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Abstract

A recently proposed scenario for baryogenesis, called post–sphaleron baryogenesis (PSB) is

discussed within a class of quark–lepton unified framework based on the gauge symmetry

SU(2)L×SU(2)R×SU(4)c realized in the multi–TeV scale. The baryon asymmetry of the universe

in this model is produced below the electroweak phase transition temperature after the sphalerons

have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism

for neutrino masses, and predict color-sextet scalar particles in the TeV range which may be ac-

cessible to the LHC experiments. A necessary consequence of this scenario is the baryon number

violating ∆B = 2 process of neutron–antineutron (n− n̄) oscillations. In this paper we show that

the constraints of PSB, when combined with the neutrino oscillation data and restrictions from

flavor changing neutral currents mediated by the colored scalars imply an upper limit on the n− n̄

oscillation time of 5 × 1010 sec. regardless of the quark–lepton unification scale. If this scale is

relatively low, in the (200 − 250) TeV range, τn−n̄ is predicted to be less than 1010 sec., which is

accessible to the next generation of proposed experiments.
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I. INTRODUCTION

It is widely believed that understanding the origin of matter–antimatter asymmetry in the

universe holds an important clue to physics beyond the Standard Model (SM). A distinguish-

ing signature of the nature of the new physics is the epoch at which baryogenesis occurs. In

a series of recent papers [1–3] we have proposed and studied a new mechanism, termed post-

sphaleron baryogenesis (PSB), where this dynamics occurs at or below the TeV scale. This

mechanism takes advantage of the baryon number violating decays of a new particle, either a

scalar or a fermion, which couples to the SM fermions through a higher-dimensional operator

(with dimension d ≥ 9). If these decays go out of equilibrium near the TeV scale, then the

epoch of baryogenesis would be below the electroweak phase transition temperature, when

the sphalerons have already decoupled due to the Hubble expansion of the universe. The

low baryogenesis scale arises if the process mediated by the higher-dimensional operator,

O, is in the observable range. This scenario is not only distinct from all other available

baryogenesis mechanisms such as leptogenesis (see e.g., Ref. [7]) or electroweak baryogenesis

(see e.g., Ref. [8]) but also involves TeV scale new particles accessible at the Large Hadron

Collider (LHC) when an ultraviolet complete version of this theory is presented, and leads

to interesting low energy phenomena accessible to non-accelerator searches as well.

A specific realization of the scenario proposed in Ref. [1] is based on the gauge group

SU(2)L× SU(2)R× SU(4)c [9] with a quark-lepton unified generalization [10] of the seesaw

mechanism [11] with TeV seesaw scale. The effective d = 9 operator O in this model that

couples to a TeV scale scalar field S arises from the exchange of color-sextet fields. These

are part of the SU(2)R triplet Higgs field responsible for B −L symmetry breaking and the

seesaw mechanism. In this model, the same operator O that leads to baryogenesis also leads

to the baryon number violating process of neutron–antineutron (n− n̄) oscillation [12]. It is

therefore natural to expect a connection between the amount of baryon asymmetry created

in the early universe and the strength of n − n̄ oscillation amplitude. A realistic model of

this type must reproduce the correct neutrino mass and mixing parameters, as measured by

various neutrino oscillation experiments, and also satisfy the flavor changing neutral current

(FCNC) constraints which arise in this case due to exchange of the color-sextet scalar fields.

An investigation of these issues was initiated in Ref. [3], where it was pointed out that if
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the color-sextet fields are in the TeV to sub-TeV range, consistence with FCNC constraints

implies that neutrino masses must arise via a type–II seesaw mechanism and must exhibit an

inverted mass hierarchy. We presented a specific realization of this idea within a version [10]

of quark-lepton unified SU(2)L × SU(2)R × SU(4)c model that embeds the type–II seesaw

mechanism. We also predicted the n− n̄ oscillation to be sizable in this scenario if the model

has to satisfy the constraints of generating adequate baryon asymmetry. This model may

also be testable via searches for the color-sextet scalar bosons at the LHC [13].

We wish to point out that there have been other proposals for low-scale baryogenesis [4–

6]. Our scenario differs from them not only in that we employ a model that connects the

new physics to neutrino masses but it also makes a specific testable prediction for a baryon

number violating process of neutron-anti-neutron oscillation, as we show below as well as

new TeV scale particles at colliders. Furthermore, the mechanism for baryogenesis in our

paper differs from those in [4–6] in two ways: (a) the operator responsible for baryogenesis

in our case is different; (b) the one loop absorptive part that generates the primordial CP

asymmetry in our model involves flavor changing effects involving the W-exchange, whereas

in the above papers it involves new fields beyond the standard model.

While this paper is a follow-up to our earlier paper [3], it presents several new results:

• We present detailed constraints on the masses and couplings of the color-sextet scalar

fields from various flavor changing neutral current constraints. While the ref.[3] fo-

cussed on tree level constraints, here we include the one loop box diagram effects which

provide stronger constraints on different flavor combinations of the sextet couplings.

• We have found a one-loop W-exchange contribution to the n − n̄ amplitude which

gives an enhanced rate for n− n̄ transition rate compared to the [3].

• A striking new result of the present paper is an absolute upper limit on the n −
n̄ oscillation time τn−n̄ of 5 × 1010 sec. irrespective of the B − L breaking scale,

which follows from the fact that we must generate enough baryon asymmetry via this

mechanism. This oscillation time is within the accessible range for the next generation

of proposed searches for this process [14].

The rest of this paper is organized as follows: In Section II, we review the basic features of

3



our model. In Section III, we summarize the FCNC constraints on the Yukawa couplings in

our model; in Section IV, we discuss various constraints that need to be satisfied in order to

generate the observed baryon asymmetry using the PSB mechanism; and in Section V, we

give the model predictions for n− n̄ oscillation time and the resulting upper limit on it. Our

conclusions are given in Section VI. In Appendix A, we present an explicit calculation of

baryon asymmetry generated by using B–conserving vertices in a toy model. This example

shows the consistency of our baryon asymmetry generation mechanism using W boson loops.

II. REVIEW OF THE MODEL

We start by reviewing the basic features of our model [3], based on the quark-lepton unified

gauge group SU(2)L × SU(2)R × SU(4)c with SM fermions plus the right-handed neutrino

belonging to (2, 1, 4) ⊕ (1, 2, 4) representations of the group in the well known left-right

symmetric way [15]. The Higgs sector of the model consists of (1, 1, 15), (1, 3, 10), (2, 2, 1)

and (2, 2, 15). The first stage of the symmetry breaking is implemented by a (1, 1, 15) Higgs

field which splits the SU(4)c scale Mc from the remaining ones with Mc
>∼ 1400 TeV [16]

to satisfy the constraint from rare kaon decay: BR(K0
L → µ±e∓) < 4.7 × 10−12 [17]. The

surviving SU(2)L×SU(2)R×U(1)B−L×SU(3)c gauge symmetry is then broken in two stages

down to the SM, i.e. by the Higgs field (1, 3, 1) to the symmetry SU(2)L×U(1)I3R×U(1)B−L

which subsequently breaks down to the SM by the Higgs field (1, 3, 10). The second stage

is where the B − L symmetry breaks down and the right-handed neutrinos acquire mass

by the usual seesaw mechanism [11]. We denote this scale by vBL, which is an essential

parameter in our discussion below. It is also possible that the (1, 3, 1) Higgs field is absent

in the spectrum, in which case the SU(2)L × SU(2)R × U(1)B−L gauge symmetry breaks

directly down to the SM symmetry via the vacuum expectation value (vev) of the (1, 3, 10)

field. The SM Higgs field is a linear combination of the (2, 2, 1) and (2, 2, 15) Higgs fields.

To discuss the mechanism for baryogenesis in the model, we first note that under SU(2)L×
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U(1)Y × SU(3)c, the (1, 3, 10) field, denoted by ∆, decomposes as

∆(1, 3, 10) = ∆uu(1,−
8

3
, 6∗) ⊕ ∆ud(1,−

2

3
, 6∗) ⊕ ∆dd(1,+

4

3
, 6∗) ⊕ ∆ue(1,

2

3
, 3∗)

⊕ ∆uν(1,−
4

3
, 3∗) ⊕ ∆de(1,

8

3
, 3∗) ⊕ ∆dν(1,

2

3
, 3∗) ⊕ ∆ee(1, 4, 1)

⊕ ∆νe(1, 2, 1) ⊕ ∆νν(1, 0, 1) . (1)

The last field in the decomposition, ∆νν(1, 0, 1), is a neutral complex field whose real part

acquires a vev vBL in the ground state and can be written as ∆νν = vBL + 1√
2
(S + iχ). The

field χ is absorbed by the B − L gauge boson, while the real scalar S remains as a physical

Higgs particle. It is the decay of this S that will generate baryon asymmetry of the universe.

The various color-sextet sub-multiplets of the field ∆(1, 3, 10) have couplings of the form

LI =
fij
2

∆dddidj +
hij
2

∆uuuiuj +
gij

2
√

2
∆ud(uidj + ujdi)

+
λ

2
∆νν∆dd∆ud∆ud + λ′∆νν∆uu∆dd∆dd + h.c. (2)

Here the Yukawa couplings, as defined in Eq. (2), obey the boundary conditions fij =

hij = gij in the SU(2)L × SU(2)R × SU(4)c symmetry limit. All fermion fields here are

right–handed, we have suppressed the chiral projection operators for simplicity. There are

analogous terms, dictated by left–right symmetry, where the left–handed fermion fields cou-

ple to the Higgs fields in the (3, 1, 10) representation, with identical coupling strength as

shown in Eq. (2). The last two terms in Eq. (2) are part of the Higgs potential, and are

crucial for the generation of baryon asymmetry, with the boundary condition λ′ = λ. The

color indices in these two terms are contracted by two εijk factors.

Note that the S field contained in ∆νν is a real scalar field and therefore it can decay

into both six quark and six anti-quark final states, thereby violating baryon number by two

units. The couplings of Eq. (2) allow for such baryon number violating decays of S. If

the right thermodynamic conditions are satisfied, it can generate baryon asymmetry in the

presence of CP violation. As shown in Ref. [3], the CKM CP violation is enough in this case

although the presence of CP violation in the ∆qq couplings can help to enhance this. The

same interactions also generate a d = 9 operator, once the vev of S is inserted, that leads

to neutron–antineutron oscillations. In this paper, we argue that the right thermodynamic

conditions are so restrictive that they imply τn−n̄ ≤ 5× 1010 sec. for arbitrary vBL, and for

low-scale vBL around 200 TeV, even more restrictive: τn−n̄ ≤ 1010 sec. which is accessible to
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the next generation n− n̄ oscillation experiments [14]. The significance of this result is that

if in future experiments, the lower limit on τn−n̄ is found to exceed this limit, this model for

PSB and neutrino masses will be ruled out.

III. RESTRICTIONS OF FCNC ON THE MODEL PARAMETERS

It was noted in Ref. [3] that tree-level exchange of color-sextet fields would result in

new contributions to ∆F = 2 meson–antimeson mixing, thereby yielding severe constraints

on the masses and couplings of the color-sextet fields. Subsequently we have realized that

there are also important box diagrams which provide further constraints coming both from

∆F = 2 meson–antimeson mixing as well as flavor changing non-leptonic decays of D and

B mesons. In a forthcoming paper we shall present details of this analysis [18]. Here we

summarize the main results, which will be crucial in deriving the upper limit on n − n̄

oscillation time within our model, consistent with the PSB mechanism.

Fig. 1 illustrates new contributions to K0 −K0
mixing mediated by the ∆dd color-sextet

scalar field. There are tree–level as well as box diagram contributions, which have different

flavor structure. Even if the tree–level diagram is suppressed by choosing a specific flavor

texture, the box diagram contributions can still provide strong constraints. The effective

∆F = 2 Hamiltonian resulting from the ∆dd exchange can be written as

H∆F=2 = −1

8

fi`f
∗
kj

M2
∆dd

(d
α

kRγµd
α
iR)(d

β

jRγ
µdβ`R) +

1

256π2

[(ff †)ij(ff
†)`k + (ff †)ik(ff

†)`j]

M2
∆dd

×
[
(d
α

jRγµd
α
iR)(d

β

kRγ
µdβ`R) + 5(d

α

jRγµd
β
iR)(d

β

kRγ
µdα`R)

]
. (3)

Here i, j, k, ` are flavor indices, while α, β are color indices. The first term in Eq. (3) is from

the tree-level diagram, while the second term arises from the box diagram. Setting flavor

indices i = ` = 2 and j = k = 1 in Eq. (3) would generate new contributions to K0 −K0

mixing. There are analogous ∆F = 2 FCNC contributions in the up–flavor sector mediated

by ∆uu scalar for which the corresponding effective Hamiltonian can be obtained from Eq.

(3) by replacing di by ui and the coupling fij by hij. The constraint from D0 −D0
mixing

will provide an important restriction on the mass of ∆uu in our analysis.
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FIG. 1: Tree and box diagrams mediated by ∆dd generating new contributions to K0−K0
mixing

in the PSB model. Similar diagrams exist for B0 − B0
and D0 − D0

mixing, also involving the

exchange of ∆ud and ∆uu scalars.

The effective ∆F = 2 Hamiltonian resulting from the exchange of ∆ud can be written as:

Heff = − 1

32

ĝij ĝ
∗
kl

M2
∆ud

[
(uαkRγµu

α
iR)(d

β

`Rγ
µdβjR) + (uαkRγµd

α
iR)(d

β

`Rγ
µuβjR)

]
+

1

256π2

1

64

1

M2
∆ud

[
(ĝĝ†)ij(ĝĝ

†)`k + (ĝĝ†)ik(ĝĝ
†)`j
]

×
[
(d
α

jRγµd
α
iR)(d

β

kRγ
µdβ`R) + 5(d

α

jRγµd
β
iR)(d

β

kRγ
µdα`R)

]
(4)

where we have defined ĝij = (gij + gji)/2.

We apply standard methods to derive bounds on the couplings and masses of the color-

sextet scalars from meson–antimeson mixing, taking into account the renormalization of

the effective four-fermion operator down to the meson mass scale, and using recent lattice

evaluation of the relevant matrix elements. These constraints are listed in Table I.

The ∆F = 2 effective Hamiltonian can also generate flavor changing non-leptonic decays

of the type B− → φπ− at the tree-level, mediated by ∆dd scalar, via diagrams such as in

Fig. 2. There are analogous diagrams mediated by ∆uu and ∆ud fields, but we find that

constraints from those diagrams are not so stringent, once ∆uu field is assumed to be heavy,

as required by D0 − D0
mixing constraint. In Table II we present the various constraints

arising from the B-meson decays. These results are obtained by QCD factorization method

[18]. The numbers in the second column in Table II are to be multiplied by (M∆dd
/TeV)2.

In addition to satisfying the FCNC constraints, the PSB model should also explain con-

sistently the observed neutrino mixing angles and mass-squared differences (for a review,

see e.g., [19]). The FCNC constraints listed in Tables I and II fix the form of the f -matrix
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Process Diagram Constraint on Couplings

Tree |f22f
∗
33| ≤ 7.04× 10−4

(
M∆dd
1 TeV

)2

∆mBs Box
∑3

i=1 |fi3f∗i2| ≤ 0.14
(
M∆dd
1 TeV

)
Box

∑3
i=1 |ĝi3ĝ∗i2| ≤ 1.09

(
M∆ud
1 TeV

)
Tree |f11f

∗
33| ≤ 2.75× 10−5

(
M∆dd
1 TeV

)2

∆mBd
Box

∑3
i=1 |fi3f∗i1| ≤ 0.03

(
M∆dd
1 TeV

)
Box

∑3
i=1 |ĝi3ĝ∗i1| ≤ 0.21

(
M∆ud
1 TeV

)
Tree |f11f

∗
22| ≤ 6.56× 10−6

(
M∆dd
1 TeV

)2

∆mK Box
∑3

i=1 |fi2f∗i1| ≤ 0.01
(
M∆dd
1 TeV

)
Box

∑3
i=1 |ĝi1ĝ∗i2| ≤ 0.10

(
M∆ud
1 TeV

)
∆mD Tree |h11h

∗
22| ≤ 3.72× 10−6

(
M∆uu
1 TeV

)2

Box
∑3

i=1 |hi2h∗i1| ≤ 0.01
(
M∆uu
1 TeV

)
TABLE I: Constraints on the product of Yukawa couplings in the PSB model from K0−K0

, D0−

D
0
, B0

s −B
0
s and B0

d −B
0
d mixing.

∆dd

d

b

d

d

FIG. 2: Feynman diagram for B-decay mediated by the ∆dd-field in the PSB model.

in Eq. (2) to be approximately [3]

f =


0 0.95 1

0.95 0 0.01

1 0.01 0.06

 . (5)

This is written in a basis where the down quark mass matrix is diagonal. Since in this basis,

we can take the neutrino mass matrix (in the type-II seesaw) to be proportional to the f

matrix, in the leading order prior to the contribution from charged leptons are included, the

atmospheric mixing can be chosen near maximal but more importantly, the mass hierarchy

is inverted [3]. Excellent fit to all neutrino oscillation data was obtained in Ref. [3] with this
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Decay constraints on couplings

B− → π0π− |f13f
∗
11| ≤ 0.73

B
0
d → φπ0 |f23f

∗
12| ≤ 0.05

B− → φπ− |f23f
∗
12| ≤ 0.03

B
0
d → φK

0 |f23f
∗
22| ≤ 0.33

B− → φK− |f23f
∗
22| ≤ 0.3

B
0
d → π0π0 |f13f

∗
11| ≤ 0.43

B
0
d → K

0
K0 |f23f

∗
12| ≤ 0.26

B
0
d → K0K0 |f13f

∗
22| ≤ 0.52

B− → K0K− |f23f
∗
12| ≤ 0.3

B− → K
0
K− |f13f

∗
22| ≤ 0.6

B
0
d → K

0
π0 |f13f

∗
12| ≤ 0.31

B− → π0K− |f13f
∗
12| ≤ 0.46

B− → π−K
0 |f13f

∗
12| ≤ 1.26

TABLE II: Constraints on the product of the f -couplings from non-leptonic rare B-meson decays.

These constraints are obtained in the QCD factorization method. The numbers in the second

column should be multiplied by a factor (M∆dd
/TeV)2.

form of the mass matrix 1. We have not been able to find any way to get normal hierarchy for

the neutrinos that is consistent with FCNC constraints of Table I. Note that the couplings

g and h of ∆ud,uu respectively are related to f via quark mixing as

g = UCKMfdd, h = UCKMfddU
T
CKM, (6)

assuming that the right-handed mixing matrix is roughly similar to the left-handed CKM

matrix (as is generally expected in left-right models), the constraints on h and g in Table I

require us to take the following hierarchy among the ∆ masses: M∆ud
<∼ M∆dd

� M∆uu ,

with M∆ud
>∼ 3 TeV, M∆dd

>∼ 5 TeV and M∆uu
>∼ 200 TeV as the lowest values. Of course

one could argue that we could make the couplings smaller to allow for even lighter ∆ masses.

1 Note that the fit presented in Ref. [3] yielded a “large” θ13 = 8◦, which is consistent with the recent

measurements of this mixing angle at Daya Bay [20] and RENO [21] experiments.
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However, we will see in Section IV that smaller couplings are disfavored by the cosmological

constraints required to generate the observed baryon asymmetry.

We also note that in our model there are new contributions to lepton flavor violating

(LFV) processes e.g. µ → 3e and µ → eγ from the exchange of ∆ee fields. Since the ∆ee

fields in our model are assumed to be very heavy with mass of order of 100 TeV, the LFV

constraints are easily satisfied.

IV. CONSTRAINTS OF POST-SPHALERON BARYOGENESIS

An important point to note is that if the diquarks ∆qq have masses in the TeV range

as discussed above, they will lead to a large rate for the baryon violating processes. As a

result, the associated baryon violating processes e.g. NN → π’s, n − n̄ oscillation etc will

remain in equilibrium till near the TeV scale and erase any pre-existing matter-antimatter

asymmetry in the universe. So in this model, one must necessarily have a new mechanism

for generating baryon excess below the electroweak phase transition temperature. Here we

focus on the post-sphaleron baryogenesis [1], which is connected in our model to two popular

ideas, i.e., seesaw for neutrino masses [11] and unification of quarks with leptons [9].

For any baryogenesis mechanism to be successful, all the three Sakharov’s conditions [22]

must be satisfied, and it turns out that in our case, due to the structure of the theory,

some extra conditions outlined below must also be satisfied by the model parameters. To

understand the cosmological constraints, let us first outline the baryogenesis scenario: We

assume that the S field is the lightest member of the (1, 3, 10) multiplet, i.e. it is lighter

than the ∆qq fields (so that it cannot have baryon-number conserving decays involving

an on-shell ∆qq). It will go out of equilibrium and then decay after the electroweak phase

transition. In this decay, it will produce six quarks and six anti-quarks (as shown in Figure 3)

asymmetrically thereby creating the baryon excess. In our scenario, at some epoch when the

universe is at a temperature T ≤M∆ud,dd
and T ≥MS, the S-particle decay rate drops as a

high power of T 13 and will go out of equilibrium. Then S-particles will simply “drift” along

till T ∼MS. At this epoch, its decay rate does not go down with temperature but remains

frozen at its value as if the S-particle were at rest. However, since the expansion rate of the

universe is going down as T 2, at some temperature Td, H(Td) ∼ ΓS and the S-particle will
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start decaying. In the post-sphaleron baryogenesis scenario, we must have Td ≤ 100 GeV

so that the electroweak sphalerons have gone out of thermal equilibrium (hence the name

“Post-sphaleron”). Td > 200 MeV (the QCD phase transition temperature) must also be

met, otherwise the success of nucleosynthesis will be spoiled.

S
∆ud

∆dd

∆ud

u

d

d

d

d
u

FIG. 3: Tree-level diagram contributing to the decay S → 6q in the PSB model. A similar diagram

for S → 6q̄ (which is possible since S is a real scalar field) can be obtained by reversing the arrows

of the quark fields.

Let us now write down the constraints derived from this PSB mechanism on our model:

Condition I: The decays of the S field to quarks and anti-quarks are mediated by the

exchange of virtual ∆qq fields. The first condition to be satisfied for baryogenesis is that

the S → 6q decay rate must be smaller than the Hubble rate at some temperature near the

electroweak phase transition epoch, i.e. ΓS→6q ≤ H(Tew). The S fields then should drift

around till T ≤ Tew (which we will take for simplicity to be 100 GeV) and then they will

decay; but we require them to decay before the QCD phase transition epoch which occurs

around 200 MeV. If we denote this decay temperature as Td, then the condition for PSB is

100 GeV ≥ Td ≥ 200 MeV. To get Td, we equate the decay rate ΓS→6q to the Hubble rate

H(Td) ' 1.66g
1/2
∗

T 2
d

MPl
, where g∗ is the number of relativistic degrees of freedom at Td and

MPl = 1.2 × 1019 GeV is the Planck mass. Using the Lagrangian of Eq. (2) and the mass

hierarchy Mud,dd �Muu, we can estimate the dominant contribution to the six-quark decay.

This needs a careful counting of the final states, which we have carried out below.

We can write down the decay width as a product of the amplitude times the phase space
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factor for a six quark final state, and is given by

ΓS ≡ Γ(S → 6q) + Γ(S → 6q̄) =
P

π9 · 225 · 45

12

4
|λ|2Tr(f †f)[Tr(ĝ†ĝ)]2

(
M13

S

M8
∆ud

M4
∆dd

)
(7)

where the first term on the RHS is the 6-body phase space factor (for a constant matrix

element) [24], the factor 12 comes from counting the number of final states with different

SU(3)c color combinations, the factor 1/4 is due to the normalization of the coupling g

in terms of ĝ, and P is a phase space integral done numerically. There is a 1/
√

2 coming

from the S quartic vertex in the amplitude, and so there is a factor 1/2 in the rate. This is

compensated by the factor 2 obtained by adding the two conjugate decay modes.The value

of P does not change much as a function of the mass ratios, for eg., we get the following

two typical values:

P =

 1.13× 10−4 (M∆ud
/MS,M∆dd

/MS � 1)

1.29× 10−4 (M∆ud
/MS = M∆dd

/MS = 2) .
(8)

We use the expression in Eq. (7) for ΓS and equate it to the Hubble rate H(Td) to evaluate

Td which must be between 0.2 − 100 GeV for successful PSB. Also as we will see below,

given a value of Td, the dilution factor will constrain the value of MS which goes into the

evaluation of the amount of baryon asymmetry as well as the the value of Td from decay

width of S.

Condition II: The second condition is that at the epoch of decay, the rate to six quarks

must exceed other possible decay modes of S such as Zff̄ , eτ etc. This issue was analyzed

in great detail in [3] and it was pointed out that for vBL <∼ 100 TeV, it implies an upper

limit on MS
<∼ 1 TeV. The condition I then implies that the masses of the color-sextet ∆

fields should not be more than 5− 10 TeV, otherwise Td quickly falls below the lower bound

of 0.2 GeV due to the high inverse power dependence on M∆. Note however that for larger

vBL, this condition is easily satisfied since the S → 6q decay rate which is independent of

vBL dominates over the other decays of S which usually have a 1/v2
BL dependence [3].

Condition III: A third condition arises from a field theoretic requirement of vacuum pre-

serving color. The point is that the cubic term in the ∆ fields in Eq. (2), induced after the ∆νν

field acquires a vev, leads to effective potential terms of the form − 1
16π2

(
λvBL

M∆

)4

(∆†∆)2 [23]

via one-loop box graphs of the kind shown in Fig. 4. To give the form of the effective po-

tential, let us first write down the form of the potential VBL that leads to B-violation after

12



B − L symmetry breaking:

VBL = λ∆νν

[
1

2
∆iα
ud∆

jβ
ud∆

kγ
ddεijkεαβγ + 2 · 1

2
∆iα
dd∆

jβ
dd∆

kγ
uuεijkεαβγ + ...

]
(9)

where i, j, k, α, β, γ are all color indices. The ∆ fields are the same as those in Eq. (2) with

color indices explicitly shown. This, after symmetry breaking, will generate via scalar box

diagrams quartic terms for the ∆ud field. The box diagram contributions to the effective

potential as shown in Fig. 4 can be written down as

V 1−loop
eff =

α1

2
[Tr(∆†ud∆ud)]

2 +
α2

2
[Tr(∆†ud∆ud)

2] (10)

where

α1 = − 1

8π2

(λvBL)4

(M2
∆ud
−M2

∆dd
)2

[(
M2

∆ud
+M2

∆dd

M2
∆ud
−M2

∆dd

)
ln
M2

∆ud

M2
∆dd

− 2

]
and α2 = −α1

4
. Note that roughly for vBL ≥ 2

√
πM∆

λ
, these effective terms will lead to vacuum

instability along the ∆ field direction, and therefore viewed naively, will be unacceptable.

This would imply that the value of the vBL cannot be arbitrarily large for given masses of

the ∆ fields which are also constrained by the Td condition above given the mass of the S

field. We find that λvBL cannot exceed the masses of ∆ud,∆dd by more than a factor of

2− 3.

∆ud ∆ud

∆ud ∆ud

∆ud

∆ud

∆dd ∆dd

∆νν

∆νν

∆νν

∆νν

FIG. 4: The box-diagram giving rise to the effective scalar quartic interaction terms.

Condition IV: The final question one may ask is: could one allow very large values for MS

so that proportionately larger M∆ values will lead to Td still being in the desirable range?

There is however one problem with this possibility, i.e. for large MS, the condition that

the S particle starts to decay below 100 GeV implies a dilution factor that makes the net

13



surviving baryon asymmetry too small. To see this, note that the dilution factor d is given

by the ratio of the entropy before and after decay [25]:

d ≡ sbefore

safter

' g
−1/4
∗ 0.6(ΓSMPl)

1/2

rMS

(11)

where r = nS

s
at the epoch of decay. This dilution factor is roughly estimated to be ∼ Td

MS
.

On the other hand, a calculation of the primordial CP asymmetry gives

εwave '
g2

64πTr(f †f)
fjαVjβV

∗
iβfiαδi3

mtmj

m2
t −m2

j

√(
1− m2

W

m2
t

+
m2
β

m2
t

)2

− 4
m2
β

m2
t[

2

(
1− m2

W

m2
t

+
m2
β

m2
t

)
+

(
1 +

m2
β

m2
t

)(
m2
t

m2
W

+
m2
β

m2
W

− 1

)
− 4

m2
β

m2
W

]
, (12)

εvertex '
g2

32πTr(f †f)
fjβV

∗
iβVjαfiαδi3

mjmβ

m2
W

[
1 +

3m2
W

2〈p1 · p2〉
ln

(
1 +

2〈p1 · p2〉
m2
W

)]
(13)

for the wave function and vertex correction diagrams respectively, as shown in Fig. 5. Here

〈p1 · p2〉 denotes the thermal average over the scalar product of the external momenta of

the two quarks, which is of order M2
S/6. Our calculation is done in the unitary gauge

and there are no other contributions to the primordial CP asymmetry, that can cancel this

contribution.Note that we require one of the external legs to be the top-quark in order to get

a non-zero absorptive part. Numerically, the vertex term turns out to be the dominant one

with ε ∼ 10−8 or so in this particular realization of PSB. This means that the dilution factor

must not be less than about 1%, or in other words, MS must be smaller than 10 TeV (since

Td ≤ 100 GeV), in order to explain the observed baryon asymmetry, ηB ≡ (nb − nb̄)/nγ =

(6.04± 0.08)× 10−10 [26].

It is important to note here that the loop diagrams in Fig. 5 giving rise to a non-zero

CP -asymmetry do not involve baryon-number violating interactions. This point is further

clarified in Appendix A.

V. PREDICTION FOR τn−n̄

We now present the model predictions for the n − n̄ oscillation time. We will show

that under the constraints of PSB on the model parameters as discussed above, there is an

absolute upper bound on the τn−n̄. To understand this, we first note that the n−n̄ oscillation

14



∆ud

ui

dα

dβ

uj

W

∆ud

ui

dα

dβ

uj

W

FIG. 5: The wave function and vertex correction contribution to the CP asymmetry in our PSB

model.

(or the ∆B = 2 amplitude) in our model arises from the exchange of three color-sextet ∆

fields. There are two generic contributions which have the form:

Atree
n−n̄ '

f11g
2
11λvBL

M2
∆dd

M4
∆ud

+
f 2

11h11λ
′vBL

M4
∆dd

M2
∆uu

. (14)

Note that both terms involve the coupling f11. But a look at Eq. (5) tells us that at the tree-

level, this coupling has to be vanishingly small to satisfy the FCNC constraints. However,

the choice of f matrix in Eq. (5) is not unique and we could as well choose a very small

value for f11 (e.g. <∼ 10−6) without affecting the FCNC constraints. One would then think

that the n − n̄ amplitude could be as small as one wants. However, there is an one-loop

diagram as shown in Figure 6 that sets a lower bound on the value of f11. The contribution

∆νν ∆dd

∆ud

∆ud

u

d

d

d

d
u

W−
t

b

FIG. 6: One-loop contribution to the n− n̄ amplitude in the PSB model.
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of the one-loop diagram to n− n̄ amplitude is given by

A1−loop
n−n̄ ' g2g11g13f13V

∗
ubVtdλvBL

128π2M2
∆ud

(
mtmb

m2
W

)
F 〈n̄|O2

RLR|n〉 (15)

where the one-loop function is given by

F =
1

M2
∆ud
−M2

∆dd

[
1

M2
∆ud

ln

(
M2

∆ud

m2
W

)
− 1

M2
∆dd

ln

(
M2

∆dd

m2
W

)]
+

1

M2
∆ud

M2
∆dd

1− (m2
t/4m

2
W )

1− (m2
t/m

2
W )

ln

(
m2
t

m2
W

)
, (16)

and the operator O2
RLR is given by

O2
RLR = (uTiRCdjR)(uTkLCdlL)(dTmRCdnR)Γsijklmn, (17)

with Γsijklmn = εmikεnjl+εnikεmjl+εmjkεnil+εnjkεmil, where we have used the notation in Ref.

[27]. The matrix element of this operator between the n and n̄ states has been evaluated in

the MIT bag model in Ref. [27], and we take their fit A value:

〈n̄|O2
RLR|n〉 = −0.314× 10−5 GeV6 (18)

to predict the upper bound on τn−n̄ in our model. Note that in the last term of Eq. (16),

the factor (1−m2
t/4m

2
W ) is nearly zero since mt ' 2mW . This factor arises from including

the longitudinal components of W boson in the evaluation of the diagram. Here the approx-

imation M2
∆ud,dd

� m2
t ,m

2
W has been made. Also, a Fierz transformation has been made to

obtain the operator in Eq. (17) in the scalar form shown here.

The n−n̄ amplitude in Eq. (15) can be translated into the n−n̄ oscillation time as follows:

τ−1
n−n̄ ≡ δm = cQCD(µ∆, 1 GeV)

∣∣∣A1−loop
n−n̄

∣∣∣ , (19)

where cQCD is the RG running factor in bringing down the amplitude (15) originally evalu-

ated at the ∆-scale to the neutron scale [28]:

cQCD(µ∆, 1GeV) =

[
αs(µ

2
∆)

αs(m2
t )

]8/7 [
αs(m

2
t )

αs(m2
b)

]24/23 [
αs(m

2
b)

αs(m2
c)

]24/25 [
αs(m

2
c)

αs(1 GeV2)

]8/9

. (20)

Here we have assumed µ∆ to be the geometric mean of M∆ud
and M∆dd

, and have used

µ∆ ∼ O(TeV) to obtain cQCD ' 0.18.

Using all the PSB constraints described in the previous section, we vary all the model pa-

rameters in the allowed range. In particular, we perform a numerical scan (with logarithmic
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FIG. 7: Scatter plots for τn−n̄ as a function of the ∆ masses M∆ud
,M∆dd

.
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FIG. 8: Scatter plots for τn−n̄ as a function of the real scalar mass MS and the B − L breaking

scale vB−L.

scale) over the mass parameter MS between 100 GeV and 10 TeV, the B−L breaking scale

vBL from 10 TeV upwards, and the masses M∆ud,dd
between MS and vBL. We also vary the

coupling λ (the allowed values were found to be between 0.01−1) as well as the overall scale

in the f -matrix given by Eq. (5) (its allowed values were between 0.5− 1.6).

We obtain an absolute upper limit on the oscillation time of τn−n̄ ≤ 4.7×1010 sec.. This is

demonstrated in Figures 7 and 8 for the most relevant model parameters, namely vBL,M∆

and MS. A probability distribution of the predictions for τn−n̄ is shown in Figure 9. Note

that the current experimental lower limit is τ expt
n−n̄ ≥ 3.5 × 108 sec. [29]. We further note

that our predicted upper limit on τn−n̄ gets even stronger for low B − L scale, e.g., for vBL

around 200 TeV, τn−n̄ <∼ 1010 sec., which is within reach of the proposed n − n̄ oscillation

experiments [14]. Note that for vBL <∼ 200 TeV, there are no allowed points in our model

since the S → 6q decay rate no longer remains the dominant decay mode while satisfying

all the other constraints discussed in the previous two sections.
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FIG. 9: The likelihood probability for a particular value of τn−n̄ as given by the model parameters.

VI. CONCLUSION

We have presented the predictions for neutron-anti-neutron oscillation in a new low-scale

baryogenesis scenario, namely the post-sphaleron baryogenesis. We find that the require-

ments of successful baryogenesis, together with the flavor changing neutral current con-

straints, restrict the model parameter space significantly to give an absolute upper limit on

τn−n̄ ≤ 5×1010 sec., which is independent of the B−L breaking scale. For a low B−L scale

around 200 TeV, the upper limit is even stronger: τn−n̄ ≤ 1010 sec., a value in the range

accessible to the future round of n− n̄ searches. Interestingly, this model also allows a real-

istic neutrino masses and mixing observed although it is consistent only with inverted mass

hierarchy pattern. Thus evidence for normal mass hierarchy will rule out this scenario. We

hope this result will strengthen the theoretical and experimental motivations for dedicated

searches for neutron-anti-neutron oscillation searches in near future.
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Appendix A: Baryon Asymmetry Calculation in a Toy Model

In this Appendix, we discuss whether a theorem discussed by Nanopoulos and Weinberg

[30] (NW) regarding the nature of one loop contribution that can lead to nonzero baryon

asymmetry εB, applies to our model. According to this theorem, if αB is the strength of

the baryon number violating coupling, non-zero baryon asymmetry can arise from one loop

contributions that involve only the B-violating interactions, i.e., εB ∝ α3
B, with two powers

of αB coming from tree amplitudes and one power from the loop contribution. On the other

hand, an explicit calculation in our model shows that indeed a non-zero εB can arise in order

α2
B, as shown in Eqs. (12) and (13). We pointed out in Ref. [1] that the assumptions that

go into proving the NW theorem does not apply to our model which uses a real scalar field

that carries no definite baryon number, and our PSB model describes a new class of models

for baryogenesis.

To illustrate how our model provides an exception to the NW theorem, we consider a toy

example which captures the main spirit of our model. This toy model is simple, where it is

straightforward to calculate baryon asymmetry obtained in the two–body decays of a real

scalar field. Our explicit calculation of εB shows that it arises in order α2
B through loop

diagrams that utilize B = 0 vertices. The loop couplings however violate “flavor”, as will

be demonstrated below.

We start with the following toy interaction Lagrangian involving a real scalar field X

which does not carry baryon number. A complex scalar field Y , which also has B = 0 is

introduced, to mimic the effects of the W± gauge boson loop of our model. These fields

interact with complex bosonic fields fi with baryon number as follows (our argument also

applies to the case when f fields are fermionic, but for definiteness in our calculation we take

them to be bosonic): fields with same baryon number (say B = 1) are f1, f3 and those with

B = 0 are f2, f4. The fields (f1, f3) and (f2, f4) can be assumed to belong to two different

flavor states. When X particles decay, they will generate baryons as well as anti-baryons

since they produce both f ∗1 f2 and f1f
∗
2 in their decay (and similarly for the f3,4). The

question then is: will the X decays to the two final states exactly cancel? We find below
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that they do not. To proceed with our proof, we start with the interaction Lagrangian

LI = g1Xf
†
2f1 + g2Xf

†
4f3 + g3Y f

†
3f1 + g4Y f

†
4f2 + h.c. , (A1)

where the couplings gi have dimension of mass. It can be verified that not all couplings gi

can be made real by field redefinitions, and one phase will survive. Thus CP is explicitly

violated in the Lagrangian (A1). X being a real field with no definite baryon number implies

that Eq. (A1) also violates B. The masses of these scalars have the form

Lmass =
1

2
M2

XX
2 +M2

Y Y
†Y +

4∑
i=1

m2
i f
†
i fi . (A2)

Note that there is no flavor mixing in the masses of fi. This is in fact a natural consequence

of a Z2 × Z ′2 symmetry present in the model. The charges under this symmetry are shown

in Table III.

f1 f2 f3 f4 X Y

Z2 − + − + − +

Z ′2 − − + + + −

TABLE III: Z2 × Z ′2 charges of various fields in our toy model.

We assume that MY �MX so that in the early universe, by the time X particles decay, Y

particles have decayed away. There are two baryon number violating final states in X-decay:

X → f ∗1 + f2 and X → f ∗3 + f4 and we must add up both the contributions. These final

states have B = −1, while the decays X → f1 + f ∗2 and X → f3 + f ∗4 have B = +1. The

net baryon asymmetry in X decays is defined as

εB =
Γ(X → f1 + f ∗2 ) + Γ(X → f3 + f ∗4 )− Γ(X → f ∗1 + f2)− Γ(X → f ∗3 + f4)

Γ(X → f1 + f ∗2 ) + Γ(X → f3 + f ∗4 ) + Γ(X → f ∗1 + f2) + Γ(X → f ∗3 + f4)
. (A3)

The interference of tree-level decays of X with one-loop vertex corrections do lead to a net

baryon asymmetry εB. In Fig. 10 we show the tree level diagram and the one-loop correction

which utilizes the B-conserving vertex of Y . The wave function correction diagrams do not

generate any CP asymmetry in this model. A straightforward calculation shows (in the limit

of MY �MX ,mi) that

εB =
Im(g∗1g2g3g

∗
4)

4π(|g1|2 + |g2|2)M2
Y

[
I(m2

1,m
2
2)− I(m2

3,m
2
4)
]

(A4)
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FIG. 10: The tree and one-loop diagram for the X decay in our toy model.

where

I(m2
a,m

2
b) =

√
1− 2(m2

a +m2
b)

2

M2
X

+
(m2

a −m2
b)

2

M4
X

Θ

(
1− (ma +mb)

2

M2
X

)
. (A5)

The Θ function signifies the absorptive part of the loop diagram. It is clear from Eqs.

(A4) and (A5) that the baryon asymmetry is non-vanishing, even though the loop diagram

utilized the B-conserving vertex of Y boson. The B violating couplings of the model are g1

and g2, while g3 and g4 are B-conserving. Our result is then that εB ∝ α2
B (in the notation

of NW) and non-vanishing. The contributions from f1 and f2 tend to cancel those from f3

and f4, but since these particles have distinct masses, there is a residual εB. This induced

εB is as a result of flavor, since it is the mass difference of flavor states that causes it. We

emphasize that this is a complete calculation of CP asymmetry in the toy model, since the

only diagram that contributes to εB is the vertex correction diagram in Fig. 10. Also this

is not a gauge model so that there are no issues of gauge invariance. A general proof that

there are exceptions to the NW theorem is presented in Ref. [31] using CPT and unitarity

arguments. Here we present an explicit model that illustrates this exceptional case.
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