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We present a unified description of gravitational-wave data analysis that unites the template-
based analysis used to detect deterministic signals from well-modeled sources, such as binary-black-
hole mergers, with the cross-correlation analysis used to detect stochastic gravitational-wave back-
grounds. We also discuss the connection between template-based analyses and those that target
poorly-modeled bursts of gravitational waves, and suggest a new approach for detecting burst sig-
nals.
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Gravitational-wave data analysis is conventionally di-
vided into three classes that depend on the nature of
the signal: (i) well-modeled deterministic signals, such as
those from compact binary inspirals; (ii) poorly-modeled
deterministic signals, such as those from core-collapse su-
pernovae; and (iii) stochastic signals, such as those from
a phase transition in the early Universe. Here we will ar-
gue that this division is rather artificial and unnecessary,
and suggest that a unified treatment can yield deeper in-
sights. The elements needed to unify cases (i) and (ii)
can be found in Refs. [1–4]. Here we provide a unifi-
cation of cases (i) and (iii) using hierarchical Bayesian
modeling [5].
The motivation for developing a unified description of

gravitational-wave data analysis is two-fold. First there
is the pedagogical value of a coherent picture that em-
phasizes the common foundation of the disparate analysis
techniques found in the literature, and second, the uni-
fied picture can provide a deeper understanding that may
suggest new approaches. To illustrate the latter point we
conclude our discussion by proposing a novel technique
for detecting un-modeled “bursts” of gravitational waves.
In the conventional picture, signals for which we have

waveform templates are analyzed using a matched-filter
statistic [6], un-modeled signals are characterized in
terms of an excess power statistic [7], and stochastic sig-
nals are analyzed using a cross-correlation statistic be-
tween pairs of detectors [8]. The connection between the
various forms of analysis is not immediately apparent,
especially when described in a frequentist framework.
In the case of un-modeled signals, the analyses usually

focus on short duration “bursts” of gravitational-wave
energy that are localized in a time-frequency represen-
tation of the data. The connection between a waveform
template-based search and a burst search becomes appar-
ent in the case of fully-coherent network analyses, where
it becomes possible to solve for the gravitational-wave
signal by either maximizing the likelihood [2] or locating
regions of high posterior density [3, 4]. To obtain mean-
ingful results these analyses require constraints or pri-
ors on the signal models. The waveform template-based

analyses are recovered in the limit that the signal priors
become highly informative, ultimately mapping the indi-
vidual signal samples hi to a small number of physical

parameters ~λ that describe the signal: hi(~λ).

To develop the connection between the cases (i) and
(iii) we found it advantageous to adopt a hierarchical
Bayesian analysis framework [9, 10] with parametrized
likelihood functions and a parameterized signal prior. We
begin with the simplest case imaginable: that of two co-
located and co-aligned detectors, which each provide a
single datum s1 = n1 + h, s2 = n2 + h, respectively.
The noise in the detectors is assumed to be Gaussian
random and independent, with zero mean and variance
σ2
i . The signal, h, which is common to both detectors, is

also assumed to come from a Gaussian distribution with
zero mean and variance σ2

h. The quantities σi, σh are
our model hyper-parameters, which are to be determined
from the data.

Now suppose that we adopt a waveform template h
to describe the gravitational wave signal, and form the
residuals ri = si − h. We demand that the residuals
be consistent with the probability distribution for the
noise [11], which in this case results in a multi-variate
Gaussian likelihood function:

p(s|σi, h) =
1

√

(2π)2 detC′

e−
1
2 ri(C

′−1)ijrj , (1)

with

C′

ij = δijσ
2
i . (2)

Since our template is stochastic, we are not interested
in the particular value of h, but rather, in the overall
amplitude σh. Thus, using the parameterized signal prior

p(h|σh) =
1

√

2πσ2
h

e−h2/2σ2
h (3)
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we marginalize over h:

p(s|σi, σh) ≡
∫

p(s|σi, h) p(h|σh) dh

=
1

2π σ1σ2

∫

e−(s1−h)2/2σ2
1e−(s2−h)2/2σ2

2

× 1√
2π σh

e−h2/2σ2
h dh

=
1

√

(2π)2 detC
e−

1
2 si(C

−1)ijsj , (4)

where the matrix C has components

Cij = δijσ
2
i + σ2

h . (5)

The likelihood function (4) has the standard form used in
cross-correlation analyses for stochastic signals [12, 13].
Thus we see that a template-based analysis (1) using
stochastic templates is equivalent to a cross-correlation
analysis (4) without templates.
The generalization to N co-aligned and co-located de-

tectors is straightforward. Expression (1) becomes

p(s|σi, h) =
1

√

(2π)NdetC′

e−
1
2 ri(C

′−1)ijrj , (6)

and the marginalization proceeds as follows:

p(s|σi, σh) =

∫

p(s|σi, h) p(h|σh) dh

=
e−

1
2 si(C

−1)ijsj

√

(2π)NdetC′

∫

dh√
2π σh

× exp



− detC

2σ2
hdetC

′

(

h− σ2
hdetC

′

detC

∑

i

si

σ2
i

)2




=
e−

1
2 si(C

−1)ijsj

√

(2π)NdetC

∫

1√
2π σh

e−h′2/2σ2
h dh′

=
1

√

(2π)NdetC
e−

1
2 si(C

−1)ijsj . (7)

The marginalization involves a completion of the square,
followed by a change of variables from h to h′ via a shift,
then a rescaling. It is the rescaling that takes

√
detC′ to√

detC in the denominator.
The generalization to multiple data points is trivial.

The individual variances σ2
i , σ

2
h are replaced by variance-

covariance matrices Σi, Σh, with corresponding replace-
ments for C′ and C:

C′

ij = δij Σi , Cij = δij Σi +Σh . (8)

Assuming time stationarity, these variance-covariance
matrices can be written in the frequency domain as one-
sided spectral density functions

C′

ij(f) = δijSni
(f) , (9)

Cij(f) = δijSni
(f) + Sh(f) . (10)

In terms of these functions the likelihood and marginal-
ized likelihood are given by

p(s|σi, h) =
∏

f

1

(2π)N detC′(f)
e−2 r̃i(f)C

′

ij(f)
−1r̃∗j (f) ,

(11)

p(s|σi, σh) =
∏

f

1

(2π)N detC(f)
e−2 s̃i(f)Cij(f)

−1s̃∗j (f) .

(12)

The extension to multiple polarization states and sig-
nals with a spatial distribution is also relatively straight-
forward. To simplify the discussion, let us start by con-
sidering co-located, but no longer co-aligned detectors,
and write

hi = F+
i h+ + F×

i h× , (13)

where F+
i and F×

i are the antenna beam patterns for
the two polarization states for detector i in the long-
wavelength limit. Then the signal prior for h ≡ (h+, h×)
takes the form

p(h|σh) =
1

2πσ2
h

e−(h2
++h2

×
)/2σ2

h . (14)

Marginalization over h now involves integration over both
h+ and h×. For example, we start with the residual
ri = si − F+

i h+ − F×

i h× and a diagonal correlation ma-
trix C′

ij = δijσ
2
i . After doing the integral over h× we

have a new residual r′i = si − F+
i h+, and the correlation

matrix picks up the off-diagonal term F×

i F
×

j σ
2
h. Then

the h+ integration takes us to r
′′

i = si, and the correla-
tion matrix

Cij = δijσ
2
i + (F+

i F
+
j + F×

i F
×

j )σ2
h . (15)

To handle the case of sources that are distributed across
the sky, we first write

hi =
M
∑

n=1

F+
i (n̂)hn+ + F×

i (n̂)hn
×
, (16)

where n labels the sky location in the direction n̂. The
continuum limit can be found by taking M → ∞ and
replacing the sum by an integral. For an isotropic back-
ground the signal prior for h ≡ (hn+, h

n
×
) is given by

p(h|σh) =
M
∏

n=1

1

2πσ2
h

e−((hn
+)2+(hn

×
)2)/2σ2

h . (17)

Repeated application of the marginalization as before
yields the likelihood (7) with the correlation matrix

Cij = δijσ
2
i +

σ̄2
h

4π

∫

dΩn̂(F
+
i (n̂)F+

j (n̂) + F×

i (n̂)F×

j (n̂)) ,

(18)
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where σ̄2
h = σ2

hM . We have taken the continuum limit
in writing the final expression for the correlation matrix,
noting that as M → ∞, the variance σ̄2

h is held con-
stant. The diagonal terms in the signal-dependent part
of (18) are the sky (and polarization) averaged response
functions for the detectors. The off-diagonal term in (18)
is proportional to the overlap reduction function for co-
located, but mis-aligned detectors. The derivation for
anisotropic backgrounds is very similar, the only differ-
ence being that the σh are different for each sky location,
leading to the correlation matrix

Cij = δijσ
2
i +

1

4π

∫

dΩn̂(F
+
i (n̂)F+

j (n̂)

+F×

i (n̂)F×

j (n̂)) σ̄2
h(n̂) . (19)

Finally, for spatially separated and mis-aligned detec-
tors we can adopt a coordinate system where the de-
tectors are located at ~x1 and ~x2, so that in the Fourier
domain the signals can be written as

h̃i(f) =

M
∑

n=1

(F+
i (n̂)h̃n+(f)+F

×

i (n̂)h̃n
×
(f))e2πif~xi·n̂ . (20)

Marginalizing over the stochastic signal for an isotropic
background yields the likelihood (12) with the Hermitian
correlation matrix

Cij(f) = δijSni
(f) + γij(f)Sh(f) , (21)

where γij(f) is the overlap reduction function [14, 15]

γij(f) =
1

4π

∫

(F+
i (n̂)F+

j (n̂) + F×

i (n̂)F×

j (n̂))

×e2πif(~xi−~xj)·n̂ dΩn̂ . (22)

If the background were anisotropic, the correlation ma-
trix would have the form

Cij(f) = δijSni
(f) + κij(f), (23)

with

κij(f) =
1

4π

∫

(F+
i (n̂)F+

j (n̂) + F×

i (n̂)F×

j (n̂))

×Sh(n̂, f) e
2πif(~xi−~xj)·n̂ dΩn̂ . (24)

Note that all of the above results are special cases of
the general result for the convolution of two multi-variate
Gaussian distributions:

∫

e−
1
2 (x−F·y)TD−1(x−F·y)

√

(2π)Nx detD

e−
1
2y

TE−1y

√

(2π)Ny detE
dy

=
1

√

(2π)Nx detC
e−

1
2x

TC−1x (25)

where

C−1 = D−1 −D−1F(E−1 + FTD−1F)−1FTD−1 (26)

and

C = D+ FEFT . (27)

The connection between a stochastic template-based
analysis and a cross-correlation analysis was partially de-
veloped in Refs. [16, 17], where a connection was made
between a template-based maximum-likelihood estima-
tor and the cross-correlation statistic used to search for
stochastic backgrounds. However, the analysis was lim-
ited to a pair of co-located and co-aligned detectors, and
the possibility of a full unification was not developed.
Establishing a unified description of gravitational-wave

data analysis has value beyond pedagogy. Seeing the
connection between the analyses can suggest new ap-
proaches. Of particular promise are novel approaches
that fall between the conventional divisions. In the uni-
fied approach, the analysis begins with a model for the
instrument noise, which then becomes the likelihood for
the residuals r = s− h. The specification of the prior on
the signal model then completes the model, giving a con-
tinuum of analysis techniques that range from the highly

informative waveform priors p(h|~λ) = δ(h − h(~λ)) of a
standard matched filter analysis to the stochastic prior
p(h|σh) that yields the standard cross-correlation anal-
ysis. While it may be difficult to reverse engineer the
form of the signal prior that yields some of the existing
hybrid analysis techniques [18–24], it is likely that such
a mapping will always exist as we have almost infinite
freedom in the choice of the signal prior. Specific exam-
ples of such reverse engineering of the signal priors can be
found in Ref. [4]. Rather than trying to recover existing
approaches, a more promising avenue for future research
is to explore alternative choices for the signal prior that
may yield useful analysis techniques.
To give a concrete example of a new analysis approach

that is suggested by the unified picture, we propose a
simple signal prior for un-modeled bursts of gravitational
wave radiation. We picture these signals as occupying
a relatively small area in time-frequency space, so it is
natural to work in a wavelet basis where the signal in
each detector can be written as sµij , where the Greek
index µ labels the detector and the Roman indices i, j
denote the location in time and frequency respectively.
For a co-located and co-aligned two detector network the
likelihood is then

p(s|σµj , σνl, h) =
e−

1
2 r(µij)(C

′−1)(µij)(νkl)r(νkl)

√

(2π)2N detC′

, (28)

with

C′

(µij)(νkl) = σ2
µj δµνδikδjl. (29)

Here N is the number of wavelet components. The ex-
pression for the correlation matrix is only approximate as
there will be a some noise correlation between frequency
layers j, l, but in a well-chosen wavelet basis the correla-
tion is negligible. For the signal model we assume that
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the wavelet amplitudes are Gaussian random distributed:

p(h(ij)|σh(ij)(fc, tc,∆f,∆t)) =
1√

2π σh(ij)

e−h2
(ij)/2σh

2
(ij)

(30)
with amplitudes σh(ij) that depend on a central fre-
quency fc, central time tc, and widths ∆f and ∆t:

σh(ij)(fc, tc,∆f,∆t) = σe−((ti−tc)
2/2∆t2+(fj−fc)

2/2∆f2) .
(31)

Marginalizing over h yields

p(s|σµj , σνl, h) =
e−

1
2 s(µij)(C

−1)(µij)(νkl)s(νkl)

√

(2π)N detC
, (32)

with

C(µij)(νkl) = (σ2
µj δµν + σh

2
(ij))δikδjl . (33)

For frequencies and times fj, ti that are far from the
central values fc, tc the correlation matrix reduces to
that of uncorrelated noise. In effect we end up with a
cross-correlation search that targets a small region in

time-frequency. The analysis is easily extended to M
mis-aligned and spatially distributed detectors by lin-
early transforming the data to form M − 2 null streams
and 2 signal streams [2]. The cross-correlation statistic
then depends on 8 parameters: the sky location θ, φ and
polarization angle ψ; the central values fc, tc; the widths
∆f,∆t and the overall amplitude σ. Our example burst
search is essentially equivalent to applying a radiometer
style search [21] to data that has been convolved with
a Gaussian time-frequency window function, and is also
similar to the STAMP algorithm [23].
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