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We calculate the two-loop pressure of a plasma of quarks and gluons at finite temperature and

chemical potential using the hard thermal loop perturbation theory (HTLpt) reorganization of

finite temperature/density quantum chromodynamics. The computation utilizes a high temperature

expansion through fourth order in the ratio of the chemical potential to temperature. This allows

us to reliably access the region of high temperature and small chemical potential. We compare

our final result for the leading- and next-to-leading-order HTLpt pressure at finite temperature and

chemical potential with perturbative quantum chromodynamics (QCD) calculations and available

lattice QCD results.
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I. INTRODUCTION

Quantum chromodynamics (QCD) exhibits a rich phase structure and the equation of state (EOS) which describes

the matter can be characterized by different degrees of freedom depending upon the temperature and the chemical po-

tential. Hadrons are the relevant degrees of freedom at low temperature and chemical potential where chiral symmetry

is spontaneously broken and quarks and gluons are confined but the matter is approximately SU(3)c center-symmetric.

At high temperatures the system is expected to make a phase transition to a quasifree state known as quark-gluon

plasma (QGP). In the QGP chiral symmetry is restored and the expectation value of the Polyakov Loop becomes

close to one, signaling deconfinement.1 At high temperatures and moderate chemical potentials one therefore expects

the system to be in the QGP phase. Such conditions are generated in relativistic heavy ion collisions at Brookhaven

National Laboratory’s Relativistic Heavy Ion Collider (RHIC) [1], the European Organization for Nuclear Research’s

Large Hadron Collider (LHC) [2], and are expected to be generated at the Gesellschaft fur Schwerionenforschung’s

Facility for Antiproton and Ion Research (FAIR) [3].

The determination of the equation of state (EOS) of QCD matter is extremely important to QGP phenomenology.

There are various effective models (see e.g. [7–11]) to describe the EOS of strongly interacting matter; however, one

would prefer to utilize systematic first-principles QCD methods. The currently most reliable method for determining

the EOS is lattice QCD [4]. At this point in time lattice calculations can be performed at arbitrary temperature,

however, they are restricted to relatively small chemical potentials [5, 6]. Alternatively, perturbative QCD (pQCD)

[12–15] can be applied at high temperature and/or chemical potentials where the strong coupling (g2 = 4παs) is small

in magnitude and non-perturbative effects are expected to be small. However, due to infrared singularities in the

gauge sector, the perturbative expansion of the finite-temperature and density QCD partition function breaks down

at order g6 requiring non-perturbative input albeit through a single numerically computable number [15, 16]. Up to

order g6 ln(1/g) it possible to calculate the necessary coefficients using analytic (resummed) perturbation theory.

Since the advent of pQCD there has been a tremendous effort to compute the pressure order by order in the weak

coupling expansion [14, 15, 17, 18]. The pressure has been calculated to order of g6 ln(1/g) at zero chemical potential

(µ = 0) and finite temperature T [15] and finite chemical potential/temperature (µ ≥ 0 and T ≥ 0) [17]. In addition,

the pressure is known to order g4 for large µ and arbitrary T [18]. Unfortunately, one finds that as successive perturba-

tive orders are included, the series converges poorly and the dependence on the renormalization scale increases rather

than decreases. The resulting perturbative series only becomes convergent at very high temperature (T ∼ 105 Tc).

One could be tempted to say that this is due to the largeness of the QCD coupling constant at realistic temperatures;

however, in practice one finds that the relevant small quantity is, in fact, αs/π which for phenomenologically relevant

temperatures is on the order of one-tenth. Instead, one finds that the coefficients of αs/π are large. This can be seen

by examining the weak coupling expansion of the free energy F(T, µ) of QGP calculated [17] up to order α3
s ln(αs)

F = −
8π2
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1 With dynamical quarks the center symmetry Z(3) in SU(3) is explicitly broken yet it can be regarded as an approximate symmetry and
the expectation value of the Polyakov Loop is still useful as an order parameter.
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where here and throughout all hatted quantities are scaled by 2πT , e.g. µ̂ = µ/(2πT ), Λ is the modified minimum

subtraction (MS) renormalisation scale, and αs = αs(Λ̂) is the running coupling. At finite T the central value

of the renormalisation scale is usually chosen to be 2πT . However, at finite T and µ we use the central scale

Λ = 2π
√

T 2 + (µ/π)2, which is the geometric mean between 2πT and 2µ [17, 19]. In Fig. 1 we plot the ratio of the

pressure to an ideal gas of quarks and gluons. The figure clearly demonstrates the poor convergence of the naive

perturbative series and the increasing sensitivity of the result to the renormalisation scale as successive orders in the

weak coupling expansion are included.

In this context one should note that one can explicitly separate the contributions coming from the soft sector

(momenta on the order of gsT where g2s = 4παs) and the hard sector (momenta on the order of T ) using effective

field theory/dimensional reduction methods [21–27]. After doing this one finds that the hard-sector contributions,

which form a power series in even powers of gs, converge reasonably well; however, the soft sector perturbative series,

which contains odd powers of gs, is poorly convergent. This suggests that in order to improve the convergence of

the resulting perturbative approximants one should treat the soft sector non-perturbatively, or at least resum soft

corrections to the pressure. There have been works in the framework of dimensional reduction which effectively

perform such soft-sector resummations by not truncating the soft-scale contributions in a power series in gs, see e.g.

[23, 24, 27]. This method seems to improve the convergence of the perturbation series and provides motivation to find

additional analytic methods to accomplish soft-sector resummations.

In order to better describe the soft-scale contributions there have been various resummation schemes developed

which attempt to improve the convergence of the successive approximations by reorganizing the calculation in terms of

quasiparticle degrees of freedom [28–44]. These resummation methods include some relevant physical ingredients, e.g.

screening masses and Landau damping. These reorganizations of perturbation theory canonically include quasiparticle

degrees of freedom from the outset, as opposed to naive perturbation theory. In the naive perturbative treatment

an expansion around the vacuum is made and one only includes quasiparticle effects in order to regulate infrared

divergences. Based on Hard Thermal Loop (HTL) resummation [29, 30], a manifestly gauge-invariant reorganization

of finite temperature/density QCD called HTL perturbation theory (HTLpt) has been developed [36]. HTLpt has

so far been applied primarily to the case of finite temperature and zero chemical potential. In HTLpt [36] the
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FIG. 1. The Nf = 3 pQCD pressure specified in Eq. (1) as a function of the temperature. Successive perturbative approxima-
tions are shown through order α3

s lnαs for vanishing µ (left) and for non-vanishing µ (right). The shaded bands indicate the

variation of the pressure as the MS renormalisation scale is varied around a central value of Λ = 2π
√

T 2 + µ2/π2 [17, 19] by a
factor of two. We use Λ

MS
= 290 MeV based on recent lattice calculations [20] of the three-loop running of αs.

next-to-leading order (NLO) [37] and next-to-next-to-leading order (NNLO) [38] thermodynamic functions have been

calculated at finite T but µ = 0. Recently [40, 43] the leading order (LO) HTL pressure for finite T and µ has been

calculated and approximately a decade ago it was applied at LO for finite µ but T = 0 [44].

In view of the ongoing RHIC beam energy scan and planned FAIR experiments, one is motivated to reliably

determine the thermodynamic functions at finite chemical potential. In this article we compute the NLO pressure of

quarks and gluons at finite T and µ. The computation utilizes a high temperature expansion through fourth order in

the ratio of the chemical potential to temperature. This allows us to reliably access the region of high temperature and

small chemical potential. We compare our final result for the NLO HTLpt pressure at finite temperature and chemical

potential with state-of-the-art perturbative quantum chromodynamics (QCD) calculations and available lattice QCD

results.

The paper is organized as follows. In Sec. II, we will briefly review HTLpt. In Sec. III we discuss various quantities

required to be calculated at finite chemical potential based on prior calculations of the NLO thermodynamic at zero

chemical potential [37]. In Sec. IV we reduce the sum of various diagrams to scalar sum-integrals. A high temperature

expansion is made in Sec. V to obtain analytic expressions for both the LO and NLO thermodynamic potential. We

then use this to compute the pressure in Sec.VI. We conclude in Sec. VII. Finally, in Appendices A and B we collect

the various integrals and sum-integrals necessary to obtain the results presented in the main body of the text.

II. HARD THERMAL LOOP PERTURBATION THEORY

HTL perturbation theory [36–38] is a reorganization of the perturbation series for hot and dense QCD which has

the following Lagrangian density

L = (LQCD + LHTL)
∣

∣

∣

g→
√
δg

+∆LHTL , (8)
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where ∆LHTL collects all necessary renormalization counterterms and LHTL is the HTL effective Lagrangian [29, 30].

It can be written compactly as

LHTL = −
1

2
(1 − δ)m2

DTr

(

Gµα

〈

yαyβ

(y ·D)2

〉

y

Gµ
β

)

+ (1− δ) im2
qψ̄γ

µ

〈

yµ

y ·D

〉

y

ψ , (9)

where D is a covariant derivative operator, y = (1,y) is a light like vector and 〈· · ·〉 is the average over all possible

directions, ŷ, of the loop momenta. The HTL effective action is gauge invariant, nonlocal, and can generate all of

the HTL n-point functions [29, 30], which are interrelated through Ward identities. The mass parameters mD and

mq are the Debye screening and quark masses in a hot and dense medium, respectively, which depend on the strong

coupling g, temperature T , and the chemical potential µ. In the high temperature limit the leading-order expressions

for mD and mq are

m2
D =

g2

3

[

(

Nc +
Nf

2

)

T 2 +
3Nf

2π2
µ2

]

, (10)

m2
q =

g2

4

N2
c − 1

4Nc

(

T 2 +
µ2

π2

)

. (11)

We will not assume these expressions a priori, but instead treat mD and mq as free parameters to be fixed at the end

of the calculation. In order to make the calculation tractable we make expansions in mD and mq in (9) treating the

masses as order g [36–38]. The nth loop order in the HTLpt loop expansion is obtained by expanding the partition

function through order δn−1 and then taking δ → 1 [36–42]. In this work, we will fix the parameters mD and mq

by employing a variational prescription which requires that the first derivative of the thermodynamic potential with

respect to both mD and mq vanishes, such that the free energy is minimized. In the following, we generalize the NLO

thermodynamic potential calculation from the case of zero chemical potential [37] to finite chemical potential.

III. INGREDIENTS FOR THE NLO THERMODYNAMIC POTENTIAL IN HTLPT

The LO HTLpt thermodynamic potential, ΩLO, for an SU(Nc) gauge theory with Nf massless quarks in the

fundamental representation can be written as [36, 37]

ΩLO = dAFg + dFFq +∆0E0 , (12)

where dF = NfNc and dA = N2
c −1 with Nc is the number of colors. Fq and Fg are the one loop contributions to quark

and gluon free energies, respectively. The LO counterterm is the same as in the case of zero chemical potential [36]

∆0E0 =
dA

128π2ǫ
m4

D . (13)

At NLO one must consider the diagrams shown in Fig. 2. The resulting NLO HTLpt thermodynamic potential can

be written in the following general form [37]

ΩNLO = ΩLO + dA [F3g + F4g + Fgh + Fgct] + dAsF [F3qg + F4qg]

+dFFqct +∆1E0 +∆1m
2
D

∂

∂m2
D

ΩLO +∆1m
2
q

∂

∂m2
q

ΩLO , (14)

where sF = NF /2. At NLO the terms that depend on the chemical potential are Fq, F3qg, F4qg, Fqt, ∆1m
2
q , and

∆1m
2
D as displayed in Fig. 2. The other terms, e.g. Fg, F3g, F4g, Fgh and Fgct coming from gluon and ghost loops

remain the same as the µ = 0 case [37]. We also add that the vacuum energy counterterm, ∆1E0, remains the same as



6

Σ

Fq Fqct

F3qg F4qg

FIG. 2. Diagrams containing fermionic lines relevant for NLO thermodynamics potential in HTLpt with finite chemical
potential. Shaded circles indicate HTL n-point functions.

the µ = 0 case whereas the mass counterterms, ∆1m
2
D and ∆1m

2
q, have to be computed for µ 6= 0. These counterterms

are of order δ. This completes a general description of contributions one needs to compute in order to determine NLO

HTLpt thermodynamic potential at finite chemical potential. We now proceed to the scalarization of the necessary

diagrams.

IV. SCALARIZATION OF THE FERMIONIC DIAGRAMS

The one-loop quark contribution coming from the first diagram in Fig. 2 can be written as

Fq = −
∑

∫

{P}

log det [P/ − Σ(P )] = −2
∑

∫

{P}

logP 2 − 2
∑

∫

{P}

log

[

A2
S −A2

0

P 2

]

, (15)

where

A0(P ) = iP0 −
m2

q

iP0
TP , (16)

AS(P ) = |p|+
m2

q

|p|
[1− TP ] , (17)

and TP is defined by the following integral [37]

TP =

〈

P 2
0

P 2
0 + p2c2

〉

c

=
ω(ǫ)

2

1
∫

−1

dc (1− c2)−ǫ iP0

iP0 − |p|c
, (18)

with w(ǫ) = 22ǫ Γ(2− 2ǫ)/Γ2(1 − ǫ). In three dimensions ǫ→ 0 and (18) reduces to

TP =
iP0

2|p|
log

iP0 + |p|

iP0 − |p|
, (19)

with P ≡ (P0,p). In practice, one must use the general form and only take the limit ǫ → 0 after regulariza-

tion/renormalization.

The HTL quark counterterm at one-loop order can be rewritten from the second diagram in Fig. 2 as

Fqct = −4
∑

∫

{P}

P 2 +m2
q

A2
S −A2

0

. (20)
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The two-loop contributions coming from the third and fourth diagrams in Fig. 2 are given, respectively, by

F3qg =
1

2
g2
∑

∫

{PQ}

Tr [Γµ(P,Q,R)S(Q)× Γν(P,Q,R)S(R)]∆µν(P ) , (21)

F4qg =
1

2
g2
∑

∫

{PQ}

Tr [Γµν(P,−P,Q,Q)S(Q)]∆µν(P ) , (22)

where S is the quark propagator which is given by S = (γµAµ)
−1 with Aµ = (A0(P ), AS(P )p̂) and ∆µν is the gluon

propagator. The general covariant gauge ∆µν can be expressed most conveniently in Minkowski space

∆µν(p) = [−∆T (p)g
µν +∆X(p)nµnν ]−

n·p

p2
∆X(p) (pµnν + nµpν) +

[

∆T (p) +
(n·p)2

p2
∆X(p)−

ξ

p2

]

pµpν

p2
,

(23)

where nµ is thermal rest frame four-vector and ∆T and ∆L are the transverse and longitudinal propagators

∆T (p) =
1

p2 −ΠT (p)
, (24)

∆L(p) =
1

−n2
pp

2 +ΠL(p)
, (25)

with nµ
p = nµ − (nµp

µ/p2)pµ. It is convenient to introduce the following linear combination of transverse and

longitudinal propagators which turn out to make the calculations easier to manage in practice

∆X(p) = ∆L(p) +
1

n2
p

∆T (p) . (26)

Also above Γµ and Γµν are HTL-resummed 3- and 4-point functions. Many more details concerning the HTL n-point

functions including the general Coulomb gauge propagator etc. can be found in appendices of Refs. [36, 37].

In general covariant gauge, the sum of (21) and (22) reduces to

F3qg+4qg =
1

2
g2
∑

∫

{PQ}

{

∆X(P )Tr
[

Γ00S(Q)
]

−∆T (P )Tr [Γ
µS(Q)ΓµS(R′)]

+∆X(P )Tr
[

Γ0S(Q)Γ0S(R′)
]

}

, (27)

where ∆T is the transverse gluon propagator, ∆X is a combination of the longitudinal and transverse gluon propaga-

tors [37], and R′ = Q− P . After performing the traces of the γ-matrices one obtains [37]

F3qg+4qg = −g2
∑

∫

{PQ}

1

A2
S(Q)−A2

0(Q)

{

2(d− 1)∆T (P )
q̂·r̂AS(Q)AS(R)−A0(Q)A0(R)

A2
S(R)−A2

0(R)

−2∆X(P )
A0(Q)A0(R) +AS(Q)AS(R)q̂·r̂

A2
S(R)−A2

0(R)

−4m2
q∆X(P )

〈

A0(Q)−As(Q)q̂·ŷ

(P ·Y )2 − (Q·Y )2
1

(Q·Y )

〉

ŷ
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+
8m2

q∆T (P )

A2
S(R)−A2

0(R)

〈

(A0(Q)−AS(Q)q̂·ŷ)(A0(R)−AS(R)r̂·ŷ)

(Q·Y )(R·Y )

〉

ŷ

+
4m2

q∆X(P )

A2
S(R)−A2

0(R)

〈

2A0(R)AS(Q)q̂·ŷ −A0(Q)A0(R)−AS(Q)AS(R)q̂·r̂

(Q·Y )(R·Y )

〉

ŷ

}

+O(g2m4
q) , (28)

where A0 and AS are defined in (16) and (17), respectively. We add that the exact evaluation of two-loop free energy

could be performed numerically and would involve 5-dimensional integrations; however, one would need to be able

to identify all divergences and regulate the numerical integration appropriately. Short of this, one can calculate the

sum-integrals by expanding in a power series in mD/T , mq/T , and µ/T in order to obtain semi-analytic expressions.

V. HIGH TEMPERATURE EXPANSION

As discussed above, we make an expansion of two-loop free energies in a power series of mD/T and mq/T to

obtain a series which is nominally accurate to order g5. By “nominally accurate” we mean that we expand the scalar

integrals treating mD and mq as O(g) keeping all terms which contribute through O(g5); however, the resulting series

is accurate to order g5 in name only. At each order in HTLpt the result is an infinite series in g. Using the mass

expansion we keep terms through order g5 at all loop-orders of HTLpt in order to make the calculation tractable.

At LO one obtains only the correct perturbative coefficients for the g0 and g3 terms when one expands in a strict

power series in g. At NLO one obtains the correct g0, g2, and g3 coefficients and at NNLO one obtains the correct

g0, g2, g3, g4, and g5 coefficients. The resulting approximants obtained when going from LO to NLO to NNLO are

expected to show improved convergence since the loop expansion is now explicitly expanded in terms of the relevant

high-temperature degrees of freedom (quark and gluon high-temperature quasiparticles).

In practice, the HTL n-point functions can have both hard and soft momenta scales on each leg. At one-loop

order the contributions can be classified “hard” or “soft” depending on whether the loop momenta are order T or gT ,

respectively; however, since the lowest fermionic Matsubara mode corresponds to P0 = πT , fermion loops are always

hard. The two-loop contributions to the thermodynamic potential can be grouped into hard-hard (hh), hard-soft

(hs), and soft-soft (ss) contributions. However, we note that one of the momenta contributing is always hard since it

corresponds to a fermionic loop and therefore there will be no two-loop soft-soft contribution. Below we calculate the

various contributions to the sum-integrals presented in Sec. IV.

A. One-loop sum-integrals

The one-loop sum-integrals (15) and (20) correspond to the first two diagrams in Fig. 2. They represent the leading-

order quark contribution and order-δ HTL counterterm. We will expand the sum-integrals through order m4
q taking

mq to be of (leading) order g. This gives a result which is nominally accurate (at one-loop) through order g5. 2

2 Of course, this won’t reproduce the full g5 pQCD result in the limit g → 0. In order to reproduce all known coefficients through O(g5),
one would need to perform a NNLO HTLpt calculation.
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1. Hard Contribution

The hard contribution to the one-loop quark self-energy in (15) can be expanded in powers of m2
q as

F (h)
q = −2

∑

∫

{P}

logP 2 − 4m2
q

∑

∫

{P}

1

P 2
+ 2m4

q

∑

∫

{P}

[

2

P 4
−

1

p2P 2
+

2TP
p2P 2

−
(TP )

2

p2P 2
0

]

. (29)

Note that the function TP does not appear in m2
q term. The expressions for the sum-integrals in (29) are listed in

Appendix A. Using those expressions, the hard contribution to the quark free energy becomes

F (h)
q = −

7π2

180
T 4

(

1 +
120

7
µ̂2 +

240

7
µ̂4

)

+

(

Λ

4πT

)2ǫ m2
qT

2

6

[

(

1 + 12µ̂2
)

+ ǫ

(

2− 2 ln 2 + 2
ζ′(−1)

ζ(−1)
+ 24(γ + 2 ln 2) µ̂2 − 28 ζ(3) µ̂4 +O

(

µ̂6
)

)]

+
m4

q

12π2
(π2 − 6) . (30)

Expanding the HTL quark counterterm in (20) one can write

F
(h)
qct = 4m2

q

∑

∫

{P}

1

P 2
− 4m4

q

∑

∫

{P}

[

2

P 4
−

1

p2P 2
+

2

p2P 2
TP −

1

p2P 2
0

(TP )
2

]

, (31)

where the expressions for various sum-integrals in (31) are listed in Appendix A. Using those expressions, the hard

contribution to the HTL quark counterterm becomes

F
(h)
qct = −

m2
qT

2

6

(

1 + 12µ̂2
)

−
m4

q

6π2
(π2 − 6) . (32)

We note that the first term in (32) cancels the order-ǫ0 term in the coefficient of m2
q in (30). There are no soft

contributions either from the leading-order quark term in (15) or from the HTL quark counterterm in (20).

B. Two-loop sum-integrals

Since the two-loop sum-integrals given in (27) contain an explicit factor of g2, we only require an expansion to

order m2
qmD/T

3 and m3
D/T

3 in order to determine all terms contributing through order g5. We note that the soft

scales are given by mq and mD whereas the hard scale is given by T , which leads to two different phase-space regions

as discussed in Sec. VA. In the hard-hard region, all three momenta P , Q, and R are hard whereas in the hard-soft

region, two of the three momenta are hard and the other one is soft.

1. The hh contribution

The self-energies for hard momenta are suppressed [29, 30, 37] by m2
D/T

2 or m2
q/T

2 relative to the propagators.

For hard momenta, one just needs to expand in powers of gluon self-energies ΠT , ΠL, and quark self-energy Σ. So,

the hard-hard contribution of F3qg and F4qg in (27) can be written as

F
(hh)
3qg+4qg = (d− 1)g2







∑

∫

{PQ}

1

P 2Q2
− 2

∑

∫

P{Q}

1

P 2Q2






+ 2m2

Dg
2
∑

∫

P{Q}

[

1

p2P 2Q2
TP +

1

P 4Q2
−
d− 2

d− 1

1

p2P 2Q2

]



10

+ m2
Dg

2
∑

∫

{PQ}

[

d+ 1

d− 1

1

P 2Q2r2
−

4d

d− 1

q2

P 2Q2r4
−

2d

d− 1

P ·Q

P 2Q2r4

]

TR

+ m2
Dg

2
∑

∫

{PQ}

[

3− d

d− 1

1

P 2Q2R2
+

2d

d− 1

P ·Q

P 2Q2r4
−
d+ 2

d− 1

1

P 2Q2r2
+

4d

d− 1

q2

P 2Q2r4
−

4

d− 1

q2

P 2Q2r2R2

]

+ 2m2
qg

2(d− 1)
∑

∫

{PQ}

[

1

P 2Q2
0Q

2
+

p2 − r2

q2P 2Q2
0R

2

]

TQ + 2m2
qg

2(d− 1)
∑

∫

P{Q}

[

2

P 2Q4
−

1

P 2Q2
0Q

2
TQ

]

+ 2m2
qg

2(d− 1)
∑

∫

{PQ}

[

d+ 3

d− 1

1

P 2Q2R2
−

2

P 2Q4
−

p2 − r2

q2P 2Q2R2

]

, (33)

where the various sum-integrals are evaluated in Appendices A and B. Using those sum-integral expressions, the hh

contribution becomes

F
(hh)
3qg+4qg =

5π2

72

αs

π
T 4

[

1 +
72

5
µ̂2 +

144

5
µ̂4

]

−
1

72

αs

π

(

Λ

4πT

)4ǫ
[

1 + 6(4− 3ζ(3)) µ̂2 − 120(ζ(3)− ζ(5)) µ̂4 +O
(

µ̂6
)

ǫ

+ 1.3035− 59.9055 µ̂2 − 75.4564 µ̂4 +O
(

µ̂6
)

]

m2
DT

2

+
1

8

αs

π

(

Λ

4πT

)4ǫ [
1− 12 µ̂2

ǫ
+ 8.9807− 152.793 µ̂2 + 115.826 µ̂4 +O

(

µ̂6
)

]

m2
qT

2 . (34)

2. The hs contribution

Following Ref. [37] one can extract the hard-soft contribution from (27) as the momentum P is soft whereas momenta

Q and R are always hard. The function associated with the soft propagator ∆T (0,p) or ∆X(0,p) can be expanded

in powers of the soft momentum p. For ∆T (0,p), the resulting integrals over p are not associated with any scale and

they vanish in dimensional regularization. The integration measure
∫

p
scales like m3

D, the soft propagator ∆X(0,p)

scales like 1/m2
D, and every power of p in the numerator scales like mD.

The contributions that survive only through order g2m3
DT and m2

qmDg
3T from F3qg and F4qg in (27) are

F
(hs)
3qg+4qg = g2T

∫

p

1

p2 +m2
D

∑

∫

{Q}

[

2

Q2
−

4q2

Q4

]

+ 2m2
Dg

2T

∫

p

1

p2 +m2
D

∑

∫

{Q}

[

1

Q4
−

2(3 + d)

d

q2

Q6
+

8

d

q4

Q8

]

−4m2
qg

2T

∫

p

1

p2 +m2
D

∑

∫

{Q}

[

3

Q4
−

4q2

Q6
−

4

Q4
TQ −

2

Q2

〈

1

(Q·Y )2

〉

ŷ

]

. (35)

Using the sum-integrals contained in Appendices A and B, the hard-soft contribution becomes

F
(hs)
3qg+4qg = −

1

6
αsmDT

3(1 + 12 µ̂2) +
αs

24π2

[

1

ǫ
+ 1 + 2γ + 4 ln 2− 14ζ(3) µ̂2 + 62ζ(5) µ̂4 +O

(

µ̂6
)

]

×

(

Λ

4πT

)2ǫ (
Λ

2mD

)2ǫ

m3
DT −

αs

2π2
m2

qmDT . (36)
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3. The ss contribution

As discussed earlier in Sec. V there is no soft-soft contribution from the diagrams in Fig. 2 since at least one of the

loops is fermionic.

C. Thermodynamic potential

Now we can obtain the HTLpt thermodynamic potential Ω(T, µ, αs,mD,mq, δ) through two-loop order for which

the contributions involving quark lines are computed here whereas the ghost and gluon contributions are computed

in Ref. [37]. We also follow the same prescription as in Ref. [37] to determine the mass parameter mD and mq from

respective gap equations but with finite quark chemical potential, µ.

1. Leading order thermodynamic potential

Using the expressions of Fq with finite quark chemical potential in (30) and Fg from Ref. [37], the total contributions

from the one-loop diagrams including all terms through order g5 becomes

Ωone loop = −dA
π2T 4

45

{

1 +
7

4

dF
dA

(

1 +
120

7
µ̂2 +

240

7
µ̂4

)

−
15

2

[

1 + ǫ

(

2 + 2
ζ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2

)]

m̂2
D

− 30
dF
dA

[

(

1 + 12µ̂2
)

+ ǫ

(

2− 2 ln 2 + 2
ζ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2
+ 24(γ + 2 ln 2)µ̂2 − 28ζ(3)µ̂4 +O

(

µ̂6
)

)]

m̂2
q

+ 30

(

Λ

2mD

)2ǫ [

1 +
8

3
ǫ

]

m̂3
D +

45

8

(

1

ǫ
+ 2 ln

Λ̂

2
− 7 + 2γ +

2π2

3

)

m̂4
D − 60

dF
dA

(π2 − 6)m̂4
q

}

, (37)

where m̂D, m̂q, Λ̂, and µ̂ are dimensionless variables:

m̂D =
mD

2πT
, (38)

m̂q =
mq

2πT
, (39)

Λ̂ =
Λ

2πT
, (40)

µ̂ =
µ

2πT
. (41)

Adding the counterterm in (13), we obtain the thermodynamic potential at leading order in the δ-expansion:

ΩLO = −dA
π2T 4

45

{

1 +
7

4

dF
dA

(

1 +
120

7
µ̂2 +

240

7
µ̂4

)

−
15

2

[

1 + ǫ

(

2 + 2
ζ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2

)]

m̂2
D

− 30
dF
dA

[

(

1 + 12µ̂2
)

+ ǫ

(

2− 2 ln 2 + 2
ζ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2
+ 24(γ + 2 ln 2)µ̂2 − 28ζ(3)µ̂4 +O

(

µ̂6
)

)]

m̂2
q

+ 30

(

Λ

2mD

)2ǫ [

1 +
8

3
ǫ

]

m̂3
D +

45

8

(

2 ln
Λ̂

2
− 7 + 2γ +

2π2

3

)

m̂4
D − 60

dF
dA

(π2 − 6)m̂4
q

}

, (42)

where we have kept terms of O(ǫ) since they will be needed for the two-loop renormalization.
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2. Next-to-leading order thermodynamic potential

The complete expression for the next-to-leading order correction to the thermodynamic potential is the sum of

the contributions from all two-loop diagrams, the quark and gluon counterterms, and renormalization counterterms.

Adding the contributions of the two-loop diagrams, F3qg+4qg, involving a quark line in (34) and (36) and the contri-

butions of F3g+4g+gh from Ref. [37], one obtains

Ωtwo loop = −dA
π2T 4

45

αs

π

{

−
5

4

[

cA +
5

2
sF

(

1 +
72

5
µ̂2 +

144

5
µ̂4

)]

+ 15
(

cA + sF
(

1 + 12 µ̂2
))

m̂D

−
55

8

[

(

cA −
4

11
sF
[

1 + 6(4− 3ζ(3)) µ̂2 − 120(ζ(3)− ζ(5)) µ̂4 +O
(

µ̂6
)]

)

(

1

ǫ
+ 4 ln

Λ̂

2

)

− sF
(

0.4712− 34.8761 µ̂2 − 21.0214 µ̂4 +O
(

µ̂6
))

− cA

(

72

11
ln m̂D − 1.96869

)]

m̂2
D

−
45

2
sF

[

(

1− 12 µ̂2
)

(

1

ǫ
+ 4 ln

Λ̂

2

)

+ 8.9807− 152.793 µ̂2 + 115.826 µ̂4 +O
(

µ̂6
)

]

m̂2
q

+ 180sF m̂Dm̂
2
q +

165

4

[

(

cA −
4

11
sF

)

(

1

ǫ
+ 4 ln

Λ̂

2
− 2 ln m̂D

)

+ cA

(

27

11
+ 2γ

)

−
4

11
sF
(

1 + 2γ + 4 ln 2− 14ζ(3) µ̂2 + 62ζ(5) µ̂4 +O
(

µ̂6
))

]

m̂3
D

}

, (43)

where cA = Nc and sF = Nf/2.

The HTL gluon counterterm is the same as obtained at zero chemical potential [37]

Ωgct = −dA
π2T 4

45

[

15

2
m̂2

D − 45m̂3
D −

45

4

(

1

ǫ
+ 2 ln

Λ̂

2
− 7 + 2γ +

2π2

3

)

m̂4
D

]

, (44)

The HTL quark counterterm as given by (32) is

Ωqct = −dF
π2T 4

45

[

30(1 + 12 µ̂2) m̂2
q + 120(π2 − 6) m̂4

q

]

. (45)

The ultraviolet divergences that remain after adding (43), (44), and (45) can be removed by renormalization of the

vacuum energy density E0 and the HTL mass parameter mD and mq. The renormalization contributions [37] at first

order in δ are

∆Ω = ∆1E0 +∆1m
2
D

∂

∂m2
D

ΩLO +∆1m
2
q

∂

∂m2
q

ΩLO . (46)

The counterterm ∆1E0 at first order in δ will be same as the zero chemical potential counterterm

∆1E0 = −
dA

64π2ǫ
m4

D . (47)

The mass counterterms necessary at first order in δ are found to be

∆1m̂
2
D = −

αs

3πǫ

[

11

4
cA − sF − sF (1 + 6m̂D)

[

(24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4 +O
(

µ̂6
)]

]

m̂2
D (48)
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and

∆1m̂
2
q = −

αs

3πǫ

[

9

8

dA
cA

]

1− 12 µ̂2

1 + 12 µ̂2
m̂2

q . (49)

Using the above counterterms, the complete contribution from the counterterms in (46) at first order in δ at finite

chemical potential becomes

∆Ω = −dA
π2T 4

45

{

45

4ǫ
m̂4

D +
αs

π

[

55

8

(

cA −
4

11
sF
[

1 + (24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4 +O
(

µ̂6
)]

)

(

1

ǫ
+ 2 + 2

ζ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2

)

m̂2
D −

165

4

(

cA −
4

11
sF

)

(

1

ǫ
+ 2 + 2 ln

Λ̂

2
− 2 ln m̂D

)

m̂3
D

−
165

4

4

11
sF
[

(24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4 +O
(

µ̂6
)]

(

2
ζ′(−1)

ζ(−1)
+ 2 ln m̂D

)

m̂3
D

+
45

2
sF

1− 12 µ̂2

1 + 12 µ̂2

(

1 + 12 µ̂2

ǫ
+ 2 + 2 ln

Λ̂

2
− 2 ln 2 + 2

ζ′(−1)

ζ(−1)
+ 24(γ + 2 ln 2) µ̂2

− 28ζ(3) µ̂4 +O
(

µ̂6
)

)

m̂2
q

]}

. (50)

Adding the contributions from the two-loop diagrams in (43), the HTL gluon and quark counterterms in (44) and (45),

the contribution from vacuum and mass renormalizations in (50), and the leading-order thermodynamic potential

in (42) we obtain the complete expression for the QCD thermodynamic potential at next-to-leading order in HTLpt:

ΩNLO = −dA
π2T 4

45

{

1 +
7

4

dF
dA

(

1 +
120

7
µ̂2 +

240

7
µ̂4

)

− 15m̂3
D −

45

4

(

log
Λ̂

2
−

7

2
+ γ +

π2

3

)

m̂4
D

+ 60
dF
dA

(

π2 − 6
)

m̂4
q +

αs

π

[

−
5

4

(

cA +
5

2
sF

(

1 +
72

5
µ̂2 +

144

5
µ̂4

))

+ 15
(

cA + sF (1 + 12µ̂2)
)

m̂D

−
55

4

{

cA

(

log
Λ̂

2
−

36

11
log m̂D − 2.001

)

−
4

11
sF

[(

log
Λ̂

2
− 2.337

)

+ (24− 18ζ(3))

(

log
Λ̂

2
− 15.662

)

µ̂2 + 120 (ζ(5)− ζ(3))

(

log
Λ̂

2
− 1.0811

)

µ̂4 +O
(

µ̂6
)

]}

m̂2
D

− 45 sF

{

log
Λ̂

2
+ 2.198− 44.953µ̂2 −

(

288 ln
Λ̂

2
+ 19.836

)

µ̂4 +O
(

µ̂6
)

}

m̂2
q

+
165

2

{

cA

(

log
Λ̂

2
+

5

22
+ γ

)

−
4

11
sF

(

log
Λ̂

2
−

1

2
+ γ + 2 ln 2− 7ζ(3)µ̂2 + 31ζ(5)µ̂4 +O

(

µ̂6
)

)}

m̂3
D

+ 15sF

(

2
ζ′(−1)

ζ(−1)
+ 2 ln m̂D

)

[

(24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4 +O
(

µ̂6
)]

m̂3
D + 180 sF m̂Dm̂

2
q

]}

.(51)

For convenience and comparison with lattice data [6], we define the pressure difference

∆P (T, µ) = P (T, µ)− P (T, 0) . (52)
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VI. PRESSURE

In the previous section we have computed both LO and NLO thermodynamic potential in presence of quark chemical

potential and temperature. All other thermodynamic quantities can be calculated using standard thermodynamic

relations. The pressure is defined as

P = −Ω(T, µ,mq,mD) , (53)

where mD and mq are determined by requiring

∂ΩNLO

∂m̂D
= 0 ,

∂ΩNLO

∂m̂q
= 0 . (54)

This leads to the following two gap equations which will be solved numerically

45m̂2
D

[

1 +

(

ln
Λ̂

2
−

7

2
+ γ +

π2

3

)

m̂D

]

=
αs

π

{

15(cA + sF (1 + 12µ̂2))−
55

2

[

cA

(

ln
Λ̂

2
−

36

11
ln m̂D − 3.637

)

−
4

11
sF

{

ln
Λ̂

2
− 2.333 + (24− 18ζ(3))

(

ln
Λ̂

2
− 15.662

)

µ̂2

+120(ζ(5)− ζ(3))

(

ln
Λ̂

2
− 1.0811

)

µ̂4

}]

m̂D +
495

2

[

cA

(

ln
Λ̂

2
+

5

22
+ γ

)

−
4

11
sF

{

ln
Λ̂

2
−

1

2
+ γ + 2 ln 2− 7ζ(3)µ̂2 + 31ζ(5)µ̂4

−

(

ζ′(−1)

ζ(−1)
+ lnmD +

1

3

)

(

(24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4
)

}]

m2
D + 180sFm̂

2
q

}

,

(55)

and

m̂2
q =

dA
8dF (π2 − 6)

αssF
π

[

3

(

ln
Λ̂

2
+ 2.198− 44.953 µ̂2 −

(

288 ln
Λ̂

2
+ 19.836

)

µ̂4

)

− 12m̂D

]

. (56)

In Figs. 3 and 4 we present a comparison of NLO HTLpt pressure with that of four-loop pQCD [17] as a function

of the temperature for two and three loop running of αs. The only difference between Figs. 3 and 4 is the choice of

order of the running coupling used. As can be seen from these figures, the dependence on the order of the running

coupling is quite small. However, we note that in both figures even at extremely large temperatures there is a sizable

correction when going from LO to NLO. This was already seen in the T = 0 results of Ref. [37] where it was found

that due the logarithmic running of the coupling, it was necessary to go to very large temperatures in order for the LO

and NLO predictions to overlap. This is due to over-counting problems at LO which lead to an order-g2 perturbative

coefficient which is twice as large as it should be [37, 45]. This problem is corrected at NLO, but the end result is

that there is a reasonably large correction (∼ 5%) at the temperatures shown.

The NLO HTLpt result differs from the pQCD result through order α3
s lnαs at low temperatures. A NNLO HTLpt

calculation at finite µ would agree better with pQCD α3
s lnαs as found in µ = 0 case [38]. The HTLpt result clearly

indicates a modest improvement over pQCD in respect of convergence and sensitivity of the renormalisation scale. In

Fig. 5 the pressure difference, ∆P , is also compared with the same quantity computed using pQCD [17] and lattice



15

2 - loop Αs ; L
MS
=268 MeV , Μ=0

200 103 104 105
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T HMeV L

P
�

P
id

ea
l

Αs
3 lnΑs pQCD

NLO HTLpt

LO HTLpt

2 - loop Αs ; L
MS
=268 MeV , Μ=200 MeV

200 103 104 105
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T HMeV L

P
�

P
id

ea
l

Αs
3 lnΑs pQCD

NLO HTLpt

LO HTLpt

FIG. 3. The NLO HTLpt pressure scaled with ideal gas pressure plotted along with four-loop pQCD pressure [17] for two
different values of chemical potential with Nf = 3 and 2-loop running coupling constant αs. The bands are obtained by varying

the renormalisation scale by a factor of 2 around its central value Λ = 2π
√

T 2 + µ2/π2 [17, 19]. We use Λ
MS

= 290 MeV based
on recent lattice calculations [20] of the three-loop running of αs.
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FIG. 4. Same as Fig. 3 but for 3-loop αs.

QCD [6]. Both LO and NLO HTLpt results are less sensitive to the choice of the renormalisation scale than the weak

coupling results with the inclusion of successive orders of approximation. Comparison with available lattice QCD

data [6] suggests that HTLpt and pQCD cannot accurately account for the lattice QCD results below approximately

3Tc; however, the results are in very good qualitative agreement with the lattice QCD results without any fine tuning.
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FIG. 5. (Left panel) ∆P for Nf = 3 is plotted as a function of T for two-loop HTLpt result along with those of four-loop

pQCD up to α3
s lnαs [17] and lattice QCD [6] up to O

(

µ2
)

using 2-loop running coupling constant αs. (Right panel) Same as
left panel but using 3-loop running coupling. In both cases three different values of µ are shown as specified in the legend. The
bands in both HTLpt and pQCD are obtained by varying the renormalisation scale by a factor of 2 around its central value

Λ = 2π
√

T 2 + µ2/π2 [17, 19].

VII. CONCLUSIONS AND OUTLOOK

In this paper we have generalized the zero chemical potential NLO HTLpt calculation of the QCD thermodynamic

potential [37] to finite chemical potential. We have obtained (semi-)analytic expressions for the thermodynamic

potential at both LO and NLO in HTLpt. The results obtained are trustworthy at high temperatures and small

chemical potential since we performed an expansion in the ratio of the chemical potential over the temperature.

This calculation will be useful for the study of finite temperature and chemical potential QCD matter. This is

important in view of the ongoing RHIC beam energy scan and proposed heavy-ion experiments at FAIR. Using the

NLO HTLpt thermodynamic potential, we have obtained a variational solution for both mass parameters, mq and

mD, and we have used this to obtain the pressure at finite temperature and chemical potential. When compared

with the weak coupling expansion of QCD, the HTLpt pressure helps somewhat with the problem of oscillation of

successive approximations found in pQCD. Furthermore, the scale variation of the NLO HTLpt result for pressure

is smaller than that obtained with the weak coupling result. The HTLpt pressure shows some deviations from the

lattice data below 3 Tc which suggests that the calculation should be extended to NNLO. In addition, getting better

agreement with pQCD at low temperature will require going to NNLO. This is indeed a very challenging job which

represents work in progress.

We also note that, based on the results obtained herein, one can straightforwardly compute quark susceptibilities.

In a forthcoming paper we will compare the NLO HTLpt results for quark susceptibilities with lattice data and other

theoretical models of QCD matter.
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C
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µ
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FIG. 6. The contour corresponding to (A.3) in complex P0 plane. The crosses are poles of the thermal weight factor which are
shifted by an amount µ from the Re[P0] axis.

Appendix A: Sum-Integrals

In the imaginary-time (Euclidean time) formalism for the field theory of a hot and dense medium, the 4-momentum

P = (P0,p) is Euclidean with P 2 = P 2
0 +p

2. The Euclidean energy P0 has discrete values: P0 = 2nπT for bosons and

P0 = (2n+ 1)πT − iµ for fermions, where n is an integer running from −∞ to ∞, µ is the quark chemical potential,

and T = 1/β is the temperature of the medium. Loop diagrams usually then involve sums over P0 and integrals over

p. In dimensional regularization, the integral over spatial momentum is generalized to d = 3− 2ǫ spatial dimensions.

We define the dimensionally regularized sum-integral as

∑

∫

P

≡

(

eγΛ2

4π

)ǫ

T
∑

P0=2nπT

∫

d3−2ǫp

(2π)3−2ǫ
, (A.1)

∑

∫

{P}

≡

(

eγΛ2

4π

)ǫ

T
∑

P0=(2n+1)πT−iµ

∫

d3−2ǫp

(2π)3−2ǫ
, (A.2)

where 3− 2ǫ is the dimension of space, Λ is an arbitrary momentum scale, P is the bosonic loop momentum, and {P}

is the fermionic loop momentum. The factor (eγ/4π)ǫ is introduced so that, after minimal subtraction of the poles in

ǫ due to ultraviolet divergences, Λ coincides with the renormalization scale of the MS renormalization scheme.

We describe below the technique of contour integration [12, 13] in the complex plane to evaluate the frequency sum

over P0. Consider a meromorphic function f(P0) that originates from a loop diagram, then one can write

T
∑

P0=(2n+1)πT−iµ

f(P0) = T

∮

C

dP0

2πi
f(P0)

β

2
tanh

β(iP0 − µ)

2
= −

T

2πi
×
β

2
× (2πi)

∑

Residues , (A.3)

provided f(P0) is regular in Re(iP0) = µ line as shown in Fig. 6. Below we demonstrate two examples, a simpler

one involving only loop momentum and a complicated one involving fourth power of loop momentum and the HTL

angular function, which would be relevant for evaluating sum-integrals:
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(i) Simpler one:

∑

∫

{P}

1

P 2
=

(

eγΛ2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ
T

∑

P0=(2n+1)πT−iµ

1

2p

[

1

iP0 + p
−

1

iP0 − p

]

= −

(

eγΛ2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ

(

nF (p)

2p

)

, (A.4)

where nF (p) = [eβ(p−µ) + 1]−1 + [eβ(p+µ) + 1]−1 = [n−
F (p) + n+

F (p)].

(ii) Involving HTL term:

∑

∫

{P}

1

P 4
TP =

∑

∫

{P}

1

P 4

〈

P 2
0

P 2
0 + p2c2

〉

c

=

〈

1

1− c2

〉

c

∑

∫

{P}

1

P 4
+

〈

c2

1− c2

∑

∫

{P}

1

P 2(P 2
0 + p2c2)

〉

c

=

〈

1

1− c2

〉

c

∑

∫

{P}

(

−
1

2p

)

d

dp

1

P 2
+

〈

c2 − c1+2ǫ

(1− c2)2

〉

c

∑

∫

{P}

1

p2P 2

=
1

2

(

eγΛ2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ

1

p

d

dp

[

nF (p)

2p

]

−

〈

c2 − c1+2ǫ

(1− c2)2

〉

c

(

eγΛ2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ

[

nF (p)

2p3

]

. (A.5)

After performing the frequency sum, one is left with dimensionally regularized spatial momentum integration, which

are also discussed in Appendix B. However, all other frequency sums can be evaluated in similar way as discussed

above.

1. Simple one loop sum-integrals

The specific fermionic one-loop sum-integrals needed are

∑

∫

{P}

lnP 2 =
7π2

360
T 4

(

1 +
120 µ̂2

7
+

240 µ̂4

7

)

. (A.6)

∑

∫

{P}

1

P 2
= −

T 2

24

(

Λ

4πT

)2ǫ [

1 + 12 µ̂2 + ǫ

(

2− 2 ln 2 + 2
ζ′(−1)

ζ(−1)
+ 24(γ + 2 ln 2) µ̂2 − 28ζ(3) µ̂4 +O

(

µ̂6
)

)

+ǫ2
(

4 +
π2

4
− 4 ln 2− 2 ln2 2 + 4(1− ln 2)

ζ′(−1)

ζ(−1)
+ 2

ζ′′(−1)

ζ(−1)
+ 94.5749 µ̂2 − 143.203 µ̂4 +O

(

µ̂6
)

)]

. (A.7)

∑

∫

{P}

1

P 4
=

1

(4π)2

(

Λ

4πT

)2ǫ [
1

ǫ
+
(

2γ + 4 ln 2− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O
(

µ̂6
))

+ǫ

(

4(2γ + ln 2) ln 2− 4γ1 +
π2

4
− 71.6013 µ̂2 + 356.329 µ̂4 +O

(

µ̂6
)

)]

. (A.8)
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∑

∫

{P}

p2

P 4
= −

T 2

16

(

Λ

4πT

)2ǫ [

1 + 12 µ̂2 + ǫ

(

4

3
− 2 ln 2 + 2

ζ′(−1)

ζ(−1)
+ 8(3γ + 6 ln 2− 1) µ̂2

− 28 ζ(3) µ̂4 +O
(

µ̂6
))]

. (A.9)

∑

∫

{P}

p2

P 6
=

1

(4π)2
3

4

(

Λ

4πT

)2ǫ [
1

ǫ
+

(

2γ −
2

3
+ 4 ln 2− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O

(

µ̂6
)

)]

. (A.10)

∑

∫

{P}

p4

P 6
= −

5T 2

64

(

Λ

4πT

)2ǫ [

1 + 12 µ̂2 + ǫ

(

14

15
− 2 ln 2 + 2

ζ′(−1)

ζ(−1)
+ 8

(

−
8

5
+ 3γ + 6 ln 2

)

µ̂2

− 28 ζ(3) µ̂4 +O
(

µ̂6
))]

. (A.11)

∑

∫

{P}

p4

P 8
=

1

(4π)2

(

Λ

4πT

)2ǫ
5

8

[

1

ǫ
+

(

2γ −
16

15
+ 4 ln 2− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O

(

µ̂6
)

)]

. (A.12)

∑

∫

{P}

1

p2P 2
=

1

(4π)2

(

Λ

4πT

)2ǫ

2

[

1

ǫ
+
(

2 + 2γ + 4 ln 2− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O
(

µ̂6
))

+ǫ

(

4 + 8 ln 2 + 4 ln2 2 + 4γ + 8γ ln 2 +
π2

4
− 4γ1 − 105.259 µ̂2 + 484.908 µ̂4 +O

(

µ̂6
)

)]

. (A.13)

2. HTL one loop sum-integrals

We also need some more difficult one-loop sum-integrals that involve the HTL function defined in (18).

The specific fermionic sum-integrals needed are

∑

∫

{P}

1

P 4
TP =

1

(4π)2

(

Λ

4πT

)2ǫ
1

2

[

1

ǫ
+
(

1 + 2γ + 4 ln 2− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O
(

µ̂6
))

]

. (A.14)

∑

∫

{P}

1

p2P 2
TP =

2

(4π)2

(

Λ

4πT

)2ǫ [
ln 2

ǫ
+

(

π2

6
+ ln 2

(

2γ + 5 ln 2− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O
(

µ̂6
))

)

+ ǫ
(

17.5137− 85.398 µ̂2 + 383.629 µ̂4 +O
(

µ̂6
))]

. (A.15)

∑

∫

{P}

1

P 2P 2
0

TP =
1

(4π)2

(

Λ

4πT

)2ǫ [
1

ǫ2
+

1

ǫ
2
(

γ + 2 ln 2− 7 ζ(3) µ̂2 + 31 ζ(5) µ̂4 +O
(

µ̂6
))

+

(

π2

4
+ 4 ln2 2 + 8γ ln 2− 4γ1 − 71.6014 µ̂2 + 356.329 µ̂4 +O

(

µ̂6
)

)]

. (A.16)
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∑

∫

{P}

1

p2P 2
0

(TP )
2 =

4

(4π)2

(

Λ

4πT

)2ǫ

ln 2

[

1

ǫ
+ (2γ + 5 ln 2)− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O

(

µ̂6
)

]

. (A.17)

∑

∫

{P}

1

P 2

〈

1

(P · Y )2

〉

ŷ

= −
1

(4π)2

(

Λ

4πT

)2ǫ [
1

ǫ
− 1 + 2γ + 4 ln 2− 14 ζ(3) µ̂2 + 62 ζ(5) µ̂4 +O

(

µ̂6
)

]

. (A.18)

3. Simple two loop sum-integrals

∑

∫

{PQ}

1

P 2Q2R2
=

T 2

(4π)2

(

Λ

4πT

)4ǫ [
µ̂2

ǫ
+ 2(4 ln 2 + 2γ + 1) µ̂2 −

28

3
ζ(3) µ̂4 +O

(

µ̂6
)

]

. (A.19)

∑

∫

{PQ}

1

P 2Q2r2
=

T 2

(4π)2

(

Λ

4πT

)4ǫ (

−
1

6

)[

1

ǫ

(

1 + 12µ̂2
)

+ 4− 2 ln 2 + 4
ζ′(−1)

ζ(−1)

+ 48 (1 + γ + ln 2) µ̂2 − 76ζ(3) µ̂4 +O
(

µ̂6
)]

. (A.20)

∑

∫

{PQ}

p2

P 2Q2r4
=

T 2

(4π)2

(

Λ

4πT

)4ǫ (

−
1

12

)[

1

ǫ

(

1 + 12µ̂2
)

+

(

11

3
+ 2γ − 2 ln 2 + 2

ζ′(−1)

ζ(−1)

)

+4 (7 + 12γ + 12 ln 2− 3ζ(3)) µ̂2 − 4 (27ζ(3)− 20ζ(5)) µ̂4 +O
(

µ̂6
)]

. (A.21)

∑

∫

{PQ}

P ·Q

P 2Q2r4
=

T 2

(4π)2

(

Λ

4πT

)4ǫ (

−
1

36

)[

1− 6γ + 6
ζ′(−1)

ζ(−1)
+ 24 {2 + 3ζ(3)} µ̂2

+ 48(7ζ(3)− 10ζ(5)) µ̂4 +O(µ̂6)
]

. (A.22)

∑

∫

{PQ}

p2

r2P 2Q2R2
= −

T 2

(4π)2

(

Λ

4πT

)4ǫ
1

72

[

1

ǫ

[

1− 12(1− 3ζ(3)) µ̂2 + 240(ζ(3)− ζ(5)) µ̂4 +O
(

µ̂6
)]

−
(

7.001− 108.218 µ̂2 − 304.034 µ̂4 +O(µ̂6)
)]

. (A.23)

∑

∫

{PQ}

p2

q2P 2Q2R2
=

T 2

(4π)2

(

Λ

4πT

)4ǫ
5

72

[

1

ǫ

(

1−
12

5
(1 + 7ζ(3)) µ̂2 −

24

5
(14ζ(3)− 31ζ(5)) µ̂4 +O

(

µ̂6
)

)

+
(

9.5424− 185.706 µ̂2 + 916.268 µ̂4 +O(µ̂6)
)]

. (A.24)

∑

∫

{PQ}

r2

q2P 2Q2R2
= −

T 2

(4π)2

(

Λ

4πT

)4ǫ
1

18

[

1

ǫ

(

1 + 3(−2 + 7ζ(3)) µ̂2 + 6(14ζ(3)− 31ζ(5)) µ̂4 +O(µ̂6)
)

+
(

8.1428 + 96.9345 µ̂2 − 974.609 µ̂4 +O(µ̂6)
)]

. (A.25)
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The generalized two loop sum-integrals can be written from [37] as

∑

∫

{PQ}

F (P )G(Q)H(R) =

∫

PQ

F (P )G(Q)H(R) −

∫

p0,p

ǫ(p0)nF (|p0|) 2 ImF (−ip0 + ε,p)Re

∫

Q

G(Q)H(R)

∣

∣

∣

∣

P0=−ip0+ε

−

∫

p0,p

ǫ(p0)nF (|p0|) 2 ImG(−ip0 + ε,p)Re

∫

Q

H(Q)F (R)

∣

∣

∣

∣

P0=−ip0+ε

(A.26)

+

∫

p0,p

ǫ(p0)nB(|p0|) 2 ImH(−ip0 + ε,p)Re

∫

Q

F (Q)G(R)

∣

∣

∣

∣

P0=−ip0+ε

+

∫

p0,p

ǫ(p0)nF (|p0|) 2 ImF (−ip0 + ε,p)

∫

q0,q

ǫ(q0)nF (|q0|) 2 ImG(−iq0 + ε,q)ReH(R)

∣

∣

∣

∣

R0=i(p0+q0)+ε

−

∫

p0,p

ǫ(p0)nF (|p0|) 2 ImG(−ip0 + ε,p)

∫

q0,q

ǫ(q0)nB(|q0|) 2 ImH(−iq0 + ε,q)ReF (R)

∣

∣

∣

∣

R0=i(p0+q0)+ε

−

∫

p0,p

ǫ(p0)nB(|p0|) 2 ImH(−ip0 + ε,p)

∫

q0,q

ǫ(q0)nF (|q0|) 2 ImF (−iq0 + ε,q)ReG(R)

∣

∣

∣

∣

R0=i(p0+q0)+ε

. (A.27)

After applying Eq. (A.27) and using the delta function to calculate the P0 and Q0 integrations, the sum-integral

(A.23) reduces to

∑

∫

{PQ}

1

P 2Q2R2
=

∫

pq

n−
F (p)− n+

F (p)

2p

n−
F (q)− n+

F (q)

2q

2p q

∆(p, q, r)
, (A.28)

where

n±
F (p) =

1

eβ(p±µ) + 1
and ∆(p, q, r) = p4 + q4 + r4 − 2(p2q2 + q2r2 + p2r2) = −4p2q2(1 − x2) , (A.29)

and using the result of Eq. (B.10), we get sum-integral (A.19) and agree with [17].

After applying Eq. (A.27), the sum-integral (A.20) reduces to

∑

∫

{PQ}

1

P 2Q2r2
= −2

∫

p

nF (p)

2p

∫

Q

1

Q2r2
+

∫

pq

nF (p)nF (q)

4pq

1

r2
, (A.30)

where nF (p) = n−
F (p) + n+

F (p) . Now using the result of 4-dimensional integrals from [37] and applying Eq. (B.3) and

Eq. (B.5), we can calculate sum-integral Eq. (A.20). The sum-integrals (A.21) can be calculated in same way:

∑

∫

{PQ}

p2

P 2Q2r4
= −2

∫

p

nF (p)

2p

∫

Q

p2

Q2r4
+

∫

pq

nF (p)nF (q)

4pq

p2

r4
. (A.31)

The sum-integral (A.22) can be written as

∑

∫

{PQ}

P ·Q

P 2Q2r4
=
∑

∫

{PQ}

P0Q0

P 2Q2r4
+

1

2

∑

∫

{PQ}

1

P 2Q2r2
−
∑

∫

{PQ}

p2

P 2Q2r4
(A.32)
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Using Eq. (A.27) and after doing P0 and Q0 integrations, first sum-integral above reduces to

∑

∫

{PQ}

P0Q0

P 2Q2r4
=

∫

pq

n−
F (p)− n+

F (p)

2 p

n−
F (q)− n+

F (q)

2 q

p q

r4
, (A.33)

and the result is given in Eq. (B.9). The second term and third terms sum-integrals above are linear combinations of

Eq. (A.20) and Eq. (A.21). Adding all of them, we get required sum-integral.

Similarly after applying Eq. (A.27), the sum-integral (A.23) reduces to

∑

∫

{PQ}

p2

r2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

r2

p2Q2R2

∣

∣

∣

∣

∣

∣

P0=−ip

−

∫

p

nF (p)

2p

∫

Q

1

Q2R2

(

q2

r2
+
p2

q2

)

∣

∣

∣

∣

∣

∣

P0=−ip

+

∫

pq

nF (p)nF (q)

4pq

q2

r2
r2 − p2 − q2

∆(p, q, r)
−

∫

pq

nF (p)nB(q)

4pq

p2 + r2

q2
r2 − p2 − q2

∆(p, q, r)
, (A.34)

So

〈

p2 + r2

q2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

1

2q2 ǫ
, (A.35)

and

〈

q2

r2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

〈

q2

∆(p, q, r)

〉

x

−

〈

q2(p2 + q2)

∆(p, q, r)

〉

x

,

=
1− 2ǫ

8ǫ

1

p2
−

1

2ǫ

〈

q2

r4

〉

x

−
1− 2ǫ

8ǫ

1

p2

= −
1

2ǫ

〈

q2

r4

〉

x

. (A.36)

Using the above angular integration, Eq. (A.34) becomes

∑

∫

{PQ}

p2

r2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

r2

p2Q2R2

∣

∣

∣

∣

∣

∣

P0=−ip

−

∫

p

nF (p)

2p

∫

Q

1

Q2R2

(

q2

r2
+
p2

q2

)

∣

∣

∣

∣

∣

∣

P0=−ip

−
1

2ǫ

∫

pq

nF (p)nF (q)

4pq

p2

r4
−

1

2ǫ

∫

pq

nF (p)nB(q)

4pq

1

q2
. (A.37)

Using the 4-dimensional integrals from [37] and Eqs. (B.2), (B.3), (B.4) and (B.6), we obtain the sum-integral (A.23).

Similarly after applying Eq. (A.27), the sum-integral (A.24) reduces to

∑

∫

{PQ}

p2

q2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

q2

Q2r2R2

∣

∣

∣

∣

∣

∣

P0=−ip

−

∫

p

nF (p)

2p

∫

Q

1

Q2R2

(

p2

q2
+
q2

p2

)

∣

∣

∣

∣

∣

∣

P0=−ip

+

∫

pq

nF (p)nF (q)

4pq

p2

q2
r2 − p2 − q2

∆(p, q, r)
−

∫

pq

nF (p)nB(q)

4pq

(

p2

r2
+
r2

p2

)

r2 − p2 − q2

∆(p, q, r)
. (A.38)

Now

〈

p2

q2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
= 0 , (A.39)
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and

〈(

p2

r2
+
r2

p2

)

r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

1

2ǫ

1

p2
−

1

2ǫ

〈

p2

r4

〉

x

. (A.40)

Using the above angular average, we find

∑

∫

{PQ}

p2

q2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

q2

Q2r2R2

∣

∣

∣

∣

∣

∣

P0=−ip

−

∫

p

nF (p)

2p

∫

Q

1

Q2R2

(

p2

q2
+
q2

p2

)

∣

∣

∣

∣

∣

∣

P0=−ip

−
1

2ǫ

∫

pq

nF (p)nB(q)

2pq

1

p2
+

1

2ǫ

∫

pq

nF (p)nB(q)

2pq

p2

r4
(A.41)

Using the 4-dimensional integrals from [37] and Eqs. (B.2), (B.3), (B.4) and (B.7), we obtain the sum-integral (A.24).

Similarly after applying Eq. (A.27), the sum-integral (A.25) reduces to

∑

∫

{PQ}

r2

p2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

p2

Q2r2R2

∣

∣

∣

∣

∣

∣

P0=−ip

−

∫

p

nF (p)

2p

∫

Q

1

Q2R2

(

r2

p2
+
r2

q2

)

∣

∣

∣

∣

∣

∣

P0=−ip

+

∫

pq

nF (p)nF (q)

4pq

r2

p2
r2 − p2 − q2

∆(p, q, r)
−

∫

pq

nF (p)nB(q)

4pq

(

q2

r2
+
q2

p2

)

r2 − p2 − q2

∆(p, q, r)
. (A.42)

Now

〈

r2

p2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

1

2p2ǫ
, (A.43)

and

〈(

q2

r2
+
q2

p2

)

r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
= −

1

2ǫ

〈

q2

r4

〉

x

. (A.44)

Using the above angular average, we have

∑

∫

{PQ}

p2

q2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

q2

Q2r2R2

∣

∣

∣

∣

∣

∣

P0=−ip

−

∫

p

nF (p)

2p

∫

Q

1

Q2R2

(

p2

q2
+
q2

p2

)

∣

∣

∣

∣

∣

∣

P0=−ip

+
1

2ǫ

∫

pq

nF (p)nB(q)

2pq

1

p2
+

1

2ǫ

∫

pq

nF (p)nB(q)

2pq

q2

r4
. (A.45)

Using the 4-dimensional integrals from [37] and Eqs. (B.2), (B.3), (B.4) and (B.8), we obtain the sum-integral (A.24).

4. HTL two loop sum-integrals

∑

∫

{PQ}

1

P 2Q2r2
TR =

T 2

(4π)2

(

Λ

4πT

)4ǫ (

−
1

48

)[

1

ǫ2
+

(

2 + 12(1 + 8 µ̂2) ln 2 + 4
ζ′(−1)

ζ(−1)

)

1

ǫ

+
(

136.3618 + 460.23 µ̂2 − 273.046 µ̂4 +O
(

µ̂6
))]

. (A.46)



24

∑

∫

{PQ}

p2

P 2Q2r4
TR =

T 2

(4π)2

(

Λ

4πT

)4ǫ (

−
1

576

)[

1

ǫ2
+

(

26

3
+ 4(13 + 144 µ̂2) ln 2 + 4

ζ′(−1)

ζ(−1)

)

1

ǫ

+
(

446.397+ 2717.86 µ̂2 − 1735.61 µ̂4 +O(µ̂6)
)]

. (A.47)

∑

∫

{PQ}

P ·Q

P 2Q2r4
TR =

T 2

(4π)2

(

Λ

4πT

)4ǫ (

−
1

96

)[

1

ǫ2
+

(

4 ln 2 + 4
ζ′(−1)

ζ′(−1)

)

1

ǫ
+
(

69.1737+ 118.244 µ̂2

+136.688 µ̂4 +O
(

µ̂6
))]

. (A.48)

∑

∫

{PQ}

r2 − p2

P 2q2Q2
0R

2
TQ = −

T 2

(4π)2

(

Λ

4πT

)4ǫ
1

8

[

1

ǫ2
(

1 + 4 µ̂2
)

+
1

ǫ

(

2 + 2γ +
10

3
ln 2 + 2

ζ′(−1)

ζ(−1)

+ 2 (8γ + 16 ln 2− 7ζ(3)) µ̂2 −
2

3
(98ζ(3)− 93ζ(5)) µ̂4 +O

(

µ̂6
)

)

+
(

46.8757− 41.1192 µ̂2 + 64.0841 µ̂4 +O
(

µ̂6
))]

. (A.49)

Appendix B: Integrals

1. Three dimensional integrals

We require one integral that does not involve the Bose-Einstein distribution function. The momentum scale in

these integrals is set by the mass m = mD. The one-loop integral is

∫

p

1

p2 +m2
= −

m

4π

(

Λ

2m

)2ǫ

[1 + 2ǫ] . (B.1)

2. Thermal Integrals

Λ2ǫ

(4π)2

∫

p

nB(p)

p
p−2ǫ =

T 2

(4π)2

(

Λ

4πT

)4ǫ (
1

12

){

1 + ǫ

[

2− 2 ln 2 + 4
ζ′(−1)

ζ(−1)

]

+ 2ǫ2
[

7π2

8
− 2 + ln2 2− 2 ln 2 + 4(1 + ln 2)

(

1 +
ζ′(−1)

ζ(−1)

)

+ 4
ζ′′(−1)

ζ(−1)

]}

. (B.2)

Λ2ǫ

(4π)2

∫

p

nF (p)

2p
p−2ǫ =

T 2

(4π)2

(

Λ

4πT

)4ǫ(
1

24

)

[

(

1 + 12µ̂2
)

+ ǫ
{

2− 2 ln 2 + 4
ζ′(−1)

ζ(−1)

+ 24 (2γ + 5 ln 2− 1) µ̂2 − 56ζ(3) µ̂4 +O
(

µ̂6
)

}]

. (B.3)
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Λ2ǫ

(4π)2

∫

p

nF (p)

2p

1

p2
p−2ǫ = −

T 2

(4π)2

(

Λ

4πT

)4ǫ [
1

ǫ
+ 2 + 2γ + 10 ln 2− 28ζ(3) µ̂2 + 124ζ(5) µ̂4 +O

(

µ̂6
)

]

. (B.4)

∫

pq

nF (p)nF (q)

4pq

1

r2
=

T 2

(4π)2

[

1

3
(1− ln 2) + 4(2 ln 2− 1)µ̂2 +

10

3
ζ(3) µ̂4 +O

(

µ̂6
)

]

. (B.5)

∫

pq

nF (p)nF (q)

4pq

p2

r4
=

T 2

(4π)2

(

−
1

36

)

[(

5 + 6γ + 6 ln 2− 6
ζ′(−1)

ζ(−1)
− 12(−13 + 12 ln 2 + 3ζ(3))µ̂2

+12 (−13ζ(3) + 20ζ(5)) µ̂4 +O
(

µ̂6
)

)

+ ǫ
(

3.0747 + 31.2624 µ̂2 + 262.387 µ̂4 +O
(

µ̂6
))

]

. (B.6)

∫

pq

nB(p)nF (q)

2pq

p2

r4
=

T 2

(4π)2

(

−
1

36

)

[{

7− 6γ − 18 ln 2 + 6
ζ′(−1)

ζ(−1)
+ 6(−22 + 21ζ(3)) µ̂2

+6 (126ζ(3)− 155ζ(5)) µ̂4 +O
(

µ̂6
)

}

+ ǫ
(

29.5113 + 158.176 µ̂2 − 557.189 µ̂4 +O
(

µ̂6
))

]

. (B.7)

∫

pq

nB(p)nF (q)

2pq

q2

r4
=

T 2

(4π)2

(

1

18

)

[{

1− 6γ − 12 ln 2 + 6
ζ′(−1)

ζ(−1)
+ 12µ̂2 − 6 (28ζ(3)− 31ζ(5)) µ̂4

+O
(

µ̂6
)

}

+ ǫ
(

31.0735+ 222.294 µ̂2 − 416.474 µ̂4 +O
(

µ̂6
)]

. (B.8)

∫

pq

n−
F (p)− n+

F (p)

2 p

n−
F (q)− n+

F (q)

2 q

p q

r4
=

T 2

(4π)2
1

3

[

(1− 3ζ(3)) µ̂2 − 20(ζ(3)− ζ(5)) µ̂4 +O
(

µ̂6
)]

. (B.9)

Thermal integrals containing the triangle function:

∫

pq

n−
F (p)− n+

F (p)

2p

n−
F (q)− n+

F (q)

2q

2p q

∆(p, q, r)
=

T 2

(4π)2

(

Λ

4πT

)4ǫ [
µ̂2

ǫ
+ 2(4 ln 2 + 2γ + 1) µ̂2 −

28

3
ζ(3) µ̂4 +O

(

µ̂6
)

]

.

(B.10)

Thermal integrals containing both the triangle function and HTL average are listed below:

∫

pq

nF (p)nF (q)

4pq
Re

〈

c2
r2c2 − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[

0.014576+ 0.238069 µ̂2 + 0.825164 µ̂4 +O
(

µ̂6
)]

. (B.11)

∫

pq

nF (p)nF (q)

4pq
Re

〈

c4
r2c2 − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[

0.017715+ 0.28015 µ̂2 + 0.87321 µ̂4 +O
(

µ̂6
)]

. (B.12)



26

∫

pq

nF (p)nF (q)

4pq
Re

〈

q2

r2
c2
r2c2 − p2 − q2

∆(p+ iε, q, rc)

〉

c

= −
T 2

(4π)2
[

0.01158 + 0.17449 µ̂2 + 0.45566 µ̂4 +O
(

µ̂6
)]

. (B.13)

∫

pq

nB(p)nF (q)

2pq
Re

〈

p2 − q2

r2
r2c2 − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[

0.17811 + 1.43775 µ̂2 − 2.45413 µ̂4 +O
(

µ̂6
)]

. (B.14)

Second set of integrals involve the variables rc = |p+ q/c|:

∫

pq

nF (p)nB(q)

2pq
Re

〈

c−1+2ǫ r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[

0.19678+ 1.07745 µ̂2 − 2.63486 µ̂4 +O
(

µ̂6
)]

. (B.15)

∫

pq

nF (p)nB(q)

2pq
Re

〈

c1+2ǫ r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[

0.048368+ 0.23298 µ̂2 − 0.65074 µ̂4 +O
(

µ̂6
)]

. (B.16)

∫

pq

nF (p)nB(q)

2pq

p2

q2
Re

〈

c1+2ǫ r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2

(

Λ

4πT

)4ǫ
1

96

[

(

1 + 12 µ̂2
) 1

ǫ

+
(

7.77236+ 81.1057 µ̂2 − 48.5858 µ̂4 +O
(

µ̂6
))]

. (B.17)

∫

pq

nF (p)nB(q)

2pq
Re

〈

c1+2ǫ r
2
c

q2
r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2

(

Λ

4πT

)4ǫ
11− 8 ln 2

288

[

1

ǫ

(

1 + 12 µ̂2
)

+
(

7.7995 + 70.5162 µ̂2 − 57.9278 µ̂4 +O
(

µ̂6
))]

. (B.18)

∫

pq

nF (p)nF (q)

4pq
Re

〈

c−1+2ǫ r
2
c − p2

q2
r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

= −
T 2

(4π)2

(

Λ

4πT

)4ǫ
1

24

[

(

1 + 12 µ̂2
) 1

ǫ2

+
2

ǫ

(

1 + γ + ln 2 +
ζ′(−1)

ζ(−1)
+ (24γ + 48 ln 2− 7ζ(3)) µ̂2 + (31ζ(5)− 98ζ(3)) µ̂4 +O

(

µ̂6
)

)

+
(

40.3158+ 261.822 µ̂2 − 1310.69 µ̂4 +O
(

µ̂6
))]

. (B.19)

∫

pq

nB(p)nF (q)

2pq
Re

〈

c−1+2ǫ r
2
c − p2

q2
r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

= −
T 2

(4π)2

(

Λ

4πT

)4ǫ
1

12

[

1

ǫ2

+
1

ǫ

(

2 + 2γ + 4 ln 2 + 2
ζ′(−1)

ζ(−1)
− 14ζ(3) µ̂2 + 62ζ(5) µ̂4 +O

(

µ̂6
)

)

+
(

52.953− 190.103 µ̂2 + 780.921 µ̂4 +O
(

µ̂6
))]

. (B.20)
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The integral (B.12) can be evaluated directly in three dimensions at finite chemical potential. The other integrals

Eqs. (B.13)–(B.20) can be evaluated following the same procedure as discussed in [37] at finite chemical potential.
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