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We consider scenarios where strong conformal dynamics constitutes the ultraviolet completion
of the physics that drives electroweak symmetry breaking. We show that in theories where the
operator responsible for the breaking of conformal symmetry is close to marginal at the breaking
scale, the dilaton mass can naturally lie below the scale of the strong dynamics. However, in general
this condition is not satisfied in the scenarios of interest for electroweak symmetry breaking, and so
the presence of a light dilaton in these theories is associated with mild tuning. We construct the
effective theory of the light dilaton in this framework, and determine the form of its couplings to
Standard Model states. We show that corrections to the form of the dilaton interactions arising from
conformal symmetry violating effects are suppressed by the square of the ratio of the dilaton mass
to the strong coupling scale, and are under good theoretical control. These corrections are generally
subleading, except in the case of dilaton couplings to marginal operators, when symmetry violating
effects can sometimes dominate. We investigate the phenomenological implications of these results
for models of technicolor, and for models of the Higgs as a pseudo-Nambu-Goldstone boson, that
involve strong conformal dynamics in the ultraviolet.

I. INTRODUCTION

Although the Standard Model (SM) has experienced
more than 30 years of experimental successes, the nature
of the dynamics that underlies the electroweak phase
transition has remained a mystery. Although several
promising theories have been put forward, each faces
its own challenges and conclusive experimental evidence
that could settle the issue one way or the other has been
lacking. The recent discovery of a new particle with
mass close to 125 GeV and properties similar to that
of the SM Higgs boson [1, 2] will help resolve this issue.
The simplest possibility, and the one favored by precision
electroweak tests, is that the new particle is indeed the
SM Higgs. In this case the remaining challenge is to
explain the stability of the weak scale under radiative
corrections, the ‘hierarchy problem’. If, however, elec-
troweak symmetry is broken by strong dynamics, as in
technicolor models [3, 4], for a review see [5], there is
no immediate understanding of the origin of the new
particle, or an explanation of why its properties are
similar to that of the SM Higgs. The simplest technicolor
models remain disfavored by precision tests [6–8], and
there is no immediate understanding of the absence of
the new contributions to flavor changing neutral currents
that are expected to be generated by the mechanism that
gives the SM quarks and leptons their masses.

There have long been good reasons to think that
strong conformal dynamics may play a role in electroweak
symmetry breaking, irrespective of the existence of a light
Higgs. In theories of technicolor, if the strong dynamics
that breaks electroweak symmetry is conformal in the
ultraviolet, the operators that give rise to the fermion
masses can have a large anomalous dimension. This
framework is used in conformal technicolor models [9]
to generate a natural separation of the flavor scale from
the electroweak scale, allowing the experimental limits
on flavor violation to be satisfied. (This approach to

the flavor problem was first proposed in the context
of walking technicolor [10–13], which is closely related
to conformal technicolor.) In theories with a light
Higgs, one class of promising solutions to the hierarchy
problem are those where the SM Higgs emerges as the
pseudo-Nambu-Goldstone boson of a global symmetry
that is broken by strong dynamics [14–16]. This class
of theories includes little Higgs models [17–19], and twin
Higgs models [20, 21]. If the ultraviolet physics involves
strong conformal dynamics, the flavor scale can again
be separated from the electroweak scale, allowing new
contributions to flavor violating processes to be small
enough to satisfy the existing constraints.

In theories where an exact conformal symmetry is
spontaneously broken, the low energy effective theory
below the breaking scale contains a massless scalar,
the dilaton, which may be thought of as the Nambu-
Goldstone boson (NGB) associated with the breaking of
conformal symmetry [23–26]. The form of the dilaton
couplings is fixed by the requirement that conformal
symmetry be realized nonlinearly, and so this framework
is extremely predictive. Several authors have studied the
couplings of a light dilaton in the context of theories
of electroweak symmetry breaking [27–29]. Remarkably,
the interactions of a dilaton with the SM fields are
very similar to those of the SM Higgs [28]. This can
be traced to the fact that at the classical level the
SM has an approximate conformal symmetry which is
spontaneously broken by the VEV of the Higgs, so
that the Higgs can be understood as a dilaton in this
limit. However, in the class of theories of interest for
electroweak symmetry breaking, conformal symmetry is
expected to be explicitly violated by operators that grow
in the infrared to become strong at the breaking scale.
Therefore, in general, there is no reason to expect a light
dilaton in the low energy effective theory.

In this paper we consider scenarios where strong con-
formal dynamics constitutes the ultraviolet completion of



the physics that drives electroweak symmetry breaking.
Following the framework outlined in [30], we show that
in theories where the operator responsible for breaking
conformal symmetry is marginal at the breaking scale,
the dilaton mass can naturally lie below the scale of the
strong dynamics.∗ However, in general this condition
is not satisfied by the theories of interest for electroweak
symmetry breaking, and so the presence of a light dilaton
in these theories is associated with mild tuning. We
construct the effective theory of the light dilaton in this
framework, and determine the form of its couplings to
SM states. We show that corrections to the form of
the dilaton interactions arising from conformal symmetry
violating effects are suppressed by the square of the ratio
of the dilaton mass to the strong coupling scale, and are
under good theoretical control. These corrections are
subleading, except in the case of dilaton couplings to
marginal operators, when they can sometimes dominate.

These results have important implications for our
understanding of electroweak symmetry breaking. One
possibility is that the new particle that has been observed
close to 125 GeV is not the SM Higgs, but instead a dila-
ton that emerges from a strongly interacting conformal
sector that breaks electroweak symmetry dynamically. In
fact, several papers that interpret the 125 GeV resonance
as a dilaton have already appeared in the literature [32–
35]. In such a scenario an understanding of the gen-
eral form of the dilaton couplings, including conformal
symmetry violating effects, is crucial to distinguishing
it from the SM Higgs [22]. Another possibility is that
the new particle which has been observed is indeed the
SM Higgs, which arises as the pseudo-Nambu-Goldstone
boson (pNGB) of an approximate global symmetry that
is broken by strong conformal dynamics. Our analysis
shows that in such a scenario, there may be an additional
light scalar in the low energy effective theory beyond
the SM Higgs whose couplings to the SM fields can be
predicted.

The AdS/CFT correspondence [36–39] can be used to
relate Randall-Sundrum models in warped extra dimen-
sions [40] to strongly coupled conformal field theories in
the large N limit. In this way, extra dimensional realiza-
tions of technicolor [41] and of the Higgs as a pNGB [42]
have been obtained. In the correspondence, the radion
in the Randall-Sundrum model is identified with the
dilaton [27]. Radion stabilization using the Goldberger-
Wise mechanism [43] can be understood as a stable
minimum for the dilaton potential being generated by
effects which explicitly violate conformal symmetry [27].
Several authors have studied the couplings of the radion
in Randall-Sundrum models, both in the case when the
SM fields are localized to a brane [43–46] and in the case
when they are in the bulk [47, 48]. We find excellent

∗ A closely related result has been obtained in the context of
walking gauge theories using current algebraic methods [31].

agreement between these results and ours in the regime
when the large N approximation is valid.

II. EFFECTIVE THEORY OF A DILATON

In this section we construct the effective theory for the
dilaton, incorporating conformal symmetry violating ef-
fects, and show that if the operator that breaks conformal
symmetry is marginal at the breaking scale, the dilaton
can naturally be light.
The fifteen parameter conformal group extends the ten

parameter Poincare group to include scale transforma-
tions and special conformal transformations. While it
has long been conjectured that any Poincare invariant,
unitary theory that realizes scale invariance linearly will
also respect conformal symmetry [49], there exists no
complete proof. The validity of this conjecture has
been the subject of considerable interest in the recent
literature [50], [51], [52].
Consider a theory where conformal invariance is spon-

taneously broken. Then the low energy effective theory
contains a dilaton field σ(x), which can be thought
of as the NGB associated with the breaking of scale
invariance [23–26]. The additional four NGBs associated
with the breaking of the special conformal symmetry
can be identified with the derivatives of the dilaton,
rather than as independent propagating fields. Below the
breaking scale the symmetry is realized non-linearly, with
the dilaton undergoing a shift σ(x) → σ′(x′) = σ(x)+ωf
under the scale transformation xµ → x′µ = e−ωxµ. Here
f is the scale associated with the breaking of conformal
symmetry. For the purpose of writing interactions of the
dilaton it is convenient to define the object

χ(x) = feσ(x)/f (1)

which transforms linearly under scale transformations.
Specifically, under the scale transformation xµ → x′µ =
e−ωxµ, χ(x) transforms as a conformal compensator

χ(x) → χ′(x′) = eω χ(x) . (2)

The low energy effective theory for the dilaton will in
general include all terms consistent with this transforma-
tion, but with some additional restrictions and relations
among their coefficients from the requirement that the
theory be invariant not just under scale transformations,
but under the full conformal group. These restrictions
will not affect our discussion in any significant way, and
so operationally we shall only require that the action for
χ be scale invariant.
In writing down the Lagrangian for the dilaton, it is

necessary to take into account the implicit breaking of
conformal invariance associated with the regulator. Since
the theory in the ultraviolet possesses exact conformal
invariance, this effect is of course completely spurious.
However, it has the consequence that the Lagrangian
for the dilaton is not manifestly scale invariant. It is
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only at the quantum level, when effects of the regulator
are incorporated, that conformal invariance is realized.
This complicates the problem of finding the form of the
effective theory.
Perhaps the simplest way to incorporate the effect

of the regulator is to begin in a framework where the
renormalization scale µχ is itself a function of χ, µχ =
µχ̂, where χ̂ = χ/f . In such a framework, correlation
functions can be obtained from the effective action, which
has exactly the same form as in a conventional renormal-
ization scheme, but with µ replaced by µχ [53]. Such a
choice of renormalization scheme has the advantage that
the action for χ is then manifestly scale invariant and
therefore easy to write down. Starting from this action,
the form of the Lagrangian in a more conventional scheme
where the renormalization scale is independent of χ can
be determined. This is the approach we shall follow.

A. Effective Theory in the Limit of Exact

Conformal Invariance

We begin by constructing the effective theory for the
dilaton in the case when conformal invariance is exact,
and effects that explicitly violate conformal symmetry
are absent. In a framework where the renormalization
scale µχ is proportional to χ, the low energy effective
action for the dilaton will be manifestly scale invariant.
This symmetry allows derivative terms in the Lagrangian
of the form

1

2
Z∂µχ∂

µχ+
c

χ4
(∂µχ∂

µχ)
2
+ . . . (3)

For reasons that will become clear, we postpone rescaling
Z to one. Crucially, however, in contrast to the effec-
tive theory of the NGB of spontaneously broken global
symmetry, a non-derivative term in the potential is also
allowed,

V (χ) =
Z2κ0
4!

χ4 . (4)

The existence of this non-derivative term indicates that
even in the absence of effects that explicitly violate con-
formal symmetry, there is a preferred value of f = 〈χ〉.
This is in sharp contrast to the case of a spontaneously
broken global symmetry, where all points on the vacuum
manifold are identical. In order to determine the location
of the minimum, the effective potential must be obtained
and minimized.
In order to bring the theory into a standard form, we

now go over to a scheme in which the renormalization
scale µ is independent of χ. In order to clarify the
discussion, we first illustrate the procedure at one loop.
We will obtain the Lagrangian for the low energy effective
theory to this order, and use it to determine the effective
potential and dilaton mass. We will then show how the
result generalizes to arbitrary numbers of loops. It will
be convenient to work in a mass-independent scheme,

such as MS. We label Z and the coupling constants c,
Z2κ0 etc. by gi, where i is an index. The gi are all
dimensionless.

1. One Loop Analysis

At one loop, going over to a scheme where the
renormalization scale µ is independent of χ is equivalent
to evolving the parameters gi etc. from µχ to µ using
the renormalization group. Running the renormalization
group leads to gi evolving into g′i, where

g′i = gi −
dgi

d logµ
log

(

χ

f

)

. (5)

To keep the analysis simple we focus on the case when all
the gi are zero, except Z and Z2κ0. Then to this order,
the potential for the dilaton takes the form

V (χ) =

{

Z2κ0 −
d(Z2κ0)

d logµ
log

(

χ

f

)}

χ4

4!
. (6)

Note that the potential is no longer manifestly scale
invariant. In this theory at one loop order there is no
wave function renormalization,

d logZ

d logµ
= −2γ = 0 . (7)

The derivative of κ0 can be evaluated in perturbation
theory, leading to

dκ0
d logµ

=
3κ20
16π2

. (8)

After using these expressions to replace the terms in-
volving derivatives in the Lagrangian, we may choose to
rescale Z to one.
The conformal invariance of this Lagrangian can be

made more transparent in a basis where all the mass
scales are expressed as powers of the renormalization
scale µ, and all coupling constants are dimensionless. In
such a basis, the dilaton kinetic term can be written as

1

2
Z̄∂µχ∂

µχ , (9)

where Z̄ is given to one loop order by

Z̄ = Z − dZ

d logµ
log

(

µ

f

)

. (10)

Z̄, which is equal to Z since wave function renormaliza-
tion vanishes to this order, is a renormalization group
invariant and does not change with µ. At this point we
choose to rescale Z̄ to one.
In this basis the potential for the dilaton takes the form

V (χ) =

{

κ0 −
d(Z2κ0)

d logµ
log

(

χ

µ

)}

χ4

4!
. (11)
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where κ0 is given by

κ0 = Z2κ0 −
d(Z2κ0)

d logµ
log

(

µ

f

)

. (12)

Note that κ0, like Z̄, is independent of the renormaliza-
tion scale µ to this loop order, as dictated by conformal
invariance.
The next step is to determine the one loop effective

potential. This can be computed from Eq. (6), after
rescaling Z to one, using the Coleman-Weinberg formula,

Veff = V ± 1

64π2

∑

i

M4
i

(

log
M2
i

µ2
− 1

2

)

. (13)

Here the sum is over the field dependent masses of all the
states in the theory, the sign being positive for bosons and
negative for fermions. This leads to

Veff(χcl) =

{

κ0 −
3κ20
32π2

[

log

(

µ2

1
2κ0f

2

)

− 1

2

]}

χ4
cl

4!
(14)

The conformal invariance of the theory can be made clear
by rewriting this in terms of κ0. We obtain

Veff(χcl) =
κ̂0
4!
χ4
cl . (15)

where κ̂0, given to one loop order by

κ̂0 = κ0 +
3κ20
32π2

[

log

(

κ0
2

)

− 1

2

]

, (16)

is independent of the renormalization scale µ, as required
by conformal invariance.
Minimizing this effective potential, we find that the

conformal symmetry breaking scale 〈χ〉 = f is driven to
zero, corresponding to unbroken conformal symmetry, if
the sign of κ̂0 is positive. Alternatively, if κ̂0 is negative,
f is driven to infinite values, and conformal symmetry
is never realized. Only if the value of κ̂0 is identically
zero does the low energy effective theory possess a stable
minimum, and a massless dilaton. In general setting κ̂0 =
0 is associated with tuning, since there is no symmetry
reason to expect it to vanish.

2. General Analysis

Although this result was obtained based on a one loop
analysis, we now show that the same conclusion holds at
arbitrary loop order. It can be verified that by replacing
gi in the theory renormalized at µχ by g′i, where g

′
i is

given by

g′i = gi +
∞
∑

n=1

(−1)n

n!

dngi
d logµn

[

log

(

χ

f

)]n

, (17)

we obtain a Lagrangian which is conformally invariant
when renormalized at µ. The higher terms in this series

are to be determined self-consistently order by order in
perturbation theory. The potential for the dilaton now
takes the form

V (χ) =

{

∞
∑

n=0

(−1)n

n!

dn(Z2κ0)

d logµn

[

log

(

χ

f

)]n
}

χ4

4!
. (18)

As expected, the Lagrangian does not possess a mani-
festly scale invariant form. We can choose to rescale Z
to one after the derivatives have been evaluated, but not
before.
The conformal invariance of the theory can be made

more transparent by going over to a basis where all the
mass scales are expressed as powers of the renormaliza-
tion scale µ, and all coupling constants are dimensionless.
In such a basis, Z̄, the coefficient of the dilaton kinetic
term, is given by

Z̄ =

∞
∑

m=0

(−1)m

m!

dmZ

d logµm

[

log

(

µ

f

)]m

. (19)

Z̄ does not change with the renormalization scale µ,
and we rescale it to one without loss of generality. The
potential for the dilaton takes the form

V (χ) =

{

∞
∑

n=0

(−1)n

n!
κ0,n

[

log

(

χ

µ

)]n
}

χ4

4!
, (20)

where κ0,n is given by

κ0,n =
∞
∑

m=0

(−1)m

m!

dm+n(Z2κ0)

d logµm+n

[

log

(

µ

f

)]m

. (21)

The beta functions of all the κ0,n vanish by construction.
This is a reflection of the conformal invariance of this
theory. Going forward, we denote the κ0,n and all the
other coupling constants in this basis by ḡi, where i is
an index. The beta functions of all the ḡi vanish as a
consequence of conformal invariance.
The next step is to obtain the effective potential

Veff(χcl) for this theory, and to minimize it. How is
Veff(χcl) to be determined? This time, rather than work
directly from the Lagrangian, we employ the Callan-
Symanzik equation for the effective potential,
{

µ
∂

∂µ
+ βi

∂

∂ḡi
− γχcl

∂

∂χcl

}

Veff(χcl, ḡi, µ) = 0 . (22)

For a conformal theory, the beta functions βi(ḡi) vanish.
The anomalous dimension γ of χ, which represents the
difference between its mass and scaling dimensions, is
also zero. Then the Callan-Symanzik equation reduces
to

µ
∂

∂µ
Veff(χcl, ḡi, µ) = 0 . (23)

The effective potential is then constrained by dimensional
analysis to be of the especially simple form

Veff(χcl) =
κ̂0
4!
χ4
cl , (24)
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where κ̂0 is a constant that depends on the ḡi, but is
independent of µ. We see that the theory does not have
a stable minimum unless κ̂0 = 0, when the potential
vanishes identically. The results of our one loop analysis
are therefore confirmed.

B. Incorporating Conformal Symmetry Violating

Effects

The situation changes if effects that explicitly break
conformal symmetry are present in the theory. Consider
an operator O(x) of scaling dimension ∆ added to the
Lagrangian,

L = LCFT + λOO(x) . (25)

Under x → x′ = e−ωx, the operator O(x) → O′(x′) =
eω∆O(x). It is convenient to define the dimensionless

coupling constant λ̂O = λOµ
∆−4. We choose to nor-

malize the operator O(x) such that λ̂O of order one
corresponds to conformal symmetry violation becoming
strong, so that it can no longer be treated as a pertur-
bation on the conformal dynamics. This implies that if

λ̂O ≪ 1, it satisfies the renormalization group equation

d logλ̂O
d logµ

= −(4−∆) . (26)

We wish to determine the effect of this deformation on
the form of the low energy effective theory. In order to do

this, note that for small λ̂O the action remains formally
invariant under x → x′ = e−ωx provided λO is taken to
be a spurion that transforms as

λO → λ′O = e(4−∆)ωλO. (27)

This implies that the effective theory for χ will also
respect conformal symmetry if λO is treated as a spurion
that transforms in this way.
In determining the low energy effective theory for the

dilaton it is again simplest to begin in a framework where
the renormalization scale depends on the conformal
compensator as µχ = µχ̂, since the Lagrangian is then
manifestly scale invariant. The potential for the dilaton
is then

V (χ) =
Z2κ0
4!

χ4 −
∞
∑

n=1

Z2−nǫ/2κn
4!

λnO χ(4−nǫ) , (28)

where ǫ is defined as 4 −∆. The next step is to go over
to a more conventional scheme where the renormalization
scale µ is independent of χ.

1. One Loop Analysis

In order to clarify the discussion we will first work

in the limit that λ̂O ≪ 1 at scales µ of order f , and

determine the vacuum structure and the dilaton mass to
one loop order. We will then relax the assumption on λ̂O
and also generalize the result to an arbitrary number of
loops.

Keeping only the leading order term in λ̂O, the
potential for the dilaton Eq. (28) simplifies to

V (χ) =
Z2κ0
4!

χ4 − Z∆/2κ1
4!

λO χ∆ , (29)

where κ0 and κ1 are coupling constants. We can go
over to a scheme where the renormalization scale is
independent of χ by using the renormalization group.
The potential then becomes, to one loop order,

V (χ) =

{

Z2κ0 −
d(Z2κ0)

d logµ
log

(

χ

f

)}

χ4

4!
(30)

−
{

Z∆/2κ1 −
d(Z∆/2κ1)

d logµ
log

(

χ

f

)}

λO χ∆

4!
.

To keep the analysis simple we focus on the case when all
the gi are zero, except Z, Z

2κ0 and Z∆/2κ1. This theory
does not experience wave function renormalization at one
loop, and therefore the derivatives of Z in the expression
above vanish. The derivatives of κ0 and κ1 can be
evaluated in perturbation theory, leading to

dκ0
d logµ

=
3κ20
16π2

dκ1
d logµ

=
∆(∆− 1)κ1κ0

32π2
. (31)

In order to understand how conformal symmetry is
realized in this framework it is useful to go over to a
basis where all mass scales are expressed in terms of the
renormalization scale µ and all coupling constants are
dimensionless. In this basis, Z̄, the coefficient of the
dilaton kinetic term is given by

Z̄ = Z − dZ

d logµ
log

(

µ

f

)

. (32)

Z̄ is a renormalization group invariant. The absence of
wave function renormalization in this theory at one loop
means that Z = Z̄ to this order. We choose to rescale Z̄
to one.
The potential for the dilaton takes the form

V (χ) =

{

κ0 −
d(Z2κ0)

d logµ
log

(

χ

µ

)}

χ4

4!

−
{

κ1 −
d(Z∆/2κ1)

d logµ
log

(

χ

µ

)}

λOχ
∆

4!
. (33)

Here κ0 and κ1 are related to Z, κ0 and κ1 as

κ0 = Z2κ0 −
d(Z2κ0)

d logµ
log

(

µ

f

)

κ1 = Z∆/2κ1 −
d(Z∆/2κ1)

d logµ
log

(

µ

f

)

. (34)
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Note that λO is being treated as a spurion, not as a
coupling constant, and therefore continues to carry mass
dimension 4−∆, equal to its spurious scaling dimension.
The beta functions of κ0 and κ1 can be seen to vanish to
one loop order by construction. This is a consequence of
the (spurious) conformal symmetry.
The next step is to obtain the effective potential for

the theory at one loop order. We again use Eq. (13),
after rescaling Z to one, leading to

Veff(χcl) =
κ0
4!
χ4
cl −

κ1
4!
λOχ

∆
cl + (35)

κ0
4!

[

3κ0
32π2

χ4
cl −

λO∆(∆− 1)κ1
64π2

χ∆
cl

] [

Σ− 1

2

]

,

where Σ is defined as

Σ = log

[

κ0
2

− κ1
4!

∆ (∆− 1)λOχ
∆−4
cl

]

. (36)

The next step is to find the minimum of this potential,
and to obtain the dilaton mass. For simplicity, we neglect
the loop suppressed terms on the second line of Eq. (35).
We will later verify that including them does not alter our
conclusions. The tree level potential admits a minimum
when

f (∆−4) =
4κ0

κ1λO∆
. (37)

The dilaton mass squared at the minimum, to this order,
is given by

m2
σ =

κ1
4!
λO∆(4 −∆)f∆−2 = 4

κ0
4!

(4−∆)f2 . (38)

If the conformal field theory is weakly coupled, the

parameters κ0, κ1 ≪ (4π)2, λ̂O ≪ 1 ⇒ λOf
(∆−4) ≪ 1,

and the effective theory of the dilaton we have obtained
is valid. Corrections to Eqs. (37) and (38) from the loop
suppressed terms in Eq. (35) can be seen to be small in
this limit, and we are justified in neglecting them.
However, if the conformal field theory under consider-

ation is strongly coupled, as in the theories of interest
for electroweak symmetry breaking, the effective theory
of the dilaton is also expected to be strongly coupled at
the scale Λ ∼ 4πf . Then, in the absence of tuning, the
parameters κ0 and κ1 are in general of order (4π)2 and,

as is clear from Eq. (37), the assumption that λ̂O is small
at the scale f is no longer self consistent. Furthermore,
it follows from Eq. (38) that the mass of the dilaton is of
order the cutoff Λ and so it is no longer a light state. The
loop suppressed terms we have neglected in obtaining
Eq. (37) cannot alter this result. The conclusion to be
drawn from this is that if a strongly coupled conformal
field theory is explicitly broken by a relevant operator
that becomes strong in the infrared, in general there is
no reason to expect a light dilaton.
However, a closer study of Eq. (38) reveals a very

interesting feature. If the operator O is very close to

marginal so that (4 −∆) ≪ 1, then even for κ0 ∼ (4π)2

the dilaton mass is parametrically smaller than the strong
coupling scale Λ. It is straightforward to verify that this
conclusion remains true even when the loop suppressed
terms in Eq. (35) are included in the analysis. This would
suggest that in a scenario where the operator that breaks
conformal symmetry is close to marginal, there is indeed
a light dilaton in the effective theory. The dilaton mass
depends on how close the dimension ofO is to the exactly
marginal value of 4, scaling as mσ ∼

√
4−∆.

This is potentially a very important result. In a large
class of theories of interest for electroweak symmetry
breaking, the operator that breaks conformal symmetry
is close to marginal in order to ensure that there is a large
hierarchy between the flavor scale (or Planck scale) and
the electroweak scale. This result would imply that in all
such theories the low energy spectrum includes a light
dilaton! Unfortunately, the steps leading up to Eq. (38)

assumed that λ̂O ≪ 1. As is clear from Eq. (37), this
assumption is not valid in the strong coupling limit. In
order to validate this conclusion, we must show that the
result continues to hold when this assumption is relaxed,
and is valid beyond one loop.

2. General Analysis

Extending the analysis beyond small λO involves in-
corporating two distinct effects. Firstly, if the coupling
constant λO is not small, the scaling behavior of the oper-
ator O(x) is expected to receive corrections, and Eq. (26)
is in general no longer valid. Instead, the renormalization
group equation takes on the more general form

d logλ̂O
d logµ

= −g(λ̂O) , (39)

where g(λ̂O) is in general a polynomial in λ̂O,

g(λ̂O) =

∞
∑

n=0

cnλ̂
n
O , (40)

that can be approximated by the lowest order term

g(λ̂O) = c0 = (4−∆) (41)

only in the limit when λ̂O is small. In general, in a
strongly coupled conformal field theory, the coefficients
cn, n ≥ 1 are expected to be of order one. (This is
consistent with the expectation that all the terms in the

series should become comparable when λ̂O is of order
one.) This effect must be taken into account. Secondly,

if λ̂O is not small, the higher order terms in Eq. (28) are
significant and must be included in our analysis.
While both these effects are important, the first has

a particularly striking impact on the form of the low
energy effective theory. The reason is that in this case,
the leading order effect which is of order (4−∆) receives
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corrections that begin at order λ̂O. Since in the theories
of interest (4−∆) ≪ 1, these corrections can potentially

become large even before λ̂O reaches its strong coupling
value, significantly impacting the final result. This is
most easily seen by going beyond the leading term in
Eq. (40), while neglecting the higher order corrections in

λ̂O that arise from other sources. Such an approximation

is valid provided λ̂O at the breaking scale is significantly

below its strong coupling value, λ̂O ≪ 1. We are
interested in the region of parameter space where (4 −
∆) < c1λ̂O, so that the corrections to the leading order
term in Eq. (40) dominate. We postpone a more complete

discussion that includes all the higher order effects in λ̂O
till later in this section.
Integrating Eq (39), it follows that G(λ̂O)µ−1 is a

renormalization group invariant, where

G(λ̂O) = exp

(

−
∫

dλ̂O

λ̂O

1

g(λ̂O)

)

. (42)

We can make the theory defined by Eq. (25) formally

invariant under scale transformations by promoting λ̂O
to a spurion that transforms as

λ̂O(µ) → λ̂′O(µ) = λ̂O(µe
−ω) (43)

under x→ x′ = e−ωx. Under this transformation,

G(λ̂O)µ−1 → G(λ̂′O)µ−1 = e−ωG(λ̂O)µ−1 . (44)

The Lagrangian for the low energy effective theory must
be invariant under this spurious scale transformation.
Furthermore, it is restricted to terms involving positive

integer powers of the spurion λ̂O. Using Eq. (42), it
follows that the combination λO, defined as

λO = λ̂O

[

1 + g(λ̂O)logµ
]

, (45)

is invariant under infinitesimal changes in the renormal-
ization scale µ. It then follows from Eq. (44) that the

object Ω(λ̂O , χ/µ), defined as

Ω(λ̂O, χ/µ) = λ̂O

[

1− g(λ̂O)log

(

χ

µ

)]

, (46)

is invariant under infinitesimal (spurious) scale trans-

formations. Furthermore, Ω is a polynomial in λ̂O.
Lagrangians that are invariant under infinitesimal (spu-
rious) scale transformations can be constructed using Ω.
For values of µ close to the symmetry breaking scale f

and g(λ̂O) ≪ 1, we can approximate Ω as

Ω(λ̂O, χ/µ) = λ̂O

(

χ

µ

)−g(λ̂O)

. (47)

To leading order in Ω the potential for χ takes the form

V (χ) =
χ4

4!

(

κ0 − κ1Ω
)

. (48)

From this potential the dilaton mass at the minimum can
be obtained as

m2
σ = 4

κ0
4!
g(λ̂O)f

2 (49)

This expression for the dilaton mass is very similar to
that in Eq. (38), except in one important respect. We
now see that it is the scaling behavior of the operator
O at the breaking scale that determines the dilaton
mass, rather than the scaling dimension of O in the
far ultraviolet. In particular, this implies that for the
dilaton of a spontaneously broken approximate conformal
symmetry to be naturally light, it is not sufficient that
(4 − ∆) ≪ 1, so that the operator that breaks the
symmetry is close to marginal in the far ultraviolet.
Instead, the requirement is that this operator be close
to marginal at the symmetry breaking scale, so that

g(λ̂O) ≪ 1 at µ = f . Since in a general strongly coupled

theory, λ̂O, and therefore g(λ̂O), are expected to be of
order one at the breaking scale, this condition is not
expected to be satisfied in the scenarios of interest for
electroweak symmetry breaking (for which 4 − ∆ ≪ 1
suffices to address the flavor problem). This suggests
that the existence of a light dilaton in these theories is
associated with tuning (or more precisely, a coincidence
problem). However, since the consistency of this analysis

requires that λ̂O ≪ 1, it remains to show that including

the higher order corrections in λ̂O that we have so far
neglected, and which may be significant, does not affect
this conclusion.
The next step is obtain the effective theory for the

dilaton, consistently including all the higher order effects

in λ̂O. At this point it is convenient to separate out
the corrections to the scaling behavior of O from these
effects. Recalling that ǫ is defined as (4 −∆), we write

g(λ̂O) = ǫ+ δg(λ̂O) , (50)

where δg(λ̂O) represents the higher order corrections. In
order to simplify our analysis we will consider the two

cases |δg(λ̂O)| < ǫ and |δg(λ̂O)| > ǫ, corresponding to
the corrections to the scaling dimension of the operator
O being smaller or larger than ǫ at the breaking scale,
separately.

Limit When the Corrections Are Small

We first consider the case when |δg(λ̂O)| < ǫ at the
breaking scale. In this limit we can simplify Eq. (42) by
performing a binomial expansion,

∫

dλ̂O
1

λ̂Og(λ̂O)
=

∫

dλ̂O

ǫλ̂O

[

1− δg(λ̂O)

ǫ
+ . . .

]

. (51)

Then

G(λ̂O) = λ̂
−1/ǫ
O exp

[

∫

dλ̂O
δg(λ̂O)

ǫ2λ̂O
+ . . .

]

. (52)
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It follows from this that G(λ̂O), defined as

G(λ̂O) =
[

G(λ̂O)
]−ǫ

, (53)

can be expanded as a polynomial in λ̂O,

G(λ̂O) = λ̂O

[

1−
∫

dλ̂O
δg(λ̂O)

ǫλ̂O
+ . . .

]

. (54)

Then the object G(λ̂O)µǫ, which we denote by λO, is
a renormalization group invariant that can be expanded

as a polynomial in λ̂O. It follows from Eq. (44) that
the theory above the breaking scale is formally invariant
under scale transformations, x → x′ = e−ωx, provided
λO is taken to be a spurion that transforms as

λO → λ
′

O = eǫωλO. (55)

The effective theory for χ will then respect conformal
symmetry if λO is treated as a spurion that transforms
in this way. Note that this spurious transformation is

identical to that of λO, Eq. (27), in the case of small λ̂O.
Consider the object Ω(λO, χ), defined as

Ω(λO, χ) = λOχ
−ǫ . (56)

By construction, Ω is invariant under (spurious) scale

transformations. Furthermore, in the regime |δg(λ̂O)| <
ǫ, it can be expanded as a polynomial in λ̂O. Ω is useful
in constructing the general Lagrangian for the low energy
theory.
In a framework where the renormalization scale de-

pends on the conformal compensator as µχ = µχ̂, the
potential for χ takes the form

V (χ) =
Z2χ4

4!

[

κ0 −
∞
∑

n=1

κnΩ
n(λO,

√
Zχ)

]

. (57)

This simplifies to the form of Eq (28), but with λO
replaced by λO,

V (χ) =
Z2κ0
4!

χ4 −
∞
∑

n=1

Z2−nǫ/2κn
4!

λ
n

O χ(4−nǫ) . (58)

Going over to a more conventional scheme where the
renormalization scale µ is independent of χ, V (χ) be-
comes

∞
∑

m=0

(−1)m

m!

dm(Z2κ0)

d logµm

[

log

(

χ

f

)]m
χ4

4!
− (59)

∞
∑

n=1

∞
∑

m=0

(−1)m

m!

dm(Z2−nǫ/2κn)

d logµm

[

log

(

χ

f

)]m
λ
n

Oχ
4−nǫ

4!
.

We can choose to rescale Z to one, but only after the
derivatives above have been evaluated.
The (spurious) conformal symmetry of the theory can

be made more transparent in a basis where all mass scales

are expressed in terms of the renormalization scale µ and
all coupling constants are dimensionless. In this basis,
Z̄, the coefficient of the dilaton kinetic term, is given by

Z̄ =

∞
∑

m=0

(−1)m

m!

dmZ

d logµm

[

log

(

µ

f

)]m

. (60)

Z̄ is independent of the renormalization scale µ. We
again choose to set it to one. The potential for the dilaton
now takes the form

V (χ) =

∞
∑

m=0

(−1)m

m!
κ0,m

[

log

(

χ

µ

)]m
χ4

4!
(61)

−
∞
∑

n=1

∞
∑

m=0

(−1)m

m!
κn,m

[

log

(

χ

µ

)]m
λ
n

Oχ
4−nǫ

4!

where the couplings constants κn,m are given by

∞
∑

r=0

(−1)r

r!

dm+r(Z2−nǫ/2κn)

d logµm+r

[

log

(

µ

f

)]r

. (62)

The beta functions of all the κn,m vanish by construction,
reflecting the (spurious) conformal invariance of the
theory.
The final step is to determine the form of the effec-

tive potential. We will again use the Callan-Symanzik
equation for the effective potential,

{

µ
∂

∂µ
+ βi

∂

∂ḡi
− γφα

φα
∂

∂φα

}

Veff(φα, ḡi, µ) = 0 . (63)

Here the index α runs over the fields in the theory,

namely χcl and λ̂O. The beta functions βi(ḡi) vanish
as a consequence of the (spurious) conformal symmetry,
as does the anomalous dimension of χ. The anomalous

dimension of λ̂O is g(λ̂O), the difference between its
scaling dimension and mass dimension. Then the Callan-
Symanzik equation reduces to

{

µ
∂

∂µ
− g(λ̂O)λ̂O

∂

∂λ̂O

}

Veff(χcl, λ̂O, ḡi, µ) = 0 . (64)

Making a change of variable from λ̂O to λO, this becomes
simply

µ
∂

∂µ
Veff(χcl, λO, ḡi, µ) = 0 . (65)

Dimensional analysis constrains the solution to be of the
form

Veff(χcl) =
1

4!
χ4
cl

[

κ̂0 −F(λOχ
−ǫ
cl )
]

, (66)

where κ̂0 is a constant that depends on the couplings ḡi
but not on λO. The form of the function F(Ω) cannot
be determined from symmetry considerations alone, but
depends on the dynamics of the conformal field theory
under consideration, and on the operatorO. For values of
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Ω less than one by a factor of at least a few, corresponding

to λ̂O being below its strong coupling value at the
symmetry breaking scale f , F(Ω) can be computed in
perturbation theory. In general it is not a polynomial in
Ω, as can be seen from Eq. (35).
Minimizing the effective potential we find the condition

that determines the symmetry breaking scale f ,

4κ̂0 − 4F(λOf
−ǫ) + ǫλOf

−ǫF ′(λOf
−ǫ) = 0 . (67)

The dilaton mass squared depends on the second deriva-
tive of the effective potential at the minimum, which is
given by

∂2Veff
∂σ2

=
1

4!
f2
{

4ǫλOf
−ǫF ′(λOf

−ǫ)
}

. (68)

Here we are neglecting effects of order ǫ2. We see from
this that even at strong coupling, corresponding to κ̂0 ∼
(4π)2, if the function F(Ω) satisfies the condition F(Ω) >∼
ΩF ′(Ω) at the minimum, the dilaton mass is suppressed
by a factor of

√
ǫ relative to the strong coupling scale 4πf ,

and therefore remains light. The question is whether
this condition on the function F(Ω) is indeed satisfied
in a general strongly coupled conformal field theory, for
an arbitrary marginal operator O. Unfortunately, in
the absence of additional information about the function
F(Ω), we cannot establish such a conclusion. At the

minimum, the value of Ω is equal to that of λ̂O evaluated
at the symmetry breaking scale f . For Ω of order one,

corresponding to λ̂O close to its strong coupling value,
we expect that F(Ω) is of order (4π)2, but its functional
form is completely unknown.
However, there exists a class of strongly coupled

theories where the condition F(Ω) ∼ ΩF ′(Ω) is satisfied,
and the dilaton is light. In the region of parameter space

where λ̂O and κ̂0 are below their strong coupling values,
the form of the function F(Ω) can be determined from
perturbation theory. In this regime it is dominated by
the term linear in Ω in Eq. (57), since the other terms

are loop suppressed or higher order in λ̂O. Now, we
expect that there exist strongly coupled conformal field
theories where the parameter κ̂0 is below its natural
strong coupling value by a factor of order a few. This is
quite natural, requiring at most mild tuning. From the
minimization condition it follows that in such theories,
symmetry breaking is realized for values of F(Ω) that

correspond to values of Ω, and therefore λ̂O, that lie
below their strong coupling values by roughly the same
factor. Since F(Ω) is linear in Ω in this regime, the
condition F(Ω) ∼ ΩF ′(Ω) is satisfied at the minimum.
Therefore in this class of theories the conclusionmσ ∼ √

ǫ
is valid, and the dilaton is light.
Since this analysis is restricted to the region of pa-

rameter space where |δg(λ̂O)| < ǫ, it is important to
understand the circumstances under which this condition
is satisfied. One possibility is that O is a protected
operator, so that all the coefficients cn in the polynomial

expansion of g(λ̂O) are of order ǫ. The operator O is

then close to marginal for any value of λ̂O. An example

is a theory where the parameter λ̂O corresponds to a
fixed line, while the parameter ǫ is associated with the
coefficient of an operator that is very close to marginal

(for all λ̂O) and which lifts the fixed line. However,
theories that admit such protected operators are clearly
rather special. There is no reason to expect the condition
cn <∼ ǫ to be satisfied by an arbitrary marginal operator
O in a general conformal field theory.
Another possibility is that the parameter κ̂0 lies

significantly below its natural strong coupling value so

that symmetry breaking is realized for values of λ̂O less

than ǫ. The condition |δg(λ̂O)| < ǫ can then be satisfied.
Since in this regime F(Ω) is dominated by the term linear

in Ω, F(Ω) ∼ (4π)2Ω ∼ (4π)2λ̂O, it follows from Eq. (67)

that the condition λ̂O < ǫ translates into κ̂0/(4π)
2 <∼ ǫ.

It follows from Eq. (68) and the minimization condition
Eq. (67) that in this regime the dilaton mass scales as√
κ̂0ǫ, and therefore receives additional suppression from

the fact that κ̂0 is small. However, small values of
κ̂0 are associated with tuning, and so this condition is
not expected to be satisfied in a general conformal field
theory. However, in the case of small hierarchies, such as
between the flavor scale and the weak scale, values of ǫ
as large as 1/5 can still serve to address the problem. It
follows from this that in such a theory, a dilaton mass a
factor of 5 below the strong coupling scale can be realized
for κ̂0 a factor of 5 below its natural strong coupling
value. Since the tuning scales with κ̂0, this theory need
only be tuned at the level of 1 part in 5 (20%). This is to
be contrasted with the case of a (non-pNGB) composite
scalar of the same mass, which is tuned at the level of 1
part in 25 (4%). We see that although this scenario is
tuned, the tuning is mild, scaling with the mass of the
dilaton rather than the square of its mass.

Limit When Corrections Are Large

We now turn our attention to the case when the
corrections to the scaling behavior of O are large in the

neighborhood of the breaking scale, so that |δg(λ̂O)| >
ǫ. For simplicity, we will work in the limit that the

renormalization group evolution of log λ̂O close to the

breaking scale is dominated by the term linear in λ̂O so
that

d logλ̂O
d logµ

= −c1λ̂O , (69)

Integrating this equation we find that G(λ̂O) is now given
by

G(λ̂O) = exp

(

1

c1λ̂O

)

. (70)

Since G(λ̂O)µ−1 is a renormalization group invariant, it
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follows that λO, now defined as

λO =
λ̂O

1− c1λ̂O logµ
(71)

is also a renormalization group invariant. Once λ̂O is
promoted to a spurion as in Eq (43), the object

Ω(λO, χ) =
λO

1 + c1λO logχ
(72)

is invariant under (spurious) scale transformations. Fur-
thermore, at scales µ close to 〈χ〉 = f , it can be expanded

as a polynomial in λ̂O. The Lagrangian for the low energy
effective theory can be constructed using Ω.
In a scheme where the renormalization scale is propor-

tional to χ, µχ = µχ̂, the potential takes the form

V (χ) =
Z2χ4

4!

[

κ0 −
∞
∑

n=1

κnΩ
n(λO,

√
Zχ)

]

. (73)

It is straightforward to go over to a scheme where the
renormalization scale µ is independent of χ, and where
all mass parameters in the Lagrangian are expressed
as powers of µ. As before, the dimensionless coupling
constants ḡi in such a scheme are independent of the
renormalization scale µ.
The effective potential for the low energy effective

theory can once again be determined from the Callan-
Symanzik equation, Eq (63). The anomalous dimension

of χ vanishes while that of the spurion λ̂O is given by

g(λ̂O) = c1λ̂O. As a consequence the Callan-Symanzik
equation reduces to

{

µ
∂

∂µ
− c1λ̂

2
O

∂

∂λ̂O

}

Veff(χcl, λ̂O, ḡi, µ) = 0 . (74)

Making the change of variable from λ̂O to λO, this
simplifies to

µ
∂

∂µ
Veff(χcl, λO, ḡi, µ) = 0 . (75)

Dimensional analysis constrains the solution to be of the
form

Veff(χcl) =
1

4!
χ4
cl

{

κ̂0 −F [Ω(λO, χcl)]
}

. (76)

The form of the function F [Ω] cannot be determined from
symmetry considerations alone, but depends on the dy-
namics of the conformal field theory under consideration,
and on the operatorO. For values of Ω less than one by at

least a factor of a few, corresponding to λ̂O being below
its strong coupling value at the symmetry breaking scale,
F(Ω) can be computed in perturbation theory.
Minimizing the effective potential we obtain the con-

dition that determines f ,

4κ̂0 − 4F [Ω] + c1Ω
2F ′[Ω] = 0 . (77)

The dilaton mass squared depends on the second deriva-
tive of the effective potential at the minimum, which can
be determined as

∂2Veff
∂σ2

=
c1
4!
f2Ω2

[

(4− 2c1Ω)F ′ − c1Ω
2F ′′

]

. (78)

Once again we focus on theories where the parameter
κ̂0 is below its natural strong coupling value by some
factor, which could be as small as a few. In such theories,

symmetry breaking is realized for values of λ̂O that are
below its strong coupling value. In this limit the form of
the effective potential can be determined in perturbation
theory, and F(Ω) is dominated by the term linear in Ω.
Then at the minimum the condition F [Ω] ∼ ΩF ′[Ω] is
satisfied. Noting that at the minimum the value of Ω

is equal to that of λ̂O at the scale f , it follows from
Eq. (77) and Eq. (78) that the dilaton mass squared scales

as m2
σ ∼ c1λ̂Oκ̂0.

We see from this that the dilaton mass depends on
the scaling behavior of the operator O at the symmetry

breaking scale, and therefore on the value of c1λ̂O.
Since the minimization condition Eq. (77) relates Ω (and

therefore λ̂O at the breaking scale) to κ̂0, for c1 of order
its natural value of one we have that the dilaton mass
squared scales as κ̂20. This suggests that for κ̂0 of order
its natural strong coupling value the dilaton mass lies
near the cutoff of the theory, and it is not a light state.
It follows from this that in general, the spectrum of a
conformal field theory broken by an arbitrary marginal
operator that grows strong in the infrared does not
include a light dilaton.
The low energy effective theory will however contain a

light dilaton if the parameter κ̂0 lies significantly below
its natural strong coupling value. In general, this involves
tuning, since this condition is not expected to be satisfied
in an arbitrary conformal field theory. However, the
tuning is mild, scaling with κ̂0 and therefore as the mass
of the dilaton, so that a dilaton that lies a factor of 5
below the strong coupling scale is only tuned at the level
of 1 part in 5 (20 %).
It follows from this discussion that in strongly coupled

theories where an approximate conformal symmetry is
spontaneously broken, the low energy spectrum includes
a light dilaton if the operator that breaks the symmetry
is close to marginal at the breaking scale. This condition
is in general not expected to be satisfied by the theories
of interest for electroweak symmetry breaking, and so the
presence of a light dilaton in these theories is associated
with tuning. However, the tuning is mild, scaling as the
mass of the dilaton rather than as the square of its mass.

III. DILATON INTERACTIONS IN A

CONFORMAL SM

In the limit that conformal invariance is exact, the
form of the dilaton interactions with SM fields in the low
energy effective theory is fixed by the requirement that
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the symmetry be realized nonlinearly. However, in the
scenario of interest, we expect significant deviations from
exact conformal invariance because effects associated
with the operator O that violate the symmetry are large
at the breaking scale. It is crucial to understand the size
of these effects, and the extent to which the predictions of
the theory with exact conformal invariance are affected.
In this section, we consider a scenario where the

SM gauge bosons and matter fields are all composites
of a strongly interacting conformal sector that breaks
electroweak symmetry dynamically, and there is no
light Higgs. The AdS/CFT correspondence relates this
scenario to Higgsless Randall-Sundrum models where the
SM matter and gauge fields are localized on the infrared
brane. The couplings of the dilaton to the SM fields in
such a framework have been determined [28], and agree
with earlier results for the couplings of the radion to
brane-localized fields in Randall-Sundrum models [43–
46]. Several authors have studied the question of
distinguishing the dilaton from the Higgs at the LHC in
such a scenario [54–56], see also [57]. We will study the
corrections to the dilaton couplings in this scenario when
effects associated with the operator O that explicitly
violates conformal symmetry are incorporated.
We begin by considering the dilaton couplings to the

W and Z gauge bosons. We choose to work in a basis
where we write all gauge kinetic terms in the form

− 1

4g2
FµνF

µν . (79)

In the absence of conformal symmetry violating effects,
the couplings of the dilaton to the W are such as to
compensate for the breaking of conformal invariance by
the gauge boson mass term. In unitary gauge these take
the form

(

χ

f

)2
m2
W

g2
W+
µ W

µ− (80)

in the Lagrangian. HeremW is theW gauge boson mass.
Expanding the compensator χ = feσ/f out in terms of
σ to leading order in inverse powers of f , we find for the
dilaton couplings

2
σ

f

m2
W

g2
W+
µ W

µ− . (81)

Next we consider the corrections to the dilaton cou-
plings when conformal symmetry violating effects are
included. We will focus on the case when the corrections
to the scaling behavior of O are small, so that |δg(λ̂O)|
is less than ǫ at the breaking scale. We will later argue
that the same conclusions are obtained in the limit when
|δg(λ̂O)| is greater than ǫ.
The presence of conformal symmetry violating effects

allows additional two derivative terms in the dilaton
action,

1

2

[

1 +

∞
∑

n=1

αχ,nλ
n

O χ(−nǫ)

]

∂µχ∂
µχ . (82)

The dimensionless parameters αχ,n depend both on the
operator O and the specific conformal field theory under
consideration. They are expected to be of order one.
These new terms contribute to the dilaton kinetic term,
which now becomes

1

2

[

1 +

∞
∑

n=1

αχ,nλ
n

O f (−nǫ)

]

∂µσ∂
µσ . (83)

When σ is rescaled to make the dilaton kinetic term
canonical, we see that the effective impact of these terms
is to alter the effective value of f in Eq. (81), while
leaving the form of the interaction unchanged. More
generally, it follows that corrections to the dilaton kinetic
term from conformal symmetry violating effects do not
alter the form of the dilaton couplings to the SM fields.
Instead, to leading order in σ/f , they lead to a universal
rescaling in the effective value of f , leaving the relative
strengths of the dilaton couplings to the various SM fields
unchanged. Since to the order we are working this effect
can be entirely absorbed into the parameter f , we will
not consider it further.
The gauge kinetic term also receives corrections from

conformal symmetry violating effects. It now takes the
form

− 1

4ĝ2

[

1 +
∞
∑

n=1

αW,nλ
n

O χ(−nǫ)

]

FµνF
µν , (84)

where the parameters αW,n are dimensionless. They are
expected to be of order one. The physical gauge coupling
is now given by

1

g2
=

1

ĝ2

[

1 +

∞
∑

n=1

αW,nλ
n

O f (−nǫ)

]

. (85)

Expanding Eq. (84) to leading order in σ we obtain

ǫ
c̄W
4g2

σ

f
FµνF

µν , (86)

where the dimensionless parameter c̄W is given by

c̄W =

∑∞

n=1 nαW,nλ
n

O f (−nǫ)

1 +
∑∞

n=1 αW,nλ
n

O f (−nǫ)
. (87)

In a strongly coupled theory c̄W is expected to be of order

λOf
−ǫ, which is the value of λ̂O at the breaking scale f .

It follows that this correction to the dilaton coupling is

suppressed by ǫλ̂O, which is of order m2
σ/Λ

2.
Conformal symmetry violating effects also modify the

gauge boson mass term, Eq. (80), which now becomes

(

χ

f

)2
[

1 +

∞
∑

n=1

βW,nλ
n

O χ(−nǫ)

]

m̂2
W

ĝ2
W+
µ W

µ− . (88)

Here m̂W is theW boson mass in the unperturbed theory,
and the dimensionless parameters βW,n are of order one.
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Expanding this out in terms of σ(x), we see that to
leading order in inverse powers of f , the dilaton couples
as

σ

f

m2
W

g2
[2 + cW ǫ]W

+
µ W

µ− . (89)

Here m2
W is again the physical W boson mass,

m2
W = m̂2

W

[

1 +
∑∞

n=1 βW,nλ
n

O f (−nǫ)

1 +
∑∞
n=1 αW,nλ

n

O f (−nǫ)

]

, (90)

while the dimensionless parameter cW is given by

cW = −
∑∞
n=1 nβW,nλ

n

O f (−nǫ)

1 +
∑∞

n=1 βW,nλ
n

O f (−nǫ)
. (91)

In the strong coupling limit, cW is expected to be of

order λOf
−ǫ ∼ λ̂O. We see that the effect of the

conformal symmetry violating term is to correct the

dilaton couplings by order ǫλ̂O ∼ m2
σ/Λ

2.

If we instead consider the limit when |δg(λ̂O)| is greater
than ǫ at the symmetry breaking scale f , the analysis
is very similar. The only significant difference is that
λOχ

−ǫ in Eqs. (82), (84) and (88) is replaced by Ω(λO, χ),
which in this limit is given by

Ω(λO, χ) =
λO

1 + c1λOlogχ
. (92)

Following exactly the same sequence of steps we find
that the corrections to the dilaton couplings have the
same form, but are now suppressed by c1Ω

2(λO, f) rather
than ǫλOf

−ǫ. However, this new suppression factor is
of order m2

σ/Λ
2, exactly as before. We see that the

corrections have the same form and are of the same
size as in the case |δg(λ̂O)| < ǫ. It is not difficult to
verify that this result is quite general. Therefore, in the
remainder of the paper we will limit our analysis to the

case |δg(λ̂O)| < ǫ, with the understanding that the same

general conclusions apply to the case |δg(λ̂O)| > ǫ as well.
Next we turn our attention to the dilaton couplings to

the massless gauge bosons of the SM, the photon and
the gluon. Unlike the W and Z, the Lagrangian for
these particles does not break conformal invariance at the
classical level, only at the quantum level. At one loop the
renormalization group equations for the corresponding
gauge couplings are of the form

d

d logµ

1

g2
=

b<
8π2

(93)

where the constant b< = −11/3 for electromagnetism
and +7 for color, at scales above the mass of the top. This
implies that under infinitesimal scale transformations
x → x′ = e−ωx, the operator FµνF

µν transforms as
FµνF

µν(x) → F ′
µνF

′µν(x′), where

F ′
µνF

′µν(x′) = e4ω
(

1 +
b<
8π2

g2ω

)

FµνF
µν(x) (94)

If conformal symmetry is to be realized nonlinearly, the
couplings of the dilaton must be such as to compensate
for this. It is then easy to see that the dilaton couplings
in the Lagrangian must take the form

b<
32π2

log

(

χ

f

)

FµνF
µν . (95)

Expanding this out in terms of σ(x), to leading order in
inverse powers of f , we find for the dilaton coupling

b<
32π2

σ

f
FµνF

µν . (96)

It follows from this that the dilaton couples much more
weakly to the massless gauge bosons than to theW or the
Z. The reason is that the gauge interactions correspond
to marginal operators in the low energy effective theory,
while mass terms for the gauge bosons are relevant
operators. Since the dilaton couples as a conformal
compensator, it is to be expected that its couplings to
massless gauge bosons are suppressed.
We now consider corrections to this interaction arising

from conformal symmetry violating effects. These allow
direct couplings of the compensator χ to the gauge
kinetic term of the form

− 1

4ĝ2

[

1 +

∞
∑

n=1

αA,nλ
n

O χ(−nǫ)

]

FµνF
µν . (97)

The physical gauge coupling is now given by

1

g2
=

1

ĝ2

[

1 +
∞
∑

n=1

αA,nλ
n

O f (−nǫ)

]

. (98)

Expanding Eq. (97) in terms of σ, and combining with
Eq. (96) we find for the dilaton coupling to massless
gauge bosons

σ

f

[

b<
32π2

+
cA
4g2

ǫ

]

FµνF
µν . (99)

Here the dimensionless coupling cA is given by

cA =

∑∞

n=1 nαA,nλ
n

O f (−nǫ)

1 +
∑∞

n=1 αA,nλ
n

O f (−nǫ)
. (100)

In a strongly coupled theory the parameter cA is expected

to be of order λOf
−ǫ ∼ λ̂O at the scale f . We see

from this that the corrections to the dilaton coupling
arising from symmetry breaking effects are suppressed
by m2

σ/Λ
2. Nevertheless, the fact that the leading order

effect is loop suppressed and therefore small implies that
the symmetry breaking contribution may dominate.
Finally we consider the couplings of the dilaton to the

SM fermions. In the limit that conformal symmetry
is exact, the coupling of the dilaton is such as to
compensate for the spontaneous breaking of conformal
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invariance by the fermion mass terms. These interactions
take the form

χ

f
mψψ̄ψ (101)

in the potential, where we have suppressed flavor indices.
Expanding the compensator out in terms of σ we obtain

σ
mψ

f
ψ̄ψ . (102)

However, if a conformal symmetry breaking effect of
the form considered in the previous section is present,
Eq. (101) generalizes to

χ

f

[

1 +

∞
∑

n=1

βψ,nλ
n

O χ(−nǫ)

]

m̂ψψ̄ψ , (103)

where m̂ψ is the fermion mass in the unperturbed
theory, and the parameters βψ,n are dimensionless. In
obtaining this we have assumed that the operator O
does not violate the approximate U(3)5 flavor symmetry
associated with the SM fermions in the chiral limit, which
is broken by the fermion mass terms. This ensures that
the dilaton couples diagonally in the mass basis.
In general the operator O will also correct the fermion

kinetic term, which generalizes to

[

1 +
∞
∑

n=1

αψ,nλ
n

O χ(−nǫ)

]

ψγµ∂µψ . (104)

After expanding out Eqs. (103) and (104) in terms of
σ, rescaling to make the fermion kinetic term canonical,
and then using the equation of motion for ψ, we obtain
a correction to the dilaton coupling of the form

σ
mψ

f
[1 + cψǫ] ψ̄ψ , (105)

In a strongly coupled conformal field theory we expect
that cψ is of order λOf

−ǫ. We conclude from this that
the effect of the conformal symmetry violating terms is
to modify the dilaton couplings to the SM fermions by
order m2

σ/Λ
2.

From this discussion we see that conformal symmetry
violating effects associated with the operator O correct
the parameters in the low energy effective theory at

order λ̂O. However, these effects can be absorbed into
the masses and couplings of the light states, so that
corrections to the form of the dilaton couplings to the SM

only arise at order ǫλ̂O ∼ m2
σ/Λ

2, and are therefore small
if the dilaton is light. To understand why the corrections
to the form of the dilaton couplings receive additional

suppression, note that if g(λ̂O) were to vanish close to
the breaking scale f , the effects of explicit conformal

symmetry violation would disappear even though λ̂O was
non-zero. In this limit, the dilaton couplings must have
exactly the same form as in a theory without conformal
symmetry violation, so that all the corrections of order

λ̂O must be able to be absorbed into the masses and
couplings of the SM states. It follows that corrections to
the form of the dilaton couplings must be be suppressed

by both λ̂O and g(λ̂O) (∼ ǫ in the limit we are working
in).
In summary we see that corrections to the form of the

dilaton couplings to SM states arising from conformal
symmetry violating effects are suppressed by the square
of the ratio of the dilaton mass to the strong coupling
scale, and therefore under good theoretical control in the
theories of interest. These contributions are generally
subleading, except in the case of dilaton couplings to
marginal operators, when symmetry violating effects can
dominate.

IV. TECHNICOLOR

In this section we determine the form of the couplings
of a light dilaton to the SM fields in a scenario where elec-
troweak symmetry is broken dynamically by a strongly
interacting sector, and there is no light Higgs. The
strongly interacting sector is assumed to be conformal
in the far ultraviolet. However, conformal symmetry is
explicitly broken by the operator O, which grows large
close to the TeV scale triggering electroweak symmetry
breaking. The SM gauge fields do not constitute part
of the strongly interacting sector. However, this sector
transforms under the weak and electromagnetic gauge
interactions. It may also transform under the SM color
group. The SM gauge interactions constitute another
small explicit breaking of the conformal symmetry. The
SM fermions may be elementary, or may emerge as
composites or partial composites of the strong dynamics.
The AdS/CFT correspondence relates this class of

theories to Higgsless Randall-Sundrum models with the
SM gauge fields propagating in the bulk. The couplings
of the radion to SM fields in this framework have been
determined, in the limit that effects associated with the
dynamics that stabilizes the radion are neglected [47, 48].
We reproduce these results, and in doing so establish
their validity beyond the large N limit. We also
determine the corrections to the dilaton couplings that
arise from conformal symmetry violating effects.
In order to avoid large corrections to precision elec-

troweak observables, the strongly interacting sector must
respect a custodial SU(2) symmetry. This symmetry is
not exact, but is broken by the SM Yukawa couplings,
and also by hypercharge. A simple way to realize
custodial symmetry is to extend the SU(2)L symmetry of
the SM to SU(2)L× SU(2)R. Only the diagonal generator
of this new SU(2)R is gauged, and is associated with
hypercharge. The strong dynamics breaks this extended
symmetry down to the diagonal SU(2), which is identified
with the custodial symmetry. Only a U(1) subgroup of
the original SU(2)× U(1) gauge symmetry survives, and
is identified with electromagnetism.
The NGBs π(x) that arise from the breaking of SU(2)×
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SU(2) gauge symmetry down to the custodial SU(2) can
be parametrized in terms of a matrix Σ, defined as

Σ = ei
π(x)
v

(

v 0
0 v

)

. (106)

Here v is the electroweak VEV. Σ transforms linearly
under SU(2)L× SU(2)R, and is therefore more convenient
for writing interactions. In unitary gauge the NGBs π(x)
are absorbed into the W and Z gauge bosons and Σ can
be replaced by its VEV.

A. Couplings to Gauge Bosons

We begin by determining the dilaton couplings to the
W and Z gauge bosons. In the ultraviolet, the SM gauge
interactions do not violate the conformal symmetry of the
theory at the classical level, only at the quantum level.
Therefore, when these effects are included, the theory
still respects conformal symmetry up to effects which
are suppressed by loops involving the SM gauge bosons.
Therefore, the dominant interactions of the dilaton to
the W and Z bosons in the low energy effective theory
arise from couplings which compensate for the breaking
of conformal invariance by the gauge boson mass terms.
These take exactly the same form in the Lagrangian as
in the case of composite W and Z gauge bosons

(

χ

f

)2
m2
W

g2
W+
µ W

µ− . (107)

Expanding this out in terms of σ to leading order in
inverse powers of f , we again find

2
σ

f

m2
W

g2
W+
µ W

µ− . (108)

This agrees with the known results for the coupling of
the radion to bulk gauge bosons in Randall-Sundrum
models [47, 48]. Our analysis shows that this formula
is valid beyond the large N limit.
When conformal symmetry violating effects associated

with the operator O are present, the gauge boson mass

will in general depend on λ̂O. Then Eq. 107) generalizes
to

(

χ

f

)2
[

1 +
∞
∑

n=1

βW,nλ
n

O χ(−nǫ)

]

m̂2
W

ĝ2
W+
µ W

µ− . (109)

Here m̂W is theW boson mass in the unperturbed theory,
and the dimensionless parameters βW,n are of order one.
Expanding this out in terms of σ(x), we find that the
dilaton couples as

σ

f

m2
W

g2
[2 + cW ǫ]W

+
µ W

µ− , (110)

wherem2
W is the physicalW boson mass. The dimension-

less parameter cW is of order λOf
−ǫ ∼ λ̂O at the scale

f , so that the correction to the coupling is suppressed by
m2
σ/Λ

2.
We move on to consider the dilaton couplings to the

massless gauge bosons of the SM, the gluon and the
photon. We first determine the form of the couplings
in the limit that effects arising from the operator O are
neglected. Above the breaking scale, the renormalization
group equation for the corresponding gauge coupling
takes the form

d

d logµ

1

g2UV
=

b>
8π2

, (111)

where the constant b> receives contributions from both
elementary states and the strongly interacting sector.
Similarly, below the breaking scale it takes the form

d

d logµ

1

g2IR
=

b<
8π2

(112)

where b< receives contributions from elementary states,
and also from any additional light states that emerge
from the strongly interacting sector after symmetry
breaking.
Equation (111) indicates that above the symmetry

breaking scale, under infinitesimal scale transformations
x→ x′ = e−ωx, the operator corresponding to the gauge
kinetic term transforms as FµνF

µν(x) → F ′
µνF

′µν(x′),
where

F ′
µνF

′µν(x′) = e4ω
(

1 +
b>
8π2

g2UV ω

)

FµνF
µν(x) (113)

Below the symmetry breaking scale the corresponding
transformation is FµνF

µν(x) → F ′
µνF

′µν(x′), where

F ′
µνF

′µν(x′) = e4ω
(

1 +
b<
8π2

g2IRω

)

FµνF
µν(x) (114)

Above the symmetry breaking scale we can make the
gauge kinetic term formally invariant under infinitesimal
scale transformations by promoting the gauge coupling
constant gUV to a spurion that under x → x′ = e−ωx
transforms as

1

g2UV
→ 1

g′2UV
=

1

g2UV
− b>

8π2
ω . (115)

Now, matching at one loop across the symmetry
breaking threshold we have

1

g2IR
=

1

g2UV
+

C

8π2
(116)

where C is a dimensionless number that depends on the
gauge quantum numbers of the states in the strongly
interacting sector that have been integrated out at the
threshold. While C cannot be calculated, since it
depends on details of the strong dynamics, it is of order
the number of states that have masses at the threshold.
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It is independent of g2 up to corrections which are
additionally loop suppressed.
In the limit that conformal symmetry violating effects

arising from the operator O are neglected, it follows from
Eqs. (114) and (115) that if the gauge kinetic term in the
low energy effective theory,

−1

4

1

g2IR
FµνF

µν = −1

4

{

1

g2UV
+

C

8π2

}

FµνF
µν , (117)

is to be invariant under infinitesimal scale transforma-
tions, the conformal compensator must couple as

(b< − b>)

32π2
log

(

χ

f

)

FµνF
µν (118)

in the Lagrangian. Expanding this out in terms of σ(x),
to leading order in inverse powers of f , we find for the
dilaton coupling

(b< − b>)

32π2

σ

f
FµνF

µν . (119)

This agrees with the result in the literature for the
coupling of the radion to massless bulk gauge bosons
in Randall-Sundrum models [47, 48]. Our analysis
establishes that this result is valid beyond the large N
limit. This formula is valid at scales slightly below the
strong coupling scale 4πf , and must be renormalization
group evolved to the dilaton mass. If the conformal sector
does not transform under the SM color group, as may
be the case in theories where the top quark is not a
composite of the strong dynamics, then b< = b> and
the gluon does not couple to the dilaton at this order.
In such a scenario, the leading interaction of the dilaton
with the gluons is through a loop of top quarks, just as
for the Higgs in the SM.
When conformal symmetry violating effects arising

from the operator O are included, this formula will
receive corrections. The renormalization group evolution
of the gauge coupling above the symmetry breaking scale
is affected by the presence of the deformation, with the

result that b> is now a function of λ̂O, b> = b>(λ̂O).
However, the theory remains formally invariant under
infinitesimal scale transformations if gUV is promoted to
a spurion as in Eq. (115). Hence this effect does not
alter the form of Eq. (119). The operator O also affects
the low energy theory through the fact that the value
of the gauge coupling at low energies depends on the
detailed spectrum of states at the threshold, which in

turn depends on λ̂O. As a consequence the constant C in

Eq. (116) is in general a function of λ̂O. Now, conformal
symmetry ensures that in the low energy effective theory
C depends on λO in the specific combination C(λOχ

−ǫ).
Since the Lagrangian is limited to terms with positive

integer powers of λ̂O, we can expand C as

C =

[

C0 +

∞
∑

n=1

Cnλ
n

O χ(−nǫ)

]

. (120)

Inserting this into Eq. (117) and requiring invariance
under (spurious) scale transformations, we find that the
dilaton couplings must take the form

σ

f

[

(b< − b>)

32π2
+

c̄A
32π2

ǫλOf
−ǫ

]

FµνF
µν . (121)

Here the dimensionless constant c̄A is expected to be
of order the number of states that transform under the
gauge symmetry that have masses at the threshold, so
that c̄A ∼ (b< − b>). We can therefore rewrite Eq. (121)
as

σ

f

(b< − b>)

32π2
[1 + cAǫ]FµνF

µν , (122)

where the dimensionless constant cA is of order λOf
−ǫ,

which is the value of λ̂O at the symmetry breaking scale

f . Here b>(λ̂O) is to be evaluated close to the breaking
scale. We see from this that in this scenario, corrections
to the form of the dilaton couplings to massless gauge
bosons arising from conformal symmetry violating effects
are subleading, being suppressed not just by m2

σ/Λ
2, but

also by a loop factor. This is in contrast to the case
of composite gauge bosons considered in the previous
section.

B. Couplings to Fermions

1. Elementary Fermions

Next we consider the dilaton couplings to the SM
fermions, which we label by Q,U c, Dc, L and Ec. These
depend on how the fermion masses are generated. One
possibility is that the fermion masses arise from a contact
term that couples a scalar operator H in the conformal
field theory that carries the gauge quantum numbers of
the SM Higgs to elementary fermions. For the up-type
quarks, this takes the form

yijHQiU cj + h.c. (123)

in the Lagrangian. Here i and j are flavor indices. This
leads to a mass term

mijQiU
c
j + h.c. (124)

in the potential of the low energy effective theory. The
generalization to the down-type quarks and leptons is
straightforward. In the limit that yij is set to zero the
ultraviolet theory has a U(3)Q× U(3)U flavor symmetry,
which can be restored by promoting yij to a spurion that
transforms as an anti-fundamental under each of these
symmetries. By requiring that the low energy effective
theory be invariant under this spurious flavor symmetry,
it follows that mij is proportional to yij to lowest order
in the couplings y.
It has been shown that the flavor problem and the

large mass of the top quark can both be addressed in
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this framework if the operator H has dimension ∆H
<∼

1.3. However, if the hierarchy problem is to be solved,
the dimension ∆H†H of the operator H†H must satisfy
∆H†H

>∼ 4 [9]. Determining whether scalar operators
that satisfy these criteria can exist in unitary, causal
conformal field theories is an open question that has
attracted considerable recent interest [58–60], see also
[61]. Note that this condition cannot be satisfied in
the large N limit, and therefore realistic models of this
type cannot be constructed within the Randall-Sundrum
framework.
In order to determine the coupling of the dilaton to

the up-type quarks, we make the coupling in Eq. (123)
formally invariant under scale transformations by pro-
moting yij to a spurion that transforms as yij → y′ij =
eω(1−∆H)yij under x→ x′ = e−ωx. Then the coupling of
the dilaton to the up-type quarks in the effective theory
must respect this symmetry. Since the quark mass matrix
mij is proportional to yij the conformal compensator
couples as

mij

(

χ

f

)∆H

QiU
c
j + h.c. (125)

Then to lowest order in inverse powers of f , the dilaton
coupling to up-type quarks takes the form [29]

mij∆H

(

σ

f

)

QiU
c
j + h.c. (126)

We see that to the extent that ∆H differs from one, the
dilaton couplings to fermions can differ significantly from
those of a SM Higgs.
Once effects of the operator O are included the scaling

dimension of the operator H receives corrections, ∆H =

∆H(λ̂O). However, above the breaking scale the theory
continues to remain invariant under the infinitesimal
spurious scale transformation yij → y′ij = eω(1−∆H)yij

when x→ x′ = e−ωx, and so the form of Eq. (126) is not
affected by this. Instead, the leading correction arises
from the fact that in addition to the term in Eq. (125),
other terms involving the invariant λOχ

−ǫ can now also
contribute. As a result, Eq. (126) is modified to

mij (∆H + cqǫ)
σ

f
QiU

c
j + h.c. , (127)

where the dimensionless parameter cq is of order λOf
−ǫ.

Here ∆H(λ̂O) is to be evaluated close to the symmetry
breaking scale. We see that corrections to the form of
Eq. (126) from conformal symmetry violating effects are
of order m2

σ/Λ
2, and under control.

More generally, there could be several scalar operators
Hα in the conformal field theory that couple to the SM
fermions. The coupling in Eq. (123) then generalizes to

yαijHαQiU
c
j + h.c. , (128)

where the index α runs over all the scalar operators in
the theory with the quantum numbers of the SM Higgs.

However, operators with dimension significantly larger
than one are not expected to play a significant role.
It follows from the U(3)Q× U(3)U flavor symmetry

that the up-type fermion masses depend on the couplings
yαij as

mij = yαijDα , (129)

where the parameters Dα depends on the details of
the conformal field theory. In order to determine
the couplings of the dilaton, we make the coupling in
Eq. (128) formally invariant under scale transformations
by promoting the yαij to spurions that transform as

yαij → y′αij = e
ω
(

1−∆H(α)

)

y(α)ij , (130)

under x → x′ = e−ωx. There is no sum over α on the
right hand side of this equation. The various terms in
the sum on the right hand side of Eq. (129) transform
differently under this transformation. In order to account
for this we define

mαij = y(α)ijD(α) , (131)

where again there is no sum over α on the right hand side
of this equation. Then the requirement that the fermion
mass in the low energy effective theory be formally
invariant under this symmetry constrains the conformal
compensator to couple as

mαij

(

χ

f

)∆Hα

QiU
c
j + h.c. (132)

in the potential. This leads to the dilaton coupling

mαij∆Hα

σ

f
QiU

c
j + h.c. (133)

We see from this that if the ∆Hα
are not all equal,

the couplings of the dilaton in the low energy effective
theory violate flavor. However, in the absence of large
cancellations among the contributions of different op-
erators to the quark masses, the matrix mαij∆Hα

will
be somewhat aligned with the quark mass matrix mij ,
leading to suppression of flavor violation.

2. Partially Composite Fermions

Another possible origin for the fermion masses is
that the SM quarks and leptons are partial composites
of the strongly interacting sector [62]. This scenario
can arise if the theory contains elementary fermions
Qi, U

c
i , D

c
i , Li and Eci with the same gauge quantum

numbers as the corresponding SM fermions that mix with
operators in the conformal field theory. The physical
SM fermions emerge as a linear combination of the
corresponding elementary particles and states associated
with the strongly interacting sector. Within the Randall-
Sundrum framework, this corresponds to putting the SM
fermions in the bulk of the space [63].
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To understand this in greater detail, let us consider
the mass terms for the up-type quarks. These can be
generated if the conformal field theory contains fermionic
operators Qc

α and Uα, with dimensions ∆Q and ∆U

respectively, that couple to elementary fermions Qi and
U ci in the Lagrangian as

yαiQ Qc
αQi + yβjU UβU cj + h.c. (134)

We assume that the indices α and β, which run from 1
to 3, are associated with an internal U(3) symmetry of
the conformal sector so that ∆Q and ∆U are independent
of α and β. We will relax this assumption later. If ∆Q

and ∆U are close to 5/2, these interactions correspond to
marginal operators in the conformal field theory. These
couplings will generate up-type quark masses in the
potential of the form

mijQiU
c
j + h.c. (135)

This framework can be extended to the down-type quarks
and leptons in a straightforward way. The AdS/CFT
correspondence relates the operator dimensions ∆Q and
∆U to the mass terms for bulk fermions in Randall-
Sundrum models.
In the limit that the couplings yQ and yU are set

to zero the ultraviolet theory has a U(3)Q× U(3)U
flavor symmetry. This symmetry can be restored by
promoting yQ and yU to spurions that transform as
anti-fundamentals under U(3)Q and U(3)U respectively.
Then, requiring the low energy effective theory to respect
this spurious symmetry constrains the mass matrix to be
proportional to the product of yU and yQ,

mij ∝
[

yTQ yU
]ij

, (136)

to lowest order in the couplings y. The kinetic terms of
the quarks in the low energy effective theory also receive
corrections from the couplings yQ and yU of the form

∆ZQQγ
µDµQ+∆ZUU

c
γµDµU

c (137)

where

∆ZQ ∼ 1

16π2

y†QyQ

f5−2∆Q

∆ZU ∼ 1

16π2

y†UyU
f5−2∆U

. (138)

The corrections to the kinetic terms are a consequence of
the fact that the fermions in the low energy theory are
partially composite.
In order to determine the coupling of the dilaton to

the up-type quarks, we promote yQ and yU to spurions
that transform as yQ → y′Q = eω(5/2−∆Q)yQ and yU →
y′U = eω(5/2−∆U )yU under x → x′ = e−ωx. Then
the couplings (134) are formally invariant under scale
transformations, and the conformal compensator couples
to quarks so as to make low energy effective theory

consistent with this symmetry. To lowest order in powers
of yQ and yU , and neglecting effects arising from O, this
coupling takes the form

mijQiU
c
j

(

χ

f

)(∆U+∆Q−4)

+ h.c. (139)

in the potential. This leads to the dilaton couplings

mij (∆U +∆Q − 4)
σ

f
QiU

c
j + h.c. (140)

This agrees with the results in the literature for the
coupling of the dilaton to partially composite fermions in
the large N limit [29], and for the coupling of the radion
to bulk fermions in the Randall-Sundrum model [47, 48].
Our analysis establishes that these results are valid
beyond the large N limit.
When effects of the operator O are included, Eq. (140)

is modified to

mij [(∆U +∆Q − 4) + cqǫ]
σ

f
QiU

c
j + h.c. , (141)

where cq is of order λOf
−ǫ, which is the value of λ̂O at

the scale f . In this expression, ∆U (λ̂O) and ∆Q(λ̂O) are
to be evaluated close to the symmetry breaking scale. In
obtaining this result, we have assumed that the operator
O does not break the approximate SM flavor symmetries,
or the internal U(3) symmetry of the conformal sector.
It follows that corrections to the form of Eq. (140) from
conformal symmetry violating effects are suppressed by
m2
σ/Λ

2, and are under good theoretical control.
There are additional contributions to the dilaton cou-

pling to quarks associated with the corrections to the
kinetic terms, Eq. (137). However, using the equations
of motion, it can be shown these contributions are higher
order in yQ and yU than the effects we have considered,
and are therefore suppressed.
In the more general case the operators Qc

α and Uα,
could have dimensions ∆Qα

and ∆Uα
that depend on the

flavor index α. Then it follows from the spurious flavor
symmetries that the SM fermion masses depend on the
couplings yQ and yU as

mij = yαiQ y
βj
U Dαβ , (142)

where the parameter Dαβ depends on the details of the
conformal field theory. We can make the theory formally
invariant under scale transformations by promoting yQ
and yU to spurions that transform as

yαiQ → y′αiQ = e
ω
(

5/2−∆Q(α)

)

y
(α)i
Q

yαiU → y′αiU = e
ω
(

5/2−∆U(α)

)

y
(α)i
U (143)

under x → x′ = e−ωxµ, where there is no sum over α
on the right hand side of the equations. The couplings
of the dilaton in the low energy effective theory must
respect this symmetry. We define

mαβij = y
(α)i
Q y

(β)j
U D(α)(β) , (144)
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where again there is no sum over α and β on the right
hand side of the equation. We also define

∆QU
αβ = ∆Qα

+∆Uβ
− 4 . (145)

In terms of these new variables the coupling of the
conformal compensator to the up-type quarks can be
expressed as

mαβijQiU
c
j

(

χ

f

)∆QU
αβ

+ h.c. (146)

Expanding this out, we find for the dilaton couplings in
the potential

mαβij∆QU
αβ

σ

f
QiU

c
j + h.c. (147)

It follows that in this scenario, the couplings of the
dilaton to the quarks in the low energy effective theory
violate flavor. However, in the absence of large cancel-
lations among the contributions of the different yQ and
yU to mij , we expect some degree of alignment between
the quark mass matrix and the dilaton coupling matrix,
which may be sufficient to satisfy flavor bounds.
Since Qc and U are part of the strongly interacting

sector, they must arise from complete multiplets of
SU(2)L× SU(2)R. There are two distinct possibilities
for the realization of this symmetry, which we consider
in turn.
The first possibility is that Qc transforms as (2, 1)

under SU(2)L× SU(2)R while U is partnered by another
state D, and together they transform as a (1, 2). In the
context of Randall-Sundrum models, this realization of
custodial symmetry was first proposed in [64]. The large
mass of the top quark implies that the couplings yQ
and yU must be sizable for the third generation quarks.
This realization leads to mild tension with precision
electroweak tests, since yU distinguishes between U and
D, and therefore violates custodial SU(2) symmetry.
The alternative possibility [65] is that Qc is partnered

with a new state Q̂c, and together they transform as
(2, 2) under SU(2)L× SU(2)R. Meanwhile, U is now just
a singlet. In this realization of the extended symmetry, it
is yQ that violates custodial SU(2) and leads to tension
with precision tests. This difficulty can be avoided if
the third generation SU(2) singlet up-type quark U c3 is a
composite of the strongly interacting sector. This allows
yQ to remain small enough to avoid conflict with the
bound. In this scenario Eq. (147) remains valid, the only
difference being that ∆U3 now takes the value 5/2.

V. HIGGS AS A PNGB

Next we consider theories where the SM Higgs doublet
emerges as the pNGB associated with the breaking of
an approximate global symmetry by strong conformal
dynamics. For concreteness, we will take the global

symmetry to be SO(6), which is broken to SO(5). An
SU(2)× U(1) subgroup of the unbroken SO(5) is gauged,
and identified with the electroweak gauge sector of the
SM. Of the 5 pNGBs, 4 are identified with the SM Higgs
doublet, while the remaining one is a SM singlet.
For the purpose of writing interactions, it is convenient

to work in a framework where we keep only the symme-
tries associated with the SU(3)× U(1) subgroup of the
non-linearly realized SO(6) global symmetry manifest.
As shown in [66], the 5 NGBs associated with the break-
ing of SO(6) to SO(5) can be identified with the 5 NGBs
arising from the breaking of the SU(3)× U(1) subgroup
of SO(6) to SU(2)× U(1), since the corresponding coset
spaces are identical. We parametrize the NGBs as ha,
where a runs from 1 to 5. Rather than work with the
ha directly it is more convenient to construct an object
φ which transforms linearly under SU(3)× U(1).

φ = f̂exp (ihata)





0
0
1



 . (148)

Note that we are employing a convention where the ha

carry no mass dimension. We expect that f̂ and f will be
of the same order, since the same dynamics is responsible
for the breaking of both conformal symmetry and the
global symmetry. The 5 matrices ta span [SU(3)×
U(1)/SU(2)× U(1)], and are chosen as

{ta} =

{(

0 0 0
0 0 −i
0 i 0

)

,

(

0 0 0
0 0 1
0 1 0

)

,

(

0 0 −i
0 0 0
i 0 0

)

,

(

0 0 1
0 0 0
1 0 0

)

,

√

2

3

(

1 0 0
0 1 0
0 0 −1

)}

. (149)

This choice allows us to take ha, a = 1 → 4 to represent
the SM Higgs doublet, which we denote by h, while h5

represents the additional singlet.
The low energy effective Lagrangian will in general

contain all possible operators consistent with the SU(3)×
U(1) global symmetry, but with restrictions on the
coefficients of various terms enforced by the larger SO(6)
symmetry. In particular the dangerous custodial SU(2)
violating operator

∣

∣φ†Dµφ− (Dµφ)
†φ
∣

∣

2
, (150)

while allowed by SU(3)× U(1), is forbidden by SO(6).
Here Dµ is the gauge covariant derivative with respect
to the SM SU(2) × U(1) gauge symmetry.
The requirement of scale invariance implies that the

non-linear sigma model condition |φ|2 = f̂2 becomes

|φ|2 = f̂2χ̂2. This means that we can make the low
energy effective theory for the pNGBs invariant under
scale transformations, up to terms arising from effects
that explicitly violate the conformal and global symme-

tries, by making the replacement f̂ → f̂ χ̂ in Eq. (148).
The net effect is that in the low energy effective theory
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the ha transform as fields with scaling dimension equal
to zero, up to effects that violate conformal symmetry.
This allows us to determine the form of the dilaton
couplings to the SM fields. A major simplification is that
since h has no scaling dimension, when replaced by its
VEV the various operators have exactly the same scaling
dimensions as in the technicolor models of the previous
section, and many results can simply be carried over.

A. Couplings to Gauge Bosons

We begin by considering the dilaton couplings to the
weak gauge bosons of the SM. These arise from the gauge
covariant kinetic term for φ,

(Dµφ)
†
Dµφ . (151)

Expanding out φ to lowest order in h, we obtain the gauge
covariant kinetic term for the SM Higgs doublet

χ̂2f̂2 (Dµh)
†
Dµh , (152)

Working in unitary gauge, and replacing h by its VEV,
we find the coupling of the conformal compensator to the
W bosons in the Lagrangian

m2
W

g2
χ2

f2
W+
µ W

µ − . (153)

This leads to the dilaton coupling

2
σ

f

m2
W

g2
W+
µ W

µ − . (154)

As expected, this is identical to the corresponding for-
mula in the technicolor case. When conformal symmetry
violating effects arising fromO are incorporated, the non-
linear sigma model condition is modified to

|φ|2 = f̂2χ̂2

[

1 +

∞
∑

n=1

αφ,nλ
n

O χ(−nǫ)

]

, (155)

where the dimensionless parameters αφ,n are expected to
be of order one. Then the dilaton coupling to W bosons
is modified to

σ

f

m2
W

g2
(2 + cW ǫ)W

+
µ W

µ − , (156)

where cW is of order λOf
−ǫ. We see that the corrections

are suppressed by m2
σ/Λ

2, exactly as in the technicolor
case.
Next we consider dilaton couplings to the massless

gauge bosons of the SM, the gluons and the photon. The
leading effect which breaks conformal invariance is again
the running of the gauge couplings, just as in the previous
section. The results can simply be carried over, and are
given by Eq. (122),

σ

f

(b< − b>)

32π2
[1 + cAǫ]FµνF

µν . (157)

Here b>(λ̂O) is to be evaluated close to the breaking
scale. As can be seen from this formula, corrections to the
form of the dilaton couplings from conformal symmetry
breaking effects are suppressed by m2

σ/Λ
2 and also by a

loop factor, and are generally small.

B. Couplings to Fermions

1. Elementary Fermions

Next we consider dilaton couplings to the SM fermions.
We begin with the case where the SM fermions are
elementary, and their masses arise from direct contact
interactions with operators in the conformal field theory.
The up-type fermion masses arise from terms in the
Lagrangian of the form

ŷijHQiU cj + h.c. (158)

that break the global symmetry. Here the operator H
has the quantum numbers of the SM Higgs doublet. This
leads to Yukawa couplings for the up-type quarks in the
potential of the low energy effective theory,

yij
(

f̂h
)

QiU
c
j + h.c. , (159)

where we are neglecting higher order terms in h which
may also arise from the term in Eq. (158). It follows from
the flavor symmetries that yij is proportional to ŷij to
lowest order in the couplings ŷ. We can find the dilaton
couplings by promoting ŷij to a spurion exactly as in the
technicolor case. Noting that h has no scaling dimension,
it follows that the conformal compensator couples to up-
type quarks as

yij
(

χ

f

)∆H (

f̂h
)

QiU
c
j + h.c. (160)

in the potential. This leads to the dilaton coupling

yij∆H

σ

f

(

f̂h
)

QiU
c
j + h.c. . (161)

Replacing h by its VEV we obtain

mij∆H

σ

f
QiU

c
j + h.c. , (162)

exactly as in the technicolor case. When effects of the
operator O are included, this again becomes

mij (∆H + cqǫ)
σ

f
QiU

c
j , (163)

where cq is of order λOf
−ǫ. In this expression ∆H(λ̂O)

is to be evaluated close to the symmetry breaking scale.
In the case where there are multiple operators Hα that

couple to the SM fermions,

ŷαijU HαQiU
c
j + h.c. , (164)

Eq. (162) generalizes to the corresponding formula in the
technicolor case, Eq. (133).
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2. Partially Composite Fermions

We move on to the case where the SM quarks and
leptons are partial composites of the strongly interacting
sector. We introduce elementary fermions Qi, U

c
i , D

c
i , Li

and Eci that have the same gauge quantum numbers
as the corresponding SM fermions, and which mix with
operators in the conformal field theory. The observed
SM fermions are linear combinations of the correspond-
ing elementary particles and states associated with the
strongly interacting sector.
Mass terms for the up-type quarks arise from couplings

of fermionic operators Qc
α and Uα, with dimensions ∆Q

and ∆U respectively, to the elementary fermions Qi and
U ci in the Lagrangian,

yαiQ Qc
αQi + yβiU UβU ci + h.c. (165)

We assume that the indices α and β, which run from 1 to
3, are associated with an internal U(3) symmetry of the
conformal sector so that ∆Q and ∆U are independent
of α and β. We will relax this assumption later. We
can determine the coupling of the dilaton to the up-type
quarks by promoting yQ and yU to spurions, exactly as in
the technicolor case. Noting that h has scaling dimension
zero, we find that the conformal compensator couples as

yij
(

χ

f

)(∆U+∆Q−4)
(

f̂h
)

QiU
c
j + h.c. (166)

Replacing h by its VEV and expanding χ out in terms of
σ, we obtain

mij (∆U +∆Q − 4)
σ

f
QiU

c
j + h.c. , (167)

which is identical to the corresponding formula in the
technicolor case, Eq. (140). When effects of the operator
O are included, Eq. (167) receives corrections, and is
again modified to

mij
U [(∆U +∆Q − 4) + cqǫ]

σ

f
QiU

c
j + h.c. (168)

In this expression, ∆U (λ̂O) and ∆Q(λ̂O) are to be
evaluated close to the symmetry breaking scale. We see
that corrections to the form of Eq. (167) from conformal
symmetry violating effects are suppressed bym2

σ/Λ
2, and

are therefore small. In the more general case where the
operators Qc

α and Uα have dimensions ∆Qα
and ∆Uα

that depend on the index α, Eq. (167) generalizes to the
corresponding formula in the technicolor case, Eq. (147).
Since Q and U are part of the strongly interacting

sector, they must arise from complete multiplets of O(6).
Perhaps the simplest possibility is that Qc constitutes
part of a multiplet that transforms as a fundamental of
O(6), while U is just a singlet. In this realization of the
extended symmetry yQ violates custodial SU(2). The
large mass of the top quark means that this coupling
must be large for the third generation, leading to tension

with precision tests. This difficulty can be avoided if
the third generation SU(2) singlet up-type quark U c3 is a
composite of the strongly interacting sector. This allows
yQ to remain small enough to avoid conflict with the
bound. In this scenario Eq. (147) remains valid, but with
∆U3 taking the value 5/2.

C. Coupling to the Higgs

Finally we consider the dilaton coupling to the SM
Higgs. In general, this receives contributions from both
the Higgs kinetic term and the Higgs potential. From the
kinetic term for the Higgs doublet, Eq. (152), we obtain
the coupling

σ

f
∂µρ∂

µρ (169)

in the Lagrangian. Here ρ is the canonically normalized
SM Higgs field, and we are working only to quadratic
order in ρ. When corrections arising from the symmetry
violating parameter O are included, this is modified to

σ

f
[1 + cHǫ] ∂µρ∂

µρ . (170)

where cH is of order λOf
−ǫ.

The kinetic term for φ, Eq. (151), does not lead to
mixing between between the dilaton and the SM Higgs
field. Other two derivative terms, such as

∂µχ

χ

[

φ†Dµφ+ (Dµφ)
†φ
]

, (171)

also do not generate such mixing. This conclusion
remains true when conformal symmetry violating effects
are included.
In this scenario, the potential for the Higgs doublet can

only arise from effects that explicitly violate the global
symmetry, such as the SM gauge and Yukawa interac-
tions. If all such effects, however, respect conformal
symmetry, then the potential for the Higgs doublet is
of the very restrictive form

V = χ4V0(h) . (172)

A potential of this form does not lead to mixing between
the SM Higgs and the dilaton after minimization. The
reason is that when the Higgs field is expanded about its
VEV, there is no linear term in ρ at the minimum of the
potential V (h). However, expanding V (h) to quadratic
order in ρ, we find a coupling of the dilaton to the Higgs
of the form

2
σ

f
m2
ρρ

2 (173)

in the potential. This formula will receive corrections
from any contribution to the Higgs potential that arises
from an effect that violates conformal symmetry. Mixing
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between the Higgs and the dilaton may be generated by
such effects.
In particular, when effects arising from the operator O

is taken into account, the Higgs potential takes the more
general form

V = χ4V0(h) +
∞
∑

n=1

λ
n

O χ(4−nǫ)Vn(h) . (174)

Eq. (173) is consequently modified to

σ

f
(2 + cρǫ)m

2
ρρ

2 , (175)

where, if the symmetry violating terms contribute signif-
icantly to the potential so that at the minimum V1(h) is
of order V0(h), cρ is expected to be of order λOf

−ǫ. We
see that the corrections are suppressed by m2

σ/Λ
2. This

effect also gives rise to mixing between the Higgs and the
dilaton. However the mixing angle θ is small,

θ <∼ ǫλOf
−ǫ

(

v

f

)

∼ m2
σ

Λ2

(

v

f

)

. (176)

Here v is the electroweak VEV.
Since the SM gauge interactions also constitute an

explicit breaking of conformal symmetry, there will be
additional radiative corrections to the Higgs potential
that are not of the simple form of Eq. (172). However, be-
cause the gauge interactions respect conformal symmetry
at the classical level, and only break it through quantum
effects, deviations away from this form are further loop
suppressed, and generally small.
In theories where the top quarks are elementary or par-

tially composite, the top Yukawa coupling also violates
conformal symmetry. Then, if contributions to the Higgs
potential from loops involving the top Yukawa coupling
are sizable, there can be significant deviations away from
the form of Eq. (172). We parametrize the coupling of
the conformal compensator to the top quark as

mt

v

(

χ

f

)(1+∆̄)
(

f̂h
)

t̄t , (177)

where ∆̄ is equal to zero if the top quarks are composite,
is equal to (∆H − 1) if the top quarks are elementary,
and is equal to (∆U3 + ∆Q3 − 5) if the top quarks are
partially composite. Then one loop corrections to the
Higgs potential from the top loop, which we label by
δVt, are of the form

χ4

[

2
∑

n=1

α̂t,n

(16π2)
n−1

(mt

v

)2n
(

χ

f

)2n∆̄

|h|2n
]

. (178)

Here the dimensionless parameters α̂t,n are of order one.
Then Eq. (173) is modified to

σ

f

[

2 + c̄ρ∆̄
]

m2
ρρ

2 . (179)

If contributions to the Higgs potential arising from loops
involving the top Yukawa coupling are significant, so that
δVt is comparable to V in Eq. (172) at the minimum, we
expect c̄ρ to be of order one. This effect also gives rise
to mixing between the dilaton and the Higgs, but the
mixing angle θ <∼ ∆̄v/f is expected to be small in realistic
models. Mixing will correct the dilaton couplings to other
SM fields as well, and so a precise determination of these
interactions requires this effect to be taken into account.
We leave this for future work.

VI. CONCLUSIONS

We have considered scenarios where strong conformal
dynamics constitutes the ultraviolet completion of the
physics responsible for electroweak symmetry breaking.
We have constructed the effective theory of a light dilaton
in such a framework, taking into account the explicit
conformal symmetry violating effects that are necessarily
present in realistic models. We have considered both the
case when the corrections to the scaling behavior of the
operator that breaks the conformal symmetry are small,
and the case when they are large. Of particular interest is
question whether the dilaton can naturally be light. We
have shown that although the presence of a light dilaton
is associated with tuning, the tuning is mild, scaling with
the mass of the dilaton rather than with the square of
the mass. As part of our analysis we have obtained the
couplings of the dilaton to gauge bosons and fermions in
the technicolor and Higgs as a pNGB cases, establishing
results which are valid beyond the large N limit. We
have also determined the size of the corrections to these
couplings from conformal symmetry violating effects, and
found that they are under good theoretical control in
theories where the dilaton is light.
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