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We provide a formula for the scaling behaviour of the inflationary bispectrum in the ‘squeezed’
limit where one momentum becomes much smaller than the other two. This determines the scaling
of the halo bias at low wavenumber and will be an important observable for the next generation of
galaxy surveys. Our formula allows it to be predicted for the first time for a generic inflationary
model with multiple light, canonically-normalized scalar fields.

For the last twenty years, our information about the
very early universe has primarily come from the large-
scale anisotropies of the cosmic microwave background
(CMB). But over the next decade fresh data will come
from a new generation of large-scale structure surveys
such as Euclid and LSST, and complementary small-scale
CMB observations such as PIXIE [1].

These surveys will probe a new suite of observables, re-
quiring the development of techniques by which they can
be predicted from models of the early universe. In this
Letter we focus on an observable which will be a target
for future surveys—the scale-dependent halo bias, which
is sensitive to the scaling of the primordial bispectrum in
the so-called squeezed limit. It is a discriminant of infla-
tionary models with more than one active field [2, 3].

Scale-dependent bias.—We cannot observe the pri-
mordial density field itself, but only correlations between
populations of objects which trace its properties. One
such population are halos of mass M , which form from
collapse of over-dense regions. The clustering of these
halos is described by the halo–halo or matter–halo power
spectra P hh and P δh, where δ is the primordial density
contrast. At lowest order the relationship between δ and
the halo number density is linear P δh(k) ≈ bLP δδR (k) and
therefore P hh(k) ≈ b2LP

δδ
R (k). The superscript ‘R’ de-

notes smoothing over a lengthscale R sufficiently large to
enclose the halo mass M .

Corrections to bL come from higher-order correlations
of δ. They can be expressed using the n-point functions
of the curvature perturbation ζ, which is typically used
to characterize predictions of inflationary models. The
leading effect comes from the three-point function and
induces a k-dependent shift bL → bL + δb(k), where [4, 5]

δb(k) =
M−1
R (k, z)

4π2σ2
M

( δ2
c

σ2
M

− 1
)∫ ∞

0

q2dq MR(q, z)

×
∫ 1

−1

dµ MR(Q, z)
Bζ(k, q,Q)

Pζ(k)
.

(1)

Here, z is the redshift and Q2 ≡ k2 + q2 + 2µkq; the
critical density for spherical collapse is δc ' 1.69; and
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σ2
M is the variance of the tracing population of mass-M

halos [6]. The kernel MR(q, z) is related to the linearized
Poisson equation connecting the density contrast δ(k, z)
and ζ(k). It can be written as

M(k, z) =
2

5

k2

H2
0

T (k)

Ωm,0

g(z)

1 + z
. (2)

The transfer function T (k) is normalized to unity as k →
0, and g(z) accounts for suppression of growth during
Λ-domination. The present-day matter density is Ωm,0.
To smooth δ(k, z) on the scale R we introduce a window
function WR(k) and define MR(k, z) ≡ WR(k)M(k, z).
Finally, the spectrum and bispectrum of the curvature
perturbation satisfy

〈ζ(k1)ζ(k2)〉 = (2π)3δ(k1 + k2)Pζ (3)

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)Bζ . (4)

Scaling of δb.—For k smaller than the wavenumber keq

corresponding to the horizon scale at matter–radiation
equality, we have T (k) ∼ 1 and M(k, z) proportional to
k2. For k < keq this sets the dominant scaling of δb. It is
the complete result whenever the integral over Bζ does
not depend on k, as for the case of the local model with
constant amplitude fNL [4, 5].

In this Letter we focus on the possibility that the in-
tegral in (1) also scales nontrivially with k. The precise
scaling depends on details of the underlying inflation-
ary model, and may constitute a useful observable. Be-
cause M(q) grows steeply with q for q < keq, and the
window function restricts the integral to wavenumbers
q . R−1, the dominant contribution will come from the
region keq . q . R−1. If k � keq then this is the
‘squeezed’ region, where one of the momenta in the bis-
pectrum is much less than the other two. Therefore, for
k � keq, the halo bias is a probe of the squeezed limit of
the bispectrum.

To study this limit we denote the ‘squeezed’ momen-
tum kl. The other two momenta are taken to be of order
ks, with kl � ks. We will see below that it has not
yet been possible to obtain reliable predictions for the
bispectrum in this limit, because the presence of multi-
ple large hierarchies causes perturbation theory to break
down. But if kl is not too much smaller than ks, the
bispectrum can be approximated by a power law with
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spectral index nsq,

Bζ ≈
Bζ(ks)
4k3

lk
3
s

(
kl
kt

)nsq(ks){
1 + O

(
k2
l

k2
s

)}
, (5)

where Bζ(ks) is an overall amplitude depending weakly

on ks and kt =
∑
i ki is the perimeter of the momentum

triangle k1+k2+k3 = 0. The spectral index nsq measures
the response of Bζ to a change of kl and may also depend
weakly on ks. In what follows, our aim is to provide a
precise formula for the spectral index nsq and relate it to
the scaling of δb.

The integral over q in (1) has been obtained for a va-
riety of simple templates [3, 5, 7]. Here we focus on the
scale dependence inherited from the squeezed limit of the
bispectrum. The amplitude and scale-dependence of the
spectrum and bispectrum can be expressed in terms of
an arbitrary reference scale k∗. We write

Pζ(k) =
Pζ(k)

2k3
=
Pζ(k∗)

2k3

(
k

k∗

)ns(k∗)−1

, (6)

where ns − 1 ≡ d lnPζ/d ln k is the spectral index of Pζ ,

and Bζ(ks) = Bζ(k∗)(ks/k∗)α. We assume ns and nsq to

be approximately constant over the range keq . q . R−1.
Because this is comparatively small, with Rkeq ∼ 0.1
on cluster scales, we expect this to be reasonable. We
conclude that δb has approximate scaling behaviour

δb ≈ ANL ×MR(k, z)−1

(
k

k∗

)nsq−(ns−1)

, (7)

where the amplitude ANL depends on details of the
model, the scale R and the background cosmology. In
general, it may be difficult to calculate. For the purposes
of this paper we do not require a precise estimate, be-
cause the observable is the scaling behaviour of δb rather
than its amplitude. This is a strength of the approach.

We define the combination nδb ≡ nsq − ns + 1 as the
spectral index of the bias. The main result of this Letter
is a prescription to compute it for any inflationary model.
Constraints on nδb have been obtained from present-day
data [2], although the results show sensitivity to priors.
In particular, the first Planck results impose strong con-
straints on the value of fNL local [8] and therefore on the
range of models that can show an observable nδb. Im-
provements are expected from a future Euclid- or LSST-
like survey [9].

The kt-dependence of the bispectrumBζ was first stud-
ied by Chen [10]. Formulae for a multiple-field model
were given by Byrnes et al. [11, 12]. Our analysis dif-
fers because of its focus on scaling in the squeezed limit,
rather than scaling of the amplitude for nearly equilat-
eral momenta. Later, Tzavara & van Tent studied the
kt-dependence and the scaling behavior of (5) in a two-
field model using a Green’s function formalism [13]. In
this Letter, we give expressions using the separate uni-
verse formalism, in both its ‘variational’ and ‘transport’

versions, which are valid for any number of scalar fields.
These expressions are only valid when super-horizon evo-
lution of curvature perturbations has ceased, in other
words, when the adiabatic limit has been reached. Oth-
erwise, if isocurvature perturbations persist at the end of
inflation, it is necessary to augment the model by pro-
viding a prescription for their subsequent evolution. Our
formulae apply when it is sufficient to evaluate the curva-
ture perturbation at or before the end of the inflationary
phase.

The scalar spectral index.—Sasaki & Stewart used
the separate universe method to give an expression for
ns [14]. More recently an alternative (but equivalent)
prescription was given in Ref. [15], which we follow here
[16]. According to the separate universe picture, the
power spectrum evaluated at time t can be written as

Pζ(k)|t = NαNβΣαβ(k)|t0 , (8)

where Nα ≡ ∂N(t, t0)/∂φα(t0), and N measures the
number of efolds elapsed from a spatially flat slice at
time t0 to a uniform density hypersurface at later time
t; indices α, β, . . . , label the different species of scalar
field; and Σαβ defines the two-point function of scalar
field fluctuations,

〈δφα(k1)δφβ(k2)〉t0 = (2π)3δ(k1 + k2)
Σαβ |t0

2k3
, (9)

with k = |k1| = |k2|. The time t0 can be chosen to
coincide with the horizon crossing time of k, which we
will denote with a subscript ‘k’.

The spectral index can be obtained from (8) provided
we know Σαβ to next-order in slow-roll, which was first
obtained by Nakamura & Stewart [17]. At this order and
for light, canonically-normalized fields, we find

Σαβ = H2
∗

(
δαβ + 2r∗αβ − 2u∗αβ ln(−k∗τ)− 2M∗αβ ln

2k

k∗

)
,

(10)
where ‘∗’ denotes evaluation at the horizon-crossing time
for an arbitrary scale k∗; the conformal time τ satisfies
dt = a(t) dτ ; rαβ is a constant; uαβ = −mαβ/3H

2 is a
rescaled mass matrix for the fluctuations, equivalent to
the expansion tensor of the inflationary flow field [18];

Mαβ ≡ εδαβ + uαβ , and ε ≡ −Ḣ/H2.
The k-dependence can be extracted from the coefficient

of ln k/k∗, provided we know how to choose k∗. To do
so, note that the ln(−k∗τ) term is the lowest power in
a series expansion which describes the time dependence
of the fluctuations. Since we wish to estimate the scale
dependence at a fixed time t0 we can choose the arbitrary
scale so that k∗τ = −1, making all powers of ln(−k∗τ)
negligible. With this choice the evaluation point of H,
rαβ , uαβ and Mαβ becomes coincident with t0 and the
spectral index simplifies to

ns − 1 = −2
NαNβMαβ |k

NλNλ
. (11)
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Squeezed bispectrum.—A similar approach can be
used to obtain the spectral index nsq in (5). We require
a next-order expression for the bispectrum, in analogy
with (10). The requisite corrections are known for gen-

eral single-field models [19], and were recently obtained
for multiple canonically-normalized fields in Ref. [20]. In
the squeezed limit they can be written

〈δφα(kl)δφβ(ks)δφγ(k′s)〉 = (2π)3δ(kl + ks + k′s)Bαβγ
kl→0−→ (2π)3δ(ks + k′s)

1

4k3
lk

3
s

(
bα|βγ + O

(
k2
l

k2
s

))
. (12)

Corrections of order ∼ k2
l/k

2
s may be relevant in the ‘not-so squeezed’ limit where the hierarchy kl/ks is modest [21],

but in the present case we expect their effect to be negligible. The coefficient bα|βγ is symmetric under interchange of
the indices β and γ, but not necessarily under other permutations. In what follows it is helpful to break it into terms
of lowest-order and next-order in slow-roll, which we label ‘lo’ and ‘nlo’. Using the results of Ref. [20], we find

bloα|βγ = −H4
∗
φ̇α
H∗

δβγ + · · · , (13a)

bnloα|βγ =
(
−2H4

∗uαβγ − u∗αλbloλ|βγ − u
∗
βλb

lo
α|λγ − u

∗
γλb

lo
α|βλ

)
ln(−k∗τ)− 2M∗αλb

lo
λ|βγ ln

2kl
k∗

+ · · · (13b)

The omitted terms are not logarithmically enhanced,
or are proportional to ln(ks/k∗) or ln(kt/k∗). In (13a)
and (13b) we have chosen k∗ ∼ kt, making these contri-
butions negligible Therefore, if we intend to estimate this
expression at some fixed time, only ln(kl/k∗) can gener-
ate dangerously large contributions. In analogy with the
ln(−k∗τ) term in (10), this is the lowest term in a series
expansion, and, if uncontrolled, the series will diverge
when kl/k∗ ≈ kl/ks → 0. It is for this reason that there
is no analytic formula for the squeezed limit of the bis-

pectrum in a multiple-field model.
Ref. [20] developed a method based on the dynamical

renormalization group to control the series of ln(−k∗τ)
terms in the limit τ → 0. It is not yet clear whether
a similar scheme could be used to deal with the series
expansion of ln(kl/ks). For this reason our results are
untrustworthy for kl � ks. Our approach may be reliable
up to a hierarchy | ln(kl/ks)| of order a few.

Using the separate universe formula, the bispectrum
Bζ can be written (for an arbitrary momentum triangle)

Bζ(k1, k2, k3)|t = NαNβNγBαβγ(k1, k2, k3)|t0

+NαβNγNδ

(
Σαγ(k1)

k3
1

Σβδ(k2)

k3
2

+
Σαγ(k1)

k3
1

Σβδ(k3)

k3
3

+
Σαγ(k2)

k3
2

Σβδ(k3)

k3
3

)
|t0 ,

(14)

where Nαβ ≡ ∂2N(t, t0)/∂φα(t0)∂φβ(t0). The squeezed spectral index, nsq, can be computed using this expression.
We take t0 to be the horizon crossing time for kt and denote evaluation at this time with a subscript ‘kt’. Choosing
k∗ ∼ kt, the term proportional to ln(−k∗τ) in (13b) vanishes and the scale dependence of Bαβγ can be read off. In
combination with (11), we obtain

nsq = −2
NαNβNγ(Mαλb

lo
λ|βγ)|kt +NαβNγNδ

(
MαλΣλγ +MγλΣαλ

)
|ktΣβδ|kt

NλNµNνbloλ|µν |kt + 2NλµNνNπ(ΣλνΣµπ)|kt
. (15)

Whenever the bispectrum in a multiple-field inflation-
ary model is large enough to be observable, the ‘nonlin-
ear’ terms in the second line of (14) dominate the ‘in-
trinsic’ term in the first line [22, 23]. In this limit, since
Σαβ |kt ≈ H2

kt
δαβ , we can write nsq in the simpler form

nsq ≈ −2
NαβNγNβMαγ |kt

NλµNλNµ
, (16)

and under the same assumptions we conclude that

nδb ≈ −2
NαβNγNβMαγ |kt

NλµNλNµ
+ 2

NαNβMαβ |kt
NλNλ

. (17)

This constitutes one of the principal results of this Letter.

Transport equations.—Eqs. (11) and (15) are framed
in terms of the ‘variational’ formulation of the separate
universe method, which involves ‘variational’ derivatives
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such as Nα. A successful numerical implementation re-
quires sufficient resolution to extract the variation of N
against a background of numerical noise accumulated
during the integration from t0 to t. An alternative ap-
proach to solving (8) and (14) consists in integrating
the correlators of field fluctuations using Jacobi evolu-
tion equations [18]. Mathematically, both methods are
equivalent, but the Jacobi approach is simpler because it
is more tolerant to numerical noise. For details on this
formalism we refer to Refs. [18, 24–28].

To write a Jacobi-type equation which defines the time
evolution of the coefficient matrix bα|βγ in (12), we define
uαβγ ≡ ∂uαβ/∂φγ . Using the prescription of Ref. [20], it
follows that

−
dbα|βγ

d ln τ
= uαλbλ|βγ+uβλbα|λγ+uγλbα|βλ+2uαλµΣλβΣµγ .

(18)
Note that we should regard one of the two-point functions
Σαβ to be evaluated at kl and the other at ks. A suitable
initial condition at horizon-crossing is provided by the
lowest-order value (13a), after setting k∗ ∼ kt.

To compute the scale dependence in the squeezed limit,
we adjust kl while keeping ks fixed. Defining nα|βγ ≡
dbα|βγ/d ln kl, it follows that

−
dnα|βγ

d ln τ
= uαλnλ|βγ + uβλnα|λγ + uγλnα|βλ

+ uαλµnλβΣµγ + uαλµΣλβnµγ ,
(19)

where nαβ ≡ dΣαβ/d ln k. The initial condition is given
by nα|βγ = −2Mαλb

lo
λ|βγ near horizon-exit for kt.

Likewise Σαβ and nαβ satisfy [15]

dΣαβ
dN

= uαλΣλβ + uβλΣαλ, (20a)

dnαβ
dN

= uαλnλβ + uβλnαλ, (20b)

with respective initial conditions Σαβ = H2
∗δαβ and

nαβ = −MαλΣλβ − MβλΣαλ near the horizon-crossing
time for kt, supplied by (10).

To relate nαβ and nα|βγ to the spectral indices ns and
nsq requires the gauge transformation to ζ. We label
these coefficients N t

α because they are obtained by com-
puting a perturbation in the e-folding number N , but the
label t emphasizes that they involve only local quantities
at t. Explicit expressions for these gauge transformations
are tabulated in Anderson et al. [26]. The spectral index
of the bias can be written

nδb =
N t
αN

t
βN

t
γnα|βγ + 2N t

αN
t
βN

t
γδnαγΣβδ

N t
αN

t
βN

t
γbα|βγ + 2N t

αN
t
βN

t
γδΣαγΣβδ

−
N t
αN

t
βnαβ

N t
λN

t
µΣλµ

.

(21)
Focusing on multiple-field models with a bispectrum
large enough to be detectable, in analogy with Eq. (16),
this expression reduces to

nδb =
N t
αN

t
βN

t
γδnαγ

N t
αN

t
βN

t
γδΣαγ

−
N t
αN

t
βnαβ

N t
λN

t
µΣλµ

. (22)

(a) Double quadratic model (b) φ4/axion model

FIG. 1: Evolution of nδb some efolds before the end of inflation in
two different models. The values of fNL shown are esti-
mated at the end of inflation.

As an example, Fig. 1 depicts the evolution of nδb in
double quadratic inflation [29–32] and in the φ4-plus-
axion model studied by Elliston et al. [33]. To generate a
significant nδb, the bispectrum must scale differently to
the power spectrum. If |fNL| is small this is typical, as
in Fig. 1a. Alternatively, if |fNL| is O(1) or larger the
scaling is more similar, as in Fig. 1b. Where the spectral
index of the bias is large we find that it is often negative,
giving the squeezed limit a red tilt. This is the opposite of
quasi-single-field inflation (QSFI), where nδb > 0. This
can be understood heuristically. QSFI contains mas-
sive modes, which mediate finite-range forces and tend
to soften long-range correlations. In comparison, models
with multiple active fields tend to add tachyons to the
spectrum which mediate long-range forces and therefore
enhance correlations.

Conclusions.—The halo bias is known to inherit a scale
dependence from the underlying inflationary model. It is
therefore an important observable which is likely to be
measured by future surveys of the galaxy distribution.
In this Letter we focus on its scaling, for which we do
not require detailed knowledge of the amplitude ANL.
We provide a formula to compute nδb for any model of
multiple-field inflation. To obtain a significant effect, the
squeezed limit (characterized by the spectral index nsq)
should scale differently to the power spectrum (charac-
terized by ns − 1). This can be measured most easily
when nδb < 0, making k−2+nδb diverge more strongly in
the limit k → 0. Therefore, a slightly red-tilted bias will
be easier to constrain than a blue-tilted one.

The principal drawback of our method is the use
of a spectral index to parametrize the behavior of the
squeezed bispectrum. For a sufficiently large variation
of kl the bispectrum may have a shape which cannot
be approximated by a power law. Nevertheless, our for-
mula should give a good approximation provided the hi-
erarchy ln(kl/ks) does not exceed ∼ a few. Near-future
surveys such as DES may probe a hierarchy of order
ln(kl/ks) ∼ −2, but surveys arriving in the medium- to
long-term, such as Euclid, may probe ln(kl/ks) ∼ −8.
Small-scale observables such as µ-distortions may even
probe ln(kl/ks) ∼ −19. For such cases a more precise
description of the bispectrum will be required, perhaps
using numerical methods.
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