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Abstract

The scalar strange-quark matrix element of the nucleon is computed with lattice QCD. A mixed-

action scheme is used with domain-wall valence fermions computed on the staggered MILC sea-

quark configurations. The matrix element is determined by making use of the Feynman-Hellmann

Theorem which relates this strange matrix element to the change in the nucleon mass with respect

to the strange quark mass. The final result of this calculation is ms〈N |s̄s|N〉 = 48± 10± 15 MeV,

and correspondingly fs = ms〈N |s̄s|N〉/mN = 0.051± 0.011± 0.016.

Given the lack of a quantitative comparison of this phenomenologically important quantity deter-

mined from various lattice QCD calculations, we take the opportunity to present such an average.

The resulting conservative determination is fs = 0.043± 0.011.
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I. INTRODUCTION

Determining the strange content of the nucleon has been a long standing interest of nuclear

and particle physicists. The scalar strange content of the nucleon can be related to kaon-

nucleon scattering and phenomenologically to the possible condensation of kaons in dense

nuclear environements [1, 2]. The strange content of the nucleon may also play an important

role in the scattering of dark-matter particles off nuclei. The general low-energy coupling of

dark matter to nuclei has recently been worked out systematically using low-energy effective

field theory [3, 4]. The spin-independent coupling is the simplest and has hence received

the most attention historically. The spin-independent elastic scattering of dark-matter off a

nucleon is proportional to the square of the scalar matrix elements 〈N |mq q̄q|N〉 for quarks of

flavor q. [5–13]. There are no direct experimental means of measuring these matrix elements.

The heavy quark q = {c, b, t} matrix elements can be computed from perturbative QCD

and are reasonably well known [14, 15]. The light quark q = {u, d} matrix elements can be

reasonably determined from πN scattering [16–18]. The scalar strange quark matrix element

presents the most theoretical challenge to determine reliably and has contributed one of the

largest uncertainties in dark-matter detection experiments [5, 6, 8], (cancellations between

different contributions to potential dark-matter–matter cross sections lead to even larger

uncertainty than previously appreciated [12]). There have been estimates using baryon

chiral perturbation theory and SU(3) symmetry [19] as well as constraints with earlier

lattice calculations [20]. For these reasons, there has been a resurgent interest in determining

ms〈N |s̄s|N〉 using lattice QCD, beginning with the work in Refs. [10, 21]. It is more common

in the context of dark-matter searches to normalize this quantity by the nucleon mass,

fs =
ms〈N |s̄s|N〉

mN

. (1)

There are two typical approaches used to determine this quantity from lattice QCD. The

scalar strange quark matrix element can be directly computed or one can take advantage of

the Feynman-Hellmann Theorem;

ms〈N |s̄s|N〉 = ms
∂mN

∂ms

. (2)

Most groups use the direct method [22–28], one group uses a hybrid approach which involves

elements of both methods [29, 30], and some groups use the Feynman-Hellmann method [21,

27, 31–36]. For a recent review of the scalar strange content of the nucleon, see Ref. [37].
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The present work utilizes the Feynman-Hellmann Theorem which has some distinct ad-

vantages over the direct method: it is numerically less expensive and the ground state contri-

butions to the two-point correlation functions can be significantly more reliably determined

than plateaus in direct matrix element calculations with equal computing resources.

We begin by presenting details of our lattice calculation in Sec. II and then present

the determination of ms〈N |s̄s|N〉 in Sec. III. We have found a quantitative comparison

of various lattice QCD calculations of this quantity lacking in the literature. Given its

important phenomenological role, we were compelled to compile such a comparison which

we provide in Sec. IV along with the results of the present work. While lattice calculations

of fs still need improvement, there is a welcoming consistency in the determination of this

quantity from a wide variety of lattice calculations.

II. DETAILS OF THE LATTICE CALCULATION AND NUMERICAL RESULTS

The present work utilizes mixed-action lattice QCD calculations with domain-wall

fermion [38–42] propagators computed on the nf = 2 + 1 asqtad-improved [43, 44] rooted,

staggered sea-quark configurations generated by the MILC Collaboration [45, 46], (with

hypercubic-smeared [47–50] gauge links to improve the chiral symmetry properties of the

domain-wall propagators), a strategy initiated by the LHP Collaboration [51–56]. A prin-

cipal motivation for this choice is the good chiral symmetry properties of the domain-wall

action, while utilizing the less numerically expensive lattice configurations of the staggered

action. It has been shown that the chiral symmetry properties of the valence domain-

wall fermions highly suppresses sources of chiral symmetry breaking from the sea-quark

action [57–60]. This has led to a number of important results including: a determina-

tion of the kaon bag parameter BK [61]; the charmed and static baryon spectrum [62, 63];

charmed meson interactions with pions and kaons [64]; hyperon axial charges [65]; a number

of results from the NPLQCD Collaboration including two-hadron scattering lengths [66–

72]; multi-meson interactions, condensates and the three-pion interaction [73–75]; as well

as a number of others [76–79]. There have been a few other choices for mixed actions all

utilizing overlap [80, 81] valence-fermions on a variety of sea-quark configurations: Wilson

sea-fermions [82], twisted-mass sea-fermions [83, 84], domain-wall sea fermions [85, 86], and

HISQ sea fermions [87]. Mixed-action calculations are inherently unitarity violating with
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TABLE I: Parameters used in the present work. For some of the calculations, the time direction

was chopped at t = 32 with Dirichlet boundary conditions (denoted by volumes with ×32). For

the MILC configurations, the notation m010m030 (and similar) means the input quark mass values

are bml = 0.010 and bms = 0.030 for the light and strange sea quarks respectively.

b ≈ 0.125 fm ensembles

β msea V M5 L5 bmdwf
l bmres

l bmdwf
s bmres

s Nsrc ×Ncfg

6.75 m010m030 203 × 64 1.7 16 0.0138 0.001564(03) 0.081 0.000892(2) 53× 328

6.76 m010m050 203 × 64 1.7 16 0.0138 0.001566(11) 0.081 0.000913(2) 4× 656

6.76 m010m050 203 × 32 1.7 16 0.0138 0.001552(27) 0.081 0.000913(2) 24× 769

6.79 m030m030 203 × 64 1.7 16 0.0478 0.001052(04) 0.081 0.000809(4) 30× 367

6.81 m030m050 203 × 32 1.7 16 0.0478 0.001013(06) 0.081 0.000862(7) 24× 564

b ≈ 0.09 fm ensembles

β msea V M5 L5 bmdwf
l bmres

l bmdwf
s bmres

s Nsrc ×Ncfg

7.08 m0031m0186 403 × 96 1.5 12 0.0035 0.000431(3) 0.0423 0.000236(2) 1× 356

7.08 m0031m031 403 × 96 1.5 12 0.0035 0.000428(3) 0.0423 0.000233(2) 1× 422

partially quenched effects only vanishing in the continuum limit. It is therefore imperative

to compare numerical results with the scaling violations predicted from the mixed-action

effective field theory [57–60, 88–97]. This has been undertaken in a exploratory extent with

baryons [55, 98] but the only systematic studies have been with the a0 correlator [93, 97],

which is highly contaminated by the unitarity violating effects, and a recent determina-

tion of low-energy-constants in the two-flavor chiral Lagrangian for pions [99]. Despite the

limited study of discretization effects, there are reasons to believe they are small for many

quantities [55, 57–59, 100].

A. Parameters of the Lattice QCD Calculation

The present calculation utilizes the Feynman-Hellmann Theorem to determine the scalar

strange quark matrix element in the nucleon, Eq. (2), limiting the work to a small set of

available ensembles. Details of the various ensembles and parameters are collected in Table I.

There are two sets of ensembles at the b ≈ 0.125 fm lattice spacing with fixed light quark mass
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and strange quark masses that straddle the physical strange quark mass. These are denoted

by the sets msea = {m010m030, m010m050} and msea = {m030m030, m030m050} respec-

tively.1 On the b ≈ 0.09 fm ensembles, there are two sets with fixed light quark mass and

strange quark masses straddling the physical strange quark mass. In this work, preliminary

results are presented only for one of these sets with msea = {m0031m0186, m0031m031}.
The values of the domain-wall quark masses, the fifth dimensional extent L5 and the domain-

wall mass M5 were taken from the NPLQCD production runs [99].

B. Results of the lattice calculation

The light and strange quark propagators were computed with a Gaussian-smeared

source [101, 102] and both smeared (SS) and point (PS) sinks. Correlation functions were

then constructed with the quantum numbers of the pion and proton. The pion masses were

determined with a fully correlated simultaneous fit to the SS and PS correlation functions,

with a single cosh used for both correlators;

C(XS)(t) ∼ A(XS) e
−mπT/2 cosh(mπ(t− T/2)) , (3)

where X = S, P . In all cases, the configurations are binned until the statistical uncertainty

of the extracted masses stopped changing appreciably. To determine the fitting systematic,

the length of the time-extent used in the fit and the starting time were varied over a wide

range, with a minimum plateau length of ∼ 0.5 fm. For each fit, the Q-value is used as a

weight, where

Q ≡
∫ ∞

χ2
min

dχ2 P(χ2, d) , (4)

with the probability distribution function for χ2 with d degrees of freedom

P(χ2, d) =
1

2d/2Γ(d/2)
(χ2)d/2−1e−χ

2/2 . (5)

The central value is determined from the weighted sum

m̄ =

∑
imiQi∑
j Qj

. (6)

1 The notation msea = m010m030 means the light quark has an input light quark mass value in lattice

units of bml = 0.010 and the strange quark input mass value is bms = 0.030.
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In many cases, the systematic is approximately Gaussian, and so the 16% and 84% quantiles

are used to determine the systematic uncertainties.

The choice to use the Q-values as weights is simply motivated. Q ranges from [0, 1]

with a value of 1 indicating the fit-function and resulting parameters perfectly describe the

correlation function over the range of fit. It also allows one to compare fits with different

model functions (eg. single and double state fits). While not the only choice for determining

a fitting systematic, it is a convenient and useful choice.

The results of these fits are plotted over a representative window in time along with

cosh-style effective masses

mcosh
eff (t, τ) =

1

τ
cosh−1

(
C(t+ τ) + C(t− τ)

C(t)

)
(7)

in Figures 1 and 2. The (black) squares are from the PS correlation functions while the

(colored) open circles are from the SS correlation functions. The right-side bar in each plot

displays the mass probability distribution function determined from

Pi(m) =
Qi∑
j Qj

. (8)

In all plots, the inner (colored) band represents the statistical uncertainty in the fit while

the outer band represents the statistical and fitting systematic added in quadrature. In the

case of the msea = m030m050 ensemble, only results with Dirichlet boundary conditions

in time are available. For this case, the correlation functions are fit simultaneously with a

single exponential

C(XS)(t) ∼ A(XS) exp(−mπt) , (9)

and compared with the standard effective mass

mln
eff (t, τ) =

1

τ
ln

(
C(t)

C(t+ τ)

)
. (10)

Clearly, in this case, the ability to explore the fitting systematic is more limited. For reasons

discussed in Ref. [99], the dip in the effective mass is not believed to represent a lower ground

state energy, but rather contaminations from the Dirichlet boundary condition. The results

are collected in Table II.

The proton masses are trickier to determine as the signal-to-noise ratio decays exponen-

tially in time [104]

lim
t→∞

S(t)

N(t)
= Ae−(mN− 3

2
mπ)t . (11)
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FIG. 1: Pion mass effective mass plots on the b ≈ 0.125 fm ensembles.

The mass determined in a given fit from ti to tf is then susceptible to larger fitting sys-

tematics. It is not uncommon for the effective mass plateau to shift by order one stan-

dard deviation and form a new plateau either higher or lower at times when the statistical

fluctuations grow appreciably. It is therefore important to develop a systematic analysis

algorithm that both takes advantage of the precise statistical fluctuations at early times

while allowing for the possibility that the late time fluctuations represent the true ground-

state. It was demonstrated that correlation functions determined with O(105) reasonably
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FIG. 2: Pion mass effective mass plots on the b ≈ 0.09 fm ensembles.

TABLE II: Computed pion and nucleon masses on the various ensembles. Additionally, the value

of r1/b used to convert to physical units is provided, obtained from Refs. [46, 103].

β msea V bmπ bmN
r1
b (bmphy

l , bmphy
s , β)

6.75 m010m030 203 × 64× 16 0.22178(33)(54
28) 0.7177(18)(19

26) 2.711(4)

6.76 m010m050 203 × 64× 16 0.22285(28)(46
37) – 2.739(3)

6.76 m010m050 203 × 32× 16 – 0.7311(19)(36
26) 2.739(3)

6.79 m030m030 203 × 64× 16 0.37323(27)(20) 0.8653(17)(27
33) 2.821(7)

6.81 m030m050 203 × 32× 16 0.37493(26)(24
11) 0.8740(18)(36

32) 2.877(4)

7.06 m0031m0186 403 × 96× 12 0.10192(38)(59
55) 0.4621(64)(99

85) 3.687(4)

7.08 m0031m031 403 × 96× 12 0.10165(35)(84
76) 0.4603(48)(79

74) 3.755(4)

statistically independent sources on O(104) Monte-Carlo trajectories, a variety of analysis

methods could be used all producing consistent results [105]. With fewer measurements,

not all methods work as well. One technique which works better than others is the Matrix-

Prony method [106] (similar to the variational method which has gained popularity lately),

as described in Refs. [105, 107]. The general idea is to find linear combinations of correla-

tion functions which isolate various eigenstates and allow for a determination of the masses
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starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions which are

neither square nor positive-definite, as is often the case in lattice QCD calculations. One

begins with the ansatz that the (vector) of correlation functions can be described with a

transfer matrix

y(t+ τ) = T̂ (τ)y(t) , (12)

where in our case, y(t) is composed of just two correlation functions

y(t) =


CPS(t)

CSS(t)


 . (13)

It is useful to factorize the transfer operator T̂ (τ) = M−1(τ)V and multiply on the right by

the transpose vector to form the matrix equation

M(τ)y(t+ τ)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time;

M(τ)

t0+∆t∑

t=t0

y(t+ τ)yT (t) = V

t0+∆t∑

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(τ) =

(
t0+∆t∑

t=t0

y(t+ τ)yT (t)

)−1

, V =

(
t0+∆t∑

t=t0

y(t)yT (t)

)−1

. (16)

In order to guarantee the inverse can be found, enough times must be summed over to ensure

the corresponding matrices are of full-rank. One then solves the eigenvalue equation for the

principal correlators

T̂ (τ)qn = (λn)τqn , with λn = e−En . (17)

A point that differentiates the Matrix-Prony method from other variational methods is

the sum over time slices in Eq. (15). Most variational-methods pick a reference time at which

to perform the diagonalization of the correlation functions, whereas with Matrix-Prony, one

must sum over a number of time slices greater than or equal to the number of correlation

functions. Moreover, one can increase confidence in the subsequent analysis by maximizing
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FIG. 3: Proton mass and representative effective mass plots on the b ≈ 0.125 fm ensembles.

∆t in Eq. (15). The original ansatz (12) is satisfied if over the range of time t0 to t0 + ∆t,

the resulting principal correlation functions are well described by a single exponential.

In this work, to determine the fitting systematic, the choices of t0 and ∆t are varied over

a wide range, with ∆t & 0.5 fm. For each choice, the ground state principal correlation

function is fit with a single exponential, Eq. (9), over ranges of time ti− tf , chosen indepen-

dently of t0 and ∆t. The initial and final times in the fit are also varied over a wide range

under the constraint tf − ti & 0.5 fm. For each fit, the Q-value is recorded along with the
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FIG. 4: Proton mass and representative effective mass plots on the b ≈ 0.09 fm ensembles.

statistical uncertainty of the fit. The various fits are then averaged with the weight similar

to that of the pions, but also suppressed by the statistical uncertainty of the fit;

m̄ =

∑
imiwi∑
j wj

with wi =
Qi

σi
. (18)

In this way, the plateaus at later times, with larger uncertainties, and hence larger Q-values,

do not dominate the determination of the fitting systematic. The resulting fits are displayed

along with effective mass plots of representative Matrix-Prony determinations of the ground

state principal correlation function in Figures 3 and 4. In these figures, the colored effective

mass points correspond to the time window over which the Matrix-Prony method is applied

in the representative choice of times t0 and ∆t, while the gray effective mass points lie

outside this region. As is evident, the resulting systematic mass-probability distribution

tends not to be Gaussian. For simplicity, we still take the 16% and 84% quantiles to define

the systematic uncertainty. The inner colored bands represent the statistical uncertainty

and the outer gray bands represent the statistical and systematic uncertainties added in

quadrature.
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TABLE III: Computed masses and decay constants converted to MeV with r1 = 0.31174(20) fm.

β msea V mπ [MeV] mN [MeV]

6.75 m010m030 203 × 64× 16 380.5(.6)(.9.5) 1231(3)(3
4)

6.76 m010m050 203 × 64× 16 386.3(.5)(.8.6) –

6.76 m010m050 203 × 32× 16 – 1267(3)(6
5)

6.79 m030m030 203 × 64× 16 666.4(.5)(.4) 1545(3)(5
6)

6.81 m030m050 203 × 32× 16 682.7(.5)(.4.2) 1591(3)(7
6)

7.06 m0031m0186 403 × 96× 12 237.8(0.9)(1.3) 1078(15)(26
22)

7.08 m0031m031 403 × 96× 12 241.6(0.8)(2.0
1.8) 1094(11)(19

18)

C. Scale setting

To convert from lattice units to physical units we use the scale setting procedure described

in Ref. [99]. The dimensionless lattice results are converted into r1 units with r1
b

(bml, bms, β)

determined by the MILC Collaboration on each ensemble. But importantly, it is not the

value computed on a given ensemble which is used, rather the values that have been extrap-

olated to the physical light and strange quark mass point, r1
b

(bmphy
l , bmphy

s , β), which have

also been determined by the MILC Collaboration [46, 103], listed here in Table II. While

depending upon reference quark mass values, this amounts to a quark-mass independent

scale setting procedure, such that all remaining light and strange quark mass dependence of

the computed observables is that of interest. The MILC Collaboration has also determined

the physical value of r1,

rphy
1 = 0.31174(20) fm , (19)

which is used to then convert all values into physical units, Table III.

There is an important additional advantage to this method of scale setting. To invoke the

Feynman-Hellmann Theorem, the change in the nucleon mass with respect to a change in the

strange quark mass must be undertaken with all other parameters held fixed [29, 30]. The

MILC Collaboration chose to make slight changes in the coupling β while changing the light

quark masses. Our scale setting procedure allows us to asses the quantitative significance

of the slightly different values of β used on the pairs of ensembles, {m010m030,m010m050},
{m030m030,m030m050} and {m0031m0186,m0031m031}. For each pair, the relative differ-
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TABLE IV: Extracted values of mN (mphy
s ) and mphy

s 〈N |s̄s|N〉. The first uncertainty is statistical,

the second fitting systematics and the third is from the uncertainty on the determination of mphy
s .

mπ [MeV] mN (mphy
s ) [MeV] mphy

s 〈N |s̄s|N〉 [MeV]

383.4(.6)(.9.6) 1241(2)(3)(1) 62(8)(11)(1)

674.6(.5)(.4) 1556(2)(4)(2) 79(8)(13)(2)

240(1)(2) 1090(11)(17)(1) 50(40)(65)(1)

ence in the values of β was less than 1% (β
(2)−β(1)

β(2)+β(1) < 0.01) and the corresponding relative

difference in the values of r1
b

(bmphy
l , bmphy

s , β(i)) are also less than 1%. While strictly speak-

ing, the change in ms was not undertaken with all other parameters held fixed, the effect

of this change is contained well within the other uncertainties on the determined values of

ms〈N |s̄s|N〉, as detailed in the next section.

III. THE STRANGE SCALAR MATRIX ELEMENT IN THE NUCLEON

As discussed in the introduction, there are a few methods for determining the scalar strange

quark matrix element in the nucleon: a direct calculation of the matrix element employed

by some groups [22–28] and an indirect determination through the Feynman-Hellmann The-

orem [21, 31–36], Eq. (2),2 and a hybrid approach [29, 30]. This work utilizes the Feynman-

Hellmann method. For each light quark mass ensemble, we have a determination of the

nucleon mass at values of the strange quark mass which straddle the physical strange quark

mass. These results, Table III, can be used to interpolate to the physical value of the strange

quark mass, Taylor expanding about bmphy
s , and determine the two quantities

mN(mphy
s ) ,

∂mN(ms)

∂ms

∣∣∣
mphy
s

. (20)

To apply the Feynman-Hellmann Theorem with all parameters except ms held (approxi-

2 The first attempt to determine the strange content of the nucleon from lattice QCD with the Feynman-

Hellmann method utilized SU(3) baryon χPT analysis of b ≈ 0.125 fm MILC results [20] resulting in a

value consistent with zero.
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FIG. 5: Nucleon mass versus the strange quark mass on the b ≈ 0.125 fm and b ≈ 0.09 fm

ensembles. The vertical dashed lines represent the 68% confidence interval for the determination

of bmphy
s on the b ≈ 0.125 fm and b ≈ 0.09 fm ensembles. The conversion to r1 units is performed

as in Eq. (21) using 1
2( r1b

(1) + r1
b

(2)) for each pair of ensembles.

mately) fixed, the following approximation for the derivative is used,

ms〈N |s̄s|N〉[MeV] =
r1
b

(2)bm
(2)
N − r1

b
(1)bm

(1)
N

r1
b

(2)bm
(2)
s − r1

b
(1)bm

(1)
s

×
r1
b

(2) + r1
b

(1)

2
bmphy

s × 197.3 MeV fm

rphy
1 [fm]

, (21)

where
r
(i)
1

b
denotes the value of r1

b
(bmphy

l , bmphy
s , β(i)) for the given ensemble with all param-

eters except bms held approximately fixed and rphy
1 [fm] is taken from Eq. (19). The MILC

Collaboration has determined values of the strange quark mass to be bmphy
s = 0.0350(7) and

bmphy
s = 0.0261(5) on the b ≈ 0.125 fm and b ≈ 0.09 fm ensembles respectively [46, 108].

The resulting values of mN(mphy
s ) and mphy

s 〈N |s̄s|N〉 are collected in Table IV and the re-

sulting interpolations are displayed in Figure 5. In these figures, the vertical dashed lines

represent the 68% confidence interval for the determination of bmphy
s on the b ≈ 0.125 fm and
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b ≈ 0.09 fm ensembles. The uncertainty on bmphy
s is included in the analysis and represented

by the third uncertainty in Table IV. The conversion to r1 units is performed as in Eq. (21)

using 1
2
( r1
b

(1) + r1
b

(2)) for each pair of ensembles. The estimated correction due to the differ-

ence in β on the pairs of ensembles is at the same level as the uncertainty arising from the

determination of bmphy
s , which are at least an order of magnitude smaller than the statistical

or other systematic uncertainties. On the b ≈ 0.125 fm ensembles, a precise determination

of the scalar matrix element is obtained. However, on the b ≈ 0.09 fm ensembles, the results

are too imprecise to determine a non-zero value.

A. Chiral Extrapolation

The results for ms < N |s̄s|N > must be extrapolated to the physical value of the pion mass.

In Ref. [109], the two flavor extrapolation formula for this matrix element was determined

at next-to-leading order (NLO) in the chiral expansion,

〈N |s̄s|N〉 =< N |s̄s|N >0 − g
2
πN∆

4π2f 2

(
< N |s̄s|N >0 − < ∆|s̄s|∆ >0

)
J ∆
mπ + Ẽs

m2
π

8π2f 2
, (22)

where 〈H|s̄s|H〉0 represent the leading order (LO) contribution to the scalar strange matrix

element in the hadron H, gπN∆ is the axial pion-nucleon-delta coupling appearing in the

SU(2) baryon chiral Lagrangian, J ∆
mπ is a chiral loop function non-analytic in the pion mass

and the delta-nucleon mass splitting (∆ = m∆ − mN) and Ẽs is a low energy constant

appearing at NLO. In the large-Nc expansion, the LO matrix elements for the nucleon and

the delta are both O(N−1
c ) but there is no cancellation at this order [110], so one does not

expect a strong cancellation between these NLO contributions.3 In principle, one should use

the partially quenched formula, also provided in Ref. [109], and convert it to the relevant

mixed-action formula [59] to perform the extrapolation. However, clearly the most significant

shortcoming of the present work is the limited number of light quark mass points. With

non-zero results at only a single lattice spacing, the mixed-action extrapolation can not

be performed regardless. The best that can be done with the present results is a simple,

effectively zero-degree of freedom extrapolation using the formula

ms〈N |s̄s|N〉 = c0 + c2m
2
π . (23)

3 See also Ref. [111] for further discussion on the baryon massess in the large Nc counting.
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FIG. 6: Light quark extrapolation of ms〈N |s̄s|N〉 versus m2
π. The location of the vertical dashed

line is given by (mphy
π )2.

While this will not result in a precise and accurate determination of the scalar strange matrix

element, it will provide a good guide to the approximate value at the physical point. While

not a rigorous expectation, it has been found that matrix elements of the nucleon tend to

have very mild pion mass dependence, see for example the recent review [112]. Performing

this simplistic pion mass extrapolation, using the isospin averaged mphy
π = 138.0 MeV, we

obtain

mphy
s 〈N |s̄s|N〉

∣∣∣
mphy
π

= 54± 11± 17 MeV . (24)

The extrapolation is displayed in Figure 6.

Given the limited ability to perform the chiral extrapolation, we also explore the light

quark mass dependence of fs = ms〈N |s̄s|N〉/mN to improve the estimate of systematic

uncertainties. It has been observed that the nucleon mass displays a remarkably linear

dependence on the pion mass [55, 100]. For this reason, two extrapolation functions are

used to estimate extrapolation systematics:

fs = f (0)
s + f (2)

s m2
π , (25a)

fs = f (0)
s + f (1)

s mπ , (25b)
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FIG. 7: Extrapolation of fs. The location of the vertical dashed line in each plot is determined

from mphy
π .

yielding the results

fs = 0.049± 0.009± 0.013 , (26a)

fs = 0.049± 0.012± 0.018 , (26b)

respectively. These extrapolations are displayed in Figure 7. The quantity fs is observed to

have negligible light quark mass dependence.

These results can be compared with the extrapolation of ms〈N |s̄s|N〉 by converting

with the isospin averaged nucleon mass mphy
N = 938.9 MeV. In Table V, these three different

extrapolation results are collected. Additionally, a correlated weighted average is performed.

To perform the correlated average, Gaussian distributions of the results in Table IV are

created independently for each light quark mass point, with NGauss = 104 in all cases. For

each sample, all three extrapolations are performed, preserving the correlations between

the fits, with inverse weights given by the statistical and systematic uncertainties on the

individual mass points. For each sample, these three results are then averaged with weights

given by the inverse uncertainties from the individual analyses (quoted in Table V). This

yields the final result

ms〈N |s̄s|N〉 = 48± 10± 15 MeV , (27a)

fs = 0.051± 0.011± 0.016 . (27b)
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TABLE V: Extrapolated values of ms〈N |s̄s|N〉 and fs. These results are averaged in a weighted

and correlated fashion described in the text.

Quantity Extrapolated Extrapolation Function mphy
s 〈N |s̄s|N〉 [MeV] fs

mphy
s 〈N |s̄s|N〉 Eq. (23) 56± 12± 17 0.059± 0.012± 0.019

fs Eq. (25a) 47± 9± 13 0.050± 0.009± 0.014

fs Eq. (25b) 47± 12± 17 0.050± 0.012± 0.018

Correlated Average – 49± 10± 15 0.053± 0.011± 0.016

IV. RESULTS AND DISCUSSION

For the present work, the Feynman-Hellmann Theorem was invoked to determine the strange

content of the nucleon through a change mN as the strange quark mass is varied

ms〈N |s̄s|N〉 = ms
∂mN

∂ms

.

By taking care to set the scale using values of r1/b which were extrapolated to the physical

values of the light and strange quark masses, the nucleon mass variation was determined

with all other parameters held constant (with precision better than 1%), as is required

for a proper determination of this quantity [29, 30]. There are several groups who have

used the Feynman-Hellmann Theorem [21, 27, 31–36] as well as more determinations with

a direct calculation of the matrix element [22–28] and results from a hybrid approach [29,

30]. Before making a detailed comparison with other works, we first highlight advantages

and disadvantages of the present work. The distinct advantage of using the Feynman-

Hellmann Theorem over direct methods is that the ground state plateau of the nucleon can

be significantly more reliably determined than the plateau for the matrix element calculation

with equal computing resources; see the plots of ratio determinations in any of Refs. [22–28]

(the direct calculation requires a vacuum subtraction, adding substantial statistical noise).

The disadvantage of most groups employing the Feynman-Hellmann Theorem is the reliance

upon SU(3) baryon χPT [21, 33–35], which is known to not have a converging expansion

for the nucleon mass [55, 72, 98, 113, 114]. Therefore, it is not clear the full extrapolation
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systematic has been properly addressed in those works.4 This concern is substantiated by

the discrepancy between independent SU(3) baryon χPT analyses and their determination

of fs [21, 33–35].5 For further discussion on the convergence problems using SU(3) baryon

χPT specifically for the scalar strange content of the nucleon, see Ref. [118]. The current

work does not suffer from this issue.

The most severe limitation of the present work is the small number of light quark mass

points (two) for which there is a non-zero determination of ms〈N |s̄s|N〉. Given the sig-

nificant numerical cost of the domain-wall propagators on the b ≈ 0.09 fm ensemble with

mπ ' 240 MeV, it is not clear how soon a more precise determination will be obtained at

this point. Given the very mild light quark mass dependence observed in this work, and in

nucleon matrix elements in general, we believe the present determination offers a reliable

estimate of the scalar strange content of the nucleon, but neither a precise nor demonstrably

accurate value. Our final result is

ms〈N |s̄s|N〉 = 49± 10± 15 MeV ,

fs = 0.053± 0.011± 0.016 .

A. Lattice QCD Comparison and Average

Given the phenomenological importance of the scalar strange content of the nucleon, see

for example Refs. [5–13], it is prudent to review the limitations of the present determina-

tion and to compare and contrast these results to other lattice QCD determinations. There

are two results which use the same MILC ensembles with staggered valence quarks [29, 30]

and one determination with the same mixed-action scheme but a direct determination [28].

It is interesting to first compare our results with these. Ref. [30] (an update of [29])

quotes only the value of 〈N |s̄s|N〉 in MS (2 GeV). To convert this number into the di-

mensionful, renormalization scheme invariant quantity, we take the ratio of quoted values

4 The work in Ref. [31] also uses SU(3) baryon χPT, but uses a variety of other extrapolation methods,

resulting in a conservative estimate of their uncertainties.
5 Despite these criticisms, we point out in Ref. [34], a striking agreement is found between baryon mass

results extrapolated from one set of lattice calculations [55, 113], with SU(3) baryon χPT, and then used

to predict results from a completely independent calculation [115]. Moreover, independent verification

of the consistency of various lattice calculations of the ground state baryon spectrum and SU(3) baryon

χPT has been found independently [33, 116, 117].
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ms〈N |s̄s|N〉/〈N |s̄s|N〉 from Ref. [29], which amounts to ms[MS (2 GeV)] = 86 MeV. Al-

ternatively, we could use the strange quark mass determination of HPQCD [119] (updated

by MILC [120]), ms[MS (2 GeV)] = 89.0(4.8) MeV, but within uncertainties, these are the

same. Comparing to these works, as well as the mixed action calculation, good agreement

is found:

ms〈N |s̄s|N〉[MeV] =





59± 6± 8 Ref. [29]

54± 5± 6 Ref. [30]

43± 8± 6 Ref. [28]

49± 10± 15 present work

. (28)

In the literature, there is currently no determination of fs which considers all the available

results from lattice QCD, and so we take the opportunity to provide one here.6 We use an

approach similar to the FLAG working group of FLAVIANET which has provided lattice

determinations of various quantities important to low-energy hadronic physics [121]. In

particular, the FLAG working group has developed a scheme to judge the confidence to

place in various determinations, based upon standards such as the lightest pion mass used,

whether or not a continuum limit has been performed, and whether the infinite volume limit

has been performed. For each criterion, a green star (?) is awarded to results which meet

the strictest constraints, and orange circle (•) is given to results with room for improvement

and a red square (�) to those with room for significant improvement. This provides a useful

guide to people outside the lattice community and motivation for those in the community

to improve their results.

Using the standards of Ref. [121], most results for fs receive an orange circle. There is

one group which receives the green star and the rest receive a red square. The results with

a red square suffer either from too few light quark mass points to make a reliable chiral

extrapolation or rely to heavily on SU(3) baryon χPT. There are two analyses which we

promote from a red square to an orange circle because while they rely heavily on SU(3)

baryon χPT, they have demonstrated a remarkable consistency of their analysis with four

or more independent lattice calculations [33, 34]. We exclude results which are either not

published or not in an arXiv posting (as results in conference proceedings often undergo

larger-than-quoted systematic changes). We further exclude results which have not been

6 There is a recent review on the topic in Ref. [37], but a lattice average is not provided.
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extrapolated to the physical value of the light-quark mass and results calculated without

dynamical strange quarks (nf = 2) are not included in the average. To convert results from

ms〈N |s̄s|N〉 to fs we use mN = 938.9 MeV. These results are displayed in Figure 8.

For the scalar strange content of the nucleon, the current state of results is such that a

simple weighted average of good (green star) results can not be performed in a meaningful

way. As can be seen in Figure 8, there is good consistency between most of the results.

There are not a large number of orange circle results, so we chose to include all results in

the average. Moreover, we believe despite their red-square assignment, these results offer

valuable information which should not be ignored at this time.

A simple weighted average, using the quoted uncertainties as the inverse weights, pro-

duces an unbelievably small final uncertainty. This also ignores the fact that systematic

uncertainties are typically non-Gaussian, and in the case of lattice QCD calculations, not

cleanly separable from the statistical uncertainties. Moreover, it does not account for the

quality of the results, judged using the rubric of the FLAG working group. In an attempt

to include all these issues, the following ad hoc procedure is used to perform a weighted

average of all the results (presented in Figure 8);

i) for each of the Nlatt = 11 results, fi ± σ±i , an independent random sample is generated

with a sample size of Ndist = 104, drawn from a uniform distribution between the quoted

uncertainties

for i in range(Nlatt):

for j in range(Ndist):

fi,j = random.uniform(fi − σ−i , fi + σ+
i )

ii) for each random sample, a weighted average of all results is performed, with weight

wi = yi/σi , (29)

where σi is the symmetric uncertainty, σi = 0.5 ∗ (σ+
i + σ−i ) from a given result, and we

arbitrarily chose yi = 1, 2, 3 for the red square, orange circle and green star respectively:

an extra multiplicative reduction of 0.5 is assigned to results which rely heavily on SU(3)
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FIG. 8: Comparison and average of lattice QCD calculations of fs as described in the text. Only

values which have been extrapolated to the physical quark masses are used. Results which quote

ms〈N |s̄s|N〉 are normalized by mN = 938.9 MeV to convert to fs. The quoted uncertainties are

taken as the statistical and systematic uncertainties added in quadrature from a given reference.

nf = 2 + 1 indicates a dynamical strange quarks as well as up and down. SU(3) is used to indicate

results which rely heavily on SU(3) baryon χPT. Some results are excluded for various reasons but

displayed to demonstrate their consistency: [29] was updated in [30], the nf = 2 results [22, 24]

were not averaged with the nf = 2 + 1, the results in [25] were preliminary and not extrapolated

to the physical pion mass, the results in [26, 36] are preliminary and only exists in a conference

proceedings. All excluded results are presented as quoted in the literature, with no attempt to

perform chiral extrapolations

baryon χPT:

for j in range(Ndist):

f̄j =

∑
iwi fi,j∑
i′ wi′

The choice to weight with 1/σi instead of 1/σ2
i is partly motivated from the non-

Gaussian behavior of the systematic uncertainties which typically dominate the lattice

results.
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TABLE VI: Value of fs determined with various weights as described in text. The right most value

(with wi = yi/σi) is the value taken in this work to represent the lattice average.

wi 1/σ2
i yi/σ

2
i 1/σi y2

i /σi 1 yi/σi

fs(68%) 0.0458(31) 0.0470(35) 0.0442(36) 0.0420(55) 0.0487(63) 0.0428(41)

iii) the mean and 99% confidence intervals of the resulting distribution are quoted, see

Figure 8

A principal concern one should have about this average is the choice of weights used,

Eq. (29). To help judge the stability of the average presented here, a variety of different

weights are chosen, and the subsequent averages are compared and presented in Table VI.

The different choices in weights result in very consistent values. This is a statement about

the consistency of the values of fs from a variety of lattice QCD calculations, and it is

this striking consistency that leads us to believe a lattice average with the present results

is meaningful (despite the shortcomings of most of the individual results). The resulting

lattice average, quoted at the 99% confidence interval to be conservative, is

ms〈N |s̄s|N〉 = 40± 10 MeV ,

fs = 0.043± 0.011 . (30)

As was first discussed in Refs. [10, 21], there is now compelling evidence from lattice

QCD that the value of the scalar strange content of the nucleon is substantially smaller

than previously estimated and does not play as significant a role in dark-matter searches

as previously thought [5, 6, 8, 12]. This has potential implications for the importance of

spin-dependent dark matter searches as discussed in Ref. [11]. For a recent review of the

lattice QCD determinations of the scalar strange content of the nucleon, see Ref. [37].

B. Estimating the heavy quark matrix elements

Knowledge of fu, fd and fs can be used to determine the values of fc, fb and ft [14, 15].

In Ref. [15], these heavy quark matrix elements were computed using perturbative QCD to
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O(α3
s), finding7

fc = 0.08896(1− xuds) , fb = 0.08578(1− xuds) , ft = 0.08964(1− xuds) , (31)

where

xuds = fu + fd + fs . (32)

The light quark matrix elements are given by the pion-nucleon sigma term mN(fu + fd) =

σπN , which has also been determined from lattice QCD. As can be seen in Ref. [37], the

determination by the BMW Collaboration [31] not only would have the only green-star

ranking but also is a good approximation for the average of all lattice QCD calculations of

this quantity, with a value σπN = 39(+18
−8 ) MeV. Combining this with our estimate for fs

yields a value xuds = 0.085(+.022
−.014), and values of the heavy-quark matrix elements

fc = 0.0814(+12
−20) , fb = 0.0785(+12

−19) , ft = 0.0820(+13
−20) , (33)

or in dimensionful units

mc〈N |c̄c|N〉 = 76(+11
−19) MeV,

mb〈N |b̄b|N〉 = 74(+11
−18) MeV,

mt〈N |t̄t|N〉 = 77(+12
−19) MeV. (34)

The resulting charm-quark matrix element is in good agreement with the direct lattice QCD

calculations of this quantity [30, 123].
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