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We present a unified description of gravitational-wave data analysis that unites the template-
based analysis used to detect deterministic signals from well-modeled sources, such as binary-black-
hole mergers, with the cross-correlation analysis used to detect stochastic gravitational-wave back-
grounds. We also discuss the connection between template-based analyses and those that target
poorly-modeled bursts of gravitational waves, and suggest a new approach for detecting burst sig-

nals.
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Gravitational-wave data analysis is conventionally di-
vided into three classes that depend on the nature of
the signal: (i) well-modeled deterministic signals, such as
those from compact binary inspirals; (ii) poorly-modeled
deterministic signals, such as those from core-collapse su-
pernovae; and (iii) stochastic signals, such as those from
a phase transition in the early Universe. Here we will ar-
gue that this division is rather artificial and unnecessary,
and suggest that a unified treatment can yield deeper in-
sights. The elements needed to unify cases (i) and (ii)
can be found in Refs. [1-4]. Here we provide a unifi-
cation of cases (i) and (iii) using hierarchical Bayesian
modeling [5].

The motivation for developing a unified description of
gravitational-wave data analysis is two-fold. First there
is the pedagogical value of a coherent picture that em-
phasizes the common foundation of the disparate analysis
techniques found in the literature, and second, the uni-
fied picture can provide a deeper understanding that may
suggest new approaches. To illustrate the latter point we
conclude our discussion by proposing a novel technique
for detecting un-modeled “bursts” of gravitational waves.

In the conventional picture, signals for which we have
waveform templates are analyzed using a matched-filter
statistic [6], un-modeled signals are characterized in
terms of an excess power statistic [7], and stochastic sig-
nals are analyzed using a cross-correlation statistic be-
tween pairs of detectors [8]. The connection between the
various forms of analysis is not immediately apparent,
especially when described in a frequentist framework.

In the case of un-modeled signals, the analyses usually
focus on short duration “bursts” of gravitational-wave
energy that are localized in a time-frequency represen-
tation of the data. The connection between a waveform
template-based search and a burst search becomes appar-
ent in the case of fully-coherent network analyses, where
it becomes possible to solve for the gravitational-wave
signal by either maximizing the likelihood [2] or locating
regions of high posterior density [3, 4]. To obtain mean-
ingful results these analyses require constraints or pri-
ors on the signal models. The waveform template-based

analyses are recovered in the limit that the signal priors
become highly informative, ultimately mapping the indi-
vidual signal samples h; to a small number of physical
parameters X that describe the signal: hi(X).

To develop the connection between the cases (i) and
(iii) we found it advantageous to adopt a hierarchical
Bayesian analysis framework [9, 10] with parametrized
likelihood functions and a parameterized signal prior. We
begin with the simplest case imaginable: that of two co-
located and co-aligned detectors, which each provide a
single datum s; = n1 + h, ss = no + h, respectively.
The noise in the detectors is assumed to be Gaussian
random and independent, with zero mean and variance
o?. The signal, h, which is common to both detectors, is
also assumed to come from a Gaussian distribution with
zero mean and variance 0,21. The quantities ¢;, 0, are
our model hyper-parameters, which are to be determined
from the data.

Now suppose that we adopt a waveform template h
to describe the gravitational wave signal, and form the
residuals r; = s; — h. We demand that the residuals
be consistent with the probability distribution for the
noise [11], which in this case results in a multi-variate
Gaussian likelihood function:
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Since our template is stochastic, we are not interested
in the particular value of h, but rather, in the overall
amplitude oj,. Thus, using the parameterized signal prior
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we marginalize over h:

p(slo,on) = / p(sloi, 1) p(lon) dh

_ ! / o= (511?203 —(s2—h)? /203
2T o109

1

Xi

V2o,

1 —isi(C
(2m)2 detC

€7h2/2a'§ dh

where the matrix C' has components
Cij = 61']‘01-2 + 0}21 . (5)

The likelihood function (4) has the standard form used in
cross-correlation analyses for stochastic signals [12, 13].
Thus we see that a template-based analysis (1) using
stochastic templates is equivalent to a cross-correlation
analysis (4) without templates.

The generalization to N co-aligned and co-located de-
tectors is straightforward. Expression (1) becomes
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The marginalization involves a completion of the square,
followed by a change of variables from h to h’ via a shift,
then a rescaling. It is the rescaling that takes v/ detC’ to
v/detC in the denominator.

The generalization to multiple data points is trivial.
The individual variances 07, o7 are replaced by variance-
covariance matrices 3;, 3y, with corresponding replace-
ments for C’ and C:

C/ij = 61']‘ 21 s Cij = 61']‘ 21 + Eh . (8)
Assuming time stationarity, these variance-covariance
matrices can be written in the frequency domain as one-
sided spectral density functions

Ci;(f) = 0iSn.(f), 9)
Cij(f) = 0iSn, (f) + Su(f).- (10)

In terms of these functions the likelihood and marginal-
ized likelihood are given by
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The extension to multiple polarization states and sig-
nals with a spatial distribution is also relatively straight-
forward. To simplify the discussion, let us start by con-
sidering co-located, but no longer co-aligned detectors,
and write

hi = Fz'+h+ + Fhy, (13)

where F;r and F;* are the antenna beam patterns for
the two polarization states for detector 7 in the long-
wavelength limit. Then the signal prior for h = (hy4, hx)
takes the form
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Marginalization over h now involves integration over both

hy and hy. For example, we start with the residual
r, = 8; — F;'hJr — thx and a diagonal correlation ma-
trix Cf; = dijo7. After doing the integral over hy we

have a new residual 7} = s;

— F;"hy, and the correlation
matrix picks up the off-diagonal term F;*F}“oj. Then

the hy integration takes us to r;/ = s;, and the correla-

tion matrix
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To handle the case of sources that are distributed across
the sky, we first write

h_ZF+

where n labels the sky location in the direction n. The
continuum limit can be found by taking M — oo and
replacing the sum by an integral. For an isotropic back-
ground the signal prior for h = (h, h%) is given by
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Repeated application of the marginalization as before
yields the likelihood (7) with the correlation matrix
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where 57 = o7 M. We have taken the continuum limit

in writing the final expression for the correlation matrix,
noting that as M — oo, the variance o7 is held con-
stant. The diagonal terms in the signal-dependent part
of (18) are the sky (and polarization) averaged response
functions for the detectors. The off-diagonal term in (18)
is proportional to the overlap reduction function for co-
located, but mis-aligned detectors. The derivation for
anisotropic backgrounds is very similar, the only differ-
ence being that the oy, are different for each sky location,
leading to the correlation matrix
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Finally, for spatially separated and mis-aligned detec-
tors we can adopt a coordinate system where the de-

tectors are located at #; and Zs, so that in the Fourier
domain the signals can be written as
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Marginalizing over the stochastic signal for an isotropic
background yields the likelihood (12) with the Hermitian
correlation matrix

Cij () = 0ijSn (f) + i (f)Sn(f) (21)

where ~;;(f) is the overlap reduction function [14, 15]
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If the background were anisotropic, the correlation ma-
trix would have the form
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Note that all of the above results are special cases of

the general result for the convolution of two multi-variate
Gaussian distributions:
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The connection between a stochastic template-based
analysis and a cross-correlation analysis was partially de-
veloped in Refs. [16, 17], where a connection was made
between a template-based maximum-likelihood estima-
tor and the cross-correlation statistic used to search for
stochastic backgrounds. However, the analysis was lim-
ited to a pair of co-located and co-aligned detectors, and
the possibility of a full unification was not developed.

Establishing a unified description of gravitational-wave
data analysis has value beyond pedagogy. Seeing the
connection between the analyses can suggest new ap-
proaches. Of particular promise are novel approaches
that fall between the conventional divisions. In the uni-
fied approach, the analysis begins with a model for the
instrument noise, which then becomes the likelihood for
the residuals r = s — h. The specification of the prior on
the signal model then completes the model, giving a con-
tinuum of analysis techniques that range from the highly
informative waveform priors p(h|X) = 8(h — k(X)) of a
standard matched filter analysis to the stochastic prior
p(h|op,) that yields the standard cross-correlation anal-
ysis. While it may be difficult to reverse engineer the
form of the signal prior that yields some of the existing
hybrid analysis techniques [18-24], it is likely that such
a mapping will always exist as we have almost infinite
freedom in the choice of the signal prior. Specific exam-
ples of such reverse engineering of the signal priors can be
found in Ref. [4]. Rather than trying to recover existing
approaches, a more promising avenue for future research
is to explore alternative choices for the signal prior that
may yield useful analysis techniques.

To give a concrete example of a new analysis approach
that is suggested by the unified picture, we propose a
simple signal prior for un-modeled bursts of gravitational
wave radiation. We picture these signals as occupying
a relatively small area in time-frequency space, so it is
natural to work in a wavelet basis where the signal in
each detector can be written as s,;;, where the Greek
index p labels the detector and the Roman indices i, j
denote the location in time and frequency respectively.
For a co-located and co-aligned two detector network the
likelihood is then
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Here N is the number of wavelet components. The ex-
pression for the correlation matrix is only approximate as
there will be a some noise correlation between frequency
layers 7,1, but in a well-chosen wavelet basis the correla-
tion is negligible. For the signal model we assume that



the wavelet amplitudes are Gaussian random distributed:
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with amplitudes oy (;;) that depend on a central fre-
quency f., central time ¢., and widths Af and At:
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For frequencies and times f;, ¢; that are far from the
central values f., t. the correlation matrix reduces to
that of uncorrelated noise. In effect we end up with a
cross-correlation search that targets a small region in

time-frequency. The analysis is easily extended to M
mis-aligned and spatially distributed detectors by lin-
early transforming the data to form M — 2 null streams
and 2 signal streams [2]. The cross-correlation statistic
then depends on 8 parameters: the sky location 6, ¢ and
polarization angle v; the central values f.,t.; the widths
Af, At and the overall amplitude o. Our example burst
search is essentially equivalent to applying a radiometer
style search [21] to data that has been convolved with
a Gaussian time-frequency window function, and is also
similar to the STAMP algorithm [23].
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