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Abstract

Starting from the Seiberg-Witten solution of N = 2 SQCD with the U(N) gauge group
and Nf quark flavors we construct the so-called µ-dual N = 1 theory in the r vacua in
the regime analogous to that existing to the left of the left edge of the Seiberg conformal
window, where r is the number of condensed quarks. The strong-weak coupling duality is
shown to exist in the so-called zero vacua which can be found at r < Nf −N . We show that
the µ-dual theory matches the Seiberg dual in the zero vacua.



1 Introduction

Seiberg’s duality in its original formulation [1, 2] relates N = 1 supersymmetric QCD
(SQCD) with the SU(N) gauge group and Nf quark flavors to a dual theory with the SU(Ñ)
gauge group, the same number of dual quarks, plus a neutral meson field M . Here

Ñ ≡ Nf −N . (1.1)

These two theories forming the Seiberg pair are distinctly different in the ultraviolet (UV)
domain, but describe exactly the same dynamics in the infrared (IR) domain. Later Seiberg’s
duality was generalized to other gauge groups and extended to other matter contents. Al-
though Seiberg’s duality was a conjecture it passed numerous tests both on the field and
string theory sides, and is viewed as firmly established.

A breakthrough in understanding the strong coupling gauge dynamics was achieved with
the Seiberg-Witten solution [3, 4] of N = 2 SQCD. Combining the above two constructions
together could shed light on the physical nature of Seiberg’s dual quarks and provide us with
an additional understanding of low-energy physics in N = 1 SQCD, in particular, physics of
confinement and screening in the regime where the dual theory is weakly coupled.

A crucial step in this direction was made in [5]. In this paper SU(N) N = 2 theory
deformed by the mass term µTrA2 for the adjoint matter was considered. At small µ this
theory was described by the Seiberg-Witten solution [3, 4], while at large µ it obviously
flows to N = 1 SQCD. It was shown that the SU(Ñ) gauge group present at low energies
at the root of a baryonic branch survives the large µ limit. This explains the emergence
of the SU(Ñ) gauge group in the Seiberg’s dual theory. The presence of a large number
of distinct vacua in the IR, with different physical features, was not discussed in [5]. And
understandably so, since the analysis of [5] was carried out with massless quarks in which
case certain vacua coalesce, and Higgs branches develop from common roots.

Much later it was noted (in the framework of the U(N) gauge theories) that Seiberg’s dual
theory and the theory at the baryonic root are associated with different vacua [6]. To identify
distinct vacua we introduced mass terms mA, A = 1, ..., Nf to the quark fields. It is known
that the µ-deformed N = 2 SQCD with generic quark masses has the so-called r vacua (they
are isolated) in which r quark flavors condense,1 r ≤ N . The Seiberg N = 1 duality was
in fact formulated for monopole vacua with r = 0 in the limit µ → ∞. In the r 6= 0 vacua
the condensates of r quark flavors are determined by the value of the effective parameters
ξA ∼ µmA, hence, they are runaway vacua in the limit µ → ∞ corresponding to N = 1.
The root of the baryonic branch in the U(N) version of the theory corresponds to the r = N
isolated vacuum. In the limit µ → ∞ this vacuum becomes a runaway vacuum too.

The number of quark flavors Nf to be considered below is subject to the constraint

N + 1 < Nf <
3

2
N . (1.2)

1Note that r = N is the maximum possible number of condensed quarks. The r counting is carried our
at large mA, see below.
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This domain lies to the left of the left edge of the Seiberg conformal window. In this domain
the original “electric” theory in the Seiberg pair is asymptotically free and strongly coupled
in the IR, while its dual “magnetic” partner is infrared free and weakly coupled in the IR.
This pattern will be preserved in our consideration.

In this paper we mostly consider r vacua with “small” r,

r <
Nf

2
, (1.3)

see [7, 14] and Sec. 6.1 for the discussion of r > Nf/2 vacua. Our strategy is as follows:
we start from the original U(N) theory in the N = 1 large-µ limit, which is in fact the
UV limit of the theory. Then we decrease µ approaching the N = 2 limit. At this stage
the mass parameters mA are kept large. Then we use the Seiberg-Witten solution to an-
alytically continue to the domain of small mA. The theory obtained in this way still has
N = 2 supersymmetry. Then we increase µ to decouple the adjoint scalar superfield and
return to N = 1. In doing so we keep µ large but finite in order to keep track of all r vacua.
In this limit we find an IR-free model, the dual partner to our original N = 1 theory. At
every stage of this road full theoretical control is maintained, including the IR domain. The
Seiberg-Witten solution is combined with the powerful tools worked out by Cachazo, Seiberg,
and Witten [9], and by Dijkgraaf and Vafa [10]. This allows us to identify, from the analysis
of the dual partners, the relevant vacua and their dynamics. We are only interested in such
dual partners that are at weak coupling in the IR, thus maintaining the same pattern as the
one inherent to the Seiberg duality in the domain to the left from the conformal window.
We will see that the original U(N) theory can flow in the IR to the dual IR free theory, with
the gauge group U(Ñ) (i.e. exactly the same as in [1, 2]), possessing special r vacua, to be
referred to as the zero vacua. We discuss the corresponding dynamics, as well as the nature
of Seiberg’s dual quarks.

To briefly explain the emergence and relevance of the zero vacua in the problem at hand
we note that our starting point is N = 2 SQCD with a small µTrA2 term. In r vacuum
with r < Nf/2 at low energies, after developing condensates of r quarks, this theory reduces
to the IR free U(r)×U(1)N−r gauge theory with r light quarks and (N − r − 1) Abelian
monopoles.2 Using the results of [3, 4, 9] one can detect a large number of various r vacua in
the above low-energy theory. Among these vacua we identify a special set of the zero vacua,
namely those, in which the gaugino condensate tends to zero in the small mA limit. In all
other r vacua (to be referred to as Λ vacua) it stays finite. In fact, the zero vacua exist only
at

r < Ñ . (1.4)

The above theory can be “uplifted” (by increasing µ) to N = 1. This uplift leads to the
original U(N) theory in UV (see Fig. 1). At the same time, at small mA the uplift from
the zero vacua leads us to an N = 1 µ-dual theory weakly coupled in the IR and strongly
coupled in the UV, with the enhanced U(Ñ) gauge group and Nf flavors of quarks. The

2The U(r) gauge factor implies that all mass terms mA are almost equal.
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r quark flavors condensed in the vacuum trigger confinement of monopoles charged with
respect to the Cartan generators of the SU(r) group. Thus the dual theory is in the mixed
Coulomb/Higgs phase. The U(Ñ) gauge group of the µ-dual theory is the same as Seiberg’s
dual gauge group. We explicitly show that the µ-dual theory matches the generalized Seiberg
dual in the zero vacua.3 This match reveals the nature of Seiberg’s dual quarks. They are
just ordinary quarks of the original theory.

µ
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T
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ar
d 

N
=

1

N=2  
NN f

2
N
~

Weak coupling 

Strong coupling r=N

zero vacua

Figure 1: Uplifting N = 2 theory to N = 1 . The zero vacua for which weakly coupled µ-dual
theories exists can be found in the unshaded domain. The r = N theory in the upper-right corner
is exceptional. For r = N weakly coupled dual theory exists, while all other theories in the shaded
domain have strongly-coupled duals.

What happens to the Λ vacua, which exist both in the interval N > r ≥ Ñ (populated
exclusively by such vacua) and in the interval (1.4)? These vacua do not have IR weak
coupling descriptions at large µ. Unfortunately, this was overlooked in [7, 8], where we
claimed a discrepancy between the so-called r-dual theory and the generalized Seiberg dual
at large µ.4 Here we correct this claim. The only exception is the r = N case, where a
weakly coupled dual with the Seiberg U(Nf −N) group does exist [14].

To conclude the introductory section we note that previously we discussed [15, 14] the
r > Nf/2 vacua in the N = 2 limit in some detail. In the N = 2 limit (small µ) the strong-
coupling domain of the original theory in the r vacua (with r > Nf/2) can be described in
terms of a weakly coupled r-dual theory. The gauge group in this theory is U(ν)×U(1)N−ν ,
ν = Nf −r. Moreover, the r-dual theory has Nf flavors of quark-like dyons. Condensation of
these dyons leads to the confinement of monopoles. Quarks and gauge bosons of the original
theory are in the “instead-of-confinement” phase [7, 8, 15, 6]. However, as was already
mentioned above, this weak-coupling r-dual description present at small µ becomes strongly
coupled once we increase µ, see Fig. 1.

3The generalization of the Seiberg duality for all r vacua in µ deformed U(N) SQCD (with finite µ) was
worked out in [11], see also [12].

4A loophole was the assumption of weak coupling in the regime, which is a continuation of the Argyres-
Douglas (AD) points [13] to large µ, while in fact the regime considered was at strong coupling.
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The paper is organized as follows. In Sec. 2 we review µ-deformed N = 2 supersymmetric
QCD and its vacuum structure in the limit of small µ. In Sec. 3 we identify zero and Λ-vacua
using Cachazo-Seiberg-Witten exact solution for chiral rings [9]. In Sec. 4 we describe µ-
duality which relates the U(r)×U(1)N−r hybrid quark-monopole low energy theory present
in zero vacua at small µ to µ-dual quark theory with U(Ñ) gauge group emerging at large µ.
In Sec. 5 we discuss the generalization of Seiberg’s duality to r vacua of the theory at large
but finite µ and show the match of µ-dual theory with Seiberg’s dual. Finally, in Sec. 6 we
briefly describe r duality in r > Nf/2 vacua and summarize various phases of N = 1 QCD
present in the r vacua at strong coupling. In Sec. 8 we present our conclusions.

2 Preliminaries

2.1 N = 2 SQCD (small µ)

Our basic “microscopic” (or UV) theory is described in detail in our previous publications
(e.g. [17, 18] and review papers (e.g. [19]), where the reader can find all relevant notation.
The gauge symmetry is U(N)=SU(N)×U(1), with the µTrA2 deformation term. We have
Nf quark hypermultiplets generally speaking endowed with the mass terms mA. The number
of flavors is subject to the constraint (1.2) ensuring asymptotic freedom of the microscopic
theory as well as IR freedom of the dual theory.

The superpotential of the undeformed N = 2 theory has the form

WN=2 =
√
2

Nf
∑

A=1

(

1

2
q̃AAqA + q̃AAa T aqA +mA q̃Aq

A

)

, (2.1)

where A and Aa are chiral superfields, the N = 2 superpartners of the U(1) and SU(N)
gauge bosons. The deformation term

Wdef = µTrΦ2, Φ ≡ 1

2
A+ T aAa (2.2)

does not break N = 2 supersymmetry in the small-µ limit, see [20, 21, 17] (while at large
µ this theory obviously flows to N = 1 ). For small µ, i.e. µ ≪ ΛN=2, and if all quark
masses are equal this term reduces to the Fayet-Iliopoulos F term which can be rotated
[20, 21, 17, 18] into the D term [22].

2.2 Vacua

We define the r vacuum as a vacuum with r flavors of (s)quarks condensed It is assumed
that the r counting is performed at large quark masses. As we will see in Sec. 3, effectively
the value of r depends on the quark masses [8]. It is obvious that the maximal value of r is
N . If r = N the gauge group is fully Higgsed [19, 15].
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For generic mA the number of the isolated r vacua with r < N is [11]

Nr<N =

N−1
∑

r=0

(N − r)Cr
Nf

=

N−1
∑

r=0

(N − r)
Nf !

r!(Nf − r)!
. (2.3)

Consider a particular vacuum in which the first r quarks develop nonvanishing vacuum
expectation values (VEVs). Quasiclassically, at large masses, the adjoint scalar VEVs are

〈Φ〉 ≈ − 1√
2
diag [m1, ..., mr, 0, ..., 0] , (2.4)

The last (N−r) entries vanish at the classical level. In quantum theory these entries acquire
values of the order of ΛN=2, generally speaking. In the classically unbroken U(N − r) pure
gauge sector the gauge symmetry gets broken through the Seiberg–Witten mechanism [3]:
first down to U(1)N−r and then almost completely by condensation of (N−r−1) monopoles.
A single U(1) gauge factor survives, though, because monopoles are charged only with respect
to the Cartan generators of the SU(N − r) group.

The presence of this unbroken U(1) factor in all r < N vacua makes them different from
the r = N vacuum: in the latter there are no long-range forces.

In this paper we focus on the r vacua with r < Nf/2. Then the low-energy theory in the
given r vacuum (following from the microscopic theory under consideration) has the

U(r)× U(1)N−r , (2.5)

gauge group, assuming that the quark masses are almost equal. Moreover, Nf quarks are
charged under the U(r) factor, while (N−r−1) monopoles are charged under the U(1) factors.
Note that the quarks and monopoles are charged with respect to orthogonal subgroups of
U(N) and therefore are mutually local (i.e. can be described by a local Lagrangian). The
low-energy theory is infrared-free and it is at weak coupling as long as VEVs of quarks and
monopoles are small.

2.3 Large values of mA

The quark VEVs in the large-mass limit can be read off from the superpotentials (2.1) and
(2.2) using (2.4). They are given by

〈qkA〉 = 〈 ¯̃qkA〉 = 1√
2





√
ξ1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . .

√
ξr 0 . . . 0



 ,

k = 1, ..., r , A = 1, ..., Nf , (2.6)

where the r parameters ξ are given quasiclassically by

ξP ≈ 2 µmP , P = 1, ..., r . (2.7)
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These parameters can be made small in the large mA limit if µ is sufficiently small.
In quantum theory all parameters ξP are determined by the roots of the Seiberg-Witten

curve [18, 6, 7, 16] which in the case at hand takes the form [5]

y2 =

N
∏

P=1

(x− φP )
2 − 4

(

ΛN=2√
2

)2N−Nf
Nf
∏

A=1

(

x+
mA√
2

)

. (2.8)

Here φP are gauge invariant parameters on the Coulomb branch. Instead of (2.4) one can
write

Φ ≈ diag [φ1, ..., φN ] , (2.9)

where
φP ≈ −mP√

2
, P = 1, ..., r ; φP ∼ ΛN=2, P = r + 1, ..., N . (2.10)

To identify the r vacuum in terms of the curve (2.8) it is necessary to find such values of
φP which ensure the Seiberg-Witten curve to have N−1 double roots, while r parameters φP

are approximately determined by the quark masses, see (2.10). Note that (N−1) double roots
are associated with r condensed quarks and (N − r − 1) condensed monopoles, altogether
N − 1 condensed states.

From this we deduce that the Seiberg–Witten curve factorizes [23],

y2 =
r
∏

P=1

(x− eP )
2

N−1
∏

K=r+1

(x− eK)
2 (x− e+N)(x− e−N ) . (2.11)

The first r double roots are associated with the mass parameters in the large mass limit,√
2eP ≈ −mP , P = 1, ..., r. The subsequent (N − r − 1) double roots are associated with

light monopoles are much smaller, and determined by ΛN=2. The last two roots are also
much smaller. For the single-trace deformation superpotential (2.2) their sum vanishes [23],

e+N + e−N = 0 . (2.12)

The root e+N determines the value of the gaugino condensate [9],

e2N =
2S

µ
, S =

1

32π2
〈TrWαW

α〉, (2.13)

where the superfield Wα includes the gauge field strength tensor.
In terms of roots of the Seiberg-Witten curve the quark VEVs are given by the formula

[7, 16]

ξP = −2
√
2µ
√

(eP − e+N)(eP − e−N) (2.14)

for P = 1, ..., r. At small ξP this theory is at weak coupling (IR free below ΛN=2) and
supports non-Abelian magnetic strings [24, 25, 17, 26]. At µ ≪ ΛN=2 these strings are
BPS-saturated and their tensions are determined by the ξ parameters, namely [19, 18]

TP = 2π|ξP |. (2.15)
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Magnetic strings formed as a consequence of the quark condensation implement confinement
of monopoles. The monopoles of the SU(r) sector manifest themselves as two-string junctions
[17, 26, 27].

Recently we demonstrated [16] that the monopole VEVs in either the monopole (r = 0)
or the hybrid r vacua are determined by the same formula (2.14) with the substitutions of
the quark double roots by the monopole double roots, so that the subscript P in (2.14) can
run over the monopole double roots too,

〈MP (P+1)〉 = 〈 ¯̃MP (P+1)〉 =
√

ξP
2
, (2.16)

where ξP are determined by Eq. (2.14) and P = (r+1), ..., (N − 1). Here MPP ′ denotes the
monopole with the charge given by the root αPP ′ = wP − wP ′ of the SU(N) algebra with
weights wP (P < P ′).

Equation (2.14) is thus very general and determines VEVs of condensed states inde-
pendently of their nature [16]. The monopole VEVs determine the tensions of the Abelian
electric strings,

TP = 2π|ξP |, P = (r + 1), ..., (N − 1) . (2.17)

In much in the same way as the magnetic non-Abelian strings in the r vacua, the electric
strings are BPS-saturated to the leading order in µ [20, 21]. The electric strings confine
quarks, while the magnetic strings confine monopoles.

2.4 Small quark mass limit

Now we turn to the opposite limit of small mA which will be relevant to our discussion
below. As we reduce the quark masses quantum numbers of the light states change due
to monodromies [3, 4, 28]. In particular, quarks pick up root-like color-magnetic charges,
in addition to their weight-like color-electric charges. If r < Nf/2 there is no crossover,
the low-energy theory essentially remains the same as at large mA, namely, infrared-free
U(r)×U(1)N−r gauge theory with Nf quarks (or, more exactly, what becomes of quarks)
and (N − r − 1) singlet monopoles [29]. It is at weak coupling provided the ξP parameters
are small.

The quarks from the U(r) sector and the monopoles form the orthogonal U(1)N−r sector
still develop VEVs determined by Eq. (2.14). Physics of screening and confinement also
remains intact at small mA. Say, if a given monopole state (charged with respect to the
SU(r) Cartan generators) is confined through quark condensation at large mA the the same
applies to this state under the evolution into the domain of small mA, although the quark
color charges change [29]. If the quarks from the U(r) sector are screened in the r vacuum
at large mA they (or what becomes of them) will still be screened in the same vacuum at
small mA. Monodromies just relabel the states, they do not change physics.

7



3 Λ vacua versus zero vacua

3.1 Consequences from the exact formulas

We will rely on exact results for the chiral condensates obtained by Cachazo, Seiberg and
Witten [9] in µ-deformed N = 2 QCD with the U(N) gauge group. In this section there is
no need to assume µ small.

All chiral condensates are encoded in the following functions [9]:

T (x) =

〈

Tr
1

x− Φ

〉

,

R(x) =
1

32π2

〈

Tr
WαW

α

x− Φ

〉

,

M(x)BA =

〈

q̃A
1

x− Φ
qB
〉

. (3.1)

For the quadratic single-trace deformation (2.2) (the so-called “one-cut” model) the function
R(x) has the form

R(x) =
1

2

(

W
′

def(x)−
√

W
′

def(x) + f(x)

)

= µ

(

x−
√

x2 − e2N

)

, (3.2)

where the unpaired root of the Seiberg–Witten curve eN = e+N (see (2.11)) is related to the
gaugino condensate, see (2.13).

From the solution for the function MB
A (x) in [9] one can obtain the values of the quark

VEVs in terms of the gaugino condensate S. In the r vacuum, when the function MB
A (x)

has r poles on the first sheet,

MA =
µ

2

(

mA +

√

m2
A − 4S

µ

)

, A = 1, ..., r , ;

MA =
µ

2

(

mA −
√

m2
A − 4S

µ

)

, A = (r + 1), ..., Nf , (3.3)

where
MB

A =
〈

q̃Aq
B
〉

, (3.4)

and we assume that the solution can be brought to the diagonal form

MB
A = δBA MA . (3.5)

In the large quark mass limit, when S
µ
≪ mA , we have r “large” values of MA,

MA ≈ µmA for A = 1, ..., r ,
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and Nf − r “small” values. This pattern matches our definition of the r vacuum.
Note, that the quantum quark VEVs (3.4) in the microscopic U(N) theory are close to

those obtained from the low-energy theory (see (2.6)) only in the limit of large mA, although
both are given by exact formulas. At mA ∼ ΛN=2 the difference is not small. In particular,
the low-energy quark condensates (2.6) vanish at the Argyres-Douglas points [13] (where a
double root eP coincides with one of the unpaired roots e±N), see (2.14), while the values MA

remain finite. This was first noted in [30].
Now, to find the gaugino condensate S we use the glueball superpotential calculated in

[9] from a matrix model [10]. For the quadratic deformation (2.2) it was studied in [31], see
also [8]. Minimization of this superpotential gives the following equation for S:

SN = µN ΛN−Ñ
N=2

(

m

2
− 1

2

√

m2 − 4S

µ

)r (

m

2
+

1

2

√

m2 − 4S

µ

)Nf−r

, (3.6)

where for simplicity we assume quark mass equality. Using (3.3) we can rewrite the equation
above as an equation for the quark condensate MA [8],

1

µ
MA = m− 1

µ
N

Ñ Λ
N−Ñ

Ñ

N=2

(detM)
1

Ñ

MA

, (3.7)

where Ñ is defined in (1.1). Equation (3.7) obviously can be obtained from the following
superpotential:

WADS = − 1

2µ
TrM2 +mA TrM + (N −Nf)

(detM)
1

Nf−N

Λ
3N−Nf

Nf−N

. (3.8)

The first two terms in (3.8) can be obtained by integrating out the adjoint field A in the
tree-level superpotential of the theory (2.1) and (2.2) in the large µ limit. The last term
– obviously of the quantum nature – is nothing other than the continuation of the Afleck-
Dine-Seiberg (ADS) superpotential [32] to Nf > N . This superpotential can be also derived
from Seiberg’s dual theory generalized to r vacua, see [8] and Sec. 5 below.

Thus, the Cachazo–Seiberg–Witten exact solution [9] produces the same equations for
M ’s as the continuation of the ADS superpotential to Nf > N in Eq. (3.8). The fact of
coincidence was previously established in the SU(N) case in [33].

The superpotential (3.8) is exact and we can use it in any domain of the parameter space.
In particular, for large masses (mA ≫ ΛN=2) the solution of Eq. (3.7) in the r vacuum is

MA ≈ µm, A = 1, ..., r ;

MA ≈ µΛ
N−Ñ
N−r

N=2 m
Ñ−r
N−r e

2πk
N−r

i, A = (r + 1), ..., Nf ,

k = 1, ..., (N − r) . (3.9)
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As was anticipated, we have r large classical VEVs and (Nf − r) small “quantum” VEVs.
The linear dependence of M on µ is exact and is fixed by the U(1) symmetries [30] after

all condensates are expressed in terms of ΛN=2. The presence of (N − r) distinct solutions
ensures the total number of the r < N vacua to coincide with (2.3) obtained at small µ.

3.2 Chiral condensates at small quark masses

Let us study the behavior of gaugino and quark condensates at small mA. Most of the
solutions of equations (3.6), (3.3) behave as S ∼ µΛ2

N=2 and MA ∼ µΛN=2. The r vacua
with this behavior are referred to as the Λ vacua. However, there is a special set of vacua
in which the gaugino and quark condensates tend to zero in the small quark mass limit.
Namely, Eq. (3.7) has solutions [12, 8]

MA ≈ µm, A = 1, ..., p ;

MA ≈ µ
m

p−Ñ

p−N

Λ
N−Ñ
p−N

N=2

e
2πk
p−N

i , A = (p+ 1), ..., Nf ,

k = 1, ..., (p−N) , (3.10)

where p is an integer. In other words, p eigenvalues of M are proportional to µm, while
other eigenvalues are much smaller at mA ≈ m ≪ ΛN=2. These solutions exist if p > N . We
refer to the vacua with this behavior as the zero vacua.

At large mA we start from an r vacuum, with r quarks (classically) condensed, hence
r ≤ N . On the other hand, the integer p is defined as the number of “plus” signs in Eq. (3.3)
for MA, or the number of poles of MB

A (x) on the first sheet [9]. Then (Nf −p) is the number
of “minus” signs. In fact, p depends on the value of mA. At large mA we have

p(∞) = r . (3.11)

As we reduce mA certain poles can and do pass through the cut from the first sheet to the
second or vice versa [9]. When it happens p(mA) reduces by one unit or increases by one
unit.

In Eq. (3.10) p is p(mA) in the small mass limit, i.e.

p ≡ p(0) . (3.12)

Clearly, p can differ from r. The condition r ≤ N applies only for r = p(∞) rather than
for p = p(0), instead p > N . In fact, (p− r) is the net number of poles which pass through
the cut from the second sheet to the first one as we reduce the quark masses from infinity
to zero.

The relation between r and p was found in [8]. We look for a solution of (3.7) which has
the pattern (3.9) at large m and (3.10) at small m. Translating this into the behavior of S
given by Eq. (3.6) we arrive at [8]

p = Nf − r. (3.13)
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Figure 2: Multiplicity of zero-vacua and total multiplicity of r < N vacua as a function of r.

Then constraint p > N implies in turn that

r < Ñ . (3.14)

This is the domain of existence of the zero vacua.
Equation (3.10) for MA in the zero vacua ensures the smallness of the gaugino condensate

at small mA,

S ≈ µ
m

Nf−2r

Ñ−r

Λ
N−Ñ

Ñ−r

N=2

e
2πk

Ñ−r
i
, k = 1, ..., (Ñ − r) , (3.15)

where we express p in terms of r using (3.13). The multiplicity of these solutions is Ñ − r.
In other words, for a given r the total number of the zero vacua is

N0−vac =
Ñ−1
∑

r=0

(Ñ − r)Cr
Nf

=
Ñ−1
∑

r=0

(Ñ − r)
Nf !

r!(Nf − r)!
. (3.16)

This number is smaller then the total number of the r < N vacua (2.3). The multiplicity of
the zero vacua as a function of r is depicted in Fig. 2.

We will show below that choosing any of the zero vacua we can pass from the weak
coupling low-energy description of Sec. 2 at small µ (i.e. N = 2 ) to a µ-dual N = 1 theory
which appears to be weakly coupled in the IR. At the same time, the zero vacua were shown
[12, 8] to be precisely the vacua which are classically seen in the generalized Seiberg dual
theory [1, 2]. Section 5 elucidates that these are two sides of the same coin.
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4 Towards N = 1 by increasing µ:

µ Duality

4.1 Preliminaries

If the quark mass differences are small (mA − mB) ≪ mA,B ∼ m ≪ ΛN=2 then r pa-
rameters φP and the quark double roots eP (in r < Nf/2 vacua) are exactly (rather than
quasiclassically) determined by the quark masses [5, 15, 7],

√
2φP = −mP ,

√
2 eP = −mP , P = 1, ..., r (4.1)

(up to a small corrections of order of (mA−mB)
2/ΛN=2). The Seiberg-Witten curve factorizes

as follows

y2 =

(

x+
m√
2

)2r
{

N
∏

P=r+1

(x− φP )
2 − 4

(

ΛN=2√
2

)2N−Nf
(

x+
m√
2

)Nf−2r
}

. (4.2)

This leads to the occurrence of the non-Abelian SU(r) gauge group in the low-energy theory
in the limit of (almost) equal quark masses [5]. As a result, at small µ physics is described
by weakly coupled IR free low-energy theory discussed in Sec. 2. It has the U(r)×U(1)N−r

gauge group with r light quarks and (N − r − 1) Abelian monopoles.
Our task is to increase µ and find a weakly coupled low-energy description of the theory

at hand at large µ (i.e. N = 1 ). However, this program runs onto an obstacle. At large µ
the ξ parameters (2.14) generically become large forcing the infrared-free low-energy theory
hit the strong coupling domain.

Previously we believed [7] that the problem could be overcome by approaching the
Argyres-Douglas points [13] where r double roots come close to one of the unpaired roots e±N
and r parameters ξ remain small. It was overlooked, however, that the low-energy theory
in this limit enters the AD strongly coupled regime, while our task was to find a weakly
coupled dual.5

One exception where this problem does not appear is the r = N vacuum. In the r = N
vacuum the gaugino condensate vanishes, and Ñ = Nf −N parameters ξ are determined by
the quarks masses [6],

ξP = −2
√
2µmP , P = 1, ..., Ñ .

This allows us to keep the ξP parameters small at large µ by making the quark masses
sufficiently small, guaranteeing a weak coupling regime in the dual theory which in this case
has the U(Ñ) gauge group [6], in perfect agreement with Seiberg’s duality.

5In [7, 8] it was argued that the low-energy theory stays at weak coupling near the AD points at µ /→ 0
because the monopoles which become light are, in fact, confined and, therefore, do not contribute to the β
function. The loophole in this argument is that at energies above the scale

√
ξ the effect of confinement is

negligible, and the light monopoles do cancel the logarithmic running of the coupling constant produced by
the light quarks. We will discuss this issue in more detail elsewhere.
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Now we want to demonstrate that the zero vacua provide us with additional exceptions.
The gaugino condensate is very small in the limit of small masses, see (3.15). Therefore we
do not need to approach the AD points to keep r parameters ξ small. What we need is to
make the quark masses small as we increase µ.

4.2 The zero vacua from the Seiberg-Witten curve

We begin with identifying the zero vacua in terms of the Seiberg-Witten curve (4.2). The
gaugino condensate is related to values of the unpaired roots of the curve (see (2.13)),

e2N ≈ 2µ
m

Nf−2r

Ñ−r

Λ
N−Ñ

Ñ−r

N=2

e
2πk

Ñ−r
i
, k = 1, ..., (Ñ − r) , (4.3)

in the small mass limit. All other roots of the curve (4.2) are doubled. In the zero vacua
r parameters φP and the double roots eP are given by the quark masses, P = 1, ..., r (see
(4.1)), while (N − Ñ) parameters φP and the double roots eP are of order of ΛN=2. The
remaining (Ñ − r) parameters φ and (Ñ − r − 1) double roots are very small, of the order
of e±N , see (4.3).

To find φ’s and those double roots which are of the order of ΛN=2 (and for this purpose
only) we consider x ∼ ΛN=2 in (4.2) and neglect all parameters which are of the order of m
or smaller (remember that m ≪ ΛN=2). Then, Eq. (4.2) implies

y2 = x2Ñ







N
∏

P=Ñ+1

(x− φP )
2 − 4

(

ΛN=2√
2

)N−Ñ

xN−Ñ







. (4.4)

We look for a solution with all (N − Ñ) φ’s being of the order of ΛN=2. Of course, there
are solutions with smaller φ’s given by the quark masses, but these solutions correspond to
r′-vacua with larger r′, i.e. r′ > Ñ .

The solution takes the form

√
2φP = −ΛN=2 e

2πi

N−Ñ
(P−Ñ−1)

, P = (Ñ + 1), ..., N, odd (N − Ñ), (4.5)

and √
2φP = −ΛN=2 e

2πi

N−Ñ
(P−Ñ− 1

2
)
, P = (Ñ + 1), ..., N, even (N − Ñ) . (4.6)

The corresponding double roots are 6

√
2 eP = ΛN=2 e

2πi

N−Ñ
(P−Ñ)

, P = Ñ , ..., (N − 1). (4.7)

6Note a shift in the numbering of the “large” φ’s and the double roots: the double root eP corresponds
to φP+1. This is because we use the notation e±N for unpaired roots, which are small.
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To find the remaining (Ñ−r) φ’s and the roots that are much smaller than m we assume
in (4.2) x ≪ m. The Seiberg-Witten curve then takes the form

y2 =

(

m√
2

)2r (
ΛN=2√

2

)2(N−Ñ)











Ñ
∏

P=r+1

(x− φP )
2 − 4

(

m√
2

)Nf−2r

(

ΛN=2√
2

)N−Ñ











, (4.8)

where we use the fact that (N − Ñ) φ’s are given by (4.5) or (4.6). The curve in the curly
brackets is the curve for pure Yang-Mills theory with the U(Ñ − r) gauge group. It has a
very small scale Λ0 defined as

Λ
2(Ñ−r)
0 =

mNf−2r

ΛN−Ñ
N=2

, Λ0 ≪ m. (4.9)

The relevant parameters φ as well as the roots in pure Yang-Mills theory were obtained in
[34],

φP = 2 cos
π(P − r − 1

2
)

Ñ − r

Λ0√
2
, P = (r + 1), ..., Ñ , (4.10)

and

eP = 2 cos
π(P − r)

Ñ − r

Λ0√
2
, P = (r + 1), ..., (Ñ − 1) . (4.11)

The unpaired roots are

e±N = ±2
Λ0√
2
. (4.12)

Comparing the above expression for the unpaired roots found from the Seiberg-Witten
curve with the result (4.3) obtained using the Cachazo-Seiberg-Witten exact solution [9],
applied to the zero vacua, we observe the exact match.

Next, can use (4.11) and (4.12) to find “small” VEVs for (Ñ − r − 1) monopoles. They
are given by (2.16), where for P = (r + 1), ..., (Ñ − 1),

ξP = −2
√
2µ
√

(eP − e+N)(eP − e−N) = −4i µΛ0 sin
π(P − r)

Ñ − r
, (4.13)

see (2.14). This is the famous sine formula for the monopole VEVs and the Abelian electric
string tensions [34]. We reproduce it via our general expression (2.14) which we can use in
particular, for pure Yang-Mills theory, see [16]. Note that r quark VEVs (2.6) are determined
by the quark masses,

ξP = 2µmP , P = 1, ...., r , (4.14)

since e±N are very small at small m, see (2.14) and (4.1). Other (N − Ñ) monopoles have
“large” VEVs determined by ΛN=2, see (4.7). These monopoles decouple from low-energy
physics.
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4.3 µ Dual theory in the zero vacua

The above analysis implies that the low-energy theories in the zero vacua at small µ and m
have the U(r)×U(1)Ñ−r gauge group with r flavors of light quarks charged under the U(r)
subgroup and (Ñ − r− 1) light monopoles charged under the (Ñ − r− 1) U(1) factors. One

U(1) remains unbroken. The remaining U(1)N−Ñ gauge sector becomes heavy and decouples,
along with (N − Ñ) heavy monopoles.

The scale Λ0 of the U(1)
Ñ−r sector is very small, as it is clearly seen from (4.9). Therefore,

when we increase µ forcing VEVs (4.13) of (Ñ − r − 1) light monopoles to hit the scale Λ0,

the U(1)Ñ−r monopole sector enters the strong coupling regime, and we cannot use this
monopole theory to describe low-energy physics.

Nevertheless, at larger µ we can construct a dual low-energy description. Equations (2.4),
(4.5), (4.6) and (4.10) show that the adjoint field in the zero vacuum has the form

〈Φ〉 ≈ − 1√
2
diag

[

m1, ..., mr, 0, ..., 0, c1ΛN=2, ..., cN−ÑΛN=2

]

, (4.15)

where we have (Ñ − r) almost vanishing eigenvalues, while (N − Ñ) “large” entries (i.e. of

the order of ΛN=2) are associated with the decoupled U(1)N−Ñ heavy sector. The form of
the adjoint field in (4.15) signals the restoration of the U(Ñ) gauge group (if m ≪ ΛN=2).

The Seiberg-Witten curve takes the form

y2 =

(

x+
m√
2

)2r (
ΛN=2√

2

)2(N−Ñ)











Ñ
∏

P=r+1

(x− φP )
2 − 4

(

x+ m√
2

)Nf−2r

(

ΛN=2√
2

)N−Ñ











. (4.16)

We focus on the low-energy region, x ≪ ΛN=2. This is the curve of the IR free U(Ñ) gauge
theory with Nf flavors. Thus, the µ-dual low-energy theory has the U(Ñ) gauge group and
Nf quark flavors. The superpotential of the theory is

Wµ−dual =
√
2

Nf
∑

A=1

(

1

2
q̃AAqA + q̃AAn T nqA +mA q̃Aq

A

)

+ µ u2, (4.17)

where

u2 = Tr

(

1

2
A+ T n An

)2

, (4.18)

while the fundamental and adjoint color indices are now truncated to l = 1, ..., Ñ and
n = 1, ..., (Ñ2 − 1).

The VEVs of the adjoint field are
〈

1

2
A+ T nAn

〉

≈ − 1√
2
diag [m1, ..., mr, 0, ..., 0] , (4.19)
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where (Ñ − r) eigenvalues are quasiclassically zero. The matrix of the quark VEVs has the
form

〈qlA〉 = 〈 ¯̃qlA〉 = 1√
2

















√
ξ1 . . . 0 0 . . . 0
0 . . . . . . . . . . . . 0
0 . . .

√
ξr 0 . . . 0

0 . . . 0 0 . . . 0
0 . . . . . . . . . . . . 0
0 . . . 0 0 . . . 0

















,

l = 1, ..., Ñ , A = 1, ..., Nf , (4.20)

where the first r parameters ξ are given by (4.14), while all other (Ñ − r) ξ’s are (quasi-
classically) zero. Only r quark flavors develop VEVs. The U(Ñ − r) gauge sector remains
unbroken. The U(Ñ) theory is IR free and is weakly coupled at energies above Λ0, see below.

Let us stress that the reason why the low-energy superpotential (4.17) is consistent with
the adjoint and quark VEVs given above is a peculiar property of the zero vacuum namely,
the extreme smallness of (Ñ − r − 1) parameters ξ which are of the order of Λ0 ≪ m, see
(4.13). Generically, if only r quarks of Ñ (the maximal possible value allowed by the rank
of the gauge group) condense, the F terms proportional to

µ
∂u2

∂Φ
∼ ξ

are generated. To cancel these terms, additional (Ñ − r − 1) monopoles develop VEVs.
The reason why this does not happen in the zero vacua at µ ≫ Λ0 is the fact that the

corresponding parameters ξ are (almost) zero, see (4.13).
At energies above m the U(Ñ) µ-dual theory at hand is IR free and weakly coupled.

However, at energies below m the gauge group gets broken to U(r)×U(Ñ − r) by adjoint
VEVs (4.19). The U(r) sector with Nf light quarks is IR free and weakly coupled. However,
the U(Ñ−r) sector becomes a pure Yang-Mills theory since the quarks charged with respect
to U(Ñ−r) gauge group acquire masses of the order of m and decouple.7 Thus, the U(Ñ−r)
sector is asymptotically free and runs into strong coupling in the infrared. This happens at
the scale of U(Ñ − r) Yang-Mills theory, which coincides with Λ0, see (4.9).

Thus, we must admit that the µ-dual theory at hand is not exactly a weakly coupled
low-energy description all the way down. It is weakly coupled only at energies above the
very small scale provided by Λ0 ≪ m.

At energies below Λ0 we have a weak coupling description in terms of the U(r)×U(1)Ñ−r

gauge theory with light quarks and monopoles. As we increase µ and go to higher energy
scales our system undergoes a crossover transition, and the quark-monopole description
breaks down.

7This is because of extreme smallness of the corresponding parameters φ, see (4.10).
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At energies well above Λ0 we use weakly coupled µ-dual description in terms of the
U(Ñ) gauge theory for Nf light quarks. This is quite natural because the monopoles are
Abelian objects and hardly can play a role at large µ where adjoint fields decouple and no
Abelianization of the theory is expected.

4.4 Superpotential

Masses of quarks and gauge bosons in the µ-dual theory are determined by the scales m
and

√
ξ in (4.14). Therefore, once we increase µ above m the adjoint fields decouple from

low-energy physics making the theory at hand N = 1 . It is easy to integrate out adjoint
fields in the superpotential (4.17). We expand u2 in a and an and keep only quadratic terms
(higher order terms are suppressed by powers of m/ΛN=2). The coefficients of this expansion
are determined by using the adjoint and quark VEVs (4.19) and (4.20). In this way we get

Wµ−dual = − 1

2µ
(q̃Aq

B)(q̃Bq
A) +mAq̃Aq

A , (4.21)

for further details see [6] where a similar calculation is carried out in the r = N vacuum.
To summarize, at large µ the original U(N) gauge theory flows to N = 1 SQCD. At

µ ≫ m low-energy physics in the zero vacua can be described by N = 1 supersymmetric
SQCD with the U(Ñ) gauge group and Nf quark flavors with the superpotential (4.21).
Note, that in contrast to N = 2 SQCD, where in each vacuum we have its own description
with a distinct gauge group, in the case at hand we have one and the same superpotential
for all zero vacua. The vacua differ by the number r of condensed quarks. In order to keep
this IR free theory at weak coupling we assume that the ξ parameters in (4.14) are small
compared to the scale of this N = 1 µ-dual theory, determined by

Λ̃
Nf−3Ñ
N=1 =

Λ
Nf−2Ñ
N=2

µÑ
. (4.22)

Namely, we assume
ξ ∼ µm ≪ Λ̃2

N=1. (4.23)

Condensation of quarks leads to the formation of non-Abelian strings in the U(r) sec-
tor. These strings confine monopoles, for a review on non-Abelian strings and monopole
confinement see [19]. The U(Ñ − r) sector remains unbroken. Thus, our theory is in the
mixed Higgs/Coulomb phase. Quarks of the U(r) sector are screened, while monopoles are
confined.

We stress that quarks are not confined at large µ, contrary to the naive duality arguments.
To conclude, let us address the question: how large should µ be to ensure the decoupling

of the adjoint matter? From (4.22) we see that in order to make contact with N = 2 theory
we cannot take µ too large; in fact, it cannot exceed ΛN=2. This upper bound might seem
too restrictive from the point of view of the original microscopic N = 1 U(N) SQCD. Indeed
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one might think that in order to decouple the adjoint matter one should take µ much larger
than the scale of this theory. However, above we saw that the low-energy states in the µ-dual
theory have masses determined by m or

√
ξ which are way below the above-mentioned scale.

Therefore, in order to decouple the adjoint matter from the low-energy sector it is sufficient
to keep µ in the window m ≪ µ <∼ ΛN=2.

5 Connection to Seiberg’s duality

As was mentioned in Sec. 1, originally Seiberg’s duality [1, 2] was formulated for N =
1 SQCD corresponding to the limit µ → ∞ and referred to r = 0. A generalization of
Seiberg’s duality for r vacua of µ-deformed N = 2 SQCD at large but finite µ was considered
in [11, 12]. In our case of the U(N) SQCD the Seiberg’s dual has the U(Ñ) gauge group, Nf

flavors of Seiberg’s dual quarks 8 and neutral mesonic field MB
A defined in (3.4). The Seiberg

superpotential is

WS = − 1

2µ
Tr (M2) +mA MA

A +
1

κ
h̃Alh

lB MA
B , (5.1)

where first two terms are obtained by integrating out the adjoint fields at the tree level in
(2.1) and (2.2). Here κ is a parameter of dimension of mass needed to formulate Seiberg’s
duality [1, 2].

From definition (3.4) it is clear that the number of the eigenvalues of the matrix q̃q = M
which scales as µm at large m is r in the r vacuum. What is the vacuum structure [11, 12, 8]
of the Seiberg dual theory (5.1) for the r < N vacua?

If we integrate out Seiberg’s dual quarks hlA we end up [2, 11, 12, 8] with the Afleck-Dine-
Seiberg superpotential (3.8). It correctly reproduces the total number of the r < N vacua
(2.3) and gives the correct values of the M condensates since Eq. (3.7) coincides with the one
obtained from the Cachazo-Seiberg-Witten exact solution [9], see [8] and Sec. 3. However, the
ADS superpotential (3.8) is not a superpotential of a gauge theory (gauge degrees of freedom
are already integrated out). In fact this is a superpotential of the Veneziano-Yankielowicz
type [35] and, as such, cannot be used to describe the spectrum of low-energy excitations,
confinement or screening [8]. It is useful only for the vacuum condensates.

To describe low-energy physics we need a weakly coupled description in terms of a gauge
theory. We could try to use the Seiberg dual theory (5.1) per se. In [12] it was noted that
not all r < N vacua can be seen at the classical level in the superpotential (5.1). Later it
was found [8] that only the zero vacua are seen in (5.1) at the classical level, while the Λ
vacua remain “missing,” or quantum vacua, seen only in the ADS superpotential (3.8). Let
us briefly discuss this.

Extremizing superpotential (5.1) we find the classical vacua of the generalized Seiberg

8To be denoted as hlA (l = 1, ..., Ñ and A = 1, ..., Nf).
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dual theory. Assuming that 〈MB
A 〉 = δBA MA we arrive at

−1

µ
MA + κmA +

1

κ
h̃Alh

lA = 0,

MA hlA = h̃Al MA = 0, (5.2)

for all values of A. The solution of (5.2) is

MA = µmA, (h̃h)A = 0, A = 1, ..., p ,

(h̃h)A = −κmA, MA = 0, A = (p+ 1), ..., Nf , (5.3)

where p should obey the constraint p > N , since the rank of the matrix (h̃h) cannot exceed
Ñ .

This solution can describe low-energy physics if the infrared-free Seiberg dual theory is
at weak coupling. To ensure that this is the case we assume the small-m limit. In this
limit p does not coincide with r, the latter parameter being defined at large masses. In fact
p = Nf − r, see [8] and (3.13). Now observe that p eigenvalues of M are given by µm, while
others are classically zeros. This dependence matches the m dependence of M in the zero
vacua at small m, see (3.10). Moreover, the number of classical vacua (5.3) is

N0−vac =
Ñ−1
∑

r=0

(Ñ − r)Cr
Nf

=
Ñ−1
∑

r=0

(Ñ − r)
Nf !

r!(Nf − r)!
. (5.4)

This is the number of choices one can pick up r = Nf −p dual quarks h which develop VEVs
times the Witten index in the classically unbroken by h condensation gauge group, namely
SU(Ñ − r). This number coincides with the zero vacua number, see (3.16) and Fig. 2.

This leads us to the conclusion that vacua (5.3) classically seen in the Seiberg dual theory
are in fact the zero vacua [8]. The Λ vacua are not seen classically. Our interpretation of
this phenomenon is as follows (cf. [8]). In the zero vacua U(Ñ) is the true low-energy gauge
group and dual quarks h are the correct low-energy degrees of freedom. Since the Seiberg
dual theory is infrared-free it is weakly coupled in the small-m limit, provided the classical
vacua exist, i.e. in the zero vacua. Instead, in the Λ vacua, the dual quarks h are not the
low-energy degrees of freedom.

This explains why the Λ vacua are not seen quasiclassically. In fact, Seiberg’s dual U(Ñ)
theory (5.1) is strongly coupled in the Λ vacua. Nevertheless, integrating out dual quarks
leads to the correct ADS superpotential (3.8), which can be used only to determine chiral
condensates from the chiral rings, à la Veneziano-Yankielowicz.

In much the same way as in the Seiberg duality, our µ-dual theory in the zero vacua
also has the U(Ñ) gauge group (Sec. 4). Both dual theories give weakly coupled low-energy
descriptions in the small-m limit. Do these two descriptions match?

The answer is positive. To see that this is the case, let us identify the quarks of the
µ-dual theory with the Seiberg dual quarks. The change of variables

qlA =

√

−µ

κ
hlA , NB

A ≡ −1

µ
MB

A , l = 1, ..., Ñ , A = 1, ..., Nf (5.5)
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brings the superpotential (5.1) to the form

WS = −µ

2
Tr (N2)− µmANA

A + q̃Alq
lB NA

B . (5.6)

The kinetic terms are not known in the Seiberg dual theory, and, hence, normalization of
the h fields is unknown too, which leaves us the freedom to change the variables as in (5.5).
We see that the κ parameter completely disappears from the theory and is replaced by the
physical parameter µ. Equation (5.6) shows that the mesonic field NB

A is heavy at large µ
(i.e. µ ≫ m) and can be integrated out. The result is

WS =
1

2µ
(q̃Aq

B)(q̃Bq
A)−mAq̃Aq

A. (5.7)

This superpotential coincides with the superpotential (4.21) up to a sign. This shows the
equivalence of the Seiberg dual and µ-dual low-energy theories in the zero vacua. The identi-
fication (5.5) reveals the physical nature of Seiberg’s dual quarks. They are not monopoles as
naive duality suggests. Instead, they are quarks of the original theory. Remember, r quarks
condense in the r vacuum, see (4.20). This leads to confinement of monopoles charged with
respect to the Cartan generators of SU(r). Quarks of U(Ñ − r ) sector do not condense, the
dual theory is in the mixed Coulomb/Higgs phase.

6 Phases of N = 1 QCD in the small ξ limit

Before discussing the phases of N = 1 SQCD we briefly review the r vacua with r > Nf/2
at small µ.

6.1 A few words about “large”-r (r > Nf/2) vacua at small µ

In the r vacua with r > Nf/2 physics is quite different, see [15, 7, 16]. At large µm (µ is
assumed to be small so that the quark masses must be large) the low energy-theory has the
gauge group U(r)×U(1)N−r with r condensed quarks and (N − r−1) condensed monopoles.
The theory is at weak coupling because it has large condensates in the non-Abelian asymptot-
ically free SU(r) quark sector and small condensates in the IR free monopole sector. At low ξ
the theory goes through a crossover transition. At small ξ physics can be described by weakly
coupled infrared-free r dual theory with the U(ν)×U(1)N−ν gauge group, ν = Nf − r. The r
dual theory has Nf flavors of quark-like dyons. The color charges of non-Abelian quark-like
dyons are identical to those of quarks.9 However, they belong to a different representation
of the global color-flavor locked group. Condensation of these dyons leads to the confine-
ment of monopoles. Quarks from the U(ν) sector are in the “instead-of-confinement” phase:
the Higgs-screened quarks decay into monopole-antimonopole pairs confined by non-Abelian

9Because of monodromies quarks pick up root-like color-magnetic charges in addition to their weight-like
color-electric charges at strong coupling.
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strings. Singlet quarks from the U(1)r−ν sector and monopoles from the U(1)N−r sectors are
Higgs-screened. Other monopoles, charged with respect to the Cartan generators of SU(r),
and quarks charged with respect to the orthogonal U(1)N−r are confined.

6.2 Phases in the r vacua at large µ

In this section we briefly summarize the overall picture of physical phases in different r vacua
in the small ξ and large µ limit. Namely, we impose

µ ≫
√

ξ,
√

ξ ≪ Λ̃N=1. (6.1)

Phases of the theory in the different r vacua are shown in Fig. 3, which is the same as Fig. 2,
with various physical regimes indicated.

a) Zero vacua: The r parameters ξ relevant to the low-energy µ-dual theory are given
by (4.14). This theory has the U(Ñ) gauge group with Nf flavors of quarks. It is infrared-
free and weakly coupled in the region (6.1) if we keep quark masses sufficiently small. The
theory is in the mixed Coulomb/Higgs phase with r quarks condensed, see (4.20), while
the U(Ñ − r ) subgroup remains unbroken. Non-Abelian strings are formed in the U(r)
sector which entails confinement of monopoles charged with respect to the SU(r) Cartan
generators. The Seiberg and µ-dual descriptions are equivalent.

N

N

Λ

r

N

f
N

r
C

N

−

−vacua

Coulomb/Higgs phase

Instead−of−confinement
      phase

AD regime

N

Figure 3: Phases of r vacua in N = 1 SQCD in the region (6.1). Zero and Λ-vacua shown as in
Fig. 2. Black circle denotes r = N vacua.

b) Λ vacua: As we increase µ, we break the condition (6.1), generally speaking. The
weak-coupling description is unknown so far, and it is unclear whether or not it exists.
However, we can tune the common quark mass m and approach the Argyres-Douglas (AD)
point [13] where r double roots for r < Nf/2 vacuum and ν = Nf − r double roots for
r > Nf/2 vacuum come close to one of the unpaired roots e±N . Then r parameters ξ for
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r < Nf/2 vacuum and ν = Nf − r parameters ξ for r > Nf/2 vacuum can be made small to
satisfy the bound in (6.1), see (4.1) and [7]. This limit is a continuation of the AD conformal
strongly coupled regime to large µ.

c) The r = N vacuum: The r = N vacuum presents a special case. In this case the
gaugino condensate vanishes and Ñ parameters ξP are proportional to µmP . They can
satisfy the bound (6.1) provided the quark masses are sufficiently small. The small-mass
limit can be described by weakly coupled infrared-free r-dual theory [6, 7]. It has the U(Ñ)
gauge group with Nf flavors of quark-like dyons. The quark-like dyons condense leading
to the formation of non-Abelian strings which confine monopoles. The quarks and gauge
bosons of the original theory are in the “instead-of-confinement” phase. Namely, the Higgs-
screened quarks and gauge bosons decay into the monopole-antimonopole pairs on the curves
of marginal stability (CMS) [15, 27]. The monopole-antimonopole pairs are in the confining
regime. In other words, the original quarks and gauge bosons evolve at small µm into the
monopole-antimonopole stringy mesons. (The latter are expected to form Regge trajectories,
generally speaking). At r = N the r-dual theory matches the Seiberg dual [8]. Conceptually
this vacuum can be added to the zero vacua to form a class of vacua with U(Ñ) weak
coupling low-energy description. Moreover, the number of condensed quark-like dyons for
this vacuum is Ñ so it nicely adds to the set of zero vacua where the number of condensed
quarks is 0 ≤ r < Ñ .

To conclude this section, let us note that there is no quark confinement phase in N =
1 SQCD in the domain (6.1). The Seiberg-Witten phase of monopole condensation and
Abelian quark confinement present in the slightly deformed N = 2 QCD at small µ [3, 4]
does not survive in the large-µ domain where the adjoint fields decouple. This result resolves
the long-standing problem of extrapolating the Seiberg-Witten scenario of quark confinement
to N = 1 SQCD. The phase most close to what we observe in the real-world QCD is the
“instead-of-confinement” phase present in the r = N vacuum.

7 Conclusions

We considered N = 2 SQCD with the U(N) gauge group and Nf quark flavors (N + 1 <
Nf < 3

2
N) perturbed by a mass term µA2. This theory has r vacua, i.e. those vacua in

which r flavors of quarks condense, r < N (this definition refers to large values of mA). In
this paper we analyzed the r vacua with r < Nf/2. Low-energy theory in these vacua at
small µ is based on the U(r)×U(1)N−r gauge group, with r light quarks and (N − r − 1)
Abelian monopoles.

Among these vacua we identify a subset that we call zero vacua. In the zero vacua the
gaugino condensate vanishes in the small quark-mass limit. We show that upon increasing
µ these vacua go though a crossover into strong coupling.

At large µ the zero vacua can be described in terms of weakly coupled infrared-free µ-
dual theory with the U(Nf −N) gauge group and Nf flavors of quarks. The r quark flavors
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condense triggering monopole confinement. We show that this µ-dual theory matches the
Seiberg dual. This match reveals the nature of Seiberg’s dual quarks which in this regime
happen to be ordinary quarks of our microscopic theory flowing to N = 1 SQCD at large µ.

The above conclusions are reached on the basis of the analysis of the exact Seiberg-Witten
solution of N = 2 SQCD. We focused on the µ-dual N = 1 theories in the r vacua in the
regime analogous to that existing to the left of the left edge of the Seiberg conformal window.
The strong-weak coupling duality is shown to exist in the zero vacua which can be found at
r < Nf −N .
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