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Phenomenological Tsallis fits to the CMS, ATLAS, and ALICE transverse momentum spectra of
hadrons for pp collisions at LHC were recently found to extend over a large range of the transverse
momentum. We investigate whether the few degrees of freedom in the Tsallis parametrization may
arising from the relativistic parton-parton hard-scattering and related processes. The effects of the
multiple hard-scattering and parton showering processes on the power law are discussed. We find
empirically that whereas the transverse spectra of both hadrons and jets exhibit power-law behavior
of 1/pnT at high pT , the power indices n for hadrons are systematically greater than those for jets,
for which n∼4-5.
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I. INTRODUCTION

The transverse momentum distributions of produced
particles in hadron and nuclear collisions provide use-
ful information on the dynamics of the colliding system.
The low-pT part of the spectra falls within the realm of
soft nonperturbative QCD physics and may involve the
parton wave functions in a flux tube [1], the thermody-
namics1 and the recombination of partons [2–13], or the
fragmentation of a QCD string [14]. On the other hand,
the high-pT part is usually considered to arise from a
perturbative QCD hard-scattering between a parton of
one hadron and a parton of the other hadron [15–22].
The borderline between the soft-pT nonperturbative re-
gion and the high-pT perturbative region is not well de-
termined. A very different scheme to partition the pT
spectrum into soft and hard components has also been
suggested [23, 24] and will be discussed at the end of this
paper.

In recent RHIC and LHC experiments, the trans-
verse momentum spectra of charged hadrons for pp and
nucleus-nucleus collisions have been measured at very
high energies [25–30]. These spectra are often described
by the Tsallis distribution [6]

hq (pT ) = Cq

[

1 − (1 − q)
pT
T

]
1

1−q

, (1)

with a normalization constant Cq, a ‘temperature’ T , and
a dimensionless nonextensivity parameter q (with q > 1).

1 The usual (extensive) thermodynamics with the Boltzmann-
Gibbs distribution have been described in [2–4] and applied ex-
tensive for multiparticle production in [5]. Its nonextensive gen-
eralization with the Tsallis distribution with a new nonextensiv-
ity parameter q has been given in [6]. The nonextensive statis-
tical approach has been very successful in describing many dif-
ferent physical systems, including multiparticle production pro-
cesses at lower energies. See References [7–13] for a summary of
earlier attempts to use Tsallis fits and detailed explanations of
the possible meaning of the q parameter.

The Tsallis distribution can be regarded as a nonexten-
sive generalization of the usual exponential (Boltzmann-
Gibbs) distribution, and converges to it when the param-
eter q tends to unity,

h (pT )
q→1
=⇒ C1 exp

(

−pT
T

)

. (2)

It has been very successful in describing very different
physical systems in terms of a statistical approach, in-
cluding multiparticle production processes at lower ener-
gies. [7–13].

On the other hand, long time ago Hagedorn proposed
the QCD inspired empirical formula to describe experi-
mental hadron production data as a function of pT over
a wide range [2]:

E
d3σ

d3p
= C

(

1 +
pT
p0

)−n

−→







exp
(

−npT

p0

)

for pT → 0,
(

p0

pT

)n

for pT → ∞,
(3)

where C, p0, and n are fitting parameters. This becomes
a purely exponential function for small pT and a purely
power-law function for large pT values2. It coincides with
Eq. (1) for

n =
1

q − 1
and p0 =

T

q − 1
. (4)

Usually both formulas are treated as equivalent from the
point of view of phenomenological fits and are often used
interchangeably [25–30]. It is worth stressing that both
Eq. (1) and Eq. (3) describe data in the whole region of

transverse momenta, not only for large pT .

2 Actually the QCD formula was inspired by related work in [15–
18] and proposed earlier in [31, 32]



2

For phenomenological as well as theoretical interests,
it is expected that as the low-pT region and the high-pT
region arise from different mechanisms, there can be a
change of the systematics for the description of the low-
pT nonperturbative QCD region and the high-pT per-
turbative QCD region. It is therefore useful to explore
where the Tsallis fit begins to fail at higher and higher
pT in the recent high-pT data of CMS [27, 28], ATLAS
[29], and ALICE Collaborations [30] for pp collisions at
LHC. Excellent fit to the pT hadron spectra was earlier
obtained there with the Tsallis and/or Hagedorn distri-
butions for pT from 0.5 GeV up to 6 GeV, in pp collisions
at

√
s =7 TeV [27]. It was however a surprise to find that

the phenomenological Tsallis fits to the CMS and ATLAS
charged particle transverse spectra extends from pT=0.5
to 181 GeV/c in pp collisions at

√
s =7 TeV, and from

pT=0.5 to 31 GeV/c at
√
s =0.9 TeV [33]. The simplicity

of the Tsallis parametrization with only three parameters
and the large range of the fitting transverse momentum
raise questions on the physical meaning of the degrees of
freedom that enter into the high-pT distribution.

As the magnitude of the transverse momenta in these
high-pT data are much greater than the mean transverse
momentum of the distribution, concepts such as statis-
tical mechanics that depend on thermodynamical equi-
librium or quasi-equilibrium may be subject to question.
The asymmetry between the transverse and the longitu-
dinal degrees of freedom also poses additional difficulties
in a statistical explanation of the full three-dimensional
momentum distribution3.

To describe the transverse momentum distribution in
the high pT region, a more natural description would be
to employ the relativistic hard-scattering model in per-
turbative QCD. We wish to investigate whether the few
degrees of freedom in the transverse momentum Tsal-
lis distribution may arise from the basic parton-parton
scattering and the accompanying multiple collision and
showering processes.

The relativistic hard-scattering model has been used
previously to examine inclusive particle production in
hadron-hadron collisions [15–22]. It was found earlier
on that the observed experimental hadron transverse dif-
ferential cross section appears to differ from what one
expects from naive point parton collisions. In the ba-
sic quark model, the high-pT differential cross section in
an ab → cd exclusive processes can be inferred from the
counting rule of Brodsky, Farrar, Matveev et al. [36, 37],
which states that the invariant cross section for the ex-
clusive process at high-pT behaves as the power law, with
power index n,

Ec
dσ(ab → cd)

dc3
∝ 1

cnT
, (5)

3 However, it should be remembered that statistical approach is
not the only known source of Tsallis distribution in Eq. (1).
There are numerous dynamical mechanisms leading to it, see
[8, 34, 35].

where n = 2×{(number of active participants)−2}. The
counting of the number of active participants includes
constituents in the initial ab and the final cd states. (For
a pedagogical discussion of the counting rule, see [19]).
The counting rule of Brodsky, Farrar, Matveev et al.
[36, 37] has been found to give a power index n that agree
reasonably with experimental data for exclusive ab → cd
processes [38]. If one assumes that the dominant ba-
sic high-pT parton-parton hard-scattering process in a
pp collision comes from qq → qq (or other 2 → 2 pro-
cesses), then the counting rule gives a transverse momen-
tum dependence of dσ/dt ∼ 1/pnT with n = 4. However,
the observed experimental power index n of the hadron
transverse spectrum is about 7 (even at the highest LHC
energy and for very large transverse momenta measured
[33]). If one assumes that the basic process is q+meson
→q+meson, then the counting rule gives n = 8 which
is close to the observed value. Blankenbecler, Brodsky
and Gunion therefore proposed that the power index of
n ∼ 8 may be related to the scattering of a parton with
a meson [16–18]. For pp collisions at LHC, a modified
proposal with the direct meson production in the basic
reaction g + q →meson+q has been suggested recently,
involving 5 active participants and n = 6 for the power
index [21, 22].

We will however not work with mesons as elementary
participant constituents as in [16–18, 21, 22] but will work
within the conventional parton model of quarks and glu-
ons. The collision of hadrons (or nuclei) consists of the
collisions of partons either in parallel or in series. For ex-
ample, in the PYTHIA Monte-Carlo program, the multi-
ple hard-scattering of partons in parallel is an important
ingredient and the number of hard-scattering interactions
per inelastic event may be greater than unity [20]. The
other process of multiple scattering of partons in series
has been examined in great details previously [39–48].
Remarkably, a simple picture emerges from these studies
to indicate that as a result of the multiple scattering, the
sum of the multiple collision series in a minimum-biased
sampling at high pT is dominated by the differential cross
section for the single parton-parton scattering. As a re-
sult of shadowing cancellations, the high-pT scattering
appears as though it arises from a single scattering with
a 1/p4T distribution, plus logarithmic residue terms. This
remarkable result was shown in [46], using an auxiliary
generating functional. We would like to follow and ex-
tend the multiple hard-scattering results of [46], in or-
der to obtain an explicit form of the multiple scattering
power law and logarithmic residue terms, the dependence
on the number of partons, the dependence on the number
of scatterers, and the the dependence on the centrality of
the collision. These new results may find applications in
the multiple hard-scattering processes in hadron-hadron
as well as nucleus-nucleus collisions.

Whereas the theoretical analyses of [39–48] indicate
that the multiple scattering process involving partons
will not significantly modify the 1/p4T distribution of the
high-pT transverse differential cross section with n=4,



3

the PYTHIA program with properly tuned sets of pa-
rameters in a relativistic hard-scattering model, with the
additional processes of parton showering and radiations,
can describe quite well the transverse momentum dis-
tribution of produced hadrons in pp collisions at LHC
energies [27] with n∼7 [33]. What is the origin of such a
difference in the power indices n? Could the additional
process of parton showering and hadronization affect the
power index n?

The possibility that parton showering and hadroniza-
tion may influence the power index n is revealed by the
measurements of the transverse differential cross section
of hadron and photon jets for pp̄ collisions at Fermilab
by the CDF and D0 Collaborations [49–53]. In these
measurements, the power indices n are found to be close
to n=4-5 (see Fig. 2 of [21]), as predicted from pertur-
bative QCD. A hadron jet in these measurements corre-
sponds to a collection of hadrons in a calorimeter cells
contained within a cone of opening angle R, and it rep-
resents a parton after a parton-parton collision but be-
fore its fragmentation and hadronization. Its transverse
momentum differential cross section retains the main fea-
tures of the power law of 1/p4T of the basic parton-parton
hard-scattering. Thus, the difference between the power
index of n∼4-5 from the jet transverse differential cross
section and n∼7 from the hadron spectra is likely re-
lated to the subsequent showering and hadronization of
the parton jets to hadron fragments of lower transverse
momenta. We would like to examine here how the addi-
tional process of parton fragmentation and parton show-
ering may influence the power index of the transverse
differential cross section.

This paper is organized as follows. In Section II, we re-
view the relativistic hard-scattering model to express the
scattering cross section for high-pT processes in terms of
the basic parton-parton differential cross sections. An ap-
proximate analytical expression is obtained by carrying
out the hard-scattering integral analytically. In Section
III, we study the effects of multiple hard-scattering of
partons on the differential cross sections. In Section IV,
we include the effects of the additional dependence of the
parton thickness function T (b) on the parton differential
cross sections. In Section V, we analyze the experimental
results of jet transverse differential cross sections with the
relativistic hard-scattering model and find the approxi-
mate validity of the RHS model for jet production. In
Section VI, we examine the effect of fragmentation on
the hadron differential cross section. In Section VII, we
study the effects of showering and its effects on the power
index. In Section VIII, we fit the experimental CMS, AT-
LAS, and ALICE data to the hard-scattering model and
extract the power index from data. In Section IX, we
present our discussions and conclusions.

II. RELATIVISTIC HARD SCATTERING

MODEL

We review some of the earlier results in the relativis-
tic hard scattering model [15–19, 54]. We consider the
process of A+B → c+X with the production of parton
c around η ∼ 0 in the center-of-mass frame of the A-B
system. We shall later consider the fragmentation of the
parton c in Section V and the showering process in Sec-
tion VI. The differential cross section for this process is
given in the parton model by

Ec
d3σ(AB → cX)

dc3
=

∑

ab

∫

dxadaTdxbdbT

×Ga/A(xa,aT )Gb/B(xb, bT )Ec
d3σ(ab → cX ′)

dc3
.(6)

We consider the basic process to be the lowest-order elas-
tic parton-parton collisions in which the parton-parton
invariant cross section is related to dσ/dt by

Ec
d3σ(ab → cX ′)

dc3
=

ŝ

π

dσ(ab → cX ′)

dt
δ(ŝ + t̂ + û), (7)

where we have neglected the rest masses and we have
introduced

ŝ = (a + b)2,

t̂ = (a− b)2,

û = (b− c)2.

We write out the momenta in the infinite momentum
frame, with

√
s the center-of-mass energy of A-B system,

a = (xa

√
s

2
+

a2T
2xa

√
s
, aT , xa

√
s

2
− a2T

2xa
√
s

),

b = (xb

√
s

2
+

b2T
2xb

√
s
, bT ,−xb

√
s

2
+

b2T
2xb

√
s

),

c = (xc

√
s

2
+

c2T
2xc

√
s
, cT , xc

√
s

2
− c2T

2xc
√
s

).

The light-cone variable xc of the produced parton c is

xc =
c0 + cz√

s
. (8)

The Mandamstam variables are

ŝ = (a + b)2 = xaxbs +
a2T b

2
T

xaxbs
− 2aT · bT ,

t̂ = (a− c)2 = −xac
2
T

xc
− xca

2
T

xa
+ 2aT · cT ,

û = (b− c)2 = −xbxcs−
b2T c

2
T

xbxcs
+ 2bT · cT .

The relation of ŝ + t̂ + û = 0 gives

xaxbs +
a2T b

2
T

xaxbs
− xac

2
T

xc
− xca

2
T

xa
− xbxcs−

b2T c
2
T

xbxcs

= −a2T − b2T − c2T + (cT − aT + bT )2. (9)
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Because the intrinsic aT and bT are small compared with
the magnitudes of az , bz, and cT , we can therefore neglect
terms with aT and bT in the evaluation of ŝ, t̂, and û.
We get

ŝ = xaxbs, t̂ = −xac
2
T

xc
, û = −xbxcs. (10)

The constraint of ŝ + t̂ + û = 0 gives

xa(xb) = xc +
c2T

(xb − c2
T

xcs
)s
. (11)

In the special case of particle c coming out at θc = 90o

in the center-of-mass frame of the A-B system,

xc =
cT√
s
, xa(xb) = xc +

x2
c

xb − xc
, (12)

and

xa = xb = 2xc. (13)

The constraint in Eq. (7) can be written as a constraint
in xa,

δ(ŝ + t̂ + û) =
δ(xa − xa(xb))

|∂(ŝ+t̂+û)
∂xa

|
. (14)

On the other hand,

∂(ŝ + t̂ + û)

∂xa
= s(xb −

c2T
xcs

). (15)

We have therefore

Ec
d3σ(ab → cX ′)

dc3
=

dσ(ab → cX)

dt

×xaxbδ(xa − xa(xb))

π(xb − c2T /xcs)
, (16)

and

Ec
d3σ(AB → cX)

dc3
=

∑

ab

∫

daT dbTdxbdxa

× Ga/A(xa,aT )Gb/B(xb, bT ) (17)

× xaxbδ(xa − xa(xb))

π(xb − c2T /xcs)

dσ(ab → cX ′)

dt
.

We consider an approximate structure function of the
form

Ga/A(xa,aT ) =
Aa

xa
(1 − xa)gaDa(aT ),

Gb/B(xb, bT ) =
Ab

xb
(1 − xb)

gbDb(bT ).

The integral in Eq. (17) becomes

Ec
d3σ(AB → cX)

dc3
=

∑

ab

AaAb

∫

daT dbTDa(aT )Db(bT )

×dxbdxa(1−xa)ga(1−xb)
gb

δ(xa − xa(xb))

π(xb − c2T /xcs)

dσ(ab → cX ′)

dt
.

We integrate over xa, and we get

EC
d3σ(AB → cX)

dc3
=

∑

ab

AaAb

∫

daTdbTDa(aT )Db(bT )

×dxb
(1−xa)ga(1−xb)

gb

π(xb − c2T /xcs)

dσ(ab→cX ′)

dt
.

As the transverse momentum we are considering is con-
siderably larger than the intrinsic pT [54], we can take
the intrinsic momentum distribution to be quite narrow
so that the integration of

∫

daDa(aT ) =
∫

dbDb(bT ) = 1
and we obtain

EC
d3σ(AB→cX)

dc3
=

∑

ab

AaAb

∫

dxb
(1 − xa)ga (1 − xb)

gb

π(xb − τ2c )

×dσ(ab → cX ′)

dt
, (18)

where we have introduced

τ2c =
c2T
s
. (19)

We use saddle point integration method [54] and get,

EC
d3σ(AB → cX)

dc3
=

∑

ab

AaAb

∫

dxb
ef(xb)

π(xb − τ2c /xc)

×dσ(ab → cX ′)

dt
, (20)

with

f(xb) = ga ln(1 − xa) + gb ln(1 − xb).

Consider ga = gb = g and expand f(xb) as a function of
xb about the minimum located at

xb0 =
τ2c
xc

+ τc

√

1 − τ2c /xc

1 − xc
. (21)

The quantity xa at this minimum is

xa0 = xc + τc

√

1 − xc

1 − τ2c /xc
. (22)

From the second derivative of f(xb) with respect to xb,
we obtain

Ec
d3σ(AB → cX)

dc3
∼

∑

ab

AaAb√
πga

(1 − xa0)ga(1 − xb0)ga

× 1√
τc

{

1 − xc

1 − τ2c /xc

}1/4
√

(1 − xb0)2

[(1 − (xb0 + τ2c /xc)/2]

×dσ(ab → cX ′)

dt

∣

∣

∣

∣

xa0,xb0

. (23)

In the neighborhood of θc ∼ 90o in the A-B center-of-
mass system, the ratios in the square-root factor and the
factor involving the power 1/4 are approximately equal to
1. Thus, the analytical integration of the hard-scattering
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integral leads to the following invariant differential cross
section in an analytical form,

Ec
d3σ(AB → cX)

dc3
∼

∑

ab

AaAb√
πga

(1 − xa0)ga (1 − xb0)ga

× 1√
τc

dσ(cT ; ab → cX ′)

dt

∣

∣

∣

∣

xa0,xb0

. (24)

As an example, we can consider the basic ab → cX ′

process to be gg → gg. The cross section as given by
Gastmans and Wu [55] (page 403) is

dσ(gg → gg)

dt
=

9πα2
ŝ

8

(ŝ4 + t̂4 + û4)((ŝ2 + t̂2 + û2)

ŝ4t̂2û2
.

At θ ∼ 90o, we have

dσ(gg → gg)

dt
=

9πα2
s

16c4T

[

1 +

(

c2T
xcxbs

)2

+

(

xc

xa

)2
]3

∼ 9πα2
s

16c4T

[

3

2

]3

. (25)

If one considers the qq′ → qq′ process, then

dσ(qq′ → qq′)

dt
=

4πα2
s

9

ŝ2 + û2

ŝ2t̂2
. (26)

At θc ∼ 90o, we have xa = 2xc, and we have for qq′ → qq′

dσ(qq′ → qq′)

dt
=

4πα2
s

9c4T

5

16
. (27)

In either case, the differential cross section varies as
dσ(ab → cX ′)/dt ∼ 1/(c2T )2.

III. EFFECTS OF MULTIPLE SCATTERING OF

PARTONS ON DIFFERENTIAL CROSS

SECTIONS

Hadrons are composite objects containing a number
of partons. The collision of hadrons involves the soft
and hard collisions of partons. We separate the total
parton-parton cross section σin into soft and hard parts,
σin(parton − parton) = σs + σH , where σs involves soft
processes at low-pT in the fragmentation of partons in a
flux tube or a string. The hard cross section σH involves
infrared singularities at small momentum transfer which
can be regulated by a minimum momentum transfer cut-
off p0 that delimits the boundary between soft and hard
processes. The parton-parton hard cross section includes
the cross section for the production of high-pT particles
and mini-jets.

With increasing collision energies, we probe regions of
smaller x, where the parton density increases rapidly.
The number of partons and the total hard-scattering
cross section in pp collisions increases with increasing
collision energies. The total pp hard-scattering cross sec-
tion may exceed the inelastic pp total cross section at

high energies [20]. The average number of parton-parton
interactions above a minimum p0 may be greater than
unity.

The presence of a large number of partons in the collid-
ing system leads to parton multiple scattering in which
a projectile parton may make multiple hard-scattering
with target partons (also called the re-scattering of par-
tons). Furthermore, in a hadron-nucleus collision, there
are partons in nucleons along the incident parton trajec-
tory, and multiple hard-scattering of the incident parton
with many target partons may occur.

a 

d2 b2 b1 d1 

 
c 

q1 
q2 

FIG. 1. The Feynman diagram for the multiple hard scatter-
ing process, a + (b1 + b2) → c + (d1 + d2), with the exchange
of gluons q1 and q2.

We consider the scattering from an incident parton a to
the final parton c after colliding with two hard-scatterers
b1, and b2 in the process

a + (b1 + b2) → c + (d1 + d2) , (28)

as represented by the Feynman diagram in Fig. 1. For
simplicity, we neglect intrinsic pT and rest masses so that
aT = bT1 = bT2 = 0. We are interested in hard-
scattering processes and consider the collision to take
place in the center-of-mass system of a and the partons
(b1 + b2) so that the incident a comes along the longitu-
dinal z-axis and comes out as the final particle c in the
transverse direction at θc ∼ 900. We shall examine here
the influence of the multiple hard-scattering process on
the differential cross section from parton a to parton c.

The scattering between a and bi in Fig. 1, with i = 1, 2,
is individually a hard scattering process with the trans-
fer of a substantial amount of the transverse momentum
qTi(=dTi). The transverse coherence time ~/(|qTi|c),
which is also the hard-scattering transverse collision time,
is quite short (of the order of 0.01-0.1 fm/c). On the
other hand, at high energies the total hard-scattering
cross section is of order of the pp inelastic cross section.
The mean-free path λ between parton hard-scattering
collisions is of the order of the transverse radius of the
proton. Therefore, in a multiple hard-scattering process,
the mean-free time λ/c between hard-scattering collisions
is much greater than the transverse hard-collision time
~/(|qTi|c).
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As a consequence, the sequence of hard-scattering col-
lisions of the incident parton a with scatterers b1 and
b2 are incoherent collisions. The hard-scattering process
a + b1 → a′ + d1 has been completed before the other
hard-scattering process a′ + b2 → c + d2 begins. This
implies that the hard-scattering process a+ b1 → a′ + d1
and the other hard-scattering process a′ + b2 → c+ d2 in
Fig. 1 are separately successive two-body hard-scattering
processes with the intermediate particle a′ essentially on
the mass shell. These successive hard-scatterings can be
represented by scattering laws dσ(ab1 → a′d1)/dqTi ∝
α2
s/(q2

T1)2 and dσ(a′b2 → cd2)/dqT2 ∝ α2
s/(q2

T2)2, with
the differential elements ddTi = dqTi. The differential
cross section after the multiple hard-scattering collisions
with partons in the other hadron is therefore

dσ
(2)
H (a + (b1 + b2) → c + (d1 + d2))

∝ dcTα
2
sdqT1α

2
sdqT2

(q2
T1)2(q2

T2)2
δ(cT + qT1 + qT2), (29)

where the factor α4
s/[(q2

T1)2(q2
T2)2] comes from the the

two gluon propagators in Fig. 1. The hard-scattering

cross section from a to c, dσ
(2)
H (a → c), can be obtained

from the above by integrating over qT1 and qT2, regu-
lated by a minimum momentum transfer cutoff p0.

a

d2

a c

b1 d1 d3 dNb3b2 bN

a a

q1 q2 q3 qN

FIG. 2. The Feynman diagram for the hard scatterings pro-
cess a + (b1 + b2 + ... + bN ) → c + (d1 + d2 + ... + dN), with
the exchange of N gluons q1, q2, ..., qN .

We can generalize the above result for the scattering
of the parton a into the parton c after making a multiple
hard-scattering with N hard-scatterers as shown in the
Feynman diagram in Fig. 2,

a + (b1 + b2 + ... + bN) → c + (d1 + d2 + ... + dN ). (30)

Using arguments similar to those leading to Eq. (29), the
differential cross section for the multiple hard scattering
of a to c after colliding with N hard-scatterers in the
other hadron is

dσ
(N)
H (a + (b1 + ... + bN )) → c + (d1 + ... + dN ))

∝ dcT

N
∏

i=1

(

α2
sdqTi

(q2
Ti)

2

)

δ(cT + qT1 + ... + qTN ), (31)

where the factor α2N
s /[(q2

T1)2...(q2
TN )2] comes from the

N gluon propagators in Fig. 2. The hard-scattering cross

section from a to c, dσ
(N)
H (a → c), can be obtained from

the above by integrating over qT1,..,qTN , regulated by a
minimum momentum transfer cutoff of p0.

IV. EFFECTS OF THE MULTIPLE

SCATTERING AND T (b) ON THE TRANSVERSE

DIFFERENTIAL CROSS SECTION

The discussions in the last section pertains to the dif-
ferential cross section in the scattering of a parton with
N parton scatterers. A hadron-hadron collision consists
of a weighted sum of parton-parton collision with differ-
ent number of scatterers N , depending on the transverse
profile of the composite target system and the selection
of the centrality of the collision events.

From the earlier studies of multiple hard-scattering
processes [39–48], a simple picture emerges to indicate
that for high pT in minimum-biased events without cen-
trality selection, the sum of the multiple collision series
over different number of scatterers is dominated by the
single scattering differential cross section with the 1/p4T
dependency. There are in addition interesting shadow-
ing cancellations to give logarithmic residual terms. We
would like to extend the multiple hard-scattering results
of [46] to obtain the explicit power law and logarithmic
dependence of the multiple scattering cross section on
target scatterer number N , the dependence on target par-
ton number A, as well as on the centrality of the collision.

The parton-parton hard-scattering cross section σ
H

will shadow hard-scattering of the colliding partons.
Thus, for the collision of a parton a on the object b with A
partons, the probability for N hard-scattering collisions
at an impact parameter b is [56]

P (N, b) =
A!

N !(A−N)!
[T (b)σ

H
]N [1 − T (b)σ

H
]A−N . (32)

The total hard-scattering cross section for the scattering
of a on N partons is

σ
(tot)
H (a + A → cX)

=

∫

db
A
∑

N=1

A!

N !(A−N)!
[T (b)σ

H
]N [1 − T (b)σ

H
]A−N .(33)

Thus, the total differential cross section is

dσ
(tot)
H (a + A → cX)

dcT
(34)

=

∫

db

A
∑

N=1

A!

N !(A−N)!
[T (b)]N

dσ(N)
H

dcT
[1 − T (b)σ

H
]A−N ,

where the superscript (N) stands for the incident parton
making N collisions with target partons. From Eq. (31),
we have

dσ(N)
H

dcT
(cT ) =

∫ n
∏

i=1

(

α2
sdqiT

q4
iT

)

δ(cT −
N
∑

i=1

qiT ). (35)

In the sum in Eq. (34), dσ(N)
H

/dcT is of order α2N
s . The

absorption part is represented by the term (1−TσH)A−N .
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We can expand the absorption part [1 − T (b)σ
H

]A−N as
a power series, and we obtain

dσ
(tot)
H (a + A → cX)

dcT

=

∫

dbAT (b)
dσ(1)

H

dcT

{

{1 − (A− 1)[T (b)σH ]

+
(A− 1)(A− 2)

2
[T (b)σH ]2

}

+

∫

db
A(A + 1)/

2
[T (b)]2

dσ(2)
H

dcT

{

1 − (A− 2)[T (b)σH ]

}

+

∫

db
A(A + 1)(A + 2)

6
[T (b)]3

dσ(3)
H

dcT
+ ... (36)

After expanding the absorption term [1 − T (b)σ
H

]A−N ,
we can collect all terms of the same order in α2N

s to re-
sum Eq. (34) in the form

dσ
(tot)
H (a + A → cX)

dcT

=

∫

db
N
∑

n=1

A!

A!(A −N)!
[T (b)]N

dσ̃(N)
H

dcT
,(37)

where dσ̃(N)
H

/dcT is of order α2N
s given by

dσ̃(1)
H

dcT
=

dσ(1)
H

dcT
(38a)

dσ̃(2)
H

dcT
=

dσ(2)
H

dcT
− 2(A− 1)

A + 1

dσ(1)
H

dcT
σH (38b)

dσ̃(3)
H

dcT
=

dσ(3)
H

dcT
− 3(A− 2)

(A + 2)

dσ(2)
H

dcT
σH

+
3(A− 1)(A− 2)

(A + 1)(A + 2)

dσ(1)
H

dcT
σ2
H . (38c)

The last term in Eq. (38b) and the last terms in Eq.
(38c) represent shadowing corrections due to the absorp-
tion factor [1 − T (b)σ

H
]A−N . The basic parton-parton

collision gives

dσ̃(1)
H

dcT
(cT ) ∼ α2

s

c4T
, (39)

where for simplicity a constant coefficient that depends
on the nature of the partons as in Eqs. (25) and (27)
has been understood. The integrated cross section with
a cut-off at p0 gives

σ(1)
H

∼ πα2
s

p20
. (40)

We consider the case with A ≫ 1 in Eq. (38), and we
obtain

dσ̃
(2)
H (a → c)

dcT

= 2

{

α4
s

∫ cT /2

p0

(

dq1T

q4
1T (cT − q1T )4

)

− dσ(1)
H

dcT
σ

H

}

.(41)

In the integration in the above sum, the dominant con-
tribution comes from the region around q1T ∼ 0. We
expand 1/(cT − q1T )4 about q1T ∼ 0. As a result of
the shadowing cancellation in Eq. (38b) or (39), the sin-
gular terms proportional to 1/p60 cancel out and only a

logarithmic term remains [46]. We find that dσ̃
(2)
H /dcT is

given explicitly by

dσ̃
(2)
H (a → c)

dcT
=

16πα4
s

c6T
ln{ cT

2p0
}, (42)

which has a power law 1/c6T multiplied by a mild loga-
rithm term. Next, we need to study N = 3,

dσ̃
(3)
H (a → c)

dcT

=

{

dσ(3)
H

dcT
− 3

dσ(1)
H

dcT
σ2

H

}

− 3

{

dσ(2)
H

dcT
− 2

dσ(1)
H

dcT
σ

H

}

σ
H
.(43)

We expand 1/(cT − qiT )4 again about qiT ∼ 0. Simi-
larly, the singular terms proportional to1/p80 cancel out,
and only the logarithmic term remains. We find that

dσ̃
(3)
H /dcT is given by

dσ̃
(3)
H (a → c)

dcT
=

3π2α6
s

c8T
× 312[ln

cT
3p0

]2. (44)

Equations (39), (42), (44) give explicitly the differential
cross sections of a parton after multiple scattering with
N scatterer partons as

dσ̃
(N)
H (a → c)

dcT
∝ α2N

s

c2+2N
T

[ln
cT
Np0

]N−1, (45)

which states that the differential cross section for mul-
tiple parton scattering obeys a power laws with the
power index (2+2N), multiplied by a logarithm func-
tion [ln(cT /Np0)]N−1. For the scattering of a parton
with one scatterer, it gives α2

s/p
4
T , with two scatterers

it gives α4
s ln(pT /2p0)/p

6
T , and with three scatterers it

gives α6
s[ln(pT /3p0)]

2/p8T .
Collecting the terms together, we obtain the differen-

tial cross section for the collision of a parton with a com-
posite system with A partons and a thickness function
T (b) given by

dσ
(tot)
H (a → c)

dcT
= A

α2
s

c4T

∫

db T (b) (46)

+
A(A− 1)

2

16πα4
s

c6T
ln{ cT

2p0
}
∫

db[T (b)]2

+
A(A− 1)(A− 2)

6

936π2α6
s

c8T
[ln

cT
3p0

]2
∫

db[T (b)]3.

Depending on the limits of the impact parameter inte-
gration, the above result gives the differential cross sec-
tion for collisions with different centrality selections. For
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minimum-biased events without an impact parameter se-
lection, one sums over the whole range of impact param-
eters. We can consider a thickness function T (b) in the
form of a Gaussian given by [19]

T (b) =
exp{−b2/2β2}

2πβ2
, (47)

where β = r0/
√

3. [For a proton, r0 ∼ 0.7 fm [19]]. We
then have

∫

db[T (b)]N = =
1

N(2πβ2)N−1
, (48)

and the minimum-biased differential cross section is

dσ
(tot)
H (a → c)

dcT
= A

α2
s

c4T

+
A(A− 1)

2

1

2(2πβ2)

16πα4
s

c6T
ln{cT /2

p0
}

+
A(A− 1)(A− 2)

6

312

3(2πβ2)2
3π2α6

s

c8T
[ln

cT
3p0

]2. (49)

For another sharp-cutoff thickness function T (b) given by
[19]

T (b) =
3

2πR3

√

R2 − b2 Θ(R− b), (50)

we obtain
∫

db[T (b)]N =
3N

(N + 2)2N−1πN−1R2N−2
, (51)

and the minimum-biased differential cross section is

dσ
(tot)
H (a → c)

dcT
= A

α2
s

c4T

+
A(A− 1)

2

32

4 × 2πR2

16πα4
s

c6T
ln{cT /2

p0
}

+
A(A− 1)(A− 2)

6

33312

5 × 22π2R4

3π2α6
s

c8T
[ln

cT
3p0

]2. (52)

Because the power index increases with N as 2 + 2N ,
the minimum-biased differential cross section at high cT
in Eq. (49) or (52) will be dominated by the differential
cross section for a single parton-parton N=1 collision,
varying as α2

s/p
4
T .

It should however be recognized that even though the
lowest order αs/c

4
T dominates at the highest cT region,

contributions higher-order in αs begin to enter into play
under certain circumstances. For example, as the trans-
verse momentum is lowered below the highest cT region,
there will be values of cT when contributions with higher
power index such as 1/c6T and 1/c8T in the above series in
Eq. (49) or (52) begin to be important, depending on the
value of A, β(or R), and αs. In another example, as the
cone radius R in jet measurements increases, the cone re-
gion will contain parton-parton processes with a greater
number of interacting vertices, and it may become nec-
essary to include higher and higher order contributions

where contributions of order α2N
s arising from multiple

scattering will have a power index 2 + 2N .

We note in passing that Eq. (47) also gives the central-
ity dependence of the differential cross section,

dσ
(tot)
H (a → c)

dc2Tdb
(cT , b) = A

α2
s

c4T
T (b) (53)

+
A(A− 1)

2

16πα4
s

c6T
ln{ cT

2p0
}[T (b)]2

+
A(A− 1)(A− 2)

6

936π2α6
s

c8T
[ln

cT
3p0

]2[T (b)]3.

The above result indicates that one can alter the weights
of the different number of scatterers and the power in-
dex n, by an impact parameter selection. The number
of partons A in a hadron or a nucleus is a dynamical
quantity that may depend on the probing transverse mo-
mentum and the target nucleus mass number, and it is
not yet a well-determined quantity. It is an interesting
experimental question whether the numbers of partons A
may be so large in some phase space regions or some col-
lision energies as to make it possible to alter the power
law behavior of the transverse differential cross section
for selected centralities, over different pT regions. One
expects that as the centrality becomes more and more
central, contributions with a greater number of multiple
parton collisions gains in importance. As a consequence,
the power index n is expected to become greater when
we select more central collisions.

V. COMPARISON OF RELATIVISTIC

HARD-SCATTERING MODEL WITH

EXPERIMENTAL JET TRANSVERSE

DIFFERENTIAL CROSS SECTIONS

The results in the last section show that without cen-
trality selection in minimum-biased events, the differen-
tial cross section for the production of partons at high-
pT will be dominated by the contribution from a single
parton-parton scattering that behaves as 1/c4T ,

dσ
(tot)
H (a → c)

dcT
∝ α2

s

c4T
, (54)

in line with previous analyses on the multiple scatter-
ing process in [39–48]. Multiple scatterings with N > 1
scatterers contribute to terms of order α2N

s and involve

a power law [ln (CT /Np0)]N−1/c2+2N
T .

We now consider the lowest order result of Eq. (54).
From Eqs. (24) and (54), the relativistic hard scattering
cross section of Eq. (24) for the collision of hadrons A and
B when a parton a of one of the hadron makes a hard
scattering with a partons in the other hadron to produce
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the parton c is

Ep
d3σ(AB → cX)

dc3
=

d3σ(AB → cX)

dydcT

∝ α2
s(Q2(c2T ))(1−xa0(cT ))ga(1−xb0(cT ))ga

c4T [cT /
√
s]1/2

. (55)

Different factors in the above equation (55) reveal the
physical origins and the associated degrees of freedom.
The power law α2

s/c
4
T arises from parton-parton hard-

scattering. The additional c
1/2
T in the denominator

comes from the 1/
√
τc factor in Eq. (24) and it arises

from the integration of the momentum fraction of the
other colliding parton xb. The structure function factor
(1−xa0(cT ))ga(1−xb0(cT ))ga comes from the probability
for the occurrence of the momentum fractions of the col-
liding partons. The quantities xa0(cT ) and xb0(cT ) are
functions of cT as given in Eqs. (21) and (22) respectively.
The argument cT inside the structure function factor is
the transverse momentum of the scattered parton c, prior
to its fragmentation. The exponential indices ga and gb
come from the structure functions. They can also be esti-
mated from the spectator counting rule of Blankenbecler
and Brodsky [15] as given by g{a,b} = 2ns − 1, where
ns is the number of spectators of the composite hadron
system a or b in the hard-scattering collision. This is es-
sentially the form of the cross section as first suggested
by Blankenbecler, Brodsky, and collaborators [15–19].
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FIG. 3. (Color online) Comparison of the experimental
dσ/dηETdET data from the D0 Collaboration [50] for the dis-
tribution of hadron jet transverse energy ET at |η|<0.5, in pp̄
collision at

√
s=1.8 TeV, with the relativistic hard-scattering

model result in Eq. (57).

The results of Eq. (55) can be compared directly with
the transverse differential cross sections for hadron jet
and isolated photon production.. Previously, Arleo et al.

[21] have presented a method to obtain an “experimen-
tal” local power index nexp(xc). Specifically, referring to
Eq. (55) and representing the power index of cT by n,
the lowest order theoretical result of Eq. (55) predicts
n=4+1/2. One focuses attention at a fixed xc(= cT /

√
s)

at η = 0 for which xa0 = xb0 = 2xc. Upon neglecting
the

√
s-dependence of α2

s, one extracts an experimental
power index n(xc) as a function of xc by comparing the
invariant cross sections at a fixed xc at different collision
energies, [21]

n(xc) ∼
ln[σinv(

√
s1, xc)/σinv(

√
s2, xc)]

ln
[√

s2/
√
s1
] +

1

2
, (56)

which is related to the quantity nexp(xc) of Arleo et al.
[21] by n(xc)=nexp(xc)+1/2. Table I summarizes the av-
erage experimental power index 〈nexp〉 extracted by Arleo
et al. [21] from the D0 and CDF photon and hadron jet
transverse differential cross sections [49–53]. The power
indices have the values of 〈n〉=〈nexp〉+1/2=4.8-5.2. The
local power indices as a function of xc are also shown in
Fig. 2 of Arleo et al. [21]. These power indices are in ap-
proximate agreement with the power index n=4.5 in Eq.
(55) obtained in the relativistic hard-scattering model in
perturbative QCD.
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FIG. 4. (Color online) Comparison of the experimental
dσ/dηETdET data from the D0 Collaboration [50] for the
distribution of hadron jet transverse energy ET at |η|<0.5 ,
in pp̄ collision at

√
s=0.630 TeV, with the relativistic hard-

scattering model result in Eq. (57).

As an example to provide a complementary compar-
ison, we focus our attention at a fixed collision energy
and express the differential jet cross section d3σ(AB →
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TABLE I. The mean power index 〈nexp〉 extracted from exper-
imental transverse differential cross sections for hadron and
photon jet productions in pp̄ collisions at Fermilab as obtained
in [21] by comparing the invariant cross sections at different
energies.

Collaboration Ref. Particles
√
s 〈nexp〉

(TeV)
CDF [49] hadrons 0.546, 1.8 4.3±0.09
D0 [50] hadrons 0.630, 1.8 4.5±0.04

CDF [51, 52] photons 0.630, 1.8 4.7± 0.09
D0 [53] photons 0.630, 1.8 4.5± 0.12

pX)/dydcT in Eq. (55) as

d3σ(AB → cX)

dydcT

= A
α2
s(Q2(cT ))(1−xa0(cT ))ga(1−xb0(cT ))ga

cnT
. (57)

where cT∼ET , dcT = 2πETdET . We also use the symbol
pT for the jet transverse momentum cT . The coupling
constant αs is a function of Q2, which will be identified
as p2T . We use the running QCD coupling constant [57]

αs(pT ) =
12π

27 ln(p2T /Λ2
QCD)

, (58)

where ΛQCD=0.25 GeV has been chosen such that
αs(M

2
Z) = 0.1184. We infer from Eq. (57)

n = − d

d log pT

{

log
dσ

dη pTdpT

− log
[

α2
s(pT )(1−xa0(pT ))ga(1−xb0(cT ))ga

]

}

. (59)

In the region where pT ≪ √
s and the variation of αs

with pT is not large, the quantity log(dσ/dy pT dpT ) will
be approximately a linear function of log pT . The log-log
plot of log(dσ/dy pTdpT ) as a function of log pT should
appear nearly as a straight line, with the power index n
given by the magnitude of slope of the line. In Figs. 3
and 4, the straight lines in the lower ET regions exhibit
such a linear behavior.

We use Eq. (57) to search for the parameters A and n
to fit the hadron jet transverse differential cross section
as a function of ET (∼ pT ) at η ∼ 0 in pp̄ collisions at Fer-
milab. The exponential index ga = gb for the structure
function of a gluon varies from 6 to 10 in different struc-
ture functions [58–60]. We shall take ga = 6 from [58].
The experimental D0 hadron jet data of dσ/dηET dET

at |η|<0.5 for pp̄ collision at
√
s=1.8 TeV [50] can be

fitted with n=4.60 and 2πA=2.29×1015 fbGeV−2, as
shown in Fig. 3. The experimental D0 hadron jet data of
dσ/dηET dET for pp̄ collision at

√
s=0.630 TeV [50] can

be fitted with n=4.64 and 2πA=1.64×109 fbGeV−2, as
shown in Fig. 4. These power indices are in approximate
agreement with the value of n=4.5 in Eq. (55), indicating

the approximate validity of the hard-scattering model de-
scription for jet production in hadron-hadron collisions,
with the predominant α2

s/c
4
T parton-parton differential

cross section. These power indices extracted from the
differential cross section are also in approximate agree-
ment with those in Table I extracted by comparing cross
sections at two different energies [21].

In another comparison of the jet production data with
the hard-scattering model, we examine in Fig. 5 the jet
differential cross section dσ/dη pTdpT in pp collisions at√
s = 2.76 TeV at LHC obtained by the ALICE Collab-

oration at η < 0.5 with R=0.4 and 0.2 [61]. The log-
log plot of log[dσ/dη pTdpT ] versus log pT gives nearly a
straight line with the slope −n. The jet differential cross
section can be fitted with the power index n=5.0±0.2 and
an overall magnitude of 2πA=2080 mbGeV−2 for R = 0.4
and n=4.8±0.2 and an overall magnitude of 2πA=535
mbGeV−2. These power indices are close to the value
of n = 4.5 expected in Eq. (55) in the hard-scattering
model.

In another comparison, we show in Fig. 6 the jet dif-
ferential cross section dσ/dη pTdpT in pp collisions at√
s = 7 TeV at LHC obtained by the CMS Collaboration

at η < 0.5 with R = 0.5 [27]. The jet differential cross
section can be fitted with the power index n=5.44±0.1
and of 2πA = 5.05×1014 mbGeV−2 as shown in Fig. 7.
The value of n is slightly greater than the expected value
of n = 4.5.
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FIG. 5. (Color online) Comparison of the experimen-
tal dσ/dηpTdpT data from the ALICE Collaboration [61]
for the transverse momentum distribution of hadron jets
dσ/dη pTdpT at |η|<0.5, in pp collision at

√
s=2.76 TeV, with

the relativistic hard-scattering model result in Eq. (57).

We note in the last few examples that the power index
n increases slightly as the cone radius R increases. An
increase in the cone radius allows the sampling of events
with greater number of the parton-parton interaction ver-
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tices inside the cone, and each interaction vertex brings in
a power of α2

s. A greater cone radius have greater contri-
butions from processes that are higher order in αs. Thus,
among many high-order NLO and NNLO contributions,
some of the α4

s/p
6
T contributions of the multiple scatter-

ing processes discussed in Eqs. (49) and (52) in Sections
III and IV may also need to be included. Because of
the limited number of cases, more measurements will be
needed to confirm whether the increase in the power in-
dex with increasing R is a general phenomenon.

We conclude from these comparisons of the transverse
differential cross sections of hadron jets in both pp̄ and pp
collisions at high energies that the data supports the rel-
ativistic hard-scattering description of the collision pro-
cess, with a basic parton-parton differential cross section
behaving approximately as α2

s/p
4
T with some tentative

evidence of an increase in the power index as R increases.
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FIG. 6. (Color online) Comparison of the experimen-
tal dσ/dηpTdpT data from the CMS Collaboration [63]
for the transverse momentum distribution of hadron jets
dσ/dη pT dpT at |η|<0.5, in pp collision at

√
s=7 TeV, with

the relativistic hard-scattering model result in Eq. (57).

It is interesting to note that when the structure func-
tion information is known from other measurements, the
hadron jet spectra differential cross section can be reason-
ably described with only a single power index n and an
overall magnitude parameter A. The shape of the trans-
verse differential cross section of hadron jets has only a
very small number of the degrees of freedom.

VI. EFFECTS OF FRAGMENTATION ON

TRANSVERSE DIFFERENTIAL CROSS

SECTION

Experimentally, we detect hadrons and the construc-
tion of a hadron jet is inferred from a correlated cone of
hadrons. Experimental measurements also give hadron
spectra at high transverse momenta without reconstruct-
ing jets. The analyses of the power indices n give n∼7
for hadron transverse spectra [33] but n=4.5-5 for jet
transverse differential cross sections as shown in the last
section. The difference between the power indices is likely
to arise from the subsequent evolution of the parton.

Other pieces of evidence that the parton-to-hadron
final-state evolution may lead to a change in the power
index show up when we compare the “experimental” local
power indices for jets and for hadrons [21]. In Figure 2
of Ref. [21], the local power indices nexp as a function of
x⊥=2xc cluster around nexp∼4.5 for jets but nexp∼5-9
for hadrons. Furthermore, Table I of [21] gives 〈nexp〉
for jets that are substantially smaller than 〈nexp〉 for
hadrons. We need to consider the difference between jets
and hadrons and the fragmentation and showering of jets
(representing partons) to become hadrons.

We shall view the parton fragmentation and the accom-
panying showering as equivalently final-state processes
and speak of them interchangeably to emphasize differ-
ent aspects of the parton final-state evolution. In the
remaining sections, we shall consistently use the symbol
c to label a parton and its momentum and the symbol p
to label a hadron and its momentum.

In the showering of a parton c, a large numbers of
hadrons comes out nearly co-linearly with the parton c
in a cone along the c direction. In the present study of
high-pT particles in the central rapidity region, the par-
ton c is predominantly along the transverse direction, and
the shower of the produced hadrons will also be along the
transverse direction. For the study of the high-pT spec-
tra as a result of the showering of a parton c, it suffices
to focus attention on the leading hadron p of the cone of
shower particles, because of the rapid fall-off of the trans-
verse momentum distribution as a function of increasing
cT . The leading hadron fragment with transverse mo-
mentum pT contributes significantly to the final spectra
at that pT whereas non-leading hadron fragments of the
shower contribute only insignificantly to the spectra at
their corresponding pT values. Thus, for the examination
of the high-pT hadron spectra after parton fragmentation
and showering, each parent parton c with a momentum
cT can be viewed as fragmenting into a single leading
hadron p with momentum pT by the showering process.

The showering of the partons will go over many gen-
erations of branching and each branching will degrade
the momentum of the showering parton by a momentum
fraction ζ. We can consider the transverse momentum pT
of the leading hadron as arising from the λ-th branching
generation of the shower. The 4-momentum of the lead-
ing hadron p and the 4-momentum of the parent parton
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c are related by

p = ζλc. (60)

We relabel the cumulative product ζλ by the momentum
fraction z,

z = ζλ (61)

to relate p with c

p = zc. (62)

The probability for the fragmentation of the parton c
into the hadron p is specified phenomenologically by the
fragmentation function Dp/c(z), which depends on the
QCD momentum transfer scale.

We shall consider first the simplest case of showering
and fragmentation in which the momentum fraction z is
independent of the magnitude of the parton transverse
momentum cT . We shall consider more sophisticated
showering algorithm in the next section. In this case with
z independent of cT , the hadron transverse momentum
pT is a linear function of the parton transverse momen-
tum cT in Eq. (62). Under the fragmentation from the
parton c to the hadron p, the differential cross sections
dσ(AB → pX)/dp4 and dσ(AB → cX)/dc4 are related
by

dσ(AB → pX)

dp4

=

∫

dzDp/c(z)

∫

dc4
dσ(AB → cX)

dc4
δ(4)(p− zc).(63)

We therefore have

Ep
dσ(AB → pX)

dp3
=

dσ(AB → pX)

dydpT

(64)

∝
∫

dz

z2
Dp/c(z)z4+1/2

×α2
s(cT )(1 − xa0(cT ))ga (1 − xb0(cT ))ga

p
4+1/2
T

,

where the argument cT in xa0 and xb0 are evaluated
at cT = pT /z. We can expand the factor αs(cT )(1 −
xa0(cT ))ga (1 − xb0(cT ))ga about c̄T in the above equa-
tion as a power series of cT ,

f(cT ) = αs(cT )((1 − xa0(cT ))ga (1 − xb0(cT ))gb

= f(c̄T ) + (cT − c̄T )f ′(cT ) +
(cT − c̄T )2

2
f ′′(cT ).(65)

The error in the first order is minimized if c̄T is defined
as

c̄T = 〈pT
z
〉 = pT 〈

1

z
〉 (66)

where

〈1

z
〉 =

∫

dz 1
z2Dp/c(z)z4+1/2 1

z
∫

dz 1
z2Dp/c(z)z4+1/2

. (67)

We can obtain the magnitude of 〈1/z〉 by using the BKK
fragmentation functions [62] for a parton to fragment into
a pion for Q2

0 = 2 GeV2,

Dπ/q(z) = 0.551z−1(1 − z)1.2,

Dπ/g(z) = 3.77(1 − z)2.

We find

c̄T = pT 〈
1

z
〉 =

{

2.2 pT , for a gluon parton,

2.46 pT , for a quark parton.
(68)

For our numerical work, we shall use the average value
for gluon and quark partons,

c̄T = pT 〈
1

z
〉 = 2.33 pT . (69)

The differential cross section dσ(AB → pX)/dydpT of
Eq. (64) for the hard-scattering of hadrons A and B after
fragmenting (and showering) to hadron p can be approx-
imated by

dσ(AB → pX)

dydpT

∝ α2
s(c̄T )(1 − xa0(c̄T ))ga(1 − xb0(c̄T ))ga

p
4+1/2
T

, (70)

where c̄T is given by Eq. (69).

VII. PARTON SHOWERING AND THE POWER

INDEX n

The results of the last section indicates that with a
fragmentation fraction z that is independent of the frag-
mentation parton momentum cT in the showering pro-
cess, the power law and the power index are unchanged,
and the power index n + 1/2 for the produced hadrons
should be approximately 4.5 as given by Eq. (55) or
(70). On the other hand, the transverse spectra of pro-
duced hadrons in high-energy pp collisions at LHC gives
a power index n∼7 [21, 27–30, 33]. Theoretically, the
PYTHIA program with additional parton showering and
radiations, can describe quite well the transverse momen-
tum distributions of produced hadrons in pp collisions at
LHC energies [27], which are associated with a power in-
dex n∼7 [33]. The difference between the power index
of n∼4-5 from the transverse differential cross sections
of hadron and photon jets and n∼7 from the transverse
spectra of hadrons is likely to arise from the subsequent
showering of the parton jets to hadron fragments of lower
transverse momenta.

It should be realized that the showering mechanism
presented in the last section may not contain sufficient
degrees of freedom to describe properly the QCD show-
ering process. In addition to the kinematic decrease of
the magnitude of the transverse momentum as governed
by Eq. (62),

pT
cT

= ζλ, (71)
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the showering is governed by an additional criterion on
the virtuality, which measures the degree of the off-the-
mass-shell property of the parton. There are three dif-
ferent parton showering schemes: the PHYTHIA [64],
the HERWIG [65], and the ARIADNE [66]. The general
picture is that the initial parton with a large initial virtu-
ality Q decreases its virtuality by showering until a limit
of Q0 is reached. Each of the three schemes uses a differ-
ent relation between the virtuality and the attributes of
the showering parton, and each with a different evolution
variable and a different virtuality limit. Their kinemat-
ical schemes, the treatments of soft gluon interference,
and the hadronization schemes are also different.

We can abstract from these different parton showering
schemes to infer that there is approximately a one-to-one
mapping of the initial virtuality Q with the transverse
momentum cT of the evolving parton as showering pro-
ceeds. The initial virtuality Q scales with, and maps into,
the initial transverse cT of the showering parton, and the
cut-off virtuality Q0 scales with, and maps into, a trans-
verse momentum pT0 of the parton. In each successive
generation of the showering, the virtuality decrease by
a virtuality fraction which corresponds, in terms of the
corresponding mapped parton transverse momentum, to
a decrease by a transverse momentum fraction ζ̃. The
showering will end in λ generations such that

pT0

cT
= aζ̃λ, (72)

where a is a constant relating the scales of virtuality and
transverse momentum. Thus, the showering process de-
pends on the magnitude of cT and the limiting virtuality
Q0, which corresponds to a parton momentum pT0. The
greater the value of cT , the greater the number of gener-
ations λ. We can infer an approximate relation between
cT and the number of generations λ,

λ = ln
pT0

acT

/

ln ζ̃ . (73)

On the other hand, kinematically, the showering pro-
cesses degrades the transverse momentum of the parton
cT to that of the hadron pT as given by Eq. (71), depend-
ing on the number of generations λ. The magnitude of
the hadron transverse momentum pT is related (on the
average) to the parton transverse momentum cT by

pT
cT

= ζλ = ζ
ln

pT0

acT
/ln ζ̃

. (74)

We can solve the above equation for pT as a function of
cT ,

pT
pT0

=

(

cT
pT0

)1−µ

a−µ, (75)

and alternatively for cT as a function of pT ,

cT
pT0

=

(

pT
pT0

)1/(1−µ)

a
µ

1−µ , (76)

where

µ = ln ζ/ln ζ̃ > 0, (77)

and µ is a parameter that can be searched to fit the
data. As a result of the virtuality ordering and virtuality
cut-off, the hadron fragment transverse momentum pT
is related to the parton momentum cT by an exponent
1 − µ.

After the fragmentation and showering of the parton
c to hadron p, the hard-scattering cross section for the
scattering in terms of hadron momentum pT becomes

d3σ(AB → pX)

dydpT

=
d3σ(AB → cX)

dydcT

dcT
dpT

∝ α2
s(c̄T )(1−xa0(c̄T ))ga(1−xb0(c̄T ))ga

c
4+1/2
T

dcT
dpT

. (78)

From the relation between the parent parton moment cT
and the leading hadron pT in Eq. (76), we get

dcT
dpT

=
1

1 − µ

(

pT
pT0

)

2µ
1−µ

a
2µ

1−µ . (79)

Therefore under the fragmentation from c to p, the hard-
scattering cross section for AB → pX becomes

d3σ(AB → pX)

dydpT

∝ α2
s(c̄T )(1−xa0(c̄T ))ga(1−xb0(c̄T ))ga

pn
′

T

,

(80)

where

n′ =
n− 2µ

1 − µ
, with n = 4 +

1

2
. (81)

Thus, from Eqs. (76)-(79), the parton showering process
with limiting virtuality may modify the power law index
in the transverse differential cross section from n to n′.
The parameter µ is related to n and n′ by

µ =
n′ − n

n′ − 2
. (82)

VIII. PHENOMENOLOGICAL

MODIFICATIONS OF THE HARD-SCATTERING

CROSS SECTION

In the last section we give qualitative arguments to
show that the power index may be modified from n to
n′ by the process of showering. A quantitative evalua-
tion of the changes in the power index from fundamental
QCD principles is difficult, because the showering and
the subsequent hadronization processes are complicated
and contain unknown non-perturbative elements. It suf-
fices to verify that there is indeed a systematic change of
the power index from partons (or their equivalent repre-
sentative jets) to hadrons, by finding the empirical val-
ues of power index n for hadron production. For such
a purpose, we shall modify the differential cross section
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d3σ(AB → pX)/dydpT in (80), for an incident parton a
scattering into c after a relativistic hard-scattering, show-
ering, and hadronization to be

d3σ(AB → pX)

dydpT

∝ α2
s(c̄T )(1−xa0(c̄T ))ga(1−xb0(c̄T ))ga

[1 + mT /mT0]n
,

,(83)

where mT is the transverse mass
√

m2 + p2T of the de-
tected hadron p, and m is the hadron mass taken to be
the pion mass. The transverse mass mT0 has been intro-
duced both to regulate the behavior of the cross section in
the region of small pT and to represent the average trans-
verse mass of the detected hadron in the hard-scattering
process. Experiments measure the differential yield in
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FIG. 7. (Color online) Comparison of the experimental trans-
verse momentum distribution 〈Epd

3N/dp3〉η of hadrons in pp
collisions with the relativistic hard-scattering model Eq. (85),
assuming a linear mT dependence of the regulating function.

non-single-diffractive events, which is related to the dif-
ferential cross section by

Ep
d3N(AB → pX)

dp3
= Ep

d3σ(AB → pX)

σNSDdp3
, (84)

where σNSD is the non-single-diffractive cross-section.
We also need to transcribe the invariant cross section in
terms of dσ/dηdpT . We have then the produced particle
distribution

d3N(AB → pX)

dηdpT

=

√

1 − m2

m2
T cosh2 y

×A
α2
s(c̄T )(1 − xa0(c̄T ))ga(1 − xb0(c̄T ))gb

[1 + mT /mT0]n
, (85)

where A is a constant fitting parameter. We shall use
the above formula Eq. (85) to search for the power index

n for hadron production by fitting the hadron transverse
momentum distributions in pp collisions at LHC from
the CMS [28], ATLAS [29], and ALICE Collaborations
[30], within the experimental pseudorapidity windows.
We shall again take ga = gb = 6 [58]. In Fig. 6, we
compare the fits to the experimental hadron transverse
spectra. We find that for pp collisions at

√
s=7 TeV,

the parameters are n = 5.73, mT0 = 0.869 GeV, and
A = 194 GeV−2c3, and for pp collisions at

√
s=0.9 TeV,

the parameters are n = 5.96, and mT0 = 0.715 GeV,
A = 236 GeV−2c3.

Note that if we introduce

q = 1 +
1

n
and T =

mT0

q − 1
, (86)

then we get

d3N(AB → pX)

dηdpT

=

√

1 − m2

m2
T cosh2 y

×Aα2
s(c̄T )(1 − xa0(c̄T ))ga(1 − xb0(c̄T ))gb

×
[

1 − (1 − q)
mT

T

]
1

1−q

, (87)

which is in the form of the Tsallis distribution of Eq.
(1) (now with a clear meaning of the ‘nonextensivity
parameter’ q and the ‘temperature’ T as given in Eq.
(86)). The difference is the additional pT -dependencies
of α2

s(c̄T ), xa0(c̄T ), xb0(c̄T ) as well as the square-root
prefactor. What needs to be stressed is that the real ac-
tive number of degrees of freedom remains quite small,
similar to Eq. (1).

Equation (83) is not the only way we can parametrize
the hard-scattering results. The gluon exchange prop-
agator in the Feynman diagrams of Figs. 1 and 2 and
Eqs. (31) and (35) involve the quantities q2Ti. We can
alternatively modify the basic differential cross section
d3σ(AB → pX)/dydpT for the scattering of a to p in the
quadratic m2

T form,

d3σ(AB → pX)

dydpT

∝ α2
s(c̄T )(1−xa0(c̄T ))ga(1−xb0(c̄T ))ga

[1 + m2
T /m

2
T0]n/2

. (88)

With such an effective representation of the basic a → p
scattering, Eq. (80) is altered to become

d3N(AB → pX)

dηdpT

=

√

1 − m2

m2
T cosh2 y

×A
α2
s(c̄T )(1 − xa0(c̄T ))ga(1 − xb0(c̄T ))gb

[1 + m2
T /m

2
T0]n/2

. (89)

We use the above equation with the quadratic m2
T

dependence in the transverse distribution to search
the power index n by fitting the experimental hadron
transverse momentum distribution 〈Epd

3N/dp3〉η in pp
collisions from the CMS[28], ATLAS[29], and ALICE
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FIG. 8. (Color online) Comparison of the experimental
hadron transverse momentum distribution 〈Epd

3N/dp3〉η of
hadrons in pp collisions with the relativistic hard-scattering
model Eq. (85), assuming a quadratic mT dependence of the
regulating function.

Collaborations[30]. The data for pT & 0.5 GeV/c agree
with the theoretical fits as shown in Fig. 8. The pa-
rameters for pp collisions at

√
s = 7 TeV are n=5.83,

mT0 = 0.856 GeV, and A=3.58 GeV−2c3, and for pp
collisions at

√
s = 0.9 TeV, the parameters are n=5.97,

mT0 = 0.685 GeV, and A=4.58 GeV−2c3. We give the
fitting parameters that describe the pT contributions from
spectra at the two different energies in Table II.

TABLE II. Fitting parameters n, mT0, and A for the trans-
verse momentum distribution of hadrons in pp collisions.

Linear mT Quadratic m2
T

Eq. (85) Eq. (89)√
s=7TeV

√
s=0.9TeV

√
s=7TeV

√
s=0.9TeV

n 5.73 5.96 5.48 5.55
mT0 (GeV) 0.869 0.715 1.14 0.896
A(GeV−2c3) 194 236 12.8 13.8

Comparing the results from the two different ways of
expressing the power-law behaviors, we find that the
agreements of the data with the theoretical curves are
nearly the same above pT&3 GeV/c, but the theoreti-
cal results for the linear case with the mT dependence of
Eq. (85) are less than the experimental ALICE data for
pT∼2 GeV/c but greater than the experimental data for
pT.0.5 GeV/c. On the other hand, the quadratic m2

T

expression of Eq. (89), that is a more natural from field
theory point of view involving gluon propagators, leads
to a better agreement in the lower pT region.

For pp collisions at LHC, the above comparisons indi-
cate that the power index extracted from hadron spectra
has the value of n∼6. The power index is systematically
larger than the power index of n∼4-5 extracted from jet
transverse differential cross sections. Considering the dif-
ference of a jet and hadrons, we can infer that the process
of fragmentation and showering increases the value of the
power index n of the transverse spectra.

It should be noted that the hard-scattering model re-
sults in the low-pT region will be slightly modified with
the introduction of the intrinsic pT of the partons [54].
There will also be modifications due to the recombina-
tion of partons [5]. Nevertheless, the extrapolation of the
hard-scattering results to the low-pT region as obtained
here indicates indeed that the hard-scattering process can
contribute substantially to the production of particles at
the low-pT region4 as has been suggested by Trainor and
collaborators [24].

IX. DISCUSSIONS AND CONCLUSIONS

We have been stimulated by the good agreement of
the Tsallis distribution with the transverse momentum
distribution of produced hadrons over a large range of the
transverse memorandum in pp collisions at LHC energies.
The simplicity of the Tsallis distributions raises questions
on the physical meaning of the few degrees of freedom
entering into the Tsallis distribution.

As the magnitude of the transverse momentum in this
high-pT region is much greater than the mean trans-
verse momentum, concepts such as statistical mechanics
that depend on thermodynamical equilibrium or quasi-
equilibrium may be subject to question. The asymmetry
between the transverse and the longitudinal degrees of
freedom also poses additional difficulties in a statistical
explanation of the full three-dimensional momentum dis-
tribution in this high-pT region.

We therefore attempt to understand the results of sim-
ple Tsallis fit of the transverse momentum distribution in
pp collisions within the relativistic hard-scattering model.
The relativistic hard-scattering model however predicts
that the differential cross section for the production of
high-pT particles should vary as 1/pnT with n = 4 if the
basic process consists of elementary parton-parton 2 → 2
processes. The Tsallis fit to the LHC data gives a power
index for hadrons of n∼7 that is substantially greater.

Our re-examination of the relativistic hard-scattering
model reveals that for minimum biased events without a
centrality selection, the differential cross section at high
pT is dominated by the contribution from a single parton-
parton collision with the α2

s/c
4
T behavior. The multiple

scattering process leads to contributions of higher power

4 Note that, for example, for q 6= 1 the normalization of the rapid-
ity distribution given by Eq. (87) depends on q.
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indices that will not modify significantly the α2
s/c

4
T be-

havior at high pT . The power index n should be ap-
proximately 4+1/2 where the additional power of 1/2
arises from the integration of the structure function. In-
deed, comparison with the experimental power indices in
the transverse differential cross sections for jet produc-
tion supports the approximate validity of a basic α2

s/c
4
T

behavior for parton-parton collisions in relativistic hard-
scattering processes.

As a hadron jet or a photon jet corresponds to the state
of a parton after a parton-parton collision but before the
final-state showering, we now understand that the sys-
tematic difference between the power index of n∼4-5 for
jets [21, 49–53, 61], and n∼6-7 for hadrons [33] may be at-
tributed to the subsequent showering and hadronization
of the parton jet to hadron fragments of lower transverse
momenta. Another part of the increase of the power in-
dex arises from the pT -dependence of the structure func-
tion factor (1−xa0)g(1−xb0)g and the running coupling
constant.

While we examine here the contributions of the hard
processes, there can also be contributions of the produced
particles from soft processes in the low-pT region. These
contributions relative to those from hard processes will
certainly diminish as the collision energy increases. It
is therefore entirely possible that the borderline between
soft and hard processes moves to the lower pT region as
the collision energy increases. How the borderline be-
tween the two processes can be determined will require
much more future work.

Many relevant questions on the borderline between the
high-pT and the low-pT regions will need to be settled in
the future. Firstly, it is expected that hard-scattering
processes will be accompanied by collisional correlations
different from those from soft processes. A careful anal-
ysis of the two-particle correlations in the low-pT region
may provide a way of separating out the soft process
contributions from the hard-scattering collisional contri-
butions in the low-pT region [24]. Secondly, while we
apply the relativistic hard-scattering model to the low-
pT region of pT . 2 GeV/c, the approximations we have
used may not have its range of validity down to such re-
gions. The establishment of the low-pT limit of validity
of the relativistic hard-scattering model will be both an
experimental and theoretical question. Processes such as
parton intrinsic transverse momentum [54] and parton re-
combination [5] will add complexity to the transverse mo-
mentum distribution in the low-pT region. Thirdly, the
separation of the soft process contribution and the knowl-
edge of the borderline between the soft processes and the
hard processes may also provide information whether the
basic collision law should be represented by a linear form
of mT in Eq. (85) or a quadratic form of m2

T in Eq. (89).

The low-pT region is conventionally associated with
soft non-perturbative processes and the high-pT region
with perturbative hard-scattering processes. A very dif-
ferent Two-Component Model (TCM) scheme for parti-
tioning the soft and hard components has been proposed

[23, 24]. Measurements of the STAR Collaboration [23]
on the transverse distribution d3N/dηdp2T around η∼0,
as a function of the event multiplicity classes, reveal that
the distribution d3N/dηdp2T can be approximately writ-
ten as the sum of a term linear in multiplicity, nchS0(pT ),
and a term quadratic in multiplicity, n2

chH0(pT ) [23]. Un-
der the hypothesis that the multiplicity of hard collisions
nh is proportional to n2

ch while the multiplicity of soft
collisions ns is linear in nch, the S0(pT ) contribution,
parametrized in the Levy form or the equivalent Tsallis
form as a function of pT , S0(pT )∼1/[1+(mT−m0)/nT ]n,
is identified in the TCM scheme as the TCM ‘soft’ com-
ponent, and the H0(pT ) contribution, parametrized as a
Gaussian in shifted yT = ln[(mT + pT )/m], is identified
as the TCM ‘hard’ component [23, 24]. As a result of
such a partition, the TCM soft component remains sig-
nificant even at very high pT and contains a power law
1/pnT behavior, which however occurs only in the con-
ventional hard component of relativistic hard-scattering
model. On the other hand, the TCM hard component is a
Gaussian distribution in shifted yT centered at pT ∼ 1.4
GeV and it does not have the power-law behavior of rel-
ativistic hard scattering model at high pT . The TCM
partitions are in variance with those in our physical, and
conventional partitions. Furthermore, from physical ar-
guments, one expects that the multiplicity of relativistic
hard-scattering collisions nh need not be related to the
square of the multiplicity of soft collisions n2

s, and the soft
and hard processes contribute in different regions of pT .
Constraining nh to be proportional to n2

s in the partition
may lead to a distortion of the spectrum of TCM compo-
nents. As there are many different ways of partitioning
the spectrum, the theoretical, physical, and mathemati-
cal basis for the Two-Component Model partition in the
form as presented as soft and hard in [23, 24] may need
to be further investigated.

Returning to the Tsallis distribution which motivates
the present investigation, we can conclude that the suc-
cesses of representing the transverse spectra at high-
pT by a Tsallis distribution arises from (i) the sim-
ple power-law behavior of the parton-parton scattering
cross section, α2

s/c
4
T , with a power index of 4, and (ii)

the few number of the degrees of freedom in the hard-
scattering model. The power index of 4 has been found
experimentally to be approximately valid by examining
the differential cross sections of hadron jets and photon
jets. It has also been found theoretically to be approx-
imately valid by examining the multiple scattering pro-
cess. The power index is not significantly modified by
the multiple scattering process in minimum biased mea-
surements. The α2

s/p
4
T power law lays the foundation

for Tsallis/Hegedorn-type transverse momentum distri-
butions, and the few degrees of freedom in the Tsallis dis-
tribution is a reflection the few degrees of freedom in the
underlying hard-scattering model. There are additional
pT dependence due to the parton structure function, the
running coupling constant, and the parton momentum
integration, which lead to a slightly larger power index.
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Furthermore, in going from the parton measurements in
terms of jets to hadron measurements in terms of frag-
mented hadron products, there are additional showering
and fragmentation processes which give rise to a greater
value of the power index. The Tsallis distribution is flex-
ible enough to adjust the power index to accommodate
the different and changing environment, yielding a non-
statistical description of the distribution.

Because of its non-statistical nature, the parameters
in a Tsallis distribution can only be supplied and sug-
gested from non-statistical means, such as the QCD basic
parton-parton scattering power index and the QCD mul-
tiple scattering shadowing effects. It also is limited in its
application to the transverse degree of freedom, as there
is no way to generalize the Tsallis parameters across the
three-dimensional space from transverse to longitudinal
coordinates. For a more fundamental description, it is
necessary to turn to the basic parton model for answers.

For example, the relativistic hard-scattering can be ap-
plied to collision to other longitudinal regions of pseudo-
rapidities where in the forward rapidity region, the addi-
tional mechanism of direct fragmentation [67] should also
be included. The underlying relativistic hard-scattering
model has a greater range of applications and a stronger
theoretical foundation.
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