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Abstract

We present a formulation of domain-wall fermions in the Schrödinger functional
by following a universality argument. To examine the formulation, we numerically
investigate the spectrum of the free operator and perform a one-loop analysis to confirm
universality and renormalizability. We also study the breaking of the Ginsparg-Wilson
relation to understand the structure of chiral symmetry breaking from two sources: The
bulk and boundary. Furthermore, we discuss the lattice artifacts of the step scaling
function by comparing with other fermion discretizations.

1 Introduction

In the study of CP violation by CKM unitary triangle analysis, hadron matrix elements
of four-fermion operators, such as BK, play a vital role. Accurate calculations of this
quantity from first principles are an important task for the lattice QCD community.
In such calculations, having chiral symmetry is crucial to avoid an operator mixing
problem which requires extremely high accuracy. Although lattice chiral fermions
[1, 2, 3] are a clean formulation, they require enormous computing power to perform
dynamical simulations. In comparison, ordinary fermion formulations, like Wilson type
fermions and starggared fermions are relatively cheap. Nowadays, however, thanks to
the development of computer architecture and algorithms, dynamical simulations with
lattice chiral fermions have become feasible even for three flavors [4]. In particular, the
RBC/UKQCD collaboration [5] is currently using domain-wall fermions (DWFs) to
compute BK. In the course of their computation, there are many sources of systematic
errors which one has to control. Among them, the non-perturbative renormalization
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(NPR) could be serious. At the moment, the collaboration has been using conventional
schemes, such as, the RI/MOM scheme and its variants [6, 7]. However, these schemes
potentially contain “window problem” which requires a quite large lattice volume. To
avoid such difficulties, a new scheme was invented, known as the Schrödinger functional
(SF) scheme [8]. This scheme provides a reliable way of estimating errors in the NPR.
If one wants to use this scheme for the renormalization of BK given by the RBC
collaboration, first of all, one has to formulate DWF in the SF setup. This is the
purpose of this paper.

While chiral fermions are useful for computing the bare BK to avoid the mixing
problem, a formulation for such fermions in the SF setup was a non-trivial task because
SF boundary conditions break chiral symmetry explicitly. We will address this issue in
the next section. However, Taniguchi [9] made the first attempt to formulate overlap
fermions by using an orbifolding technique. Subsequently he provided a formulation
for domain-wall fermions [10] and then he and his collaborators [11] calculated a renor-
malized BK in quenched QCD. Sint [12] developed such techniques by combining with
a flavor twisting trick. However, these orbifolding formulations are constrained by the
requirement that the number of flavors be even. Thus, apparently such formulations
are incompatible with current trends toward dynamical three flavor simulations. To
overcome this difficulty, Lüscher [13] gave a completely different approach relying on
a universality argument, dimensional power counting and symmetry considerations.
Some perturbative calculations were performed in Ref. [14]. A crucial property of this
formulation is that there is no restriction on the number of flavors. Since only overlap
fermions were considered in Ref. [13], our main purpose here is to formulate the other
chiral fermions, namely, domain-wall fermions.

The rest of the paper is organized as follows. Section 2 gives the formulation of
domain-wall fermions in the SF setup, after a brief review of the universality argument.
We present several pieces of numerical evidence in Section 3 and 4 to show that our
formulation is working properly. We also discuss the lattice artifacts for the step
scaling function in Section 5. In the last section, we conclude by giving some remarks
and outlook.

2 Formulation

In the following, we assume that the reader is familiar with the SF in QCD [8, 15].
After giving a brief reminder of the universality argument, we give a formulation for
DWF and finally check the chiral symmetry breaking structure numerically.

2.1 Universality argument

This subsection is a review of Lüscher’s work in Ref. [13]. In the massless continuum
theory, the Dirac operator D satisfies the anti-commutation relation with γ5

γ5D +Dγ5 = 0. (1)
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The above is true even in the SF setup, although the boundary conditions,

P+ψ(x) = 0 at x0 = 0, (2)

P−ψ(x) = 0 at x0 = T, (3)

with P± = (1±γ0)/2, break chiral symmetry explicitly. Eq.(1) means that the operator
itself does not know about boundary conditions. In the continuum theory, information
such as boundary conditions is embedded in the Hilbert space. In fact, the correspond-
ing propagator, which is a solution of the inhomogeneous equation,

DS(x, y) = δ(x− y), (4)

fails to satisfy the anti-commutation relation. Instead, it follows

γ5S(x, y) + S(x, y)γ5 =
∫

z0=0
d3zS(x, z)γ5P−S(z, y) +

∫

z0=T
d3zS(x, z)γ5P+S(z, y). (5)

This can be derived by using partial integration on the SF manifold which has two
boundaries at time slice x0 = 0 and T . The non-vanishing right-hand side in eq.(5)
shows an explicit chiral symmetry breaking. Since such a breaking term is supported
only on the time boundaries, the chiral symmetry is preserved in a bulk.

If someone naively tries to formulate chiral fermions on the lattice as discussed in
Ref. [9], one may define an overlap operator, for example, with the Wilson kernel in the
SF setup [15]. However such an operator immediately satisfies the Ginsberg-Wilson
relation and thus cannot reproduce eq.(5) in the continuum limit. This indicates that
such naive formulation does not work and furthermore may belong to another boundary
universality class which is not what we want. In this way, it is a non-trivial task to
formulate chiral fermions in the SF setup.

Some years ago, Lüscher [13] proposed a clever way to overcome this situation.
First, consider the relation for the propagator in eq.(5). This indicates that the GW
relation has to be modified by boundary effects. Thus one has to find a modified
overlap operator which breaks the GW relation near the time boundaries and correctly
reproduces eq.(5) in the continuum limit. Actually, finding such a modified operator
is not so hard. However, a new question naturally arising is how the SF boundary
conditions emerge. For the Wilson fermion case [15], because there is a transfer matrix,
it is natural for fermion fields to follow the SF boundary conditions. However for chiral
fermions, there is no such transfer matrix which can be defined from nearest neighbor
interaction in the time direction. Therefore it is not an easy task.

Lüscher [13] gave another point of view to see how fields respect the boundary
condition. In the quantum field theory, the correlation function can tell you what
kinds of boundary conditions are imposed. As an example, let us see how the boundary
conditions emerge for Wilson fermions whose action is given by

Sw =
∑

x

ψ̄(x)Dw(m)ψ(x), (6)

Dw(m) =
1

2

[

∑

µ

(∇µ +∇∗
µ)γµ − a

∑

µ

∇∗
µ∇µ

]

+m, (7)
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where∇µ and∇∗
µ are forward and backward covariant difference operators respectively,

∇µψ(x) =
1

a
[U(x, µ)ψ(x + aµ̂)− ψ(x)] , (8)

∇∗
µψ(x) =

1

a

[

ψ(x)− U(x− aµ̂, µ)−1ψ(x− aµ̂)
]

. (9)

In the SF setup, the sum over x in the action is a little bit subtle. We assume that the
dynamical fields are ψ(x) with a ≤ x0 ≤ T − a and the fields ψ(x) with x0 ≤ 0 and
T ≤ x0 are set to zero. For this setup, the propagator may be defined by

〈η(x)ψ̄(y)〉 = a−4δx,y, (10)

η(x) =
δSw
δψ̄(x)

. (11)

For 2a ≤ x0 ≤ T − 2a, eq.(11) turns out to be

η(x) = Dw(m)ψ(x). (12)

On the other hand, at x0 = a, we obtain

η(x) =
1

a
P+ψ(x)−∇0P−ψ(x)

+
1

2

[

∑

k

(∇k +∇∗
k)γk − a

∑

k

∇∗
k∇k

]

ψ(x) +mψ(x). (13)

By substituting eq.(13) into eq.(10) with x 6= y we obtain

1

a
P+〈ψ(x)ψ̄(y)〉|x0=a −∇0P−〈ψ(x)ψ̄(y)〉|x0=a + ... = 0. (14)

In the continuum limit, the first term is dominant

1

a
P+〈ψ(x)ψ̄(y)〉|x0=0 = 0. (15)

This shows that in the naive continuum limit, the Dirichlet type boundary condition
(P+ψ|x0=0 = 0) is stable against the Neumann one (∇0P−ψ|x0=0 = 0), and in the end
the SF boundary conditions in eq.(2) emerge. It is plausible that similar things happen
also for the chiral fermions case, as long as the locality and symmetry are kept in a
proper way, although we expect that the coefficient of the lowest dimensional operators
( 1aP+ψ) may be different from the above case, and additional higher dimensional terms
may appear in eq.(13). The important point here is that continuum SF boundary con-
ditions emerge dynamically in the continuum limit of the correlation function. This
boundary condition is natural and automatically guaranteed to emerge from the di-
mensional power-counting argument. Therefore, when we construct chiral fermions in
the SF, we only have to prepare a modified operator by introducing an additional term
which breaks the chiral symmetry near the time boundaries. Once this is fulfilled, then
such an operator automatically turns out to be the desired one in the continuum limit
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without fine tuning. A final important note is that the form of the boundary term is
irrelevant as long as it will go into a preferred boundary universality class. Therefore,
there is a large amount of freedom when choosing boundary terms and one can use this
freedom for practical purposes.

Following these guiding principles, Lüscher [13] proposed the operator:

āDN = 1−
1

2
(U + Ũ), (16)

U = A(A†A+ caP )−1/2, Ũ = γ5U
†γ5, (17)

A = 1 + s− aDw(0), ā = a/(1 + s), (18)

with the parameter in the range |s| < 1. Dw(0) is the massless Wilson operator in the
SF. The key point here is the presence of the P term in the inverse square root which
is given by

aP (x, y) = δx,yδx0,y0(δx0,aP− + δx0,T−aP+). (19)

Note that this term is supported near the time boundaries and thus called a boundary
operator. The presence of this term breaks the GW relation explicitly and the breaking
is given by

∆B = γ5DN +DNγ5 − āDNγ5DN. (20)

It was shown in Ref. [13] that this term is local and supported in the vicinity of the
boundaries up to the exponentially small tails.

Although this operator breaks chiral symmetry explicitly, other symmetries (the
discrete rotational symmetries in three-dimension, C, P and T , flavor symmetry and
so on) have to be maintained since the boundary conditions in eq.(2,3) are invariant
under these symmetries. In addition, this operator has γ5-Hermiticity. In this way,
the universality-based formulation can avoid breaking important symmetries, such as
the flavor symmetry. This is a distinctive feature of this formulation compared with
the orbifolding technique, where flavor symmetries cannot be maintained or, there is a
constraint on the number of flavors.

Before leaving this subsection, let us summarized the guiding principles of formu-
lating chiral fermions in the SF setup. What we learned from this construction is that,
for an originally chiral fermion operator, one has to introduce an additional term to
break the chiral symmetry and then demand that such breaking only appears near the
time boundaries. Furthermore, one must maintain important symmetries as well as
γ5-Hermiticity. Once these conditions are fulfilled, it is automatically guaranteed that
the such a lattice operator will correctly reproduce the continuum results according to
the universality argument.
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2.2 Formulation of domain-wall fermions

Let us apply the guiding principles given in the previous subsection to domain-wall
fermions. We propose a massless1 domain-wall fermion action

S = a4
∑

x,x′

Ls
∑

s,s′=1

ψ̄(x, s)(DDWF)xs,x′s′ψ(x
′, s′), (21)

where a massless operator with Ls = 6 for example2 in four dimensional block form is
given by

aDDWF =



















aD̃w −PL 0 0 0 cB

−PR aD̃w −PL 0 cB 0

0 −PR aD̃w −PL + cB 0 0

0 0 −PR − cB aD̃w −PL 0

0 −cB 0 −PR aD̃w −PL

−cB 0 0 0 −PR aD̃w



















, (22)

with the chiral projections,
PR/L = (1± γ5)/2. (23)

We also assume that the dynamical fields are ψ(x, s) with a ≤ x0 ≤ T − a. The block
elements in eq.(22) are four dimensional operators and aD̃w is given by

aD̃w = aDw(−m5) + 1. (24)

The domain-wall height parameter usually takes a value in a range 0 < am5 < 2.
An important ingredient here is the presence of B in eq.(22) terms in the cross

diagonal elements. The reason for this s-dependence is to break the chiral symmetry
in a similar way to the usual mass term [16]. As mentioned before, such chiral symmetry
breaking should be present only near time boundaries, therefore, we chose the B term
as

B(x, y) = δx,yδx0,y0γ5(δx0,aP− + δx0,T−aP+), (25)

which is supported near the boundaries. In this way, the time dependence is fixed. The
spinor structure (γ5P±) is determined by imposing the discrete symmetries C, P and
T and Γ5-Hermiticity. These requirements are not so strong to determine the spinor
structure completely and therefore there is some freedom. The structure proposed
here is only one of many solutions. Actually, we examined several choices of the spinor
structure in the boundary term and confirmed numerically the universal results in the
continuum limit for the lowest eigenvalue. In the following, we take this boundary term
in eq.(25).

1The mass term can be introduced in the usual way, namely a4mf

∑

x

∑T−a

x0=a
[ψ̄(x, 1)PRψ(x, Ls) +

ψ̄(x, Ls)PLψ(x, 1)].
2We restrict ourselves to an even number of Ls, which is the case usually implemented.
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Figure 1: The color ranging [−14, 0] corresponds to the value of ln ||∆(Ls)(x0, y0)||spin for the
zero spatial momentum configuration with the parameters T/a = 20, mf = 0, am5 = 1 and
c = 1.

The boundary coefficient c is supposed to be non-zero to correctly reproduce the
continuum theory as we will see in Section 3. It also plays an important role to cancel
boundary O(a) cutoff effects and has a perturbative expansion

c = c(0) + c(1)g20 +O(g40). (26)

In the same way as in [14] which is based on enforcing an axial Ward-Takahashi identity
at tree level, we tune the first coefficient c(0) as a function of the domain-wall hight
am5,

c(0) = 0.5089 − 0.0067(am5 − 1) + 0.0488(am5 − 1)2

−0.0216(am5 − 1)3 + 0.0673(am5 − 1)4. (27)

This is valid in the region where bulk O(a) can be neglected 3,that is, for sufficient
large Ls. In the process of this determination, one needs to define the operators of the
axial vector current and pseudo scalar density. We give their definition together with
that of the conserved axial current in appendix A.3.

2.3 Structure of chiral symmetry breaking at tree level

In this subsection, let us check an important properties of the operator defined in the
previous section. A reader may worry that even though the additional boundary term

3Actually, we observe that O(a) improvement program does not work for small Ls and values of am5

which are far from 1. For example O(a) terms in fA ad fP (defined in appendix A.3) at tree level do not
vanish simultaneously with the same value of c(0).
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is localized to time boundary, after integrating over the fifth dimensional degree of
freedom such breaking effects may leak into the 4-dim bulk and ruin the bulk chiral
symmetry. To settle this question, we numerically investigate the structure of the chiral
symmetry breaking by looking at the breaking of the GW relation

∆(Ls) = γ5D
(Ls)
eff +D

(Ls)
eff γ5 − 2aD

(Ls)
eff γ5D

(Ls)
eff , (28)

with the effective four dimensional operator [17, 18]

detD
(Ls)
eff = det[DDWF/DPV]. (29)

The Pauli-Villars (PV) operator is defined as the massive DWF operator with amf =
−1. To obtain the effective operator, first of all, we have to define physical quark fields

q(x) = PLψ(x, 1) + PRψ(x,Ls), (30)

q̄(x) = ψ̄(x, 1)PR + ψ̄(x,Ls)PL. (31)

In terms of the propagator of domain-wall fermions defined from

DDWFSDWF(x, y; s, t) = a−4δx,yδs,t, (32)

that of the physical field is expressed

[q(x)q̄(y)]F = Sq(x, y)

= PLSDWF(x, y; 1, Ls)PL + PLSDWF(x, y; 1, 1)PR

+ PRSDWF(x, y;Ls, Ls)PL + PRSDWF(x, y;Ls, 1)PR. (33)

In terms of Sq the effective operator is given by

aD
(Ls)
eff = (1 + a3Sq)

−1. (34)

In the SF setup, ∆(Ls) in eq.(28) contains not only the bulk chiral symmetry break-
ing but also the boundary breaking. The former is supposed to be removed by taking
Ls to infinity. In such limit, boundary breaking effects remain and they are expected to
be localized near time boundaries. To see this situation, we numerically compute ∆(Ls)

for a free operator. In the free case, we can perform the Fourier transformation for
spatial directions. We study the momentum configuration p = (0, 0, 0) in the following.
The remaining dimensions are only the time direction and spinor space, therefore for a
given Ls and the fixed spatial momentum configuration, ∆(Ls) is a matrix with dimen-
sion 4(T/a − 1). Figure 1 shows the magnitude of ln(||∆(Ls)(x0, y0)||spin), where the
norm is taken for the spinor space only. By increasing Ls, the bulk symmetry breaking
is reduced. Finally at Ls = 24, only boundary breaking effects remain and they are
localized exponentially near the time boundaries. This is the expected behavior for
overlap fermions [13]. We conclude that the presence of the boundary term causes
chiral symmetry breaking, which decays exponentially away from the time boundaries
for the effective four dimensional operator.
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θ = 0 and am5 = 1. The norm for the eigenvector is taken in the spinor space. The left
(right) panel is for c = 1 (c = 0).

3 Spectrum of free operator

In this section, we investigate the free spectrum of the DWF operator to confirm
universality at the tree level. We set T = L in this section.
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3.1 Spectrum of D†
DWFDDWF

To achieve better chiral symmetry, the (physical) eigenmodes of the domain-wall op-
erator should be localized near the boundaries of the fifth direction and propagate in
the space-time directions. This should also be true in the SF setup, since the chiral
symmetry is supposed to be maintained in the bulk. To observe such phenomena,
we numerically compute the lowest eigenmode of the operator D†

DWFDDWF with the
trivial gauge configuration U(x, µ) = 1. In the free case, we can perform the Fourier
transformation for spatial directions, and project out the momentum configuration
p = (0, 0, 0). Thus, remaining indexes of the vector space are now the spinor, the time
x0 and the extra dimension s,

D†
DWFDDWFψ(x0, s) = λψ(x0, s), (35)

where the spinor indexes are suppressed. We set input parameters am5 = 1 and θ = 0.
θ is the parameter which controls the spatial boundary condition for fermion fields.
(For more details, we refer to [19].)

We numerically compute the lowest eigenvalue and the corresponding eigenfunction
||ψ(x0, s)||spin. We examine not only for c = 1 but also for c = 0 to investigate the
importance of the presence of the boundary operator. The scaling behavior of the
eigenvalue is shown in Figure 2. For c = 1, Ls dependence is too small to see on this
scale. The lowest eigenvalues converge to their continuum values properly, therefore
universality is confirmed. Furthermore, the associated eigenfunction shows nice local-
ization behavior, namely being localizing for the fifth direction and propagating for the
time direction, as shown in the left panel of Figure 3. This shows that this mode is a
physical one.

For c = 0 in Figure 2, although all Ls = 4, 16, 32 results tend to converge to the
continuum limit, large Ls results have a bending phenomenon in small a/L region and
show no power decay in terms of a/L. This indicates that if one takes Ls to infinite
before taking a/L = 0 limit, the eigenvalue will likely converge to zero. If this is so, the
theory with Ls = ∞ does not belong to a correct universality class. Furthermore, the
eigenfunction in the right panel in Figure 3 is localized on edges in the time-s plane.
This is a typical unphysical mode. On the other hand, interestingly for small Ls, the
scaling behavior is rather mild. In the small Ls case, the chiral symmetry breaking of
domain-wall fermions are rather similar to that of the ordinary Wilson fermions. As in
the Wilson fermions case, the bulk chiral symmetry breaking for DWFs due to finite
Ls plays some role in producing the correct continuum limit. This is the reason why
DWFs with smaller Ls and no boundary term B can produce the continuum results.

The results shown in this subsection show that the boundary term with c 6= 0 plays
an important role for the theory to be in the correct universality class.

3.2 Spectrum of D†
qDq

Not all eigenmodes of DDWF are physical ones and elimination of unphysical mode is
not clear. To extract physical modes only, let us study the eigenmodes of Dq, where
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are set to am5 = 1 and c = 1. The red points at a/L = 0 are continuum values [19].

unphysical modes are excluded. The operator Dq is defined from Sq in eq.(33)

DqSq(x, y) = a−4δx,y. (36)

We numerically compute the lowest ten eigenvalues of D†
qDq with the parameter

set am5 = 1, θ = 0, π/5 and c = 1 in the presence of the the background gauge field
(choice A in Ref. [20]). The values obtained for L/a = T/a = 6, 12, 24 are summarized
in Table 1. All tables are given in appendix B The scaling behavior of the eigenvalues
are shown in Figure 4. Although we show two cases of Ls, namely Ls = 4 and Ls = 32,
it is hard to see the difference on this scale. We observe that they converge to the
continuum values given in Ref [19]. This behavior persists for a variety of values of c,
0.5 ≤ c ≤ 1.5. This confirms universality at the tree level.
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4 One-loop analysis of SF coupling

To check further universality at the quantum level and renormalizability, we perform
the one-loop order calculation of the SF coupling.

4.1 Definition and results

We compute the fermion contribution to the SF coupling [19] p1,1(L/a,Ls) (we set
L = T as usual) at one-loop order for massless domain-wall fermions. The one-loop
coefficient is given as

p1,1(L/a,Ls) =
1

k

∂

∂η
ln det(DDWF/DPV)

∣

∣

∣

∣

η=ν=0

, (37)

with a normalization (See [19] for details.)

k = 12(L/a)2[sin(γ) + sin(2γ)], γ =
1

3
π(a/L)2. (38)

The parameters η and ν parameterize the background gauge field [20]. In the ac-
tual calculation, we expand the η derivative and use the fact that the determinant is
factorized for individual spatial momentum p and color sector b,

p1,1(L/a,Ls) =
1

k
Tr

[

D−1
DWF

∂DDWF

∂η
−D−1

PV

∂DPV

∂η

]

=
1

k

∑

p

3
∑

b=1

tr

[

(Db
DWF)

−1(p)
∂Db

DWF(p)

∂η

−(Db
PV)

−1(p)
∂Db

PV(p)

∂η

]

. (39)

The trace tr concerns the spinor, the time indices and fifth coordinate only. It is maybe
worthwhile to note that for our definition of DWF,

∂DDWF

∂η
=
∂DPV

∂η
(40)

holds since the mass term does not involve the gauge field.
We compute p1,1 on the lattices of size L/a = 4, 6, ..., 48 and Ls = 6, 8, 10, 12, 16

with parameters 0.7 ≤ am5 ≤ 1.3 and θ = π/5. Subsets of the results are summarized
in Table 2 for am5 = 1, Ls = 6 and L/a = 4, 6, ..., 48. Separate contributions from
DWF and PV are also shown there.

4.2 Coefficients of Symanzik’s expansion

From the Symanzik’s analysis of the cutoff dependence of Feynman diagrams on the
lattice, one expects that the one-loop coefficient has an asymptotic expansion in terms
of a/L

p1,1(L/a,Ls) =

∞
∑

n=0

(a/L)n[An(Ls) +Bn(Ls) ln(L/a)]. (41)
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Note that the coefficients An and Bn (n = 0, 1, 2, ...) depend on Ls. We can reliably
extract the first few coefficients by making use of the method described in Ref. [22].

For the usual renormalization of the coupling constant, B0 at Ls = ∞ should be
2b0,1 where b0,1 is the fermion part of the one-loop coefficient of the β-function for Nf

flavors QCD,

b0 = b0,0 +Nfb0,1, (42)

b0,0 =
11

(4π)2
, (43)

b0,1 = −
2

3

1

(4π)2
. (44)

We confirmed that B0(Ls) for large Ls (say Ls = 16) converges to 2b0,1 = −0.008443...
up to three significant digits for the values of am5 which we investigated. When the
tree-level O(a) improvement is realized, we expect that B1 = 0 holds. We check this
to 10−3 for the same parameter region as before. This shows that the formula for the
boundary coefficient in eq.(27) works well to achieve the tree-level O(a) improvement
to the precision considered here. In the following analysis, we set exact values B0 =
2b0,1 = −1/(12π2) and B1 = 0.

A0 gives information about a ratio of Λ-parameters. The obtained values of A0(Ls)
as a function of Ls are shown in Figure 5. By combining the previous results from
Ref. [19, 21], the values of A0 at infinity Ls can be obtained, and are shown in Figure
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Figure 6: We show the relative deviation with the various actions for tree level O(a) improve-

ment, δ
(0)
1,1 (Left), and one-loop O(a) improvement, δ

(1)
1,1 (Right), for θ = π/5 as a function

of a/L and (a/L)2 respectively. For comparison, those of the Wilson type fermion with

c
(1,1)
t = 0 and the clover fermion with c

(1,1)
t = 0.019141 [19] are included in the plot of δ

(0)
1,1

and δ
(1)
1,1 respectively.

5 as the horizontal lines. We observe that our results at finite Ls properly converge to
the known results at infinity Ls.

To achieve one-loop O(a) improvement, we need to determine the coefficient of the

fermion part of the boundary counter-term, c
(1,1)
t [19] at one-loop order. If one imposes

an improvement condition [19], one finds that

c
(1,1)
t = A1/2, (45)

therefore we need the value of A1. The obtained values of A1 are given in Table 3. For

future reference, we provide an interpolation formula for c
(1,1)
t as a polynomial of am5

for larger Ls, where value of A1 is saturated,

c
(1,1)
t = 0.00434 + 0.01102(am5 − 1)− 0.00858(am5 − 1)2, (46)

for 0.7 ≤ am5 ≤ 1.3.

5 Lattice artifacts of the step scaling function

to one-loop order

In this section, we investigate lattice artifacts of the step scaling function (SSF) [23]
σ(2, u), which describes the evolution of the running coupling ḡ2(L) = u under changes
of scale L by a factor 2,

σ(2, u) = ḡ2(2L), u = ḡ2(L). (47)
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The lattice version of the step scaling function is denoted by Σ(2, u, a/L) which contains
lattice artifacts. Such lattice artifacts are described by the relative deviation

δ(u, a/L) ≡
Σ(2, u, a/L) − σ(2, u)

σ(2, u)
. (48)

By expanding the relative deviation in terms of the coupling constant u, one obtains

δ(u, a/L) = δ1(a/L)u +O(u2), (49)

where the one-loop deviation, δ1(s, a/L), may be decomposed into pure gauge and
fermion part [19],

δ1(a/L) = δ1,0(a/L) +Nfδ1,1(a/L). (50)

We are currently only interested in the fermion part. We consider domain-wall fermions,
thus the fermion part of the one-loop deviation δ1,1(a/L,Ls) contains Ls dependence.
In terms of the one-loop coefficient of the SF coupling p1,1, the one-loop deviation is
given by

δ1,1(a/L,Ls) = p1,1(2L/a,Ls)− p1,1(L/a,Ls)− 2b0,1 ln(2). (51)

Depending on the value of the boundary counter term c
(1,1)
t , we denote with δ

(0)
1,1 the

tree level O(a) improved version with c
(1,1)
t = 0, and δ

(1)
1,1 the one-loop O(a) improved

one for c
(1,1)
t in eq.(45).

We show numerical results for the one-loop deviation in Tables 4 and 5 and the
plots in Figure 6, where we include those of the Wilson type fermions [19] and overlap
fermion [14] for comparison. Ls-dependence of DWFs is small. In the case of the clover

action, c
(1,1)
t is set to be the proper value to achieve one-loop O(a) improvement, and for

Wilson fermions it is set to c
(1,1)
t = 0. We observe that the lattice artifacts for domain-

wall fermions are small for tree level boundary O(a) improvement case compared with
other fermions, while they are large for one-loop boundary O(a) improvement case.

6 Conclusion and outlook

In this paper, we provide a new formulation of domain-wall fermions in the SF setup by
following the universality argument of Lüscher. In contrast to the previous formulation
by Taniguchi, ours can deal with the boundary O(a) improvement properly, and there
is no constraint on the number of flavors. To check that our formulation works properly,
we investigate the spectrum and eigenmodes of the free operator, and perform a one-
loop analysis of the SF coupling constant. Then we confirm universality at tree and
the one-loop level and observe that all results investigated show the desired behaviors.

Before starting simulations, the boundary improvement coefficient c should be de-
termined to one-loop order. This involves calculations of the SF correlators, fA, fP etc.
given in appendix A. This could be done in a similar way to the case of the Wilson
fermion.

As mentioned before, one of the most important properties of the universality-
based formulation is that there are no restriction of the number of flavors. By taking
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advantage of this property, we may compute the renormalization factor of BK for
Nf = 3 QCD.
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A Fermion correlators

In this appendix, I summarize fermion correlators, the boundary fields and so on which
are often used in the SF setup.

A.1 Boundary fields

As given in Ref. [13], the lattice version of the fermion boundary fields are defined

ζ(x) = U(x− a0̂, 0)P−q(x)|x0=a, (52)

ζ̄(x) = q̄(x)P+U(x− a0̂, 0)−1|x0=a, (53)

ζ ′(x) = U(x, 0)−1P+q(x)|x0=T−a, (54)

ζ̄ ′(x) = q̄(x)P−U(x, 0)|x0=T−a. (55)

Here note that we use the physical quark fields defined in eq.(30) and (31).

A.2 Propagators

The propagators for the physical quark fields and the boundary fields are given by

[q(x)q̄(y)]F = Sq(x, y), (56)
[

q(x)ζ̄(y)
]

F
= Sq(x, y)U(y − a0̂, 0)−1P+|y0=a, (57)

[

q(x)ζ̄ ′(y)
]

F
= Sq(x, y)U(y, 0)P−|y0=T−a, (58)

[ζ(x)q̄(y)]F = P−U(x− a0̂, 0)Sq(x, y)|x0=a, (59)
[

ζ ′(x)q̄(y)
]

F
= P+U(x, 0)−1Sq(x, y)|x0=T−a, (60)

[

ζ(x)ζ̄ ′(y)
]

F
= P−U(x− a0̂, 0)Sq(x, y)U(y, 0)P−|x0=a,y0=T−a, (61)

[

ζ ′(x)ζ̄(y)
]

F
= P+U(x, 0)−1Sq(x, y)U(y − a0̂, 0)−1P−|x0=T−a,y0=a. (62)
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A.3 Operators

We consider the degenerate quark mass case and an extension of the flavor space is
done in a trivial way. In terms of the physical quark fields, the local operators are
defined as

Aa
µ(x) = q̄(x)γµγ5

1

2
τaq(x), (63)

P a(x) = q̄(x)γ5
1

2
τaq(x). (64)

The conserved axial vector current is given by

Aa
µ(x) =

Ls
∑

s=1

sign

(

s−
Ls + 1

2

)

jaµ(x, s), (65)

where

jaµ(x, s) = ψ̄(x+ aµ̂, s)P
(µ)
+ U(x, µ)−1 1

2
τaψ(x, s)

−ψ̄(x, s)P
(µ)
− U(x, µ)

1

2
τaψ(x+ aµ̂, s), (66)

with P
(µ)
± = (1± γµ)/2.

A.4 Correlators

The fermion correlators for the local operators in the SF are given by

fA(x0) = −a6
Nf
∑

a=1

∑

y,z

1

N2
f − 1

〈Aa
0(x)ζ̄(y)γ5

1

2
τaζ(z)〉, (67)

fP(x0) = −a6
Nf
∑

a=1

∑

y,z

1

N2
f − 1

〈P a(x)ζ̄(y)γ5
1

2
τaζ(z)〉, (68)

f1 = −
a12

L6

Nf
∑

a=1

∑

u,v,y,z

1

N2
f − 1

〈ζ̄ ′(u)γ5
1

2
τaζ ′(v)ζ̄(y)γ5

1

2
τaζ(z)〉. (69)

After Wick contraction, they become

fA(x0) = a6
∑

y,z

1

2
〈[ζ(z)q̄(x)]Fγ0γ5[q(x)ζ̄(y)]γ5〉, (70)

fP(x0) = a6
∑

y,z

1

2
〈[ζ(z)q̄(x)]Fγ5[q(x)ζ̄(y)]γ5〉, (71)

f1 =
a12

L6

∑

u,v,y,z

1

2
〈[ζ(z)ζ̄ ′(u)]Fγ5[ζ

′(v)ζ̄(y)]Fγ5〉, (72)
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where the propagators are given in subsection A.2 and we have used

Nf
∑

a=1

tr

[

(

τa

2

)2
]

=
N2

f − 1

2
. (73)

These correlators are the same as those of Wilson fermions except that the propagators
are replaced by those of the physical quark field Sq.

For the conserved axial vector current, a correlator is given by

fA(x0) = −a6
Nf
∑

a=1

∑

y,z

1

N2
f − 1

〈Aa
0(x)ζ̄(y)γ5

1

2
τaζ(z)〉. (74)

As an example, at tree level, this can be expressed in terms of the propagator for
domain-wall fermions as,

fA(x0)|U=1 =
Ls
∑

s=1

sign(s−
Ls + 1

2
)
1

2
Tr

[

−P+SDWF(x, y; s, 1)γ0PLSDWF(y, x+ a0̂; 1, s)

+P−SDWF(x+ a0̂, y; s, 1)γ0PLSDWF(y, x; 1, s)

+P+SDWF(x, y; s, 1)PRSDWF(y, x+ a0̂;Ls, s)

−P−SDWF(x+ a0̂, y; s, 1)PRSDWF(y, x;Ls, s)

−P+SDWF(x, y; s, Ls)PLSDWF(y, x+ a0̂; 1, s)

+P−SDWF(x+ a0̂, y; s, Ls)PLSDWF(y, x; 1, s)

+P+SDWF(x, y; s, Ls)γ0PRSDWF(y, x+ a0̂;Ls, s)

−P−SDWF(x+ a0̂, y; s, Ls)γ0PRSDWF(y, x;Ls, s)
]

. (75)

B Tables of numerical results
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θ = 0

L/a = 6 L/a = 12 L/a = 24
n Ls = 4 Ls = 32 Ls = 4 Ls = 32 Ls = 4 Ls = 32 b d

1 3.161141 3.160760 2.591269 2.591267 2.350053 2.350053 2 2
2 5.658392 5.658925 5.191148 5.191161 4.990293 4.990293 2 2
3 9.050173 9.045312 8.196497 8.196424 7.888424 7.888424 3 2
4 11.981137 11.963010 10.635061 10.634737 10.177881 10.177878 1 2
5 13.098016 13.101850 12.434736 12.434839 12.281233 12.281235 3 2
6 22.037107 22.078353 20.612026 20.613136 20.436083 20.436098 1 2
7 30.304338 30.232012 25.944369 25.942289 24.578258 24.578235 2 2
8 30.810696 30.865401 26.708727 26.709232 25.378691 25.378700 2 2
9 30.585955 30.530965 27.241272 27.239584 27.184415 27.184395 1 6
10 31.026393 30.978110 28.357563 28.355829 28.438888 28.438866 3 6

θ = π/5

L/a = 6 L/a = 12 L/a = 24
n Ls = 4 Ls = 32 Ls = 4 Ls = 32 Ls = 4 Ls = 32 b d

1 5.924559 5.922886 5.232916 5.232896 4.952553 4.952553 2 2
2 6.428276 6.423570 5.566868 5.566810 5.214696 5.214695 1 2
3 9.221621 9.223322 8.721989 8.722031 8.548948 8.548949 2 2
4 13.912656 13.926143 13.392223 13.392552 13.267533 13.267537 1 2
5 15.970852 15.951467 14.513964 14.513548 14.162258 14.162253 3 2
6 21.508691 21.520321 19.983404 19.983750 19.838031 19.838036 3 2
7 35.296282 35.214384 29.231042 29.228128 27.743584 27.743548 2 2
8 35.861910 35.932144 30.057783 30.058382 28.612335 28.612346 2 2
9 30.468452 30.406862 27.727188 27.725168 27.806412 27.806386 1 6
10 31.520474 31.475867 28.021244 28.019681 27.896264 27.896245 3 6

Table 1: The lowest ten eigenvalues of the Hermitian operator L2D†
qDq for Ls = 4, 32. Upper

(Lower) panel is for θ = 0 (θ = π/5). b represents the color sector, and d is for degeneracy
for one flavor.
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L/a p1,1(L/a, 6) DWF contribution PV contribution

4 -0.0090558230 -0.0463742376 -0.0373184146
6 -0.0128831139 -0.0614487481 -0.0485656342
8 -0.0155107254 -0.0717039592 -0.0561932338
10 -0.0176883193 -0.0786362064 -0.0609478871
12 -0.0194881626 -0.0835634805 -0.0640753179
14 -0.0209908578 -0.0872753290 -0.0662844712
16 -0.0222708990 -0.0902037775 -0.0679328785
18 -0.0233830732 -0.0925954634 -0.0692123901
20 -0.0243655725 -0.0946007679 -0.0702351955
22 -0.0252452627 -0.0963170183 -0.0710717556
24 -0.0260415528 -0.0978103244 -0.0717687716
26 -0.0267688671 -0.0991273624 -0.0723584952
28 -0.0274382013 -0.1003021397 -0.0728639383
30 -0.0280581232 -0.1013600906 -0.0733019674
32 -0.0286354356 -0.1023206640 -0.0736852285
34 -0.0291756284 -0.1031990186 -0.0740233902
36 -0.0296831955 -0.1040071669 -0.0743239714
38 -0.0301618611 -0.1047547685 -0.0745929075
40 -0.0306147460 -0.1054496923 -0.0748349463
42 -0.0310444913 -0.1060984224 -0.0750539311
44 -0.0314533516 -0.1067063577 -0.0752530061
46 -0.0318432669 -0.1072780356 -0.0754347687
48 -0.0322159188 -0.1078173020 -0.0756013832

Table 2: The one-loop coefficient of the SF coupling p1,1(L/a, Ls) with Ls = 6, am5 = 1 and
θ = π/5. In eq.(39), there are two sources of contributions: DWF and PV, which are shown
separately in the table.

Ls � am5 0.7 0.8 0.9 1.0 1.1 1.2 1.3

6 - - 0.0102(8) 0.0125(9) 0.0145(7) - -
8 - 0.0047(4) 0.0074(9) 0.0097(9) 0.0119(9) 0.0135(4) -
10 0.0004(2) 0.0040(9) 0.0066(9) 0.0090(9) 0.0111(9) 0.0129(9) 0.0135(2)
12 0.0007(9) 0.0037(9) 0.0064(9) 0.0088(9) 0.0108(9) 0.0126(9) 0.0139(8)
16 0.0006(10) 0.0036(9) 0.0063(9) 0.0087(9) 0.0107(9) 0.0125(9) 0.0137(10)

Table 3: The value of A1 for Ls = 6, 8, 10, 12, 16 and 0.7 ≤ am5 ≤ 1.3.
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L/a � Ls 6 8 10 12 16

4 -0.000602 -0.000518 -0.000527 -0.000538 -0.000545
6 -0.000753 -0.000562 -0.000522 -0.000516 -0.000517
8 -0.000908 -0.000737 -0.000688 -0.000674 -0.000669
10 -0.000825 -0.000695 -0.000655 -0.000643 -0.000637
12 -0.000701 -0.000599 -0.000569 -0.000560 -0.000555
14 -0.000595 -0.000511 -0.000487 -0.000480 -0.000476
16 -0.000512 -0.000439 -0.000419 -0.000413 -0.000411
18 -0.000448 -0.000383 -0.000365 -0.000360 -0.000358
20 -0.000397 -0.000338 -0.000322 -0.000318 -0.000316
22 -0.000356 -0.000302 -0.000288 -0.000284 -0.000282
24 -0.000322 -0.000273 -0.000259 -0.000256 -0.000254

Table 4: The relative deviation δ
(0)
1,1 with am5 = 1 and θ = π/5 for tree level boundary O(a)

improvement.

L/a � Ls 6 8 10 12 16

4 0.000955 0.000701 0.000597 0.000558 0.000539
6 0.000286 0.000251 0.000227 0.000214 0.000206
8 -0.000129 -0.000128 -0.000126 -0.000127 -0.000127
10 -0.000202 -0.000207 -0.000206 -0.000204 -0.000203
12 -0.000182 -0.000193 -0.000195 -0.000194 -0.000194
14 -0.000150 -0.000162 -0.000166 -0.000166 -0.000166
16 -0.000123 -0.000134 -0.000138 -0.000139 -0.000140
18 -0.000101 -0.000112 -0.000115 -0.000117 -0.000117
20 -0.000085 -0.000094 -0.000098 -0.000099 -0.000099
22 -0.000072 -0.000080 -0.000083 -0.000084 -0.000085
24 -0.000062 -0.000069 -0.000072 -0.000073 -0.000074

Table 5: The relative deviation δ
(1)
1,1 with am5 = 1 and θ = π/5 for one-loop level boundary

O(a) improvement.
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