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The holonomy correction is one of the main terms arising when implementing loop quantum
gravity ideas at an effective level in cosmology. The recent construction of an anomaly free algebra
has shown that the formalism used, up to now, to derive the primordial spectrum of fluctuations
was not correct. This article aims at computing the tensor spectrum in a fully consistent way within
this deformed and closed algebra.
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I. INTRODUCTION

Nonperturbatively quantizing General Relativity (GR)
in a background-invariant way is obviously an outstand-
ing open problem of theoretical physics. Loop Quantum
Gravity (LQG) is a promising framework to perform this
program (see [1] for introductory reviews). Although this
is still to be demonstrated, there are evidences that dif-
ferent approaches, based either on quantizations (covari-
ant or canonical) of GR, or on a formal quantization of
geometry lead to the same LQG theory. Experimental
tests are, however, still missing. Trying to find possible
observational signatures is a key challenge and cosmolog-
ical footprints are known for being one of the only pos-
sible paths toward a real experimental test of LQG. It
is very hard to make clear predictions in Loop Quantum
Cosmology (LQC) using the full “mother” LQG theory.
General introductions to LQC can be found in [2]. This
study focuses on an effective treatment taking into ac-
count recent results on the correct algebra of constraints.
We first review the theoretical framework. The spectrum
is then derived. Some conclusions and consequences are
finally underlined.
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II. THEORETICAL FRAMEWORK

One of the fundamental quantum corrections expected
from the Hamiltonian of LQG arises from the fact that
loop quantization is based on holonomies, i.e. exponen-
tials of the connection, rather than direct connection
components. Based on a canonical approach, the theory
uses Ashtekar variables, namely SU(2) valued connec-
tions and conjugate densitized triads. The quantization
is obtained through holonomies of the connections and
fluxes of the densitized triads. This is the key ingredient
of the effective approach. The cosmological equations are
modified so as to account for the loop basis of the theory.

The main consequence of the holonomy correction
on the cosmological background is to induce a bounce.
The evolution is not singular anymore and the Big Bang
is replaced by a Big Bounce. The next step consists
in studying the propagation of perturbations within
this modified background. In cosmology, perturbations
are of three different types : scalar, vector and tensor.
We focus here on the tensor modes that are directly
gauge-invariant. Quite a lot of works have already been
devoted to tensor modes in this framework [3]. Beyond,
the phenomenology of LQG is now a well established
field (see [4] for a review). Unfortunately, a recent study
[5] has shown that the previously derived spectra are
most probably incorrect.

The key issue relies in the closure of the algebra of
constraints. Due to general covariance, the canonical
Hamiltonian is a combination of constraints CI . Con-
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sistency requires that the constraints are preserved un-
der the evolution they generate. This is ensured in the
classical theory by the closure of the Poisson algebra of
constraints

{CI , CJ} = fK
IJ (A

j
b, E

a
i )CK , (1)

where CI , I = 1, 2, 3, are the Gauss, diffeomorphism and
Hamiltonian constraints and fK

IJ(A
j
b, E

a
i ) are structure

functions which, in general, depend on the phase space
(Ashtekar) variables (Aj

b, E
a
i ). They form a first class

set. Otherwise stated, the gauge transformations and
evolution generated by the constraints define vector fields
which are tangent to the sub-manifold defined by the
vanishing of constraints.
In LQC, quantum corrections are introduced as effec-

tive modifications of the Hamiltonian constraint. This
generates anomalies: the modified constraints CQ

I do not
form a closed algebra anymore:

{CQ
I , CQ

J } = fK
IJ (A

j
b, E

a
i ) CQ

K +AIJ . (2)

The anomalous terms AIJ are removed by carefully ad-
justing the form of the quantum correction to the Hamil-
tonian constraint through the addition of suitable “coun-
terterms” that vanish in the classical limit. This has been
done in [5], following the approach of [6].
In the classical case, the Poisson brackets between the

constraints read as:

{D(m+g)[N
a
1 ], D(m+g)[N

a
2 ]} = 0 , (3)

{H(m+g)[N ], D(m+g)[N
a]} = −H(m+g)[δN

a∂aδN ] , (4)

{H(m+g)[N1], H(m+g)[N2]} = D(m+g)

[

N̄
p̄ ∂

a(δN2 − δN1)
]

, (5)

where (m+g) stands for gravity and matter. The quantum
corrections are included at the effective level by replacing,
as usual, in the Hamiltonian constraint

k̄ → sin(µ̄γk̄)

µ̄γ
. (6)

The important result of [5] is that the quantum-corrected
algebra is described by a single modification:

{H(m+g)[N1], H(m+g)[N2]} = Ω D(m+g)

[

N̄

p̄
∂a(δN2 − δN1)

]

(7)
where

Ω = cos(2µ̄γk̄) = 1− 2
ρ

ρc
. (8)

The Ω factor encodes the quantum correction, k̄ being
the homogeneous Ashtekar connection and µ̄ being pro-
portional to the ratio between the Planck length and the
scale factor. The Mukhanov-Sasaki [7] equation of mo-
tion for gauge-invariant perturbations of scalar and ten-
sor types vS(T) can be explicitly derived. In conformal
time, the propagation of tensor modes is given by

v′′T −Ω∇2vT − z′′T
zT

vT = 0 ; zT =
a√
Ω
, (9)

6889.0 6889.5 6890.0 6890.5 t

-10

-5

5

10

W,W'

FIG. 1: Evolution of Ω and its derivative with respect to
conformal time. The density where Ω vanishes is half the
critical density whereas Ω′ vanishes at the bounce.

where prime means differentiation with respect to confor-
mal time. This leads to the following equation of motion
for tensor perturbations, defined via vT = zT × hi

a:

hi
a

′′
+ hi

a

′
(

2H − Ω
′

Ω

)

−Ω∇2hi
a = 0. (10)

where H := a′/a is the conformal Hubble parameter.

III. POWER SPECTRUM

This equation being known, it is possible to investigate
the associated primordial power spectrum. This is the
fundamental ingredient for phenomenology. The back-
ground dynamics is not modified by the Ω term. How-
ever, the perturbations will of course undergo a different
evolution.
We use the Fourier transformed version of Eq. (10):

h′′ +

(

2H − Ω
′

Ω

)

h′ +Ωk2h = 0, (11)

where the indices have been skipped for simplicity. The
behavior of Ω and Ω

′ is displayed in Fig. 1. One can
immediately see that Ω vanishes for ρ = ρc/2, where

ρc =

√
3

32π2γ3
m4

Pl ≃ 0.41m4
Pl. (12)

In addition, Ω becomes negative-valued, leading to an
effective change of signature of the metric (Euclidean
phase) around the bounce. The interested reader will
find a technical discussion in [8] and some qualitative
speculations in [9]. Intuitively, this signature change
can be straightforwardly interpreted as a change of sign
of the Poisson bracket between Hamiltonian constraints.
Equation (11) is apparently ill-defined as Ω′/Ω → ∞ at
η = η(−) and η = η(+), the values of conformal time
when ρ = ρc/2 before and after the bounce, respectively.
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FIG. 2: Evolution of the scalar field (upper panel) and the
scale factor (lower panel) as a function of cosmic time (the
bounce corresponds to t = 22693). The parameters are m =
10−3MPl and xB = −1.5× 10−3.

However, regular solutions do exist by rewriting Eq. (11)
as:

h′ = Ωg ; g′ = −2H g − k2h, (13)

which is regular.
The same set of equations in cosmic time are:

ḣ =
Ω

a
g ; ġ = −2Hg − k2

a
h, (14)

where dot means differentiation with respect to cosmic
time and H is the usual Hubble parameter. The dynam-
ics can also be recast in a single second order equation:

g′′ + 2H g′ + (2H ′ +Ωk2)g = 0. (15)

Whatever the chosen form, either (13), (14) or (15),
the evolution can be computed numerically. Of course,
the propagation of modes has to be coupled with the
background evolution which is drastically modified by
the holonomy corrections that are at the origin of the
bounce. The cosmological background evolution is ba-
sically driven by a single scalar massive matter field of
mass m. We define

x :=
mφ√
2ρc

and y :=
φ̇√
2ρc

, (16)
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FIG. 3: Mode amplitudes as a function of time, corre-
sponding (from top to bottom at t = 20000) to k =
102, 101.5, 101, 100.5, 1, 10−0.5, 10−1, 10−1.5, 10−2, 10−2.5, 10−3.
The parameters are m = 10−3MPl and xB = −1.5× 10−3. It
should be noticed that the initial conditions fore each mode
are specified long before the time interval of this plot.

which respectively represent the density of potential and
kinetic energy normalized so that x2

B + y2B = 1 at the
bounce. The free parameters of the study are therefore
m, xB (the value of x at the bouce) and the relative sign
of xB and yB. Interestingly, if the initial conditions for
the background are specified at any time, long enough be-
fore the bounce, the probability of |xB| is strongly peeked
around a given value of order m (in Planck units), with
sign(xB) = sign(yB) (the detailed probability distribu-
tion for xB will be studied somewhere else [10]). For
numerical reasons it is better to specify computational
initial conditions for the background before the bounce
rather than at the bounce. Because of the peaked proba-
bility, the resulting xB is always close to the same value.

It is also necessary to assign a numerical value to
the scale factor, a at some point. This choice has of
course no physical consequences but has to be taken
into account for the interpretation of the meaning of
the wave vectors k, since they are expressed in the
coordinate space and not in the physical space. The
explicit choice made was a = 1 at the bounce, which is
numerically easier than the usual normalization at the
nowadays value.

In Fig. 2, the evolution of the scalar field and scale fac-
tor are shown for some typical parameters. As expected,
the oscillations of the scalar field are amplified before the
bounce, because the negative Hubble parameter acts as
an anti-friction term. Then, just after the bounce, the
Hubble parameters becomes positive and large, acting as
a huge friction and therefore leading to slow roll inflation.

The amplitudes of some Fourier modes of h are plotted
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FIG. 4: Power spectrum of tensor perturbations after inflation for m = 10−3MPl and (left panel), and for m = 10−1MPl (right
panel).

in Fig. 3. They are obtained by chosing the Minkowski
vacuum as the initial state, since z′′/z → 0 in the remote
past.
Before the bounce, for k2 ≫ z′′/z, |h|2 = 1/(2ka2).

When z′′/z ≈ k2 or z′′/z > k2, |h|2 grows quicker.
Since the amplitudes of smaller k start growing quicker
before the amplitudes of larger k, this adds up to a
collecting effect that brings all modes up to a certain
k ≈ maxt<tB (

√

z′′/z) up to the same amplitude. Af-
ter the bounce, the amplitudes oscillate until k2 ≫ z′′/z
when we get v ∝ a (as can bee seen from Eq. (9)) and
therefore h = constant.
Finally, the power spectra for different cases are pre-

sented in Fig. 4. The main features are the following:

• a flat (scale invariant) infrared limit,

• an oscillating intermediary part,

• an exponential behavior in the ultraviolet limit
(starting around k = 2 independantly of m).

This obviously exhibits important deviations, with re-
spect both to the standard GR case and with respect to
previous LQC computations without the Ω term. Al-
though surprising at first sight, the exponential diver-
gence in the UV limit might not be catastrophic as
physics at very small scale is anyway not described by
the primordial power spectrum.
Furthermore, this ultraviolet behavior can be checked

analytically. In the large k limit of Eq. (9), the
WKB conditions are satisfied in the euclidean phase
around the bounce. More precisely, those WKB con-

ditions are met for η ∈ [η(−) + ǫ
(−)
k , η(+) − ǫ

(+)
k ] with

ǫ
(±)
k ∼ (k2

∣

∣Ω′(η = η(±)
∣

∣)−1/3. The Mukhanov-Sasaki
function can be approximated by

vT = v+e
ik

∫ √
Ωdη + v−e

−ik
∫ √

Ωdη. (17)

As Ω is negative-valued during the euclidean phase, the
tensor mode is dominated by its exponentially-growing

solution

h ∝ exp

(

k

∫ η(+)−ǫ
(+)
k

η(−)+ǫ
(−)
k

√

|Ω|dη
)

. (18)

This can also be seen in Fig. 3 where the amplitude of
large k modes grows rapidly in the vicinity of the bounce,
where Ω < 0.

IV. DICUSSION

This study implements in a consistent way the mod-
ified algebra induced by holonomy corrections in the
calculation of the primordial tensor power spectrum.
Thanks to numerical calculations, it was possible to solve
the equation of motion for gravitational waves. The re-
sulting spectrum exhibits specific features. Of course,
this raises important questions. First, the well known
problem of trans-planckian modes in inflation (see, e.g.,
[11]) should be treated with a specific care in LQG where
the very meaning of a length smaller than the Planck
length is dubious. If the number of e-folds of inflation is
chosen (by appropriately setting a very small fraction of
potential energy density at the bounce) to be just above
the minimum required value, then modes relevant for
the CMB are still sub-planckian and the approach makes
sense anyway. In other cases, the effective theory might
just breakdown. With the normalization chosen in this
work the trans-planckian window corresponds to k > 1.
Second, the propagation of modes through the euclidean
phase is not straitghforward [8]. Strictly speaking, there
is no ”time” in that region and the concept of evolution is
not well defined. In this work, we have deliberately cho-
sen to withdraw the conceptual issues associated with
the transition between hyperbolic and elliptic solutions
and to focus on a well defined mathematical solution. An
alternative approach, based on the BKL conjecture, will
be studied later [12]. An analogous study should also
be performed for scalar modes. The regularization trick
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used here, however, does not apply directly, and other
methods have to be constructed. We stress out that the
case of scalar modes with holonomy corrections has been
studied in [13] and [14] but in different settings for the
background ; for the study of [13] is restricted to super-
inflation while the study of [14] considered a dust-like
bouncing Universe. Finally, those results will have to be
compared with forthcoming studies based on other very
recent approaches to LQC [15].
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