζ

∗(~k)〉 = ∆2
ζ(k)

2π2

k3 (25)

ˆ
d3 p
(2π)3 〈δS(~p)δ∗S(~k)〉 = ∆2

δS
(k)

2π2

k3 (26)

ˆ
d3 p
(2π)3 〈δS(~p)ζ∗(~k)〉 = ∆2

ζδS
(k)

2π2

k3 (27)

7 It is interesting to note that since number densities can diverge while gravitational physics does not care about number densities (in favor of
energy densities), this choice of variables is unfortunate in situations when there are IR divergences. In this paper, we stick to this convention
which is prevalent in literature.
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α ≡
∆2

δS
(k)

∆2
ζ(k) + ∆2

δS
(k)

, (28)

β ≡ −
∆2

ζδS
(k)√

∆2
ζ(k)∆

2
δS
(k)

, (29)

8which are customarily evaluated in the primordial epoch when k corresponds to a far superhorizon scale such that
the ∆2

X(k) objects are constant in time. Typically the data constraints are parameterized by evaluating α and β at a
pivot scale k = k0 [3, 85]. An important utility of this parameterization is the following fact: a necessary and sufficient
condition for the cross correlation to be a significant part of the isocurvature contribution is to have |β| & |c2/c1|

√
α

for α < 1. For example, in order to have approximately the same level of the angular power spectra from both pure
isocurvature correlation and and cross-correlation at the intermediate scale l ∼ 200, i.e. Cpure iso

l ∼ Ccross cor
l , the

fractional cross-correlation should satisfy |β| & 4× 10−2. Another utility of the β variable comes from the fact that
when there are non-trivial transfer functions governing ∆2

ζδS
and ∆2

δS
after the end of inflation, the transfer function

factors can cancel in the expression for β. We will use this feature later to compute β based on just the (quasi)-dS
mode function behavior.9

As far as the experimental numbers are concerned, the isocurvature contribution to the CMB temperature per-
turbation is expected to be roughly less than 10% compared to the curvature contribution. More precisely, the
Planck+WP limits [6–8] are

α|β=0 < 0.016 (95% CL) and α|β=−1 < 0.0011 (95% CL), (30)

where the isocurvature power spectrum is assumed to be scale-invariant, i.e. niso = 1. The significant difference in
the upper-bound of α between uncorrelated and totally (anti-)correlated cases can be explained by the ratio β/

√
α

already discussed above. The difficulty in improving the current isocurvature bound with data on short wavelengths
can be seen in Fig. 1, where one sees a fall-off of the isocurvature spectrum on short scales (l & 100). This fall-off
is generic and can be attributed to the transfer function effect encoded by c1(k)/c2(k) in Eq. (24) for k & keq (where
keq/a0 ∼ 10−2 Mpc−1 is the wave vector associated with matter radiation equality). To understand why c1(k)/c2(k)
generically becomes large for k & keq, note that isocurvature modes with k & keq enter the horizon during radiation
domination. Because the isocurvature effect on the temperature spectrum is gravitational, the value of c1(k)/c2(k) is
proportional to the ratio ρR(t(k))/ρσ(t(k)) of the radiation energy density to the energy density in the isocurvature
degree of freedom at the time t(k) when mode k & keq enters the horizon. Since shorter wavelengths enter the
horizon earlier, ρR(t(k))/ρσ(t(k)) is larger for shorter wavelengths, making c1(k)/c2(k) larger. For those readers not
familiar with this physics, some of the details of the transfer function are reviewed in Appendix A.

Because of the large differences in the constraints between β = 0 and β = −1, estimating the cross-correlation
is crucial to restrict parameters and give observable predictions of isocurvature models. In particular, the axion
scenario with a negligible homogeneous vacuum misalignment angle (and similarly the WIMPZILLA scenario with
a negligible homogenous background field value) predicts detectable non-Gaussianity [24, 30, 86]

fNL ∼ 30
( α

0.067

)3/2
(31)

provided the assumption the cross-correlation is zero, i.e. β = 0. However, as we will explain, this assumption is
not obvious for massive field quadratic isocurvature scenarios, and the reexamination of this assumption is one of
the goals of this paper.

III. COMPUTATION OF CORRELATORS

In order to provide the initial condition of the classical fluid equations, it is standard to compute the quantum
equal time correlators with the inflationary background approximated as a Bunch-Davies vacuum. In this section,

8 Our sign conventions are such that negative values for β correspond to a positive contribution of the cross-correlation term to the Sachs-Wolfe
component of the total temperature spectrum. See, e.g., [3, 85].

9 We will use the exact dS approximation for the massive σ and use the quasi-dS approximation for only the massless scenario. The corrections
coming from the the deviations away from the exact dS background in principle can be absorbed into the transfer function multiplying the
superhorizon mode function which cancel out in β due to a common appearance in the numerator and the denominator.
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Figure 1: Angular power spectra Cl from pure adiabatic(dotted), pure isocurvature(dashed) contributions. The solid red line
corresponds to be qualitatively the contribution of the absolute magnitude of the third term in Eq. (24). The plotted pure adiabatic
perturbation has the spectral index ns = 0.96. For isocurvature perturbations, the spectral index niso is 1 and the isocurvature
fraction α = 0.067 defined at k0 = 0.002 Mpc−1, and the fractional cross-correlation |β| is 1.

we compute the correlators using the “in-in” formalism (e.g. see Weinberg [87]). More specifically, in the context of
canonical quantization, we perturbatively compute the expectation value of an operator Q̂(t)〈

Q̂(t)
〉
= ∑

n
(−i)n

ˆ t

−∞
dt1

ˆ t1

−∞
dt2 · · ·

ˆ tn−1

−∞
dtn

〈[[[
Q̂I(t), Ĥ I(tn)

]
, Ĥ I(tn−1)

]
, · · · Ĥ I(t1)

]〉
, (32)

where the superscript I stands for the interaction picture and Q̂(t) represents a product of canonically quantized
operators.

In the scenario explained in Sec. II, we consider the gravitational coupling whose interaction Hamiltonian is de-
rived from the ADM formalism with a given choice of gauge. For the computation of the cross-correlation to leading
order in gravitational coupling, we need at least up to the cubic coupling H I

ζσσ, where σ is a spectator field during
inflation. The interaction Hamiltonian is diffeomorphism gauge-dependent. For two commonly used gauges, the
comoving gauge(δφ = 0) and the uniform curvature gauge(A = 0), we have

H I
ζσσ(t) = −1

2

ˆ
d3x a3(t) Tµν

σ (t,~x)δgµν(t,~x), (33)

δg(C)µν =

(
−2 ζ̇

H (− ζ
H + ε a2

∇2 ζ̇),i

(− ζ
H + ε a2

∇2 ζ̇),i a2δij2ζ

)
, (34)

δg(U)
µν =

(
2εζ ε a2

∇2 ζ̇,i

ε a2

∇2 ζ̇,i 0

)
, (35)

where Tµν
σ is the stress energy tensor of the field σ, and δgµν is the metric perturbation and the superscript (C) and

(U) denote the comoving gauge and uniform curvature gauge, respectively. A detailed derivation of the interaction
Hamiltonian using the ADM formalism is presented in Section C.

The isocurvature perturbation δS should be also written in terms of quantum operators associated with the energy
density ρσ of the particle σ. Since the energy density ρσ is written in bilinear form of σ and since the energy density of
CDM are often those of non-relativistic particles at the time of matching to classical equations, we may approximate
the energy density ρσ ≈ m2

σσ2. We then promote field σ to a quantum operator:

δσ ≡
δρσ

ρσ
≈ σ2 − σ̄2

σ̄2 → δ̂σ =
σ̂2 −

〈
σ̂2〉

〈σ̂2〉 . (36)
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The field σ̂ can be decomposed into the classical homogeneous background and the quantized perturbation, i.e.
σ̂ = σ̄ + δσ̂. Unlike the inflaton φ whose classical background is non-zero, because we consider the field σ̂ without
classical background, the leading density perturbation starts with the quadratic in the operator δσ̂2. As with any
quantum composite operator, we renormalize it with counter terms invariant under the underlying gauge symmetry
(here, it is diffeomorphism): (

σ̂2
)

r
=

(
δσ̂ + ∑

i
χ̂i

)2

+ δZ0 + δZ1R, (37)

where the subscript r denotes that the operator is a renormalized composite operator, R is the Ricci scalar, and χ̂i
are Pauli-Villars fields, which is described in Section D. We apply this to gauge-invariant isocurvature variable δS
defined in Section II A. Then we have

δ̂S
(C)

= − 3H
∂t〈(σ̂2)r〉

[(
σ̂2
)

r
− 〈
(

σ̂2
)

r
〉
]

, (38)

δ̂S
(U)

= − 3H
∂t〈(σ̂2)r〉

[(
σ̂2
)

r
− 〈
(

σ̂2
)

r
〉
]
− 3ζ̂. (39)

We will not write the hat explicitly from now on.
In the next subsection, we present how a non-diffeomorphism-invariant estimation of the cross-correlation leads

to an observationally attractive but grossly incorrect result. In subsections after that, we identify the problems with
the wrong estimate and calculate the cross-correlation properly.

A. Plausible but Wrong Estimation of the Cross-Correlation

In this subsection, we present a plausible estimation of the cross correlation that leads to a large value that is obser-
vationally interesting. Unfortunately, we will see in later subsections that the estimate presented in this subsection
can be many orders of magnitude off due to the explicit breaking of diffeomorphism invariance in the treatment of
the UV physics. Nonetheless, what is presented in this subsection is interesting both as a lesson in field theory and
as a motivation for the careful correct computation that follows later.

The isocurvature cross-correlation in the comoving gauge is written as〈
δ
(C)
S ζ

〉
≈
〈(

σ2)
r ζ
〉

〈(σ2)r〉
, (40)

where we have used ∂t
〈(

σ2)
r

〉
+ 3H

〈(
σ2)

r

〉
≈ 0 for the isocurvature field number density. For an order of mag-

nitude estimation, we consider a non-derivatively coupled part of the gravitational interaction, 2ζa2δijT
ij
σ ∈ H I

ζσσ.
Then the two-point function, shown diagrammatically in Fig. 2, is written in the Fourier space as

˜〈(σ2)r ζ〉Cp ∼
ˆ

d3x e−i~p·~x
ˆ t

d4z a3(tz)

〈[
σ2(t,~x)ζ(t,~0),

i
2

(
2ζa2δijT

ij
σ

)
z

]〉
(41)

∼ −4
ˆ

d3k1

(2π)3 d3k2δ3(~k1 +~k2 − ~p)
ˆ t

−∞
dtz a3

z

×Im

[
ζp(t)ζ∗p(tz)uk1(t)uk2(t)

{
1
2

~k1 ·~k2

a2 + 3
(

1
2

∂
(1)
t ∂

(2)
t −

1
2

m2
σ

)}
u∗k1

(tz)u∗k2
(tz)

]
(42)

where

〈̃AB〉p ≡
ˆ

d3x e−i~p·~x 〈A(t,~x)B(t, 0)〉 , (43)

ζp and uk are mode functions for ζ and σ, respectively, and ∂
(i)
t means the time derivative with respect to u∗ki

(tz).10

10 It is also helpful to remember that in terms of Fourier space operators/fields, the tilde notation is equivalent to

〈̃AB〉p =

ˆ
d3 p2

(2π)3 〈A(t,~p)B(t,~p2)〉
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This integral is UV divergent, and thus we introduce the horizon scale UV cut-off

ΛUV ∼ aHin f . (44)

Moreover, we neglect the contribution from the time range t < tp, where tp is the time when the scale p exits the
horizon since ζp is oscillatory before the horizon exit. Using the super-horizon approximation for mode functions
during inflation

ζk(t) =
1√

4εMp

H

k
3
2

ei k
aH (1− i

k
aH

), (45)

uk(t) ≈ a−
3
2 H−

1
2

{
2ν−1Γ(ν)

π
1
2

(
k

aH

)−ν

+ i
π

1
2

2ν+1Γ(1 + ν)

(
k

aH

)ν
}

, (46)

where ν ≡
√

9/4−m2/H2, the cross-correlation at the end of inflation time te is approximately

˜〈(σ2)r ζ〉Cp ∼
−1
8π2

∣∣∣ζo
p

∣∣∣2 H4

m2
σ

1−
(

p
aeH

) 2m2
σ

3H2

 (47)

where we used the relations m2
σ � H2 and

∣∣∣ζo
p

∣∣∣2 p3 = H2/4M2
pε is the mode function behavior in the long wave-

length limit. To understand the magnitude of this expression, note that for physical CMB scale comoving momenta,
we have

p
ae

= e−N(p)H (48)

for N(p) ∼ O(50). As long as

1� m2
σ/H2 & 1/N(p), (49)

we can estimate

˜〈(σ2)r ζ〉Cp ∼
−1
8π2

∣∣∣ζo
p

∣∣∣2 H4

m2
σ

(50)

which is an expression that is valid when the p is far outside of the horizon and a constant H is a good approximation.
Note that this does not vanish in the limit p→ 0. We will soon see that this non-vanishing behavior is incorrect and
is a signal of explicit breaking diffeomorphism invariance coming from Eq. (44). Note that if Eq. (49) is not satisfied
because mσ = 0, we have

˜〈(σ2)r ζ〉Cp ∼
H2

12π2

∣∣∣ζo
p

∣∣∣2 ln
p

aeH
(51)

∼ −N(p)
H2

12π2

∣∣∣ζo
p

∣∣∣2 (52)

which again does not vanish and is negative.
As explained around Eq. (24), the importance of the cross-correlation in the isocurvature bound depends on

whether β is of order 10−2 or larger and not by whether the cross correlation by itself is of the order of curva-
ture perturbations. To compute β defined in Eq. (29), we need an estimate of (σ2)r correlator which we can take from
[30]:

˜〈(σ2)r (σ
2)r〉

C
p ∼

1
2π2

H4

p3 f (mσ/H, p/aeH) (53)

where
A(t,~p) ≡

ˆ
d3xe−i~p·~x A(t,~x)

for generic operators/fields A and B.
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where f is a function which can have an exponentially small value owing to the functional behavior

f ∼ H2

m2
σ

(
p

aeH

) 4
3

m2
σ

H2
. (54)

Combining Eqs. (29), (47), and (53), we find

βwrong ∼
√

∆2
ζ

H
4mσ

(
p

ae H

)− 2
3

m2
σ

H2
(55)

∼ H
4mσ

e
2
3

m2
σ

H2 N−12 (56)

which after recalling that N ∼ O(50) and Eq. (49) gives some hope that a proper computation would give a large
value for β with mσ/H satisfying Eq. (49).11 For example, if |β| = O(1), then any appreciable isocurvature perturba-
tion would be ruled out with the current data, affecting predictions of [24, 30, 86].

Recall from Eq. (24) that the role of the cross correlation can become important if β can become sizable while keep-
ing α also sizable. One may worry that the enhancement factor in β of Eq. (53) which is approximately proportional
to α may make α negligible in the parameter regime in which β is enhanced. However, note that α is controlled not
just by Eq. (53) but by

˜〈δSδS〉p =

˜〈(σ2)r (σ
2)r〉

C
p

[〈(σ2)r〉]
2 (57)

which has a one point function squared in the denominator proportional to the energy density squared of σ. One
can straight forwardly check from Ref. [30] that the denominator of Eq. (57) can be tuned such that α can remain

constant while ˜〈(σ2)r (σ
2)r〉

C
p is sufficiently small as to enhance β as described in Eq. (56).

Given this generic possibility of ruling out a large class of isocurvature perturbation models, we consider below
the leading gravitational interaction contribution to β carefully. We find that unlike the naive estimate given in
Eq. (47), there is a suppression in the limit p/(aH) → 0 for the mass in the range of Eq. (49). The suppression
in the numerator of β precisely cancels the denominator suppression factor coming from f in Eq. (54) such that
no enhancement is obtained, contrary to the naive expectation of Eq. (56). This suppression of the numerator in
the proper computation not seen in the naive estimate can be attributed to a Ward identity associated with the
diffeomorphism group element of constant scaling of the spatial coordinates. Furthermore, a careful computation
that we give below will show that the sign of the cross-correlation will be opposite to the naive estimate, owing to
the fact that the cross correlation here is tied to particle production instead of volume dilution.

The detailed computation will address also explicitly how same answer to the gauge invariant correlator results
in two different gauges of comoving gauge and uniform curvature gauge (one can verify this is not obvious from the
naive estimate presented in this subsection). Another technical care that is taken in the computations below is to ex-
plicitly specify how diffeomorphism invariant counter terms are introduced to renormalize the composite operators
intrinsic to δS. Since the correct answer relies on a gravitational Ward identity, identifying proper diffeomorphism
invariant regulator and counter terms is important for a trustworthy computation. On the other hand, note that
the finite parts of the counter terms that remain after the divergences are canceled will not affect the results to the
leading h̄ expansion that we are concerned with.12

B. Plausible and Correct Estimation Using a Soft-ζ Theorem

Before we describe the actual computation, we give in this subsection a method akin to the soft-ζ theorem used
by [44, 47–52, 54–60] to estimate the correct answer without a detailed computation. We will also point out what

11 It is important to keep in mind that we are making an assumption here about the isocurvature evolution when identifying the primordial
computations of Eqs. (47) and (53) with the CMB observables of Eq. (29) where ci are computed according to the simple transfer treatment of
Appendix A. We will discuss this assumption more in detail in subsection IV A.

12 Note that particle production is non-perturbative in h̄.
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ad-hoc assumptions are needed to make this estimate using this theorem. A rigorous computation will be given in
subsection (III D).

In the soft-ζ theorem application to the correlators in inflation, one factorizes N-point function including at least
one soft external ζ into (N − 1)-point function times the two point function 〈ζζ〉. The well-known example is the
three-point function 〈ζζζ〉 in the squeezed limit in quasi-dS space:

ˆ
d3q

(2π)3

〈
ζ~qζ~kζ~p

〉 p→0−→ −
∣∣∣ζo

p

∣∣∣2 1
k3

∂

∂ ln k

[
k3 〈̃ζζ〉k

]
∼ − (ns − 1)

∣∣∣ζo
p

∣∣∣2 |ζo
k |2 (58)

where the superscript on the ζ mode functions denote long wavelength parts. To use this, note that if we neglect
renormalization of the composite operators, we can write

ˆ
d3q

(2π)3 〈ζ~pσ2(~q)〉 =
ˆ

d3k2

(2π)3

ˆ
d3k1

(2π)3 〈ζ~pσ(~k1)σ(~k2)〉. (59)

Using Eq. (58) and replacing two ζ fields with σ fields, we can estimate
ˆ

d3q
(2π)3 〈ζ~pσ2(~q)〉 p→0−→ −

∣∣∣ζo
p

∣∣∣2 ˆ
p

d3k2

(2π)3
1
k3

2

∂

∂ ln k2

[
k3

2 〈̃σσ〉k2

]
(60)

where the comoving IR cutoff p is required to treat ζo
p as a constant background field. This effective lower cutoff p

cannot be justified without explicit computation, but this is physically plausible because 〈σσ〉 does not have any IR
divergence as long as m2

σ > 0. One can rewrite the integral in Eq. (60) as
ˆ

d3q
(2π)3

〈
ζ~pσ2(~q)

〉 p→0−→
∣∣∣ζo

p

∣∣∣2 ∂

∂ ln a

〈
σ2(t,~x)

〉
p

(61)

where the σ2 on the right hand side corresponds to spacetime field (and not its Fourier transform), the p subscript on
the bracket corresponds to the IR cutoff in the mode function integral, and we assume that there is no contribution
from the UV cutoff. It is easy to prove that if p → 0 is well defined and a UV cutoff is not required, then the right
hand side of Eq. (61) vanishes in the limit p→ 0. This is in contrast with Eq. (47).

The vanishing of this function in the p → 0 limit for m2
σ > 0 is intuitively understood from the fact that in that

limit, ζo
p acts as a spatial diffeomorphism

~x → ~x(1 + ζ0
p) (62)

(which in turn effectively rescales the scale factor a by a constant factor if we neglect spatial derivatives on long wave-
lengths) which cannot change

〈
σ2(t,~x)

〉
=
〈
σ2(t, 0)

〉
. More explicitly, one can show that the explicit computation

can be rewritten as ˆ
d3q

(2π)3

〈
ζ~pσ2(~q)

〉 p→0−→ |ζp|2
ˆ

p

d3k
(2π)3

ˆ
d3xi〈[Q̂(t), σ̂(t,~x)σ̂(t, 0)]〉ei~k·~x (63)

where

Q̂(t) ≡
ˆ t

d4za3(tz)T̂
ij
σ (z)δija2(tz) (64)

is the generator of the diffeomorphism associated with Eq. (62). Note that the right hand side formally vanishes
when the IR cutoff is removed (i.e. p = 0) because in that limit, we find the commutator

〈[Q̂(t), σ̂2(t, 0)]〉 = 0. (65)

This can be interpreted also as a Ward identity. On the flip side, as long as p 6= 0,
〈
σ2(t,~x)

〉
p is not invariant under

the diffeomorphism Eq. (62). The crucial point from this perspective is that diffeomorphism invariance is extremely
important to see that the cross correlation vanishes for p → 0 for a massive scalar field. It is this that one failed to
preserve in Eq. (44).

As we will show in detail, Eq. (61) is consistent with the explicit computation. Note that a couple of assumptions
that we already mentioned in deriving Eq. (61) can only be justified by an explicit computation: namely, the effective
lower cutoff p in Eq. (60) and UV cutoff details associated with renormalizing the composite operator σ2. Such
complications do not arise in isocurvature scenarios without composite operators. Hence, one of the main technical
merits of this paper is to provide a explicit justification of Eq. (61). Note that because the diffeomorphism gauge
invariance plays a crucial role in obtaining the correct p dependence in Eq. (61) as explained around Eq. (65), we
choose a UV regulator that preserves diffeomorphism invariance in the computation below.
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C. Gauge Invariance of Correlators

Before we begin our explicit computation, we will check the setup of our computation by demonstrating that
the manifestly gauge invariant quantities 〈δSζ〉 and 〈δSδS〉 yield the same values in comoving and in the uniform
curvature gauges. To accomplish this, we use a gravitational Ward identity.

We first note that the ζ dependent metric perturbations δg(C) and δg(U) differs by a gauge transformation, i.e.

∆gµν = δg(U)
µν − δg(C)µν =

(
2 d

dt (
ζ
H ) (− ζ

H ),i

(− ζ
H ),i −a2δij2ζ

)
= −[LX ḡ]µν, (66)

where

X0 = − ζ

H
, Xi = 0. (67)

Their interaction actions differ by

∆Sσσζ = S(U)
σσζ − S(C)

σσζ = −
ˆ t f

dtd3xa3
x Tµν(ḡ, σ)∇µXν (68)

Their interaction Hamiltonians differ by

∆Hζσσ(t) = H(U)
ζσσ(t)− H(C)

ζσσ(t) =

ˆ
d3x a3(t)Tµν(ḡ, σ; t,~x)∇µXν(t,~x) (69)

Then we compare 〈σ2
x ζy〉 in the two gauges:

〈σ2(t f ,~x)ζ(t f ,~y)〉U − 〈σ2(t f ,~x)ζ(t f ,~y)〉C = −i
ˆ t f

dt
〈[

σ2
x ζy, ∆Hζσσ(t)

]〉
(70)

= −i
ˆ t f

dtd3z
〈[

σ2
x ζy,∇µ

(
a3(t)Tµν(ḡ, σ; t,~x)Xν(t,~x)

)]〉
(71)

where we have integrated by parts and used the quantum version of ∇µTµν
σ = 0: i.e. in-in formalism gravitational

Ward identities

i∇µ〈in|Tµν+
z σ+

x σ+
y |in〉g =

1√
gx

δ4(x− z)gαν
x

∂

∂xα
〈in|σ+

x σ+
y |in〉g

+
1√gy

δ4(y− z)gαν
y

∂

∂yα
〈in|σ+

x σ+
y |in〉g (72)

i∇µ〈in|Tµν−
z σ+

x σ+
y |in〉g = 0 (73)

whose the notation is explained in Section B. Note that the remaining term in Eq. (71) is a total derivative. Hence,
we are left with the boundary contribution

〈σ2(t f ,~x)ζ(t f ,~y)〉U − 〈σ2(t f ,~x)ζ(t f ,~y)〉C = −i
ˆ

d3z a3(t f )
1
H

〈[
σ2

x , T00
σ,z

]〉
〈ζzζy〉 (74)

= −∂t〈σ2
x〉

H
〈ζxζy〉. (75)

To make these composite operator correlators well defined while maintaining diffeomorphism invariance (see the
discussion surrounding Eq. (65)), we need a proper covariant regulator, such as the Pauli-Villars (PV) regulator. It is
straightforward to use the PV regulator here because the above identity holds for PV fields as well. See Appendix D
for a more detailed discussion of the prescription of the PV regulator.

Using Eq. (75), it is now trivial to show that 〈δSζ〉U = 〈δSζ〉C and 〈δSδS〉U = 〈δSδS〉C. Because δS 3 σ2
x /〈σ2

x〉, the
denominator of this expression also transforms:

∆δS 3 −
∆〈σ2

x〉
〈σ2

x〉
σ2

x
〈σ2

x〉
=

ζx

H
∂t〈σ2

x〉
〈σ2

x〉
σ2

x
〈σ2

x〉
(76)

which leads to a cancellation of Eq. (75) consistently to leading h̄ → 0 approximation. Hence, we have a nontrivial
consistency check of the computation that we are setting up.
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(σ2)r ζ
~p

~k1

~k2 = ~p− ~k1

Figure 2: Two-point function at one loop order.

D. Two-point Functions

In this subsection, we present a rigorous computation of β defined in (29). To this end, we need to calculate the
two-point function

〈(
σ2)

r ζ
〉

and
〈(

σ2)
r

(
σ2)

r

〉
where the renormalized composite operator [67, 88–99] is

(σ2)r ≡ (σ + ∑
n

χn)
2 + δZ0(Λ, mσ) + δZ1(Λ, mσ)R (77)

which is discussed in greater detail in Sec. (D 2). Here we are going to use the comoving gauge for the computa-
tion because of its advantages that we state below.13 As shown in Eqs. (33) and (34), the gravitational interactions
in the comoving gauge are derivatively (i.e. p2/a2) suppressed except the (ij)-components. In other words, the
contributions from T00

σ δg(C)00 and T0i
σ δg(C)0i interactions are O(p2/a2), where ~p is an external 3-momentum. Further-

more, all counter term contributions are also derivatively suppressed in the comoving gauge: δZ0 〈ζ〉 = 0 and

δZ1 〈̃Rζ〉Cp = O(p2/a2). Therefore, we don’t need the counter terms to compute the non-derivatively suppressed
contributions, but we still need a regulator for UV divergences in the computation. The regulator dependences and
the UV divergences will automatically disappear together in our final result.

Now we compute the two-point function shown in Fig. 2, which is written in the Fourier space as

˜〈(σ2)r ζ〉Cp =

ˆ
d3x e−i~p·~x

〈(
σ2(t,~x)

)
r

ζ(t,~0)
〉C

(78)

=

ˆ
d3x e−i~p·~x

ˆ t
d4z a3(tz)

s

∑
N=0

〈[
σ2

N(t,~x)ζ(t,~0),
i
2

(
2ζa2δijT

ij
σ

)
z

]〉
+ O

(
p2

a2

)
, (79)

where we have introduced the Pauli-Villars (PV) regulator (see Appendix D for more details) and

a2δijT
ij
σ = −3Lσ +

s

∑
N=0

CN

(∇
a

σN

)2
, (80)

where σ0 and σn are the physical field σ and the PV field χn (here, n ∈ {1, 2, ..., s}), respectively, and s is the number
of introduced PV fields.

Interestingly, this integral can be computed in any FRW space-time. We first compute the second term contribution
in Eq. (80) defined as

I(2)N (p) ≡
ˆ

d3x e−i~p·~x
ˆ t

d4z
√
−gz

〈[
σ2

N(t,~x)ζ(t,~0), iζzCN

(∇
a

σN

)2

z

]〉
(81)

13 This computation has been done also in the uniform curvature gauge, which is presented in Appendix E. Particularly, in the massless limit,
we explicitly calculate up to the next leading term including all gravitational couplings. This shows that the next leading terms are indeed
suppressed by the factor p2/a2.
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Expanding in mode functions, this becomes

I(2)N (p) = −4C−1
N

ˆ
d3k1

(2π)3 d3k2δ3(~k1 +~k2 − ~p)
ˆ t

−∞
dtza3

z

×
(
−
~k1 ·~k2

a2
z

)
Im
[
ζp(t)ζ∗p(tz)uN,k1(t)u

∗
N,k1

(tz)uN,k2(t)u
∗
N,k2

(tz)
]

, (82)

where uN are the mode functions for fields σN . Because ζ oscillates before and freezes after the horizon exit, we
neglect the contribution before the horizon exit. Furthermore, we can neglect the O(p2/a2) term and factor ζp out of
the time integral. We thus find

I(2)(p) ≈ 4
∣∣∣ζo

p(t)
∣∣∣2 ˆ d3k1

(2π)3 d3k2δ3(~k1 +~k2 − ~p)

×
ˆ t

tp

dtza3
z

(
~k1 ·~k2

a2
z

)
Im
[
uk1(t)u

∗
k1
(tz)uk2(t)u

∗
k2
(tz)

]
+ O

(
p2

a2

)
, (83)

where tp is the time at which scale p exits the horizon. Note that we drop subscript N and field normalization CN for
convenience, but we will put it back later in the final result. Moreover, we neglect the low momentum phase space,
i.e. min{k1, k2} < p, because of |uk|2 . O(k−3) and the spatial gradient factor~k1 ·~k2/a2.

ˆ
k1<p

d3k1

(2π)3 d3k2δ3(~k1 +~k2 − ~p)
ˆ t

tp

dtza3
z

(
~k1 ·~k2

a2
z

)
Im
[
uk1(t)u

∗
k1
(tz)uk2(t)u

∗
k2
(tz)

]
. O

(
p2

a2

)
. (84)

Then the main contribution of the integral comes from the phase space k1, k2 > p, and thus p behaves as an IR cut-off
(see the importance of this IR cutoff in the discussion surrounding Eq. (61)).

Since k1, k2 > p, we Taylor-expand the integrand with respect to p and take the leading term. Then we have

I(2)(p) ≈ 4
∣∣∣ζo

p(t)
∣∣∣2 ˆ

p

d3k1

(2π)3

ˆ t

tp

dtza3
z

(
− k2

1
a2

z

)
Im
[
u2

k1
(t)u∗2k1

(tz)
]
+ O

(
p2

a2

)
. (85)

Now we are going to compute the time integral. Recall that the differential equation for mode function uk is

ük + 3Huk +

(
k2

a2 + m2
)

uk = 0. (86)

Applying ∂
∂ ln k to the equation, we obtain

ÿk + 3Hyk +

(
k2

a2 + m2
)

yk = −2
k2

a2 uk, (87)

where yk ≡ ∂
∂ ln k uk. Note that the homogeneous solutions for yk are uk and u∗k . Thus, we use the Green function

method to find a solution

yk(t) =
ˆ t

dt′
a3(t′)

i
(
u∗k (t)uk(t′)− uk(t)u∗k (t

′)
) (
−2

k2

a2

)
uk(t′). (88)

From this, we find

d
d ln k

|uk(t)|2 = 2Re [u∗k (t)yk(t)] (89)

= 4
ˆ t

−∞
dtza3

z
k2

a2
z

Im
[
u2

k(t)u
∗2
k (tz)

]
(90)

=

[ˆ t

tp

dtz +

ˆ tp

−∞
dtz

]
4a3

z
k2

a2
z

Im
[
u2

k(t)u
∗2
k (tz)

]
. (91)
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The second term is oscillatory with respect to k so that we can safely neglect it after the momentum integral. Inserting
this back to the integral (85), we obtain

I(2)N (p) ≈ −C−1
N

∣∣∣ζo
p(t)

∣∣∣2 ˆ
p

d3k

(2π)3
d

d ln k
∣∣uN,k(t)

∣∣2 + O
(

p2

a2

)
(92)

= −C−1
N

∣∣∣ζo
p(t)

∣∣∣2 [− k3

2π2

∣∣uN,k(t)
∣∣2∣∣∣∣ΛUV

p
+ 3

〈(
σ2

N

)
p

〉]
+ O

(
p2

a2

)
, (93)

where we have put the subscript N and the field normalization CN back, and〈(
σ2

N

)
p

〉
≡
ˆ

p

d3k

(2π)3

∣∣uN,k(t)
∣∣2 , (94)

where the subscript p stands for the comoving IR cut-off of momentum. One can then compute the contribution of
the first term in Eq. (80) in a similar manner:

I(1)N ≡
ˆ

d3xe−i~p·~x
ˆ t

d4z
√
−gz

〈[
σ2

N(t,~x)ζ(t,~0), i (−3)Lσ(z)ζ(z)
]〉

(95)

= 3C−1
N

∣∣∣ζo
p

∣∣∣2 〈(σ2
N

)
p

〉
+ O

(
p2

a2

)
. (96)

Hence, we obtain

˜〈(σ2)r ζ〉Cp =
s

∑
N=0

I(1)N + I(2)N + O
(

p2

a2

)
(97)

=
∣∣∣ζo

p

∣∣∣2 p3

2π2

∣∣up(t)
∣∣2 + O

(
p2

a2

)
(98)

where up is the mode function for physical field σ.
Comparing the computation of Eq. (98) with the estimate in Sec. III A, we see two crucial differences:

1. There is a cancellation of the 3C−1
N

∣∣∣ζo
p

∣∣∣2 〈(σ2
N
)

p

〉
term that is sensitive to mode summation that extends to sub

horizon modes.

2. The ΛUV dependent term in Eq. (93) in the present computation disappears after accounting for the PV regu-
lator fields. In contrast, the estimate in Sec. III A leaves behind a ΛUV = aHin f dependent contribution due to
the ad hoc nature of the UV cutoff which does not preserve diffeomorphism.

Finally, putting the results (93) and (96) together, the two-point function becomes

˜〈(σ2)r ζ〉Cp
∣∣∣∣
te

=
∣∣∣ζo

p

∣∣∣2 ×


Γ2(ν)H2

π3

(
p

2a(te)H

)3−2ν
massive scalar in dS

H2
p

4π2 massless during quasi-dS
+ O

(
p2

a2

)
(99)

where Hp denote the Hubble scale at which scale p exits the horizon, ν =
√

9/4−m2/H2, and te reminds us that we
are evaluating this at the end of inflation. We have applied (quasi)-dS mode function in evaluating (99).14 One can
easily check that Eq. (47) is consistent with Eq. (60).

14 After inflation ends at time te, the cross correlation is expressed as

˜〈(σ2)r ζ〉Cp = fT
˜〈(σ2)r ζ〉Cp

∣∣∣∣
te

where fT accounts for the change in the mode-function behavior after the end of inflation. As alluded to in the discussion near Eq. (24), the

factor fT cancels out of the expression in β due to its appearance in the denominator
√

∆2
ζ ∆2

δS
. The factor fT can also account for the corrections

in the superhorizon mode function behavior during inflation due to deviations away from the exact dS background.
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As explained near Eq. (65), the vanishing of the cross-correlation in the limit p → 0 is expected from the dif-
feomorphism Ward identity. For a nonvanishing p, one might expect the cross-correlation should be O(p2/a2) by
Taylor-expanding the cross-correlation at p = 0. However, Eq. (99) interestingly shows that the leading term of
the cross-correlation is not analytic at p = 0 and thus not p2/a2-suppresed. Indeed, for any small p/a(te), we can
diminish the suppression by making 3− 2ν→ 0+ through the limit m/H → 0.

To finish the computation of β, we also consider the two-point correlator
〈(

σ2)
r

(
σ2)

r

〉
showing up in the denom-

inator. Again, the comoving gauge is convenient for this computation. Although the correlator is UV divergent,
because the counter terms associated with the divergence are derivatively suppressed, we do not need to include the
counter terms in computing the IR contributions and the non-derivative contribution of the correlator is insensitive
to renormalization. Furthermore, the IR contribution using the super-horizon approximation is not UV divergent.

That means the UV contribution and the IR contribution are cleanly separated. Thus, we can estimate ˜〈(σ2)r (σ
2)r〉

using only the super-horizon approximation unlike in the computation of ˜〈(σ2)r ζ〉. We find

˜〈(σ2)r (σ
2)r〉

C
p = 2

ˆ
ΛIR

d3k1

(2π)3 d3k2δ3(~k1 +~k2 − ~p)
∣∣uk1(t)

∣∣2 ∣∣uk2(t)
∣∣2 + O

(
p2

a2

)
(100)

where ΛIR is a comoving IR cutoff. Evaluating this with dS super horizon modes and assuming m < 3H/2, we find
the value at the end of inflation to be

˜〈(σ2)r (σ
2)r〉

C
p

∣∣∣∣
te

≈ 2
ˆ

ΛIR

d3k1

(2π)3 d3k2δ3(~k1 +~k2 − ~p)
2−4+4ν |Γ(ν)|4

π2
1

a6(te)H2

(
k1

a(te)H

)−2ν ( k2

a(te)H

)−2ν

(101)

≈ 1
2π2

H4

p3
1

3− 2ν

(
p

a(te)H

)6−4ν
[

1−
(

ΛIR
p

)3−2ν
]

. (102)

In Eq. (100), we have introduced a comoving IR cutoff ΛIR which corresponds to the statement that inflationary
era had a beginning in the finite past. Explicitly, we cannot use the Bunch-Davies vacuum boundary condition for
modes that left the horizon before the beginning of inflation. This means that

ΛIR
p
∼ e−(Ntot−N(p)) (103)

where Ntot is the total number of efolds of inflation, N(p) is the number of efolds before the end of inflation at which
the mode p left the horizon: i.e. p/a(N) = H. This cutoff is related to the box cutoff introduced in [86, 100, 101].
Numerically, ΛIR � p is irrelevant when

m2
σ

H2 �
1

Ntot − N(p)
. (104)

For situations in which this condition is violated, IR effects are important, and our computation is only qualitatively
suggestive since ΛIR has to be resolved using more detailed description of the beginning of inflation. In particular,
since we do not physically expect Ntot = ∞, mσ = 0 situation is not accurately captured by our computation. Of
course, the IR sensitivity here is not important as far as the importance of the cross correlation is concerned since
the qualitative behavior of having p/ΛIR → ∞ is to make the correlation even larger making the β parameter even
smaller. Finally, note that Eq. (104) can easily be more stringent than Eq. (49).

Hence, we conclude

β ≈


−mσ

H

√
∆2

ζ

6 massive scalar in dS

−
√

∆2
ζ

2

(
ln p

ΛIR

)−1/2
massless during quasi-dS

(105)

where for the massive scalar case is assume to satisfy Eq. (49). Although this in principle is a generic prediction of
isocurvature scenario, the magnitude of around 10−5 is difficult to probe experimentally since the current sensitivity
is at the level of 10−2.
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IV. APPLICATION

The β computation presented in Eq. (105) is not sensitive to ˙̄ρσ that is involved in the definition of the isocurvature
perturbation δS. Instead, it is a property of quadratic nature of the scalar composite operator during inflation. Since
Eq. (105) does depend on the masses, in this section, we motivate couple of the mass parameters from well-motivated
nonthermal dark matter models: WIMPZILLAs [102–121] and axions [122–124]. Although these two particles have
different physical origins, they share some common properties as a cosmological component. Firstly, since they are
massive (at the CMB time at least) and weakly interacting, they both are good CDM candidates. Also, they can be
gravitationally produced during or after inflation, and this gives rise to isocuvature from their density perturbations.
Furthermore, when their background field values are negligibly small, the isocurvature perturbation from these
particles is approximated by quadratic form σ2. In that case, they would present detectable non-Gaussianties [24, 30,
86] and their cross correlation is characterized by Eq. (105).

A. Weakness of σ Interactions with ψ

To connect our computation of β to observables, a post inflationary isocurvature scenario is necessary. For the
illustrative situations of axions and WIMPZILLAs, it is sufficient to assume that σ has an extremely weak interaction
with the reheating degrees of freedom ψ and the inflaton φ such that the transfer function of σ is trivial after inflation:
with sufficiently small interactions, α and β of Eqs. (28) and (29) computed during inflation can be directly matched
without any further transfer function computations to isocurvature initial condition for CMB codes such as CMB-
FAST. In this section, we quantify the requisite weakness of the interactions and qualitatively discuss the situation
when the weakness assumption is invalid. For example, we will show below that ordinary WIMPs are too strongly
interacting with the reheating degrees of freedom for this assumption to be valid while axions and WIMPZILLAs
are sufficiently weakly interacting. We also qualitatively describe what extra work needs to be done to apply this
paper for observations in situations in which the dark matter particles are not extremely weakly interacting.15

At the linearized classical equation of motion level, we have the gauge invariant perturbations {ζ j} being gov-
erned by a linear time evolution operator

O[{ζ j}] = 0 (106)

where the initial condition for the isocurvature species j = σ16 is given by

ζσ(ti) = f (ti) (107)

which in turn is set by the inflationary physics. For example, the initial time ti can be set to be the time of end of
inflation. The final ζσ(t f ) will contain contribution which does not vanish in the limit f → 0. Hence, one can write

ζσ(t f ) = Gσ
t f
[ f (ti), 0] + Gσ

t f
[0, ζ j 6=σ(ti)] (108)

where Gσ
t f
[D] is the σ component of the Green’s function derived from the linear operator O which takes the initial

data D and maps it to the final value of ζσ(t f ). Note that we have implicitly assumed the boundary condition such
that Gσ

t f
[0, 0] = 0 which means that Gσ

t f
[ f (ti), 0] vanishes as f (ti)→ 0.

Now, we will consider two situations in which bound the picture of super weakly interacting scenarios. In the first
scenario, the thermal plasma generated by the inflaton decay will interact with σ sufficiently strongly to make δS mix
strongly with ζ. In the second scenario, the inflaton decay to σ directly will realign σ fluctuations during radiation
domination to those of ζ, even though σ and reheating products are not interacting appreciably.

First, consider the effects of radiation dominated thermal plasma on σ. The mixing rate governing Gσ
t f
[0, ζ j 6=σ(ti)] is

the production rate of σ particles from the thermal plasma. Typically a single channel involving particle y dominates

15 Because of the cross correlation result in this paper is small, the discussion here is a bit academic if this discussion applied only to the cross
correlation result. However, the discussion here applies to the isocurvature 2-point function found in the literature [9, 30, 41–43, 100, 125, 126]
which has a realistic chance of being observable in near future experiments.

16 In our scenario, the isocurvature species stand for the degrees of freedom constrast with the radiation degrees of freedom.
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the production of the σ particle from the plasma. (If there are more channels, the discussion below can easily be
generalized.) We thus expect a qualitative behavior of

Gσ
t f
[0, ζ j 6=σ(ti)] ∼

(
1 + tanh

[
Γ(yy→ σσ, tmax)

H(tmax)

])
ζy (109)

where Γ(yy → σσ, tmax) is the reaction rate for this process at the time that the production rate is maximum (in
Γ(yy→ σσ, t) is maximum at t = tmax where tmax ∈ [ti, t f ]), H is the expansion rate, and ζy = O(ζtot).

Hence, one sees that the information about the isocurvature perturbations depend not only on

Γ(yy→ σσ, tmax)/H(tmax)

but on t f since tmax is restricted to be in the range tmax ∈ [ti, t f ]. For example, the usual CMB code is run starting
with an initial condition at T � TBBN. This means that t f � tBBN is required to use the inflationary correlator
computations in the CMB code. A general computation of Gσ

t f
needed for the prediction of isocurvature perturbation

effect on CMB temperature is beyond the scope of current work. To be able to trust the trivial transfer function of

Gσ
t f
[ f (ti), 0] ≈ f (ti)� Gσ

t f
[0, ζ j 6=σ(ti)], (110)

for superhorizon modes (where ti is say at the end of inflation17), we can require

Γ(yy→ σσ, tmax)
H(tmax)

� ζσ(ti)

ζtot
(111)

where tmax can be at any time between inflation and the time at which boundary conditions are set for the CMB
code. This sets a bound on the cross section 〈σv〉 for yy→ σσ to be

〈σv〉 � ζσ(ti)

ζtot(ti)

g3/4
∗
gy

(
TRH

106 GeV

)−1
4.2× 10−25 GeV−2 (112)

where the bound becomes more stringent for higher reheating temperatures.
This number should be compared to typical thermal WIMP DM candidate annihilation cross section of 10−9 GeV−2

and a high energy s-channel scattering at TRH mediated through a vector boson with a dimensionless coupling
g =

√
4παg:

〈σvyy→Aµ→light states〉 ∼
α2

g

T2
RH

(113)

=
( α

10−1

)2
(

TRH

106 GeV

)−2
10−14 GeV−2. (114)

Hence, one sees that WIMP dark matter cannot play the role of the isocurvature perturbations. That is why if we are
to identify our computation of α and β directly to physical observables, we have to choose the isocurvature degree
of freedom to be nonthermal.18

Even though the current work applies most immediately without changes to nonthermal dark matter scenarios
having extremely weak interactions, Eq. (112) is still much bigger than gravity mediated s-channel interactions

〈σvyy→gµν→σσ〉 ∼
1

16π2
T2

RH
M4

p
(115)

∼
(

TRH

106 GeV

)2
10−64 GeV−2. (116)

17 Note that as discussed in footnote 14, α can also receive corrections from the departures from the ideal dS mode function evolution as well as
from the time when m/H becomes larger than unity. As discussed there, the quantity β is not as sensitive to these corrections.

18 Similar arguments can also be made from unitarity [127].
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For example, axion cross sections for gluon coannihilation behave as [128]

〈σvag→X〉 ∼
α2

s
8π2

1
f 2
a

(117)

∼
(

fa

1012 GeV

)−2
10−28 GeV−2 (118)

where fa is the PQ breaking VEV. Hence, there is a large class of weakly interacting models for which this work di-
rectly applies without modification. For models for which Eq. (112) is not satisfied, one needs to compute the transfer
function associated with the mixing. Nonetheless, this work will still be useful in setting the initial conditions for
such computations.

Let’s see qualitatively what happens when Eq. (112) is not satisfied. In that case, we expect mixing between
isocurvature and curvature perturbations

ζσ(t f ) = Gσ
t f
[ f (ti), 0] + Gσ

t f
[0, ζ j 6=σ(ti)] ∼ O(ζσ) + O(ζtot). (119)

Since the curvature perturbations will analogously be

ζ(t f ) = GR
t f
[ f (ti), 0] + GR

t f
[0, ζ j 6=σ(ti)], (120)

we would then have

δS = 3
({

Gσ
t f
[ f (ti), 0]− GR

t f
[ f (ti), 0]

}
+
{

Gσ
t f
[0, ζ j 6=σ(ti)]− GR

t f
[0, ζ j 6=σ(ti)]

})
. (121)

Up to the accuracy that all species are equipartitioned, this quantity may vanish since there is cancellation in each of
the terms in the bracket. It is beyond the scope of the current work to compute more precisely this cancellation we
are focusing on scenarios which satisfy Eq. (112).

Suppose there is a direct decay of the inflaton to σ, and suppose there is no other appreciable interaction between
σ and other decay products of the inflaton. In that case, it is better to set the initial time ti to be at the time of inflaton
decay completion such that Gσ

t f
[ f (ti), 0] is still trivial. In that case, we have

ζσ ≡ −
A
2
+

δρ
(grav)
σ + δρ

(decay)
σ

3(ρ̄
(grav)
σ + ρ̄

(decay)
σ + P̄

(grav)
σ + P̄

(decay)
σ )

(122)

= r
(grav)
σ ζ

(grav)
σ + r

(decay)
σ ζ

(decay)
σ (123)

where ri has been defined in Eq. (11). Hence, we have

δS = 3(ζσ − ζR) (124)

= 3(r
(grav)
σ ζ

(grav)
σ + r

(decay)
σ ζ

(decay)
σ − ζR). (125)

If ζ
(decay)
σ = ζR is assumed, then

δS = 3
[

1− r
(decay)
σ

] (
ζ
(grav)
σ − ζR

)
. (126)

This equation says that if most of the inflaton energy density goes to σ, then the isocurvature is negligible.
In the next two subsections, we now consider couple of mass motivations for nonthermal dark matter isocurvature

candidates.

B. WIMPZILLA

The WIMPZILLA was originally proposed to avoid the restriction from the assumption that the dark matter is
a thermal relic. Thus, the WIMPZILLA is supposed to either be very heavy and/or very weakly interacting. In
particular, we consider the possibility that the WIMPZILLA is gravitationally produced during the phase transition
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out of the quasi-de-Sitter phase of inflation. In that case, the model is controlled by two parameters: the ratio of mass
to the Hubble scale of inflation mX/Hinf, and the reheating temperature TRH , where X denotes a massive scalar field.
Since the energy density is approximated as ρX ∼ m2

XX2 the relic density of X is estimated as

ΩXh2 ∼ 10−1
(

He

1012GeV

)2 ( TRH

106GeV

)
, (127)

where we have assumed that mX ∼ He, because a priori we know that we can find proper isocurvature and relic
density in this mass range. (For a more detailed discussion of the relic abundance, see for example [30].) The
isocurvature power spectrum depends on the details of the evolution of the background during inflation because
the mode function of massive particle decays as a−3+2ν (see a related discussion in footnote 17). However, we can
generally obtain α ∼ 0.067 if mX . Hin f , where Hin f is the Hubble expansion rate when the CMB scale crosses
the horizon [30]. The WIMPZILLA isocurvature has also the quadratic form like the axion. It thus generates the
observable non-Gaussianities estimated as Eq. (31). Eq. (105) translates to the fractional cross-correlation of

βWIMPZILLA ≈ −0.4
mX
Hin f

√
∆2

ζ (128)

which justifies the constraint used in [30]. Since the naive estimate of Eq. (56) gives a gross overestimate β, one of
the merits of this paper is to put such worries to rest through the proper computation.

C. Axion

In this subsection we assess the relevance of Eq. (105) to the axion scenario. Firstly, we review the axion scenario.
In 1997, Peccei and Quinn proposed the global U(1)PQ symmetry in order to solve to the strong CP problem in
the QCD. The axion is the Nambu-Goldstone boson associated with the symmetry after it is broken spontaneously.
Many mechanisms have been proposed to produce axions in the early universe. We focus only on the “vacuum
misalignment” mechanism here following Refs. [43, 126, 129–135]. In early universe, the axions are effectively
massless and gain their mass when the QCD anomaly term (which explicitly breaks PQ symmetry) becomes physical
after the chiral symmetry breaking QCD phase transition. After the universe cools down and the Hubble friction
drops below the axion mass, the axions begin to coherently oscillate and they contributes to the CDM component of
the universe because of their long lifetime.

Let us denote the PQ symmetry breaking scale by fa. Because na ∝ θ2 where θ is the axion angle, the relic axion
density is estimated as

Ωah2 ∼

2× 104
(

fa/N
1016 GeV

)7/6 〈
θ2〉 for Tosc & ΛQCD

5× 103
(

fa/N
1016 GeV

)3/2 〈
θ2〉 for Tosc . ΛQCD,

(129)

where we have neglected O(1) factors due to diffusion, anharmonic correction, and temperature-dependent mass
correction, and Tosc is the temperature at which the axion starts to oscillate. The axion isocurvature in comoving
gauge is written as

δ
(C)
s = ωa

θ2 −
〈
θ2〉

〈θ2〉 = ωa
2θiδθ + δθ2 −

〈
δθ2〉

〈θ2〉 , (130)

where ωa ≡ Ωa/ΩCDM, θi is the average of initial QCD vacuum angle θ over the observable universe, and δθ is
inhomogeneity of θ, i.e. θ(t,~x) = θi(t) + δθ(t,~x). Then the isocurvature power spectrum becomes

〈̃δsδs〉 ∼ ω2
a

3.5× 1010
(

fa/N
1016 GeV

)7/3
F̃ for fa/N & 6× 1017GeV

2× 109
(

fa/N
1016 GeV

)3
F̃ for fa/N . 6× 1017GeV,

(131)

where

F̃ = 4θ2
i 〈̃δθδθ〉+ ˜〈δθ2δθ2〉+ θi

[
〈δθδθ2〉+ 〈δθ2δθ〉

]
. (132)
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Since our primary interest is in the cross correlation with θi ≈ 0, we set it to zero.
Therefore, the adiabaticity parameter α defined in Eq. (28) is estimated as

α ∼ ω2
a

1.3× 1019
(

fa/N
1016GeV

)7/3
∆2

θ for fa/N & 6× 1017GeV

8.1× 1017
(

fa/N
1016GeV

)3
∆2

θ for fa/N . 6× 1017GeV,
(133)

∆2
θ(p) =

p3

2π2
˜〈δθ2δθ2〉

=

(
fa

N

)−4
(

H2
p

2π2

)2

ln
p

ΛIR
, (134)

where Hp is the Hubble scale at the horizon exit of mode p, and ΛIR is an IR cut-off. Here we have used Eq. (102) with
the assumption that the axion is effectively massless during inflation. In the case that θi � δθ, the isocurvature has
the quadratic form of gaussian variable δθ, and it naturally becomes non-Gaussian perturbation. The isocurvature
non-Gaussianity is estimated as Eq. (31).

These parameter constraints and predictions (129), (133) and (31) already have been investigated in the literature
[24, 43, 86, 126] with the assumption that the axion isocurvature and the curvature is uncorrelated. Our result from
Eq. (105) is

βaxion = −

√
∆2

ζ

2

(
ln

p
ΛIR

)−1/2
. 2.5× 10−5 (135)

which is consistent with the assumptions made in the literature.

V. SUMMARY

In this paper, we have presented the first explicit computation of the gravitational interaction contribution to
the cross-correlation between the curvature and quadratic isocurvature perturbations (which include dark matter
isocurvature candidates such as axions and WIMPZILLAs). Since the necessary and sufficient condition for the
cross-correlation to dominate over the isocurvature perturbations in the temperature two-point function is |β| &
4× 10−2, we have explicitly computed β, which incidentally is not sensitive to the background number density of
the isocurvature degrees of freedom and post-inflationary mode function changes on superhorizon scales. Although
a naive estimate of β based on a diffeomorphism violating UV cutoff leads to the possibility of β ∼ O(1) due to
a large ratio that can appear between the numerator and the denominator of the expression for β, our explicitly
diffeomorphism invariant computation leads to |β| . ∆ζ /2 ≈ 2.5× 10−5 because the numerator has a suppression
as a consequence of a diffeomorphism Ward identity. Unfortunately, this is far below the current observational
sensitivity of |β| & 10−2.

The smallness of the cross-correlation is explained by the fact that the super-horizon mode of the curvature per-
turbation ζ can be smoothly connected to the gauge mode, which is the spatial dilatation, in the zero external mo-
mentum limit. Hence, Eq. (98) vanishes when p = 0 and m 6= 0. In other words, this can be seen as a suppression
due to a diffeomorphism Ward identity (i.e. uniform spatial rescaling invariance). A nontrivial structure revealed
through our explicit computation is the suppression’s non-analytic structure with respect to p: the cross correlation
cannot be Taylor-expanded at p = 0, and this contribution is not p2/a2-suppressed.

Our rigorous result which incorporates UV renormalization of the composite operator in the curved background
is also shown to be consistent with an estimate based on a soft-ζ theorem, which allows one to factorize 〈ζζ〉 from〈

σ2ζ
〉

as explained in Eq. (61). However, Eq. (61) requires two assumptions that can only be justified by an honest
computation such as what is presented in subsection III D:

1. There is an effective IR cutoff of p in evaluating 〈σ2〉 due to the external momentum p inserted into the com-
posite operator.

2. The only UV renormalization property of 〈σ2〉 that is relevant to leading h̄ approximation is the preservation
of diffeomorphism invariance.
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Note that the proper diffeomorphism invariant UV treatment also allowed us to demonstrate that the cross-
correlation is indeed gauge-invariant with one-loop correction through the gravitational coupling. This gauge invari-
ance is checked explicitly by computing our cross correlation in both the comoving gauge and the uniform curvature
gauge.

Physically, the curvature perturbation ζ can affect the particle density ρσ and generate correlations only at its
horizon crossing, because ζ freezes out after its horizon exit, after which it can be effectively treated as a gauge mode.
Positive cross correlation corresponds to the situation in which the 1+ ζ enhancement in the expansion enhances the
particle production (assuming that this enhances inhomogeneity) while the negative cross correlation corresponds to
the situation in which the 1+ ζ enhancement in the expansion dilutes the particle inhomogeneity. The latter dilution
effect leads to β > 0, while the particle production enhancement effect corresponds to the quadratic scenario that we
were interested in this paper. This explains the sign β < 0 of our result.

Given the robustness of the smallness of β, the gravitational interaction contribution to the cross correlation should
be negligible in most nonthermal dark matter isocurvature scenarios. In addition to giving a concrete computation
that supports this statement, our work serves as an interesting lesson in computing correlators of composite opera-
tors in curved spacetime in the context of inflationary cosmology.
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Appendix A: Behaviors of Transfer functions for Adiabatic and Isocurvature initial condition

The CMB temperature fluctuation with the leading order approximation (the integrated Sachs-Wolfe term is ne-
glected) in the Newtonian gauge (B = F = 0, E = 2Φ, A = −2Ψ) is

∆T
T
≈ 1

4
δγ|r + Φ|r , (A1)

where the perturbations on the rhs are evaluated at the recombination. We can obtain these perturbations by solving
the Einstein and Boltzmann equations with given initial conditions. A projection from a given initial condition to
the final CMB temperature fluctuation is called transfer function. In the following subsections, we calculate that the
k-dependence of the transfer functions for the adiabatic and the isocurvature initial conditions. In particular, we
show that the isocurvature transfer function has the additional suppression factor keq/k compared to the adiabatic
one for small scale k� keq. Here we basically follow the calculation by Ref. [136, 137].

1. Perturbation Equations

For explicit computation, we choose the Newtonian gauge for the scalar metric perturbation (2). For simplicity, we
consider only photon and CDM fluids, which are denoted in the following equations by subscript γ and m, respec-
tively. This assumption is valid for the sake of identifying the difference between transfer functions for adiabatic and
isocurvature initial conditions, although baryon and neutrino should be taken into account for accurate description
for transfer functions.

The conservation equations for dark matter and photon fluids in Fourier space are

δ′m = k2Vm + 3Ψ, (A2)
V′m = −HVm −Φ, (A3)

δ′γ =
4
3

k2Vγ + 4Ψ′, (A4)

V′γ = −1
4

δγ −Φ, (A5)

where ’ denotes the time derivative with respect to conformal time η,H ≡ a′/a, δa ≡ δρa/ρa. Note that Φ = Ψ since
they are perfect fluids. VX is the peculiar velocity for fluid X. These four equation are combined by eliminating VX ,
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and we have (
a
(
δ′m − 3Φ′

))′
= ak2Φ, (A6)

δ′′γ = 4Φ′′ − k2

3
(δγ + 4Φ) . (A7)

The evolution of the metric perturbation is encoded in the Einstein equations. (00) and (ii) components are

k2Φ + 3H
(
Φ′ +HΦ

)
= − 1

2M2
p

a2 (ρmδm + ργδγ) , (A8)

Φ′′ + 3HΦ′ +
(

2
a′′

a
−H2

)
Φ =

1
6M2

p
a2ργδγ. (A9)

Combining with other components, we also find the Poisson equation

−k2Φ =
3
2
H2
[

Ωmδm + Ωγδγ − 3H
(

ΩmVm +
4
3

ΩγVγ

)]
. (A10)

With the definition of isocurvature (20) in Section II

δS = δm −
3
4

δγ, (A11)

where we have used pγ = ργ/3 and pm = 0, we rewrite the differential equations of fluid and metric perturbations
in terms of Φ and δS

Φ′′ + 3H
(

1 + c2
s

)
Φ′ +

[
2H′ +H2

(
1 + 3c2

s

)]
Φ + k2c2

s Φ = −2
3

c2
s

M2
p

a2ρmδS, (A12)

1
3c2

s
δ′′S +

a′

a
δ′S +

k2y
4

δS = −1
6

y2k4τ2
eqΦ, (A13)

where

y ≡ a
aeq

=
ρm

ργ
, τeq =

√
2

aeqHeq
, c−2

s ≡ 3
(

1 +
3
4

y
)

. (A14)

In η → 0 limit, Eqs. (A12) and (A13) admit two linearly independent solutions Φ(k, η → 0) = Φi(k), δS(k, η → 0) =
0, and Φ(k, η → 0) = 0, δS(k, η → 0) = δi

S(k), which corresponds to adiabatic initial condition and isocurvature
initial condition, respectively.

2. Adiabatic Initial Condition

For large scale perturbations, which enters the horizon later than the recombination. δS remains zero according to
Eq. (A13), and thus Eq. (A12) is rewritten as

d2Φ
dy2 +

21y2 + 54y + 32
2y(y + 1)(3y + 4)

dΦ
dy

+
Φ

y(y + 1)(3y + 4)
= 0, (A15)

where is called as Kodama-Sasaki equation. This differential equation can be exactly solved, and we find

Φ(kl , y� 1) =
9

10
Φi(kl), (A16)

where the subscript l stands for “super-horizon”. For photon energy density δγ, Eq. (A4) in the long wavelength
limit yields

1
4

δγ −Φ = const. (A17)
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and also Eq. (A8) gives

δγ(kl,η → 0) = −2Φ(kl , η) = −2Φi(kl). (A18)

For small scale perturbation, which enter the horizon during the radiation dominated(RD) era, in the early RD
limit η � ηeq, Eq. (A12) becomes

Φ′′ +
4
η

Φ′ +
k2

3
Φ = 0, (A19)

and its solution with the adiabatic initial condition

Φ(ks, η < ηeq) =
3

(wη)3 (sin wη − wη cos wη)Φi(ks), (A20)

where w = k/
√

3. After the perturbation enters the horizon,

Φ(ks, η < ηeq) ≈ −
3 cos wη

(wη)2 Φi(ks), (A21)

δγ(ks, η < ηeq) ≈ −
2M2

p

ργa2 Φ(ks, η) = 6Φi(ks) cos wη, (A22)

where the subscript s means “sub-horizon”, and the second equation is obtained by the Poisson equation (A10).
Plugging this solution into Eq. (A6), we find that

δm(ks, η < ηeq) ≈ −9Φi(ks)

(
ln wη + γ− 1

2

)
, (A23)

where γ is the Euler Gamma constant. This shows that the dark matter density perturbation grows logarithmically
during the RD era.

Now we should match this with the solutions in the matter dominated(MD) era. Because the time derivatives of
Φ is negligible compared to the spatial derivatives, Eq. (A6) is approximated as

δ′′m +Hδ′m ≈ −k2Φ ≈ 3
2
H2Ωmδm, (A24)

where we have used the Poisson equation (A10). Then, it is rewritten as

y(1 + y)
d2δm

d2y
+

(
1 +

3
2

y
)

dδm

dy
− 3

2
δm = 0, (A25)

and its general solution is

δm = c1

(
1 +

3
2

y
)
+ c2

[(
1 +

3
2

y
)

ln

√
1 + y + 1√
1 + y− 1

− 3
√

1 + y

]
. (A26)

Matching this solution with Eq. (A23) at y� 1, we find

δm(ks, η > ηeq) = −9Φi(k)
(

ln 2wη∗ + γ− 7
2

)(
1 +

3
2

y
)
+ 9Φi(k)

[(
1 +

3
2

y
)

ln

√
1 + y + 1√
1 + y− 1

− 3
√

1 + y

]
,

→ −27
2

yΦi(k)
(

ln 2wη∗ + γ− 7
2

)
when y� 1. (A27)

where η∗ ≡ ηeq/
(√

2− 1
)
= 2τeq. Note that we have used the results from the Friedman equation

H2 =
a2

eqH2
eq

2

(
1
y
+

1
y2

)
, (A28)

y =
η2(

2τeq
)2 +

η

τeq
, (A29)
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and Eq. (A27) corresponds to Eq. (150) in Ref. [137].
Then using Eqs. (A10) and (A27), we get

Φ(ks, η > ηeq) ≈
ln
(
0.15ksηeq

)(
0.27ksηeq

)2 Φi(ks). (A30)

This shows that the gravitational potential is frozen after the matter-radiation equality. Similarly, we first find the
general solution of Eq. (A7) for sub-horizon modes

δγ = c1 cos wη + c2 sin wη − 4Φ, (A31)

where we have neglected that time derivatives of Φ. Then matching this with Eq. (A22), we get

δγ(ks, η > ηeq) ≈
[

6 cos (wη)− 4
ln
(
0.15ksηeq

)(
0.27ksηeq

)2

]
Φi(ks). (A32)

Now we return factors due to the Silk damping and the acoustic sound speed

δγ(ks, η > ηeq) ≈
[

35/4
√

4cs cos
(

ks

ˆ η

cs(η
′)dη′

)
e−(ks/kD)2 − 4

3c2
s

ln
(
0.15ksηeq

)(
0.27ksηeq

)2

]
Φi(ks), (A33)

which is Eq. (153) in Ref. [137]. Notice that the the first term is dominant for the scales we are interested in. However,
the second term becomes important for very small scales where the diffusion damping is not negligible, k & kD.

Finally, the SW term (A1) becomes

∆T
T
≈
{

6Φi(k) cos wη if k > keq
3

10 Φi(k) if k < η−1
r .

(A34)

Note that

ζ i ≈ ζ i
R = −Φi +

1
4

δi
γ = −3

2
Φi. (A35)

3. Isocurvature initial condition

For large scale perturbations, δS remains constant, and Eq. (A12) has the solution

Φ(kl , η) = −
( x

5

) x2 + 6x + 10

(x + 2)3 δi
S(kl), (A36)

where x ≡ η/ηeq. In the MD era, Eq. (A36) gives

Φ(kl , η � ηeq) = −
1
2

δm(kl , η � ηeq) =
1
4

δγ(kl , η � ηeq) = −
1
5

δi
S(kl), (A37)

where the last two equations are obtained from Eq. (A8).
Now, we will see how the perturbations evolve during the RD era, and how they are connected small scale pertur-

bations. In the early RD era, the source term and the last term on the left hand side of Eq. (A13) is negligible because
they are higher order in y. Thus, the solution δS remains constant even inside the horizon. In that case, Eq. (A12)
becomes Eq. (A19) with the source term δS/2yη2

eq. Then we find its solution that matches with Eq. (A36)

Φ(k, η < ηeq) = −
η

ηeq

1

(wη)4

[
1 +

(wη)2

2
− (cos wη + wη sin wη)

]
δi

S(k). (A38)
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Furthermore, in the wη → 0 limit, we have

Φ(kl , η < ηeq) ≈ −
1
8

δi
S(kl)

(
1− (wη)2

18

)
y, (A39)

and putting this into Eq. (A8), we find that

δγ(kl , η < ηeq) ≈ −
1
2

δi
S(kl)

(
1− 7

18
(wη)2

)
y, (A40)

δm(kl , η < ηeq) ≈ δi
S(kl)

(
1− 3

8
y
)
+

7
48

δi
S(k)y (wη)2 . (A41)

As explained in Section II B, we have that Φ and δγ grows like a during the RD era, meanwhile δm decreases.
For sub-horizon modes, Eq. (A38) becomes

Φ(ks, η < ηeq) ≈ −
y

(wη)3

(wη

2
− sin wη

)
δi

S(ks), (A42)

and again plugging this into Eq. (A8) yields

δm(ks, η < ηeq) ≈ −
(

3
2

sin wη

wη
y− 1

)
δi

S(ks), (A43)

δγ(ks, η < ηeq) ≈ −
2 sin wη

wη
yδi

S(ks). (A44)

Matching these with general solutions of perturbations (A26) and (A31), and also using Poisson equation (A10) in
the MD era, we get

δm(ks, η > ηeq) ≈
(

1 +
3
2

y
)

δi
S(ks), (A45)

δγ(ks, η > ηeq) ≈
[
− 1

0.35ksηeq
sin (wη) + 4

1(
0.8ksηeq

)2

]
δi

S(ks), (A46)

Φ(ks, η > ηeq) ≈ −
1(

0.8ksηeq
)2 δi

S(ks), (A47)

Then the SW term becomes

∆T
T
≈
{
− 1

0.35kηeq
δi

S(k) sin (wη) if k > keq

− 2
5 δi

S(k) if k < η−1
r .

(A48)

Now we see from Eqs. (A34) and (A48) that the isocurvature transfer function has the additional suppression factor
keq/k compared to the adiabatic one for small scale k > keq.

Appendix B: Review of Diffeomorphism Invariance

A symmetry in a classical field theory is preserved at the quantum level, if the regulator preserves this symmetry
and if the functional measure is invariant under the symmetry transformation. The quantum symmetry is reflected
in the transformation of the correlation functions.

For example, consider a scalar field σ on a fixed manifold (M, g). The two point function is

〈σ(x)σ(y)〉g =

ˆ
DφeiS(σ;g)σ(x)σ(y) (B1)

The two point function only depends on the metric field g and points x, y. Intuitively, the symmetry says for any
diffeomorphism ϕ :M 7→M, the metric field and the points changes as

g 7→ g̃ = (ϕ−1)∗g, x 7→ x̃ = ϕ(x), y 7→ ỹ = ϕ(y) (B2)
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then the two-point function should remain invariant, i.e.

〈σ(x)σ(y)〉g = 〈σ(x̃)σ(ỹ)〉g̃. (B3)

The Ward identity is the infinitesimal version of this relation.
Let ϕ = exp(εX), then

g̃ = exp(−εX)∗g = g− εLX g + · · · (B4)

S(g̃, σ) = S(g, σ)− ε

ˆ
d4x
√

g
1
2

Tµν
σ LX(g)µν + · · · (B5)

σ(x̃) = σ(x) + εLXσ(x) + · · · (B6)

Plugging this into Eq. (B3) and Taylor expand with respect to ε, one get

−i
ˆ

d4z
√

g
1
2
LX(g)µν(z)〈Tµν

z σxσy〉g + 〈LX(σ)xσy〉g + 〈σxLX(σ)y〉g = 0. (B7)

Or equivalently, using

LX(g)µν = ∇µXν +∇νXµ (B8)

and perform integration by part, we obtain

i∇µ〈Tµν
z σxσy〉g =

1√
gx

δ4(x− z)gαν ∂

∂xα
〈σxσy〉g +

1√gy
δ4(y− z)gαν ∂

∂yα
〈σxσy〉g (B9)

which is the Ward identity for the path ordered vacuum expectation value. We can then write down the in-in
expectation value Ward identity as

i∇µ〈in|Tµν+
z σ+

x σ+
y |in〉g =

1√
gx

δ4(x− z)gαν
x

∂

∂xα
〈in|σ+

x σ+
y |in〉g

+
1√gy

δ4(y− z)gαν
y

∂

∂yα
〈in|σ+

x σ+
y |in〉g (B10)

i∇µ〈in|Tµν−
z σ+

x σ+
y |in〉g = 0 (B11)

where we kept the external operator inserted on the forward branch. The fact that Eq. (B11) has no contact term is
easy to understand, since Tµν−

z is inserted on the backward time branch of the manifold, it can never contact points
x and y.

Appendix C: ADM formalism and Interaction Hamiltonian

We consider an inflationary model with the inflaton φ and an extra free massive scalar σ, where σ is only gravita-
tionally coupled with φ.

S =

ˆ
(dx)

1
2

M2
pR + [−1

2
gµν∂µφ∂νφ−V(φ)] + [−1

2
gµν∂µσ∂νσ−U(σ)] (C1)

where M2
p = 1

8πG = 1 and (dx) = d4x
√
|det(gµν)|. The metric can be parametrized using ADM formalism [138]19,

gµν =

( −N2 + hijNi N j hijN j

hijN j hij

)
, gµν =

(
−N−2 Ni N−2

Ni N−2 hij − Ni N jN−2

)
, (C2)

19 We use (−+++) sign convention for the metric, and physical time t .
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where hij is the metric tensor on the constant time hyper-surface, and hij is the inverse metric. We use Latin indices
i, j · · · for objects on the 3-dimensional constant time hyper-surface, and we use hij and hij to raise and lower the
indices. Then the action (C1) is rewritten as

S =
1
2

ˆ
(dx)
√

h
[

NR(3) − 2NV(φ)− 2NU(σ) + N−1
(

EijEij − E2
)
+ N−1

(
φ̇− Ni∂iφ

)2
− Nhij∂iφ∂jφ (C3)

+N−1
(

σ̇− Ni∂iσ
)2
− Nhij∂iσ∂jσ

]
,

where Eij and E are given by

Eij =
1
2
(ḣij −∇(3)

i Nj −∇(3)
j Ni). (C4)

E = Eijhij. (C5)

Consider the background solution driven by the inflaton,

φ(0) = φ̄(t), σ(0) = 0, g(0)µν =

( −1 0
0 a2(t)δij

)
, (C6)

where they satisfy the background equations of motion

3H2 =
1
2

˙̄φ2 + V(φ̄) (C7)

Ḣ = −1
2

˙̄φ2 (C8)

¨̄φ + 3H ˙̄φ + V′(φ̄) = 0. (C9)

The action for the perturbations can be obtained by Taylor-expanding the full action around the background solution.
However, we may reduce the number of variables by imposing the ADM constraints:

0 =
1
N
[R(3) − 1

N2 (EijEij − E2)]− 2NT00 (C10)

0 =
2
N
∇(3)

i [
1
N
(Eij − Ehij)] + 2N jT00 + 2T0j (C11)

where

Tµν = Tµν
φ + Tµν

σ , (C12)

Tµν
φ = −gµν

[
1
2
(∂φ)2 + V(φ)

]
+ ∂µφ∂νφ, (C13)

Tµν
σ = −gµν

[
1
2
(∂σ)2 + U(σ)

]
+ ∂µσ∂νσ, (C14)

and choose a gauge.
One commonly used gauge is the comoving gauge, defined by 20

δφ = 0, γii = 0, ∂iγij = 0 (C15)

where

hij = a2(t)[eΓ]ij, Γij = 2ζδij + γij (C16)

20 In this section, Latin indices i, j are raised and lowered by δij, and repeated indices are contracted.
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The solution of N and Ni is

N(1,C) =
ζ̇

H
, N(1,C)

i = ∂i[−
ζ

H
+ ε

a2

∇2 ζ̇]. (C17)

We find the scalar metric perturbations are

δg(C)µν =

(
−2 ζ̇

H (− ζ
H + ε a2

∇2 ζ̇),i

(− ζ
H + ε a2

∇2 ζ̇),i a2δij2ζ

)
, (C18)

where ε ≡ Ḣ/H2. Plugging in the linear metric perturbation back to the action (C3), we can get the perturbed action
action up to cubic order

S(C) = S(C)
ζζ + S(C)

σσ + S(C)
γγ + S(C)

ζζζ + S(C)
ζσσ + · · · (C19)

where

S(C)
ζζ =

ˆ
dtd3xa3

xε(ζ̇2 − (
∇
a

ζ)2) (C20)

S(C)
ζσσ =

ˆ
d4xa3

x[T
ij
σ a2δijζ + T0i

σ (− ζ

H
+ ε

a2

∇2 ζ̇),i − T00
σ

ζ̇

H
]. (C21)

The ζ cubic interaction and graviton actions can be found in [44].
Another commonly used gauge is the uniform curvature gauge, in which

hij = a2(t) [eγ]ij , γii = 0, ∂iγij = 0. (C22)

In this gauge, the inflaton degree of freedom is in δφ. However, this degree of freedom can be represented using the
gauge-invariant variable

ζ = −H
˙̄φ

δφ(U) (C23)

In this gauge, the ADM constraint renders

N(1,U) = −εζ, N(1,U)
i = ∂i[ε

a2

∇2 ζ̇] (C24)

We get the linear metric perturbation as

δg(U)
µν =

(
2εζ ε a2

∇2 ζ̇,i

ε a2

∇2 ζ̇,i 0

)
(C25)

The free action is the same as in Eq.(C20), and σ-ζ cubic interaction action is

S(U)
ζσσ =

ˆ
d4xa3

x[T
00
σ εζ + T0i

σ ε
a2

∇2 ζ̇,i]. (C26)

From these perturbed actions, we can obtain the interaction Hamiltonian. Particularly, note that up to the cubic
interaction, Lint = −Hint. Thus Sζσσ = − ´ dt Hζσσ(t).

Appendix D: Renormalization of Composite Operators

In renormalized perturbation theory, one requires a regulator and renormalization condition. In order to preserve
the diffeomorphism invariance, we need to adopt a covariant regulator. Here we choose Pauli-Villars (PV) regulator,
following [139, 140]. We will first review PV regularization in subsection D 1, and renormalize σ2 in subsection D 2.
For correlators involving time integrals, we describes the adiabatic expansion of time integral in subsection (D 3).
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1. Pauli-Villars Regularization

We introduce a set of scalar regulator fields χn for n = 1, · · · , s with the following free Lagrangian

LPV =
s

∑
n=1

Cn

(
−1

2
gµν∂νχn∂νχn −

1
2

M2
nχ2

n

)
. (D1)

The number of regulator fields s depends on how many independent divergences one need to remove. In order to
eliminate UV divergences up to some even order 2D,we must take the Cn and regulator masses Mn to satisfy

s

∑
N=0

C−1
N = 0 ,

s

∑
N=0

C−1
N M2

N = 0, · · · (D2)

s

∑
n

C−1
n M2D

n = −m2D
σ (D3)

where we used the notation M2
0 = m2

σ and C0 = 1, and let σ0 = σ and σn = χn. We use Λ to represent the set of Mn,
and the regulator dependence should be removed by counter terms when Mn goes to ∞ together.

On a homogeneous FRW background, the physical and regulator scalar field can be quantized as

[σN , σ̇M] = ia−3(t)δ3(~x−~y)δNMC−1
N (D4)

with the following mode decomposition

σN(~x, t) =

ˆ
d3k

(2π)3 (aN,~kuN,~k(t) + c.c) (D5)

[aN,~p, a†
M,~k

] = (2π)3 C−1
N δNMδ3(~k− ~p), (D6)

where uN,~p(t) satisfies the usual equation of motion

üN,k + 3Hu̇N,k +

(
k2

a2 + M2
N

)
uN,k = 0 (D7)

with the Bunch-Davies initial condition

uN,k(t)→
1√

2ka(t)
exp

(
−i
ˆ t k

a(t′)
dt′
)

for t→ −∞ (D8)

and Wronskian conditions21

uN,ku̇∗N,k − u̇N,ku∗N,k = i/a3. (D9)

Because Mn � H, Eq.(D7) possesses the WKB-type solution

un,k(t) =
1√

2ωk(t)a3(t)
exp

(
−i
ˆ t

ωk(t′)dt′
)[

1 +
f1(t)

ωk(t)
+

f2(t)
ω2

k(t)
+ O(ω−3

k )

]
, (D10)

where ωk =
√

k2/a2 + M2
n and fi are of zeroth order in ωk. Since we have to regulate up to quadratic divergence in

correlator computations, we need to know

∣∣un,k(t)
∣∣2 =

1
2ωk(t)a3(t)

[
1 +

2Re f1(t)
ωk(t)

+
| f1(t)|2 + 2Re f2(t)

ω2
k(t)

+ O(ω−3
k )

]
(D11)

21 Our treatment here differs from [139] in that the physical scalar field φ here has no background solution, and the regulator field χn does not
mix with φ by mass term.
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up to second order. Due to the equation of motion (D7), f1 should satisfy

d
dt

(
f1

ωk

)
=

i
2ωk

(
Ḣ + 2H2 +

1
2

(
Ḣ + 3H2)M2

n

ω2
k

− 5
4

H2M4
n

ω4
k

)
. (D12)

Also, the Wronskian condition (D9) yields

Re f1 = 0, | f1|2 + 2Re f2 = ωk
d
dt

(
Im f1

ωk

)
. (D13)

Then plugging these two results to Eq.(D11) gives

∣∣un,k
∣∣2 =

1
2ωka3

[
1 +

Ḣ + 2H2

2ω2
k

+

(
Ḣ + 3H2)M2

n

4ω4
k

− 5H2M4
n

8ω6
k

+ O(ω−3)

]
. (D14)

2. Renormalization of Composite Operator

The renormalization of composite operators in curved space-time is the same as in flat space-time(see e.g. [88, 89,
140]) , just with new possible counter-terms made from curvature tensor. For an operator of dimension n, one need
to consider all possible counter-terms of dimension n or less. In our example model with free massive scalar σ, we
renormalize σ2 as

(σ2)r = (σ + ∑
n

χn)
2 + δZ0(Λ, mσ) + δZ1(Λ, mσ)R, (D15)

where R is the Ricci scalar.
Next, we compute δZi’s divergent part. For example, let us consider the one point function

〈(
σ2
)

r

〉
=

s

∑
N=0

C−1
N

ˆ
d3k

(2π)3

∣∣uN,k
∣∣2 + δZ0 + δZ1R. (D16)

In order to determine the counter terms δZ0 and δZ1, we introduce a comoving scale Q such that H � Q/a� Mn to
break the Fourier space into the UV and the IR sector. Then we use the WKB solution (D14) for k� Q. Furthermore,
the contribution from the PV fields for k� Q vanishes since it is suppressed by 1/Mn.

∑
N

C−1
N

ˆ
d3k

(2π)3

∣∣uN,k
∣∣2 =

ˆ Q d3k
(2π)3

∣∣u0,k
∣∣2 + s

∑
N=0

C−1
N

ˆ ΛUV

Q

d3k
(2π)3

∣∣ui,k
∣∣2

=

ˆ Q d3k
(2π)3

∣∣u0,k
∣∣2 + 1

48π2 R
(

ln
a

2Q
+

10
12

)
− 1

96π2 R
s

∑
N=0

C−1
N ln M2

N +
1

16π2

s

∑
N=0

C−1
N M2

N ln M2
N . (D17)

Note that the arbitrary comoving scale Q in the first two terms should cancel each other.
In order to absorb the PV regulator dependence, we need

δZ0 =
1

16π2

[
−∑

N
C−1

N M2
N ln M2

N + µ2
0

]
, (D18)

δZ1 =
1

96π2

[
∑
N

C−1
N ln

M2
N

µ2
1

]
, (D19)

where µ0and µ1are unknown mass scales determined by renormalization conditions. We set µ0 = 0 to have 〈(σ)2
r 〉 =

0 for flat space-time.
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3. Adiabatic Expansion of Time Integral

In order to compute some correlators using the in-in formalism (32), such as two-point function
〈
σ2ζ
〉
, we need

to integrate PV field contributions over time. In this subsection, we present how to calculate the time integral of PV
fields by adiabatically expanding the integral.

For simplicity, consider a diagram with one internal vertex. Using the WKB solution (D14) of a PV field, the
general form of the time integral is

I(k1, k2, · · · , t f ) =

ˆ t f

−∞
dt G(k1, k2, · · · ; t f , t)e−i

´ t f
t ω(t′)dt′ , (D20)

where ω(t) = ωk1(t) + ωk2(t) + · · · and G(k1, k2, · · · ; t f , t) = O(ωn). Because the integrand is a rapidly oscillatory
function, the dominant contribution comes near the final time t f . Thus, using integration by parts we expand the
integral with respect to ω:

I(k1, k2, · · · , t f ) =
G(k1, k2, · · · ; t f , t f )

iω(t f )
−
ˆ t f

−∞
dt

(
d
dt

G(k1, k2, · · · ; t f , t)
iω(t)

)
e−i
´ t f

t ω(t′)dt′ (D21)

=
G(k1, k2, · · · ; t f , t f )

iω(t f )
−
(

1
iω(t)

d
dt

G(k1, k2, · · · ; t f , t)
iω(t)

)∣∣∣∣∣
t=t f

+

[
1

iω(t)
d
dt

(
1

iω(t)
d
dt

G(k1, k2, · · · ; t f , t)
iω(t)

)]∣∣∣∣∣
t=t f

+ O(ωn−4). (D22)

Note that the mode functions un,k and u∗n,k appear in pairs because of Wick contraction. Hence, the final result should

be written in terms of
∣∣∣un,k(t f )

∣∣∣2 and their time derivatives, and we can compute the time integral up to arbitrary
order of ω. It is straightforward to generalize this to the cases with any number of internal vertices.

Appendix E: Two-Point Function
〈(

σ2)
r ζ
〉

in the Uniform Curvature Gauge

In this section, we compute
〈(

σ2)
r ζ
〉

using the uniform curvature gauge in the quasi-de Sitter(dS) background,
where the slow-roll factor ε is constant. Then we will show that the results in the both gauges are consistent with
each other. Particularly, for the massless limit, the next leading order term in the uniform curvature gauge that
indeed decays as p2/a2.

The two-point function is the same as in the comoving gauge except that the counter term contribution appears in
the leading order.

˜〈(σ2)r ζ〉Up =

ˆ
d3x e−i~p·~x

ˆ t
d4z a3(tz)

n

∑
N=0

〈[
σ2

N(t,~x)ζ(t,~0),
i
2

(
Tµν

σ δg(U)
µν

)
z

]〉
+δZ1 〈̃Rζ〉p, (E1)

where R is the Ricci scalar. After taking non-derivate interaction term T00
σ δg(U)

00 only, factoring ε and ζ out from the
integral, we get

˜〈(σ2)r ζ〉Up = i
∣∣∣ζo

p

∣∣∣2 ε

ˆ t
d4z a3(tz)

n

∑
N=0

〈[
σ2

N(t,~x),
(

T00
σ

)
z

]〉
+24εH2

∣∣∣ζo
p

∣∣∣2 δZ1 + O
(

ε̇, ε2,
p2

a2

)
, (E2)

where we have used the perturbed curvature in the uniform curvature gauge

R = 12H2 − 6εH2 + 24εH2ζ + 4εHζ̇ + · · · , (E3)

where · · · denotes O(ε̇, ε2) terms or terms proportional to the equation of motion of ζ.
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Since T00
σ = Lσ + ∑N

[(
∇
a σN

)2
+ M2

Nσ2
N

]
, together with the identities (93),(96), and

i
ˆ t

d4z a3(tz)
〈[

σ2
N(t,~x), σ2

N(z)
]〉

= −2
∂

∂M2
N

〈(
σ2

N

)
p

〉
, (E4)

with T00
σ = Lσ + ∑N

[(
∇
a σN

)2
+ M2

Nσ2
N

]
, we have

˜〈(σ2)R ζ〉Up +
1
H

d
dt

〈(
σ2
)

R

〉
〈̃ζζ〉p = ∑

N
FN(t) + O

(
ε̇, ε2,

p2

a2

)
, (E5)

FN(t) = ε

(
2
〈(

σ2
N

)
p

〉
− Z−1

N
k3

2π2

∣∣uN,k
∣∣2∣∣∣∣ΛUV

p
− 2M2

N
∂

∂M2
N

〈(
σ2

N

)
p

〉)

+
1
H

d
dt

〈
σ2

N

〉
. (E6)

Although the rhs of Eq.(E1) is well-defined and regulator independent, individual terms are not. Thus, we insert
counter terms to have each term regulator independent

∑
N

FN(t) = ε

(
2
〈(

σ2(t)
)

r,p

〉
+

p3

2π2

∣∣up(t)
∣∣2 − 2m2

σ
∂

∂m2
σ

〈(
σ2(t)

)
r,p

〉)
+

1
H

d
dt

〈(
σ2
)

r

〉
, (E7)

where we have put the counter terms δZ0 and δZ1R into each one-point function, and the PV field contribution
from the third term cancels with those from the other terms. Then, using the relation (75) one can find the rhs of
Eq.(E7) is consistent with the result (99) in the comoving gauge in the quasi-dS background after explicitly computing
renormalized one-point function

〈(
σ2(t)

)
r,p

〉
. On the other hand, the rhs does not depend on the renormalization

as all counter terms cancel. Hence, we can arrive at the same conclusion using the one point function using super-
horizon approximation in the dS space-time,〈(

σ2(t)
)

r,p

〉
≈
ˆ caH

p

d3k

(2π)3 |uk(t)|2 ≈
ˆ caH

p

d3k

(2π)3
|Γ(ν)|2
4πHa3

(
k

2aH

)−2ν

, (E8)

where the arbitrary constant c . O(1). Note that the UV boundary of the integral should be a comoving scale in
order to to keep the spatial dilatation symmetry.

Massless Limit

For the massless limit m2
σ/H2 � ln p/aH, we can compute the two-point function explicitly without neglecting

any gravitational couplings. We calculate up to the next leading term here. We decompose Eq. (E1) as

˜〈(σ2)r ζ〉Up = I0(p, t) +
s

∑
n=1

In(p, t) + Ic.t.(p, t), (E9)

where I0, In, and Ic.t. are the contributions from the physical field σ, the PV field χi and the counter terms, respec-
tively. Since all the gravitational couplings are O(ε) (See Eq. (C26)), we may use the mode functions ζp and uk in the
pure dS for O(ε) correction to the two-point function. Then a long but straightforward calculation gives

I0(p, t) =

ˆ
d3x e−i~p·~x

ˆ t
d4z a3(tz)

n

∑
N=0

〈[
σ2(t,~x)ζ(t,~0),

i
2

(
Tµν

σ δg(U)
µν

)
z

]〉
(E10)

=
1

4π2 εH2
∣∣∣ζo

p

∣∣∣2 [−1
3

p3

a3H3
Λ

aH
+ 2 log

Λ
p
+

5
3

p2

a2H2 log
Λ
p
+ 1− p2

a2H2 + O
(

p4

a4H4

)]
(E11)

+O(ε2, ε̇).
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The PV field contribution In requires some more technical explanation. If we write the WKB solution (D11) as

un,k(t) = αk(t)e−i
´ t wk(t′)dt′ , (E12)

the PV field contribution In is written as

In(p, t) = C−1
n

ˆ
Q

d3k1

(2π)3 d3k2δ(3)(~k1 +~k2 − ~p) Im
[ˆ t

dtzei
´ tz

t

(
ωk1

(t′)+ωk2
(t′)
)

dt′Gn(k1, k2; t, tz)

]
, (E13)

where

Gn(k1, k2; t, tz) = −2a3
zζp(t)αk1(t)αk2(t)

(
∑

i
Ôi

)
ζ∗p(tz)α

∗
k1
(tz)α

∗
k2
(tz), (E14)

(
Ô1

)
=

1
2

[(
iωk1(tz) + ∂

(1)
tz

) (
iωk2(tz) + ∂

(2)
tz

)
−
~k1 ·~k2

a2
z

+ M2
n

]
(2ε) , (E15)

(
Ô2

)
=

[
~k2 · ~p

a2
z

(
iωk1(tz) + ∂

(1)
tz

)
+
~k3 · ~p

a2
z

(
iωk2(tz) + ∂

(2)
tz

)](
ε

a2
z

p2 ∂
ζ
tz

)
, (E16)

where ∂
(i)
tz

and ∂
ζ
tz

denotes the time derivative with respect to α∗ki
(tz) and ζ∗p(tz), respectively, and

(
Ô1

)
and

(
Ô1

)
cor-

respond to the (00) and the (i0) components of the gravitational couplings, respectively. Notice that αk = O
(

ω−1/2
)

and G(k1, k2; t, tz) = O(ω0), and thus In has quadratic divergences superficially. However, the quadratic divergences
arising from

(
Ô1

)
vanish in the Mn → ∞ limit. Effectively, the integral (E13) is linearly divergent. That means we

have to adiabatically expand the integral to the second order. Similarly, the integral of the two-point function in the
comoving gauge is quadratic divergent, and thus one need to expand the integral to the third order. This makes the
computation easier in the uniform curvature gauge. Using

|αk(t)|2 =
1

2ωka3

[
1 + β2(k, t) + O(ω−3

k )
]

, (E17)

αk(t)α̇∗k (t) =
1

2ωka3

[
γ0(k, t)− iωkβ2(k, t) + O(ω−2

k )
]

, (E18)

αk(t)α̈∗k (t) =
1

2ωka3

[
−3iH − 2iγ0(k, t) + i

k2/a2

ω2
k

H + O(ω−1
k )

]
, (E19)

where

γ0(k, t) = −3
2

H +
1
2

k2/a2

ω2
k

H, (E20)

β2(k, t) =
Ḣ + 2H2

2ω2
k

+

(
Ḣ + 3H2)M2

n

4ω4
k

− 5H2M4
n

8ω4
k

, (E21)

which are obtained by combining Eq. (D14) with Eq. (E12), the integral (E13) becomes

In(p, t) =
C−1

n
4π2 εH2

∣∣∣ζo
p

∣∣∣2 [−1
3

p3

a3H3
Λ

aH
+ 2 log

2Λ
aMn

+
5
3

p2

a2H2 log
2Λ

aMn
− 5

3

−25
18

p2

a2H2 + O
(

p4

a4H4

)]
+ O(ε2, ε̇). (E22)

Note that all Λ dependent terms in I0 + ∑n In vanishes by the PV field normalization conditions (D3).
Putting Eqs. (E11) and (E22) together into Eq. (E9), we have

˜〈(σ2)R ζ〉Up =
1

4π2 εH2
∣∣∣ζo

p

∣∣∣2 [2 log
aµ1

2p
+

5
3

p2

a2H2 log
aµ1

2p
+

8
3

+
7

18
p2

a2H2 + O
(

p4

a4H4

)]
+ O(ε2, ε̇). (E23)
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We still need to compute one-point function d
dt
〈(

σ2)
r

〉
up to O(ε) in order to compare the results in both gauges. Be-

cause mode functions for a massless scalar field are O(ε0), we need O(ε) correction on it. In a quasi-dS background,
we take an ansatz for the mode function

uk(t) =

(
1√

2ka(t)
+ i

H(t)√
2k3

)
ei k

a(t)H(t) +
ε(t)√
2ka(t)

fk(t)e
i k

a(t)H(t) , (E24)

where fk(t) = O(ε0) so that it recovers the dS solution in the ε→ 0 limit. Applying this to the differential equation

ük(t) + 3Hu̇k(t) +
k2

a2 uk(t) = 0, (E25)

we get

f̈k +

(
H(t)− 2i

k
a(t)

)
ḟk − H(t)2 fk = 3H(t)2 − 2i

k
a(t)

H(t)− 2
k2

a(t)2 + O(ε), (E26)

whose solution is

fk (t) = −3
2
+ iq +

i
2

1
q
+

(
1− i

q

)
e−2iqEi(2iq) (E27)

+c1

(
1 +

i
q

)
+ c2

(
1− i

q

)
e−2iq (E28)

where q = k
a(t)H(t) , and Ei is the exponential integral function

Ei(z) = −
ˆ ∞

−z

e−t

t
dt (E29)

Ei(±ix → ∞) → ±iπ + e±ix
(

0!
(±ix)

+
1!

(±ix)2 +
2!

(±ix)3 + · · ·
)

. (E30)

Matching this solution with the Bunch-Davies initial condition (D8) and the Wronskian condition (D9) respectively
give

c2 = −iπ and c1 =
1
2

. (E31)

Then the mode function with O(ε) correction in a quasi-dS space-time becomes

uk(t) =

(
1√
2ka

+ i
H√
2k3

)
ei k

aH (E32)

+
ε√
2ka

[
−1 + i

k
aH

+ i
aH
k

+

(
1− i

aH
k

)(
−iπ + Ei(2i

k
aH

)

)
e−2i k

aH

]
ei k

aH + O(ε2, ε̇). (E33)

Now we calculate the one-point function using this mode function as shown in Subsection D 2, and we get

d
dt

〈(
σ2
)

r

〉
=

H3

4π2 +
εH3

2π2

(
log

H
µ1

+
1
6
− γ

)
+ O(ε2, ε̇). (E34)

Finally, we find

1
H

d
dt

〈(
σ2
)

r

〉
〈̃ζζ〉p +

˜〈(σ2)r ζ〉Up =
H2(t)
4π2

∣∣ζp(t)
∣∣2 + εH2

2π2

∣∣∣ζo
p

∣∣∣2 [log
aH
2p

+
3
2
− γ

]
+

εH2

4π2

∣∣∣ζo
p

∣∣∣2 p2

a2H2

[
13
18
− 2γ +

5
3

log
aµ1

2p
+ 2 log

H
µ1

]
+O

(
ε2, ε̇,

p4

a4H4

)
. (E35)



37

The non-p2/a2-suppressed terms are rewritten as

H2(t)
4π2

∣∣∣ζo
p

∣∣∣2 + εH2

2π2

∣∣∣ζo
p

∣∣∣2 [log
aH
2p

+
3
2
− γ

]
≈ H2(t)

4π2

∣∣∣ζo
p

∣∣∣2 ×(1 + 2ε log
aH
p

)
(E36)

≈ H2(t)
4π2

∣∣∣ζo
p

∣∣∣2 ( p
aH

)−2ε
(E37)

≈ H2∗
4π2

∣∣∣ζo
p

∣∣∣2 . (E38)

As expected, this is the result (99) in the comoving gauge. The other terms are suppressed by the factor p2/a2. This
explicitly proves that the next leading terms for the two-point function

〈(
σ2)

r ζ
〉

are O(p2/a2).
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